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Abstract 

Many fine art pieces have been reproduced in digital form. The digital reproductions have 

been used to store and transmit the original work. In contrast, mobiles, or moving 

sculptures, such as those designed by Alexander Calder cannot be reproduced realistically 

by photographs and/or static images. The real characteristics of mobiles come from the 

motions generated by interactive external forces applied to their structures. Hence people 

could not fully enjoy them through static images or even static three-dimensional models. 

We present a virtual mobile system where users can easily control the mobile and can feel 

the impressions that the artist originally intended to provide. Virtual winds are generated by 

blowing on a microphone which then exert external forces to the mobile. This microphone 

interface lets users control the mobile while they are watching it through a monitor. We 

introduce a linear time solution for the constraint dynamics and an improved impulse 

dynamics to speed up the simulation. Using these techniques, we achieve a real time 

simulation of the mobile on personal computers. The techniques presented can easily be 

extended to simulate other interactive dynamics systems. 

Keywords: virtual mobile, constraint dynamics, virtual wind, impulse dynamics 
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1. Introduction 

Recently, real world objects have been successfully reproduced in the computer systems, using computer 

graphics and virtual reality techniques. A good application example is digital museums, which display 

reproductions of real world fine art pieces on the computer.[1] For drawings, digital scanners and/or digital 

cameras can be used to generate the digital reproductions. In the case of sculptures, three-dimensional 

geometric and/or volume data can be used to create virtual sculptures.[2] Image-based rendering 

techniques including MCOP (multiple center of projection)[3] can also be used for this purpose. 

Mobiles, which are also known as moving sculptures, however, cannot be represented successfully 

using these techniques. As an example, a real world mobile, “Steel Fish”  by Alexander Calder is shown in 

Figure 1. Typical mobiles are dynamic systems: their components are usually dangling from the stems and 

move due to external forces such as from winds. Much of the people’s experience of the piece comes 

from real-time interactions with the piece. 

In this paper, we present a physically-based virtual mobile system. To simulate a real world mobile, 

 

Figure 1. A real world mobile: Steel Fish by Alexander Calder. 
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we start by constructing its geometric shape. Physical properties such as masses and inertia tensors are 

then calculated. The mobile is simulated by a constraint dynamics system based on these geometric data 

and physical properties. Users can generate virtual winds, and our constraint dynamics solver simulates 

the motions and collisions of the components. An impulse dynamics system is used to simulate collisions 

among the components of the mobile. Using a simplified aerodynamics model for the virtual wind and 

other acceleration techniques, our system accomplished real time display of an example virtual mobile on 

Pentium chip-based personal computers. Although the system has value in reproducing mobiles, perhaps 

more importantly, the techniques presented can be applied to other real-time physically-based simulations. 

The following sections describe the details of our virtual mobile system. In Section 2, we present the 

overview of the system. Section 3 explains how virtual mobiles are constructed from the real world 

mobiles. In Sections 4, 5, and 6, the virtual wind model, the constraint dynamics solver, and the impulse 

dynamics solver are presented, respectively. Example sequences of animation are shown in Section 7. 

Finally, conclusions and future work are given in Section 8. 

2. System Overview 

Our system is implemented in the C++ programming language and OpenGL graphics library on 

Pentium chip-based PC’s. Figure 2 is the block diagram of the system. At the preprocessing step, the 

system calculates geometric and physical properties of a virtual mobile. Initially, the mobile is in its 

equilibrium state. The user can generate virtual winds through the microphone interface and these virtual 

winds act as external forces. After finding the surfaces of the mobile influenced by the virtual wind, the 

forces applied on these surfaces are calculated. 

Using these forces, our system simulates the motions of the mobile, using constraint dynamics and 

impulse dynamics techniques. The constraint forces due to the connectivity among the components are 

first calculated, and the constraint dynamics solver generates new positions. These new positions may 
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cause collisions among the components of the mobile. After detecting the collisions, the impulse 

dynamics solver is used to handle these collisions. The system repeats above steps and displays the virtual 

mobile for each iteration. 

