Appeaed in: Koza, JR., et al. (editors), Genetic Programming 1997 Proceeadings of the 2" Annud Conference,
pp. 139146, July 13-16 1997 Stanford University. San Francisco: Morgan Kaufmann. (1997

Genetic Programming Evolution of Controllersfor 3-D
Character Animation

Larry Gritz
Pixar Animation Studios
1001W. Cutting Blvd.
Richmond, CA 94804

lg@pixar.com
ABSTRACT
The dominant paradigm for 3-D
character animation requires an

animator to speafy the values for all
degrees of freedom of an articulated
figure at key frames. Speafying motion
that is physically believable and
biologically plausible is a tedious
practice requiring great sKill .

We use evolutionary tedniques
(spedfically Genetic Programming) as a
means of controller synthesis for
character animation. Controllerswhich
drive a dynamic smulation of the dar-
acter are evolved using the gods of the
animation as an objedive function,
resulting in physically plausible motion.
We discussthe development of objedive
functions used to guide the @ntroller
evolution, making reusable skill
controllers, and comparisons of the
convergence rates for different
parameters of the evolutionary runs.

1. I ntroduction

In this investigation, we ae @ncerned with a particular
subset of computer animation: character animation. In an
animation, many oljeds may be moving around
Charaders are those objeds whose movements cortribute
to telling the story and which express thinking, volition,
and emotion.

An example of animation which dces nat fal into the
caegory of charader animation would be effeds
animation. This would include movement of objeds other
than charaders, or which is not designed to convey
emotion a intent. Examples of such animation include
falling rain, leaves blowing in the wind, flying spaceships,
rotating business logas, or a flock of bats flying around

James K. Hahn
The George Washington University
801 22ndst. NW
Washington, DC 20054
hahn@seas.gwu.edu

Methods have been developed to succesully automate
several spedfic cases of effeds animation, largely due to
the fad that many eff eds animation tasks can be solved by
straightforward physicd simulation.

Asthe at and craft of charader animation was refined,
particularly at Disney Studios, animators identified spedfic
properties of superior animation. Thomas and Johrston
[Thomasand Johrtson, 1984, and later Lasster
[Lasster, 1987, identified “principles of animation’
which describe important aspeds of redistic charader
animation. They included squash and stretch, anticipation,
staging, straight ahead adion and poe to pcse, follow
throughand owerlapping adion, dow in and sow out, arcs,
sewondary adion, timing, exaggeration, and apped. Some
of these principles are purely artistic (such as apped), but
many dhers describe the dynamic end behaviora
properties of red materials and creaures.

The primary method for animating 3-D charadersis by
key framing. The tedchnique takes its name from the
pradicein 2-D cd animation d a senior animator drawing
the figure & particular frames in which significant events
or extrema of motion accur. More junior animators then
use the key frame drawings as a guide for the intermediate
frames (doing a kind d human-powered interpolation o
the poses). These techniques were extended into the redm
of 3-D computer animation by spedfying and interpdating
pasitions and joint angles of the charaders. Extrema for
ead degree of freedom (DOF) are spedfied by human
animators, and the intermediate values are interpolated
(frequently by cubic spline) by the animation software.

The motion resulting from interpolating the key frames
is purely kinematic. If the motion is to be physicdly
redistic (exhibiting inertia, obeying force laws, etc.),
biologicdly plausible (obeying joint limits or other
constraints of a particular creaure), follow any of the
principles of animation described ealier, or be
entertaining, it is entirely up to the human animator to
choose key times and values which med these
congtraints. Virtualy all production charader animation
is dore using this method in spite of the large anount of
reseach into automating charader animation. It is the
principles mentioned ealier which make animation (of any

1

Appeaed in: Koza, JR., et al. (editors), Genetic Programming 1997 Proceeadings of the 2" Annud Conference,
pp. 139146, July 13-16 1997 Stanford University. San Francisco: Morgan Kaufmann. (1997

media) believable, entertaining, and able to conwey the
underlying story. It isthe job d the animator to spedfy
motion which adheres to these principles, to prevent bad
motion from distrading the audiencefrom the story. Being
able to do this well is a rare talent, and viewers of
animation are merciless critics who ealy recognize
unredi stic motion.

