
Appeared in: Koza, J.R., et al. (editors), Genetic Programming 1997: Proceedings of the 2nd Annual Conference,
pp. 139-146, July 13-16 1997, Stanford University. San Francisco: Morgan Kaufmann. (1997)

1

Genetic Programming Evolution of Controllers for 3-D
Character Animation

Larr y Gr itz James K. Hahn
Pixar Animation Studios
1001 W. Cutting Blvd.
Richmond, CA 94804

lg@pixar.com

The George Washington University
801 22nd St. NW

Washington, DC 20054
hahn@seas.gwu.edu

ABSTRACT

The dominant paradigm for 3-D
character animation requires an
animator to specify the values for all
degrees of freedom of an ar ticulated
figure at key frames. Specifying motion
that is physically believable and
biologically plausible is a tedious
practice requir ing great skill .

We use evolutionary techniques
(specifically Genetic Programming) as a
means of controller synthesis for
character animation. Controllers which
dr ive a dynamic simulation of the char-
acter are evolved using the goals of the
animation as an objective function,
resulting in physically plausible motion.
We discuss the development of objective
functions used to guide the controller
evolution, making reusable skill
controllers, and compar isons of the
convergence rates for different
parameters of the evolutionary runs.

1. Introduction
In this investigation, we are concerned with a particular
subset of computer animation: character animation. In an
animation, many objects may be moving around.
Characters are those objects whose movements contribute
to telli ng the story and which express thinking, voliti on,
and emotion.

An example of animation which does not fall i nto the
category of character animation would be effects
animation. This would include movement of objects other
than characters, or which is not designed to convey
emotion or intent. Examples of such animation include
falli ng rain, leaves blowing in the wind, flying spaceships,
rotating business logos, or a flock of bats flying around.

Methods have been developed to successfull y automate
several specific cases of effects animation, largely due to
the fact that many effects animation tasks can be solved by
straightforward physical simulation.

As the art and craft of character animation was refined,
particularly at Disney Studios, animators identified specific
properties of superior animation. Thomas and Johnston
[Thomas and Johntson, 1984], and later Lasseter
[Lasseter, 1987], identified “principles of animation”
which describe important aspects of reali stic character
animation. They included squash and stretch, anticipation,
staging, straight ahead action and pose to pose, follow
through and overlapping action, slow in and slow out, arcs,
secondary action, timing, exaggeration, and appeal. Some
of these principles are purely artistic (such as appeal), but
many others describe the dynamic and behavioral
properties of real materials and creatures.

The primary method for animating 3-D characters is by
key framing. The technique takes its name from the
practice in 2-D cel animation of a senior animator drawing
the figure at particular frames in which significant events
or extrema of motion occur. More junior animators then
use the key frame drawings as a guide for the intermediate
frames (doing a kind of human-powered interpolation of
the poses). These techniques were extended into the realm
of 3-D computer animation by specifying and interpolating
positions and joint angles of the characters. Extrema for
each degree of freedom (DOF) are specified by human
animators, and the intermediate values are interpolated
(frequently by cubic spline) by the animation software.

The motion resulting from interpolating the key frames
is purely kinematic. If the motion is to be physicall y
reali stic (exhibiting inertia, obeying force laws, etc.),
biologicall y plausible (obeying joint limits or other
constraints of a particular creature), follow any of the
principles of animation described earlier, or be
entertaining, it is entirely up to the human animator to
choose key times and values which meet these
constraints. Virtuall y all production character animation
is done using this method, in spite of the large amount of
research into automating character animation. It is the
principles mentioned earlier which make animation (of any

Appeared in: Koza, J.R., et al. (editors), Genetic Programming 1997: Proceedings of the 2nd Annual Conference,
pp. 139-146, July 13-16 1997, Stanford University. San Francisco: Morgan Kaufmann. (1997)

2

media) believable, entertaining, and able to convey the
underlying story. It is the job of the animator to specify
motion which adheres to these principles, to prevent bad
motion from distracting the audience from the story. Being
able to do this well i s a rare talent, and viewers of
animation are merciless criti cs who easil y recognize
unrealistic motion.