3. Data Acquisition 

To represent a virtual mobile, we need its geometric configurations and physical properties. It is, 

however, difficult to extract these properties from a real world mobile. In this paper, we select Steel Fish 

by A. Calder as an example, and reproduce its geometric configurations as shown in Figure 3. 

The example consists of nine components, each of which acts as an independent motion unit (Figure 

3.a). Eight spherical joints with three degrees of freedom connect these components to each other (Figure 

3.b). From the dynamics point of view, these joints play the role of constraints. 

For the dynamic simulation, the virtual mobile requires some physical parameters such as the mass, 

the location of the center of mass, and the inertia tensor for each component. Our system adjusts these 

parameters from the given geometric configurations to achieve the equilibrium as shown in the original 
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Figure 2. Block diagram of the virtual mobile system. 
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work. 

Since the example has a tree-like shape, the mass ratios between components are computed in a 

bottom-up manner. As an example, the mass ratio between components O4 and O5 is calculated from the 

ratio of the length of left
6O  and right

6O  as shown in Figure 3.a. Notice that the geometric configuration 

only gives mass ratios. Hence the total mass of the mobile acts as a control parameter to finally calculate 

the mass of each component. 

In addition to the mass of each component, we need to calculate the location of the center of mass 

and the inertia tensor. Assuming the components are uniform density rigid bodies, these physical 

parameters are calculated in a straightforward manner.[4] First, the volume of a component can be 

calculated from its geometric shape. From its mass and volume, the density of each component is 

specified. Then, we use Mirtich’s integral equations to get other physical parameters. The geometric 

configurations and physical parameters are later used to simulate the dynamics behavior of the virtual 

mobile. 

4. Virtual Wind 

While natural wind causes the motions of real world mobiles, we need virtual wind to simulate the 

motions of the virtual mobile. To control the virtual wind, we may use traditional input devices such as 
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Figure 3. Components and joints of the virtual mobile. 
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keyboards and mice. Additionally, our system uses a microphone interface. The user blows on the 

microphone, and the speed of the generated virtual wind is proportional to the amplitude of the input 

sound. The direction of the wind is specified with the mouse or stereo glasses with ultrasound head 

tracker. 

The microphone interface has some benefits. First, it is more intuitive for the user to generate the 

wind through the blowing action. Second, the microphone is more convenient to simulate the temporal 

variations of the wind speed. Another benefit is that the microphone is inexpensive and easily available 

even for personal computers. 

Since it is generated from the human breath, the virtual wind is assumed to propagate in an infinite 

cone shape, as shown in Figure 4. A circular cross section S0 with its radius r0 plays the role of the source 

of wind. The vertex of the cone is located at the distance l0 from the center of S0. User can provide r0 and 

l0 to control the shape of the cone, and the wind propagates from S0 in the direction opposite to the vertex. 

Using the microphone interface, user controls the wind speed v0(t) at S0. 

For simulating the wind, we need to calculate the speed of the wind at a distance l1 > l0 from the 

vertex. Although there are several results[5, 6, 7] for simulating aerodynamics in computer graphics 

applications, we use a simplified form to achieve real time display. We start with the assumption that the 

fluid (in this case, air) is not viscid and incompressible, and no fluid can cross the boundary of the cone 

shape. This is a reasonable model for air at normal speed.[6] Then, the Equation of Continuity in fluid 
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Figure 4. Virtual wind model. 
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dynamics gives 

 A0 v0 = A1 v1, (1) 

where A and v represent the area of the cross-section and the fluid speed, respectively.[8] The subscript 0 

and 1 corresponds to the distance l0 and l1, respectively. 