Given the extreme difficulty of key framing, yet our
well-developed ability to recognize good @ bad motion
when we seeit, we sough a method kased onthe foll owing
principle: let the system generate the motion, and let the
human povide the determination d what is “good”
Therefore, the gproach we took was one of controller
synthesis: our animated charaders are dynamicdly
simulated robds, and we use an ogtimizaion technique to
generate controllers which satisfy the goals and constraints
of the motion which are spedfied bythe animator. Genetic
Programming (GP) is used to synthesize the ntrollers,
and dten resultsin controllers for animation which exhibit
the principles of animation and poduwe fluid, organic
motion.

We previously described ou ealy effortsin this areain
[Gritz and Hahn, 1995. In this paper, we both summarize
those results for the GP community, and report on
extensions to that work which include more robust adion-
based controllers and analysis of the rate of convergence of
the GP process

2. Related Wor k

Witkin and Kass [Witkin and Kass 198§ proposed the
spacetime onstraints method, which generates kinematic
motion which bah satisfies high level goals (e.g. “jump
from here to there”) and also appeas to be physicdly
plausible. The resulting motion tends to exhibit many of
the principles of traditional animation such as gjuash and
stretch, anticipation, and follow-through ~ Spacdime
congtraints uses squential quadratic programming (SQP)
to ogimizethe kinematic positions of an articulated figure,
using energy consumption as an oljedive function and
constraining the solution in order to ensure that the motion
is physicdly plausible. Unfortunately, this method
generates solutions which depend on the initial guess
provided to the optimizer, can easily findalocd minimum,
and the resulting kinematic motion is not particularly
reusable. In addition, it is by nomeans clea that energy is
the best criteriato optimize

More recently, other reseachers proposed methods of
automaticdly generating walking motion wsing search and
optimization techniques [Ngo and Marks, 1993
van de Panne and Fiume, 1993. Both gave impressve re-
sults, yielding physicdly plausible motion and auto-
maticaly finding a number of walking methods. However,
the resulting motion hed high spedalization (i.e. they made
walking ggits, not general motion), but low spedficity (i.e.
they bath simply walked forward, rather than having more

spedfic instructions, like “walk to pasition X”). Both of
these methods were optimizing structures of fixed
complexity (a network of fixed topdogy and a stimulus-
resporse table, respedively). We believe that this is a
disadvantage mpared to a representation which may
change its own complexity. We dose a different
representation, namely a mathematicd description
(computer program) describing how the joint forces vary
with time and changes in the state of the simulation. We
believe that this representation dfers many advantages,
andis appropriately optimized using the GP technique.

Karl Sims used a GP-like processto evolve procedural
textures, where the fitness metric was human evaluation
[Sims, 199]. Sims also described the use of evolutionary
programming to design entire aeaures [Sims, 1994, in
which even the aeaure topdogy was evolved for walking,
swimming, etc. In contrast, our work deds with figures of
fixed topdogy and geometric structure, as one would
exped for charader animation.

3. GP Evolution of Controllers

3.1. System Overview

The conceptua layout of our system is siown in Figure 1.
Asinpu to the system, the user (animator) suppgies bath a
detail ed articulated figure model and a fitnessmetric. The
figure model includes information on sizes and
conredivity of the links, masses and inertias, joint limits,
etc. The fitness metric (or objedive function) implicitly
encodes information abou the motion which is desired
from the charader. The fithess metric rates the motion
sequence by gving lower numbers to motion sequences
which are dose to what is desired by the user, and high
numbers to sequences which deviate from the goals of the
animation. The system itself consists of a Genetic
Programming-based optimizaion modue, and a dynamics
simulation modue.

| controller program | Output
Articulated figure System

GP System dynamics simulation| + (black box)
| fitness metric | | figure model Input

(supplied by user)
Figure 1: Overall Structure of the System

When a GP run hes finished, the final output of the GP
subsystem is a single crtroller program. This cortroller
program is the one which, when used to gowern the adions
of a simulated agent, resulted in the best rated agent
acording to the user-suppied fitness metric. This
controller program may then be used to generate the
motion control needed for the animation.