Given the extreme diff iculty of key framing, yet our
well -developed abilit y to recognize good or bad motion
when we see it, we sought a method based on the following
principle: let the system generate the motion, and let the
human provide the determination of what is “ good.”
Therefore, the approach we took was one of controller
synthesis: our animated characters are dynamically
simulated robots, and we use an optimization technique to
generate controllers which satisfy the goals and constraints
of the motion which are specified by the animator. Genetic
Programming (GP) is used to synthesize the controllers,
and often results in controllers for animation which exhibit
the principles of animation and produce fluid, organic
motion.

We previously described our early efforts in this area in
[Gritz and Hahn, 1995]. In this paper, we both summarize
those results for the GP community, and report on
extensions to that work which include more robust action-
based controllers and analysis of the rate of convergence of
the GP process.

2. Related Work
Witkin and Kass [Witkin and Kass, 1988] proposed the
spacetime constraints method, which generates kinematic
motion which both satisfies high level goals (e.g. “ jump
from here to there”) and also appears to be physicall y
plausible. The resulting motion tends to exhibit many of
the principles of traditional animation such as squash and
stretch, anticipation, and follow-through. Spacetime
constraints uses sequential quadratic programming (SQP)
to optimize the kinematic positions of an articulated figure,
using energy consumption as an objective function and
constraining the solution in order to ensure that the motion
is physicall y plausible. Unfortunately, this method
generates solutions which depend on the initial guess
provided to the optimizer, can easil y find a local minimum,
and the resulting kinematic motion is not particularly
reusable. In addition, it is by no means clear that energy is
the best criteria to optimize.

More recently, other researchers proposed methods of
automaticall y generating walking motion using search and
optimization techniques [Ngo and Marks, 1993,
van de Panne and Fiume, 1993]. Both gave impressive re-
sults, yielding physicall y plausible motion and auto-
maticall y finding a number of walking methods. However,
the resulting motion had high speciali zation (i.e. they made
walking gaits, not general motion), but low specifi city (i.e.
they both simply walked forward, rather than having more

specific instructions, li ke “walk to position X”). Both of
these methods were optimizing structures of f ixed
complexity (a network of f ixed topology and a stimulus-
response table, respectively). We believe that this is a
disadvantage compared to a representation which may
change its own complexity. We chose a different
representation, namely a mathematical description
(computer program) describing how the joint forces vary
with time and changes in the state of the simulation. We
believe that this representation offers many advantages,
and is appropriately optimized using the GP technique.

Karl Sims used a GP-li ke process to evolve procedural
textures, where the fitness metric was human evaluation
[Sims, 1991]. Sims also described the use of evolutionary
programming to design entire creatures [Sims, 1994], in
which even the creature topology was evolved for walking,
swimming, etc. In contrast, our work deals with figures of
fixed topology and geometric structure, as one would
expect for character animation.

3. GP Evolution of Controllers

3.1. System Overview
The conceptual layout of our system is shown in Figure 1.
As input to the system, the user (animator) supplies both a
detailed articulated figure model and a fitness metric. The
figure model includes information on sizes and
connectivity of the links, masses and inertias, joint limits,
etc. The fitness metric (or objective function) implicitl y
encodes information about the motion which is desired
from the character. The fitness metric rates the motion
sequence by giving lower numbers to motion sequences
which are close to what is desired by the user, and high
numbers to sequences which deviate from the goals of the
animation. The system itself consists of a Genetic
Programming-based optimization module, and a dynamics
simulation module.

controller program

GP System

fitness metric

Articulated figure
dynamics simulation

figure model Input
(supplied by user)

System
(black box)

Output

Figure 1: Overall Structure of the System

When a GP run has finished, the final output of the GP
subsystem is a single controller program. This controller
program is the one which, when used to govern the actions
of a simulated agent, resulted in the best rated agent
according to the user-supplied fitness metric. This
controller program may then be used to generate the
motion control needed for the animation.