From Equation (1) and the geometric configurations of the cone, it is easily found that 

 
2

1

2
0

2
1

2
0

2
1

2
0

1

0

0

1

l

l

l

l

r

r

A

A

v

v ====
π
π

π
π

. (2) 

Using the Stoke drag equation,[8, 9] the force acting on a face with its area A located on the cross section S1 

can be calculated as follows: 

 aavvA nnnF )(2
1stoke ⋅= ρ , (3) 

where nv and na are the unit directional vector of the wind and the face normal vector, respectively, as 

shown in Figure 5. The constant ρ is the density of fluid. Equations (2) and (3) give 

 aavl

v
A nnnF )(

4
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2
0

stoke ⋅= α , (4) 

where α is a constant. For simulating the turbulent behavior of wind, we add a random noise term and the 

final force can be expressed as 

 randomstokewind FFF += , (5) 
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Figure 5. Force due to the virtual wind. 
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where the direction of Frandom is randomly selected, and |Frandom| < β |Fstoke| for a user-selectable constant β. 

Before applying the force calculated in Equation (5) to the face, we should check whether the wind is 

directly delivered to the face or not. When a face is occluded by another face in the air flow, we simply 

assume that the occluded face is not influenced by the wind. Without this assumption, it is hard to achieve 

the real-time display of the mobile. In this simplified wind model, the air flow can reach the faces which 

are directly visible from the vertex of the cone and which belong to the interior of the cone. 

The faces affected by the wind can be identified by a visible surface detection method. We use the 

depth-buffer method for more speed-up. To simulate the partially occluded cases, faces are first 

partitioned into small areas on which sampling points are assigned. Then, the graphics pipeline is used to 

capture the image containing the cross section S0 using the synthetic camera located at the vertex of cone. 

Each sampling point has its own identification number, and it is also stored in the alpha buffer through the 

graphics pipeline. Scanning the alpha buffer, we can easily detect whether each sampling point is visible 

from the vertex of the cone or not. Since S0 corresponds to a circle on the image plane, it is also easy to 

check the point belongs to the interior of the cone. When a sampling point is visible and also belongs to 

the interior of the cone, the force calculated in Equation (5) is applied to its corresponding area. In the 

next section, we will present how the constraint dynamics techniques are used to apply these external 

forces to the mobile. 

5. Constraint Dynamics 

Since the components of typical mobiles are connected with joints, constraint dynamics simulation is 

required to generate physically correct motions. In constraint dynamics simulation, two different methods 

are frequently used: the reduced coordinate method[10] and Lagrange multiplier method.[11, 12] Although 

the reduced coordinate method can also be used, symbolic knowledge of the body-space to world-space 

mapping is required to parameterize the system’s degree of freedom.[12] Our system is based on Lagrange 
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multiplier method. In this section, we will explain how Lagrange multiplier method can be applied to the 

mobile. See [11] and [12] for more details of Lagrange multiplier method itself. 

At each joint of the mobile, we need to apply constraint force to preserve the connectivity due to the 

joint. Letting the position vectors of joints be q(t) at time t, Lagrange multiplier method calculates the 

constraint force λTˆ JQ =  by solving the following constraint force equation with respect to the 

Lagrange multiplier λ: 

 QWJqJJWJ −−= ��λT , (6) 

where W is the inverse of generalized mass matrix and Q is externally-applied force (virtual wind in this 

case). J is the Jacobian matrix ∂C/∂q where the vector function C(q) is the concatenation of all constraint 

functions. After solving the above equation, the calculation of the constraint force Q̂  is calculated in a 

straightforward manner. 

Many numerical techniques can be used to solve the above equation.[11, 12, 13] Among them, Baraff ’s 

extension method[12] gives linear time solutions for usual constraint  functions. However, this method 

requires complicated algorithms for auxiliary constraints, which can frequently occur in the case of virtual 

mobiles. For chain-like objects, Surles presented a linear time solution through permutating the rows of 

the matrices.[11] Our method is similar to Surles’ method. However, we avoid the permutation process 

through proper numbering of the constraints. This numbering can be performed as a pre-processing step, 

as shown in the followings. 