Appeaed in: Koza, JR., et al. (editors), Genetic Programming 1997 Proceeadings of the 2" Annud Conference,
pp. 139146, July 13-16 1997 Stanford University. San Francisco: Morgan Kaufmann. (1997

3.2. Controller Structure and Smulation

The oontrollers themselves are LISP Sexpressons
[Stede, 1984, which gvethe “desired arientation” of eadh
joint at the time when it is evaluated. The controller is a
list of subexpressons for ead degree of freedom (see
Figure 2). Motion for animated charaders is generated
using dyramic simulation d articulated bodes using
methods outlined in [Armstrongand Green, 1985
Hahn, 1988 Wilhelms, 1990. Eadh joint is controlled
internally by a damped anguar spring, and has a “neutral”
(or desired) orientation which at any time is given by
evaluating the controller S-expresson at ead time step of
the simulation. The spring pushes the joint toward the de-
sired arientation with a torque propationa to the angle
between the adua and desired arientations using a
propational derivative (PD) controller, whichisa cmmon
technique used in bah computer animation and robdaic
control. The system also acounts for joint limits and
collison cetedion and resporse. Therefore, we ae
guaranteed to get motion which is physicdly plausible.

Controller = 1 dof
st
(exprl) / 1 dof
(expr2)
(expr3)
(exprd) 7 3 dof
(exprb))
T,=k 6+ kzei
Rigid Link i +1

(actual position)

Rigid Link i

o~ - desired position
of link i+1
Jointj (3 deg. of freedom)

Figure 2: Controllers are expresson lists which give
desired joint angles for each degree of freedom.
Torque at each joint is proportional to the angular
difference between actual and desired orientations of
thelinks.

3.3. Experimental Design

To test the idea of using GP controller synthesis for
animation, we chose to animate locomotion d a desk lamp,
after Luxo, Jr. [Pixar, 1989 (which seems appropriate
since the film, though completely key framed, is dill
considered a high pant of computer animation quality).

Our lamp model (dubked “L*x0”) was a fully 3
dimensional articulated bodywith 4 links and 3internally
controllable degrees of freedom. All dynamics were
smulated in 3D. The geometry, masses, inertias, and so
on were given to the sysem. The lamp had accessto its
pasition relative to the goal paint, its velocity, and the
amount of force being imparted to its base through contact
with the floor. We wanted to tead the lamp to be ale to
move éou. It would na have been considered a success
to simply move forward—we wanted to generate a ©rn-
troller program to bring it to rest on a particular spat, to
show that we could perform any intricate scripted motion
we desired.

We previoudy reported (in [Gritz and Hahn, 1993)
generating locomotion controllers for L*xo for spedfic
aaions, for example, hopgng forward 30 cm. This
resulted in fairly redistic and aganic looking motion,
however this techniqgue has a major shortcoming: the
resulting controllers acaomplish exadly one adion. This
leads to several conclusions abou the deficiencies of this
approadh.
 The ontrollers are not reusable for other situations.

Having trained L*xo to jump forward 30cm, we must
do a oompletely separate training if we later need
L*xo to jump 50cm.

e The controllers are “brittle.” They are developed for a
particular set of initial condtions, and would na be
expeded to dowell under differing condtions.

e Thoughthe motion generated by the controllers can be
simulated in red time, the training process happens
off-line, sometimes taking hous to derive the
cortrollers. We oould live with substantial off-line
computation if we only need to doit once, resulting in
acontroller which isreusable in avariety of situations.

The solution to these problems is to evolve “robust”
controllers which are reusable in a variety of related
situations. Robust controllers are reusable, not brittle, and
can handle avariety of initial condtions. If a charader is
used for multiple animations, the robust controllers
evolved when the charader was first creaed can continue
to be used for subsequent animations involving that
animated charader. For example, a antroller to “jump
forward 30cm” yields a spedfic, one time only action. In
contrast, we might want a skill, such as “walk forward,”
which could accept parameters for distance traveled and
time to spend traveling. This cortroller, if we could evolve
it, could pdentially be reused for all the locomotion tasks
of an animation, or even several animations feauring the
same charader. To generate robust controllers, we used
the method described in [Koza 1993 of using a training
st to evaluate the fitness function. Rather than have the
fitness rating composed of some metric based on ore
particular set of initial condtions, a number of fitnesscases
are generated randamly, and the new aggregate fitness
measure is given bythe average of N, individual trials.

3

Appeaed in: Koza, JR., et al. (editors), Genetic Programming 1997 Proceeadings of the 2" Annud Conference,
pp. 139146, July 13-16 1997 Stanford University. San Francisco: Morgan Kaufmann. (1997

34. GP Subsystem

The GP subsystem runs the basic GP algorithm described
by Koza [Koza 1993. Indviduas are S-expressons
giving desired joint angles, which generate torques at the
joints of the simulated roba, as described in the previous
subsedion. To evaluate the fitness of an individual, the
dynamics subsystem is invoked to simulate the situation,
given the particular individual as the roba controlling
program. When the simulation is over, the user-supgied
fitness evaluation function rates the performance based on
dtatistics colleded by the dynamics program. GP run
parameters are summarized in Table 1.

3.5. Constructing FitnessMeasures

To rate a ontroller as a potential solution, the fitness
function wses the dynamics g/stem to simulate the motion
using that particular controller program, then uses gatistics
supdied by the dynamics gstem to compute a fithess
rating. We divided the fithess measure into a main god
and style points. The main gal is a smple metric of
whether the primary task of that motion sequence has been
fulfilled. For example, if the point of the motion sequence
isto move the figure to the “X”, then the main gaal shoud
simply be the distance between the figure and the “X” at
the end d the time dlotment. Since the motion is ©
grosdy underconstrained, the GP system can often find
outrageous ways of meding such a simple fitness
requirement. For example, it might somersault to the goal
point instead of hoppng. Because of this, we find it useful
to add style paints, which can be though of as additiona
rewards or pendties granted to the individua’'s
performance

In the cae of the L*xo lamp locomotion, we used the
foll owing fithessmetric (described here informally):

1. Main gal: distance between base center and gal

point “X" at the end d the time dl otment.

2. Style paints. aweighted sum of the foll owing:

a) bonws for completing the motion ealy (how
much time did it take to get to the “X").

b) penalty for excessmovement after goal was met
(thiswasto keep it ill after it got dore).

¢) penaty for hitting its head o falling ower
(“safety” considerations).

d) bonwsfor endingwith joints at neutral angles.

These fitness criteria were admittedly developed in an
ad ha manner, though we found ou that they did
surprisingly well for a variety of tasks (and even a variety
of characders) with littl e modification.

We found that immediately pladng all of the style
considerations on the motion dd na give the GP process
the best oppatunity to dscover fit individuas, simply
because it was © restrictive. We solved this problem by
rating controller programs based onthe main gcal only for
the first few generations, then dowly phased in the style
considerations, generation by gneration, yielding the
aggoregate fitnessfunction:

o=1a
where g isthe arrent generation and G is the total number
of generations for the run. The square roat merely changes
the shape of the phase airve, so that it increases more
quickly in earlier generationsthan in later generations.

The net effea of the phase cntrol was to tead it how
to get to the “X” first, withou regard to whether it fell over
afterward or whether it ended in aneutral postion. Onceit
had mastered that task, then we placed more and more
restrictionsonit. By the time we gat to the last generation,
the motion included the full set of style considerations. In
this manner, we dl owed the motionto start crudely and gget
progressvely more stable over several generations. This

fitness= fit,,, + fity,) ,

Table 1. Thetableau for the GP run to construct a robust forwar d locomotion controller for the L*xo lamp.