The joints in a mobile can be numbered in a bottom-up manner. Figure 3 shows the numbering of 

components and joints of our example mobile, Steel Fish. Notice that the component O0 is fixed to the 

ground and thus joint T8 act as a nail constraint while others act as point-to-point constraints. Using the 

bottom-up numbering of the joints, Jacobian matrix J in Equation (6) can be expressed as 
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where the denoted elements are constants and others are all zeroes. The element j ij is non-zero when the 

joint Ti connects the component Oj to another component. A tree-like object gives an upper triangular 

Jacobian matrix J with a bottom-up numbering of components and joints. Since J is upper triangular, the 

product of matrices J W JT in Equation (6) can be expressed as: 
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Letting the above matrix be A = [aij], we can easily find the following three characteristics: 

(1) diagonal elements aii’s are all non-zeroes 

(2) aij is non-zero if and only if aji is non-zero 

(3) aij is non-zero if and only if a component is affected by both the i-th and the j-th constraints. 

Although a few numerical methods can solve Equation (6) in O(n) processing time, they are somewhat 

complex.[11, 12] In contrast, the above characteristics enable us to achieve the time complexity of O(n) even 

with Gaussian elimination method, which is simple but requires O(n3) time for general matrix equations. 

During Gaussian elimination process, we can always choose aii as the pivot element since all aii’s are 

non-zeroes. When subtracting the i-th row from the j-th row with j > i, no new non-zero elements in the j-
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th row are introduced. The mobile has O(n) constraints and thus, the matrix A = J W JT has only O(n) 

non-zero elements. Therefore, we need only O(n) operations for the matrix solution, to finally achieve the 

linear-time solutions for our constraint-dynamics model. 

6. Collision Handling 

When simulating the motion of mobiles with constraint dynamics, collisions between its components 

will necessarily happen. Although there are many general collision detection methods,[14, 15] the collision 

detection can be achieved more efficiently through analyzing the characteristics of the mobile. First, some 

pairs of the components cannot collide with each other. As an example, the components O3 and O5 can 

never collide with each other in our example mobile. A preprocessing step detects all such pairs of 

components so that they can be excluded from the collision detection process. Additionally, some 

components are simple geometric shapes such as cylinders and spheres. Thus, we can use cylinder-to-

cylinder, cylinder-to-sphere and sphere-to-sphere collision detection methods, which are much faster than 

the usual polyhedron-to-polyhedron collision detection methods. 

After detecting collisions, we use the impulse-based collision response method.[16, 17] Since this 

method can calculate the new velocities instantaneously, it is suitable for real-time applications. The 

penalty method,[17] which is also widely used in the collision response, requires small time steps for 

accurate simulation, and is not appropriate for real-time applications. 

In the case of a mobile, the collision response method should cooperate with the constraint dynamics 

model. Thus, the constraints at the joints and frictions at the collision points should also be handled 

during the collision response. Moore formulated the impulse equations for articulated figures, and his 

equation can be used for joint constraints.[17] 

Letting the components of the mobile be Oi, 1 ≤ i ≤ n, the mass and inertia tensor of Oi is denoted as 

mi and I i, respectively. Due to the collision, the linear and angular velocity of Oi may be changed. Let vi 
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and ωωωωi be the linear and angular velocity of Oi with respect to the center of mass of Oi, before the collision. 

The impulse-based collision response method aims to calculate the linear velocity iv  and the angular 

velocity i
�  of Oi after the collision. 

The impulse-based collision response method starts from the law of momentum conservation. Since 

the change of momentum before and after the collision equals to the sum of impulses at the time of 

collision, the impulse equations for Oi can be expressed as follows: 

 �+=−
j

ijiiim PPvv )(  

and 

 � ×+×=−
j

ijijiiii PlPl��I )( , 

where P is the impulse applied to Oi and Pij is the attachment impulse on Oi due to Oj, which is connected 
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Figure 7. Collision plane. 
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Figure 6. Impulse-based collision response. 
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to Oi using a joint constraint. When Oi and Oj are not directly connected to each other, Pij is a null vector. 

Notice that P can be zero for non-colliding components. The vectors l i and l ij are the distance vectors from 

the center of mass of Oi to the collision point and to the joint connecting Oi and Oj, respectively, as shown 

in Figure 6. 

Joint constraints also give additional equations. When a spherical joint connects Oi and Oj, their 

relative velocity at the contact point should be equal to each other: 

 jijjijii l�vl�v ×+=×+ . 