Objedive To derive arobust controll er for L*xo which canlocomote forward any distance.
Terminal set t (time)
a0, al, a2 (L*xo’sinternal angle sensors)
0 (sensor 0 - the airrent of the floor on the base)
PX, pY, Pz, VX, vy, vz (positionand velocity of L*xo’s base relative to the goal)
god_met (statusflag - norzero after the base is at the goal)
god_dist (distance between the base and the goal)
O (the gohemera randam constant on [-30,30))
Function set +, -, %, %, ifltz
Fithesscases Nfc = 6 distances to the goal position, chosen over [5 cm, 60 cm].
Fitnessmetric The average, over Nfc fitnesscases, of the fitnessfunction described in §3.5.
Using phese, fitness= (main god fit) + ¢(style paint fit)
Hits The number of casesin which L*xo came within 1.5 cm of the goal pasition within the time limit.
Wrapper Theindividual isalist of 3 subprograms which map to the “desired angles’ of L*xo’ s threeinternally
controll able degrees of freedom.
Misc. Parameters PopuationsizeM =400 Number of generations G = 50
Individuals chosen using tournament seledion with tournament size of 6.
Pc = 90% of individuals constructed using crossover, remainder using reproduction.

4

Appeaed in: Koza, JR., et al. (editors), Genetic Programming 1997 Proceeadings of the 2" Annud Conference,
pp. 139146, July 13-16 1997 Stanford University. San Francisco: Morgan Kaufmann. (1997

=

(1ist
(- (ifltz a0 pz a2) (%al t))
(ifltz (- (- (ifltz a0 pz a2) (% alt))

(+al vz) (ifltz (*

(- (ifltz sO (ifltz (-
16. 5266 s0))

vz) (+ al vz)))

(ifltz (+ a2 15.4963)
az2))) (ifltz (% (- sO vx) (+ a2 s0)) (% (- sO vx) (+ a2 s0)) (+ (- a1l al) (- al t)}%
pz al) (% a0 pz) (% px a0))))

(% vx a0) (% vx vx)) (% vx a0) (- (+

(ifltz a0 pz a2) (% af

-28.4382 t) (walt))) (*

Figure 3: Lamp’s Jumping motion and a controller program which generatesit.

was easier for the system than requiring ogimal motion at
the very start.

3.6. Fitnesstest case generation

The goal of this particular test was to generate agenera
locomotion controll er for the lamp which could be used for
forward locomotion d any dstance For pradicdity, it
was asumed that useful distances to move would be
between 10and 60cm, thoughit was hoped that a general
controller could be used for indeterminate distances. A
total of Nfc fithess test cases were generated with gaal
distances on [.1,.6] (measured in meters). A regular
distribution (e.g. .1, .2, .3) was nat used, for fea that it
would generate adequate controllers only for multiples of
the step size

The solution we used was to generate sample goal
distances using a Poison dsk distribution. A total of Nfc
goal distances were cosen, but as ead sample was
generated, it was discarded if it was too close to a
previously chosen sample. This resulted in a seledion o
goal distances which were well spread ou aaoss the
interval, yet were not multi ples of some basic step size

3.7. Animation Results

The resulting cortroller program produced a hoppng
motion which brought the lamp to the exad spot we
desired (see Figure 3). These “robust” cortrollers were

able to be reused for locomotion d any dstance The
motion appeared smoath, physicdly redistic, efficient, and
surprisingly organic. Note that for the example in the
figure, the solution invaved two hops. A solution with
such severe discontinuities (such as colli sions) would na
be found bya locd gradient-based optimization method
such as gacdime ongraints. Figure 3 also shows a
sample oontroller program which made asuccesgul jump.
The oontroller programs are usualy opague to human
interpretation, but we ae generally nat concerned with the
roba’s internal mechanisms for movement. Figure 4
shows more robust controll ers which were used for more
constrained motion, and where used to make the short
video “L*xo Leansto Limbo.” Using a single alditional
style term—a large penalty for hitting hs head on the
limbo pde—we were &le to produce aseries of motions
for various heights of the limbo pde. The resulting motion
has dight imperfedions and at times incorporates
seamingly “clever” strategies, which gves it an organic
rather than robaic gopeaance. Runs of this type tended to
take several minutes per generation, on an SGI R4000
procesor. Generating a single robust controller therefore
took onthe order of afew hous. But once a ontroller was
generated, it could be used for many animation sequences,
and the simulations with an existing controller could be
performed in roughy red time.

Figure 4: The lamp can learn to avdd obstacles when additional constraints are added to the system.

Appeaed in: Koza, JR., et al. (editors), Genetic Programming 1997 Proceeadings of the 2" Annud Conference,
pp. 139146, July 13-16 1997 Stanford University. San Francisco: Morgan Kaufmann. (1997

Fitness convergence vs. Population size (M)

Fitness Value
=

L v b v b v b b by
0 5000 10000 15000 20000 25000
Number of individuals examined

Fitness convergence vs. # of Gens (G)

M =300

Fitness Value

G=100

G=75

G=30 G=40

Lo v v v v v v v e e by

o 5000 10000 15000 20000 25000 30000
Number of individuals examined

Figure 5: Graph of fitness vs. number of individuals Figure 6: Graph of fitness vs. number of individuals

examined for r uns of different population sizes.

4, ConvergenceAnalysis

A disturbing feaure of the GP method d controller
synthesis is that the GP run parameters are dosen so
arbitrarily. It would be much more satisfying if we wuld
point to empiricd evidence for choasing the parameters.
In addtion, since the leaning pocess is © time
consuming, understanding hav to make GP runs more
efficient could be very beneficial in the dfort to make this
entire process more interadive. Chocsing the various
parameters of the GP runs is in itself an opimizaion
problem. In this sdion, we report our experiments to
determine optimal GP run parameters. The time it takes to
derive a ontroller (the length of the run) is propational to
M, the popuation size; G, the number of generations; Nfc,
and the number of fitness cases. Therefore, we
concentrated on experiments invalving variation o these
parameters.

In al of the experiments, the most important metric is
the total number of individuals examined, defined as M x
G. This is the basic measure of work dore by the GP
process The other important quantity is of course
fitness—lower values are better. The goal here is to find
the values of the parameters which yield individuals with
very low fitnessvalues, by examining (i.e. smulating) as
few individuals as possble. Note: al graphs are of the
fitness of the best-of-generation for runs with the same
randam seed, and dffering oy by varying the parameter
under investigation. Raw fitness values below 0.5 tended
to correspondto goodlooking motion when animated.

Population size — how many individuals do we
acdualy nedal in ead generation? Clealy there is me
minimum popdation size for any gven problem; with
smaller popuations, there will not be enough gnetic
diversity to converge to an adequate solution. Also thereis

examined for r uns of different number of generations.

some popuation size, abowve which orly incresses
computation time withou vyielding better controller
programs. To find this criticd number, we ran several
training runs for the robust L*xo locomotion described
ealier. All of the trials used G=35, Nfc=3, and Pc=90%.
Runs were performed with popuation sizes of 10, 50, 100,
150 200, 300, 400, 500, 600, and 700individuals. Figure
5 graphs fitnessvalue vs. number of individuals examined
for these different popuation sizes. Popuation sizes under
200 dd na conwerge to goodfitnessvalues. However, for
popuation sizes of 200 a more, the popuation size made
littl e difference in the fitness of the best-of-run individual.
Thus, it was most cost-effedive to do runs with 206300
individuals, and nd beneficial to waste mmputation with
popuation sizes of 500 a more.

Number of generations to run — we found that a
popuation size of around 300was optimal, but how many
generations do we nedl to find a good solution? Again,
some minimum probably exists. Fewer generations will
simply na provide enough“time” to evolve fit controll ers.
But also there is likely some maximum, after which the
controllers will not continue to improve. Using M=300, as
sugeested by the last experiment, Nfc=3, and Pc=90%,
runs were performed with G = 10, 20, 30, 40, 50, 75, and
100 generations. Figure 6 graphs fitnessvalue vs. number
of individuals examined for runs of different humber of
generations. Remember that the graphs do nd coincide
becaise the phase function causes the fithessratings to be
dependent on the total number of generations to be run.
The optimal value of G turned out to be 30. Presumably,
fewer than 30 generations do nd allow the ntrollers to
evolve to goodfitness More than 30 generations not only
does nat produce more fit individuals, but in fad as G gets
very large, the runs do nd produce individuals as fit as
G=30! Thisis nat easy to explain, but one hypahesis is
that the “seledion presaure” of the phase function with