In the case of nail constraints, a point on the component Ok has a fixed position. Thus, the linear velocity 

of the nailed point is zero: 

 0=×+ kkkk l�v , 

where lkk is the vector from the center of mass of Ok to the nailed point. 

Moore extended this formulation to cases with friction. However this requires solving the whole 

systems of linear equations repeatedly to determine the friction status of each collision point. We improve 

this method by combining it with Mirtich’s conditional equation for friction.[15] 

When a point of Oi is colliding with a face of Oj, the plane containing that face is defined as the 

collision plane, as shown in Figure 7. With respect to the normal vector N of the collision plane, the 

impulse P for Oi can be divided into two components: the normal component PN and the tangential 

component PT = P – PN. The state of friction can be classified into two cases: sticking case and sliding 

case. From the viewpoint of impulse, the sticking case means there is no slip at the collision point, which 

satisfies the condition of |PT| ≤ µ |PN| with the friction coefficient µ. When |PT| > µ |PN|, the collision point 

will slip along the collision plane and it is the sliding case. 

Since the sliding and sticking cases result in different equations, it is important to identify whether a 

collision point is sticking or sliding. For sticking cases, the collision point does not move along the 
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collision plane. In contrast, the friction force will act on the sliding collision points. 

Using Moore’s formulation, it is impossible to decide whether a collision point is sliding or sticking 

without calculating the impulse. Mirtich introduced a prediction equation for sliding conditions.[15] The 

friction at a collision point is sliding when it satisfies the following condition:  
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where the 3-by-3 matrix K  = [kij] equals to )()/1/1( 11
jjjiiiji mm lIllIlE ××+××−+ −−  with the 3-by-3 

identity matrix E. We use this prediction equation to speed up the impulse calculation. 

7. Example  

Our example, Steel Fish, has 9 components connected by 8 joints. Our constraint dynamics solver 

uses total of 24 constraint functions for the three-directions of 8 joints. Thus, we need to solve the 

24-by-24 matrix equation to get the constraint forces.  

For the dynamics-based simulation, we should calculate linear velocities and angular velocities of 8 

components excluding the fixed component O0. Using the impulse-based collision handling, we also need 

to calculate the impulse P and the attachment impulses Pij’s of 8 joints. Thus, the number of unknowns is 

81, and the impulse dynamics solver needs to solve the 81-by-81 matrix equation. 

An example sequence of images generated by our virtual mobile system is shown in Figure 8. Our 

system was executed on a personal computer with 350MHz Pentium chip and 64Mbyte of main memory. 

We use software-implemented OpenGL libraries[18] for rendering, without any hardware acceleration. The 

simplified virtual wind model and customized dynamics solvers enable us to simulate the example mobile 

interactively. Figure 9 is another sequences of images for the mobile named “Southern Cross”  which is 

also originally created by A. Calder. 
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Figure 8. Example sequences of images. 
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8. Conclusion 

Figure 9. Another example sequences of images. 
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Our aim was to reproduce a real-world mobile on a low-end computer system. To achieve this goal, 

we developed a dynamics-based virtual mobile system. To interactively display the virtual mobile, our 

system concentrates on three improvements: the virtual wind model, constraint dynamics solver, and the 

impulse dynamics solver. 

First, we suggested a wind model, which is simple but sufficient to simulate directional winds. 

Additionally, the microphone interface is developed for easy control of the virtual wind. Since this wind 

model can generate directional winds, it is suitable for simulating artificial winds generated by electric 

fans, air-conditioners, etc. Improving our wind model by combining with existing natural wind models[6, 7] 

will be a future work. 

As a dynamics system, our virtual mobile system uses a constraint dynamics solver and an impulse 

dynamics solver. For real-time display, both are highly tuned for simulating typical mobiles. Since usual 

mobiles are tree-like shapes, this improvement can also be used for general tree-like objects. 

The specific real example of the mobile allowed us to focus on the technical problems. While such 

systems have inherent value, perhaps more important is the fact that the improvements that have been 

made to existing techniques can be used to simulate other real-time systems. 
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