6

Appeaed in: Koza, JR., et al. (editors), Genetic Programming 1997 Proceeadings of the 2" Annud Conference,
pp. 139146, July 13-16 1997 Stanford University. San Francisco: Morgan Kaufmann. (1997

short runs forces fit individuals to flourish. When G is
very large, there is less presaure to get rid o individuas
with low style, and aher individuals with pdentialy
important (for style points) genetic material eventually are
eliminated prematurely.

Type of seledion for individuals — a variety of
methods may be used to adually seled the individuals for
the next generation. Most of the examples from Koza
[Koza 1997 use fithesspropationate seledion, though
other authors have suggested that tournament seledion is
more stable. We ran several trials which derived a robust
hoppng controller for L*xo. All of the trials used M=300
G=30, Nfc=3, and Pc=90%. Six trials were run: one using
fitnesspropationate seledion o individuals, and five
using tournament seledion wsing tournament sizes of 2, 4,
6, 10, and 2Q Figure 7 shows a dart graphing fitness
value vs. number of individuals examined for these
individual seledion methods. Tournament seledion,
regardless of the tournament size, clealy outperformed
fitnesspropationate seledion. But the size of the
tournament seams to matter little; a tournament size of 6
appeasto be optimal, but not by very much.

Crosover rate — Koza suggests that ead generation
shoud be @nstructed from the previous generation wsing
the reprodwction operator 10% of the time, and the
crosover operator the remaining 90% of the time.
However, little evidenceis given to suppat this particular
number. To verify these values, we ran several using
M=300, G=30, Nfc=3, and wsing tournament seledion (size
= 6). Seven trials were run with Pc taking onthe values
0% (indicating that only reproduction shoud be used),
10%, 50%, 70%, 80%, 90%, and 10@%6 (indicaing no
reprodiction).

Figure 8 shows fitnessvalue vs. number of individuals
examined for various crosover rates. When orly
reproduction was used, fitness values never improved, as
expeded (the Pc=0% curve gpeas to indicate that fitness
isimproving very dightly, but is an artifad of caculating
the fitness using the phase value described ealier). A
value of Pc=10% adually conwverges surprisingly quickly,

Fitness Convergence vs. Tournament Size

[[
175 a2] _

; ——F
$ —m—ts=2
—A—ts=4
15 ts=6

\ —¥—ts =10

proportionate selection [

—8—ts=20

) \v""\ \ Al et 4

&
Hi;

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Individuals Examined

Fitness Value

-

o
3
a

Fi

0.25

thoughit is clealy na as goodas when even higher values
of Pc are used. The ampiricd evidence from this
experiment indicates that the exad value of Pc does not
sean to have agrea effed onthe mnvergencerate along
asitisat least 50%. A value of Pc=80% seamed to be the
optimum, but was only dightly better than either 90% or
100%.

Summary: Optimal Run Parameters. In the previous
sedion, when deriving robust locomotion controllers for
L*xo, we ran runs of 400 individuals for 50 generations,
using tournament seledion and 90 crosover as siggested
by Koza The experiments of this chapter demonstrate that
optimal fitness convergence is achieved with runs of 250
individuals for 30 generations, with individuals sleded by
tournaments of size 6, with 80% of individuals produced
by crosover. These new parameters alow the derivation
of controllers just as fit as the ones described in the
previous chapter, using ony haf the mputational
resources as when we used raive vaues for these
parameters.

5. Discusson

By treaing animated charaders as dynamicdly
smulated robas, and wsing a GP process to generate
control programs for those robas, we have succesdully
generated motion which can adhere to spedfic goals and
congtraints. The resulting motion is fluid, physicdly and
biologicdly believable; obeys many o the important
“principles of animation”; and dten appeas very organic.

We were &le to generate robust controllers for more
genera sKkill s, rather than simple adions. We @nstructed
fitness metrics with several terms, phasing in some of the
more constraining terms as the evolution continued, which
appeas to generate fit individuals with more reliability
then with a static fitness function. We dso tried to
empiricdly find ogimal parameters to the GP process
itself, which yielded interesting data for our problem,
though it is excedlingly hard to generalize to aher
problems.

Fitness Convergence vs. Crossover Rate

>

‘\l

Fitness Value
-

\X\\z —8—pc=10%
—%—Pc = 80%

b —A—Pc = 50%
X
x\} —e—Pc = 90%
%N

i > ——pc-0% ||
.\\ —*—pc=70% H
\Q‘\\\l\.\‘ Pc = 100%| |

o7 e k-\"-\.\.‘

0 2000 8000 10000

4000 6000
Number of Individuals Examined

Figure 7. Graph of fitness vs. number of individuals Figure 8 Graph of fitnessvs. number of individuals

examined for various methods of seleding individuals.

examined for various crosover rates.

Appeaed in: Koza, JR., et al. (editors), Genetic Programming 1997 Proceeadings of the 2" Annud Conference,
pp. 139146, July 13-16 1997 Stanford University. San Francisco: Morgan Kaufmann. (1997

The motion resulting from our technique was Pedfied
implicitly through the fitness functions, rather than
explicitly through ley framing. In this case, it was easier
to use the implicit method (we asare the reader that
neither author is a skill ed animator and could rever have
generated motion this good bykey framing). However, the
general problem exists that red-world computer animators
are familiar and comfortable with the key framing
paradigm, and would be reluctant to program fitness
functions. We ae mntinuing reseach on hav to combine
the two paradigms in ways which leverage both the
automation and physicd redity of our methods, and the
animator-friendly interfaces of more traditional methodk.

Bibliography

Armstrong, Willian W. and Mark W. Green. 1985 The
dynamics of articulated rigid bodes for purposes of
animation. Visual Computer. Springer-Verlag, 1985 pp. 231-
240

Gritz, Larry and James K. Hahn. 1995 Genetic Programming
for Articulated Figure Motion. Journa of Visualization and
Computer Animation. 6(3): 129142

Hahn, James K. 1988 Redistic animation d rigid bodes.
Computer Graphics, 22(4) (Proceadings of SIGGRAPH ’'87),
pp. 299-308

Koza John R. 1992 Genetic Programming: On the
Programming o Computers by Means of Natural Seledion.
Cambridge, MA: MIT Press

Lasseter, John 1987 Principles of traditional animation applied
to 3D computer animation. Computer Graphics, 21
(Proceelings of Siggraph’87), pp. 35-44.

Ngo, J. Thomas and Joe Marks. 1993 Spacdime Constraints
Revisited. Computer Graphics Procealings, Annud
Conference Series 1993 (Procealings of SIGGRAPH ’'93),
pp. 343-350.

Pixar. 1986 Luxo, Jr. (computer animated film), 1986

Sims, Karl. 1991 Artificial evolution for computer graphics.
Computer Graphics, 25(4) (Procealings of SIGGRAPH '91),
pp. 319-328

Sims, Karl. 1994 Evolving Virtua Credures, Computer
Graphics Proceealings, Annud Conference Series 1994
(Proceealings of SIGGRAPH *94), pp. 15-22.

Stede, G. 1984 ComnonLisp, The Languag. Digital Press

Thomas and Johrston. 1984 Disney Animation: The Illusion o
Life, New York: Abbevill e Press

van de Panne, Michiel and Eugene Fiume. 1993 Sensor-aduator
networks, Computer Graphics Procealings, Annud
Conference Series 1993 (Procealings of SIGGRAPH ’'93),
pp. 335342

Wilhelms, Jane. 199Q “Dynamics for Computer Graphics. a
Tutorial,” ACM SIGGRAPH 90 Course notes #8 (Human
Figure Animation: Approaches and Applicaions), pp. 85-115

Witkin, Andrew and Michad Kass 1988 Spacdime
Constraints, Computer Graphics, 22(4) (Proceealings of
SIGGRAPH '88), pp. 159168