Appeared in: Koza, J.R., et al. (editors), Genetic Programming 1997: Proceedings of the 2nd Annual Conference,
pp. 139-146, July 13-16 1997, Stanford University. San Francisco: Morgan Kaufmann. (1997)

3

3.2. Controller Structure and Simulation
The controllers themselves are LISP S-expressions
[Steele, 1984], which give the “desired orientation” of each
joint at the time when it is evaluated. The controller is a
li st of subexpressions for each degree of freedom (see
Figure 2). Motion for animated characters is generated
using dynamic simulation of articulated bodies using
methods outlined in [Armstrong and Green, 1985,
Hahn, 1988, Wilhelms, 1990]. Each joint is controlled
internally by a damped angular spring, and has a “neutral”
(or desired) orientation which at any time is given by
evaluating the controller S-expression at each time step of
the simulation. The spring pushes the joint toward the de-
sired orientation with a torque proportional to the angle
between the actual and desired orientations using a
proportional derivative (PD) controller, which is a common
technique used in both computer animation and robotic
control. The system also accounts for joint limits and
colli sion detection and response. Therefore, we are
guaranteed to get motion which is physicall y plausible.

3.3. Experimental Design
To test the idea of using GP controller synthesis for
animation, we chose to animate locomotion of a desk lamp,
after Luxo, Jr. [Pixar, 1986] (which seems appropriate
since the film, though completely key framed, is still
considered a high point of computer animation qualit y).

Our lamp model (dubbed “L*xo”) was a full y 3-
dimensional articulated body with 4 links and 3 internall y
controllable degrees of freedom. All dynamics were
simulated in 3-D. The geometry, masses, inertias, and so
on were given to the system. The lamp had access to its
position relative to the goal point, its velocity, and the
amount of force being imparted to its base through contact
with the floor. We wanted to teach the lamp to be able to
move about. It would not have been considered a success
to simply move forward—we wanted to generate a con-
troller program to bring it to rest on a particular spot, to
show that we could perform any intricate scripted motion
we desired.

We previously reported (in [Gritz and Hahn, 1995])
generating locomotion controllers for L*xo for specific
actions, for example, hopping forward 30 cm. This
resulted in fairly reali stic and organic looking motion,
however this technique has a major shortcoming: the
resulting controllers accomplish exactly one action. This
leads to several conclusions about the deficiencies of this
approach.
• The controllers are not reusable for other situations.

Having trained L*xo to jump forward 30 cm, we must
do a completely separate training if we later need
L*xo to jump 50 cm.

• The controllers are “brittle.” They are developed for a
particular set of initial conditions, and would not be
expected to do well under differing conditions.

• Though the motion generated by the controllers can be
simulated in real time, the training process happens
off- line, sometimes taking hours to derive the
controllers. We could li ve with substantial off- line
computation if we only need to do it once, resulting in
a controller which is reusable in a variety of situations.

The solution to these problems is to evolve “robust”
controllers which are reusable in a variety of related
situations. Robust controllers are reusable, not brittle, and
can handle a variety of initial conditions. If a character is
used for multiple animations, the robust controllers
evolved when the character was first created can continue
to be used for subsequent animations involving that
animated character. For example, a controller to “ jump
forward 30 cm” yields a specific, one time only action. In
contrast, we might want a skill , such as “walk forward,”
which could accept parameters for distance traveled and
time to spend traveling. This controller, if we could evolve
it, could potentiall y be reused for all the locomotion tasks
of an animation, or even several animations featuring the
same character. To generate robust controllers, we used
the method described in [Koza, 1992] of using a training
set to evaluate the fitness function. Rather than have the
fitness rating composed of some metric based on one
particular set of initial conditions, a number of f itness cases
are generated randomly, and the new aggregate fitness
measure is given by the average of Nfc individual trials.

Controller =

(list
(expr1)
(expr2)
(expr3)
(expr4)
(expr5))

1 dof

1 dof

3 dof

Rigid Link i

Rigid Link i +1

Joint (3 deg. of freedom)j

(actual position)

desired position
of link +1i

θ

ττ = k θi i1 + k θi2

.

Figure 2: Controllers are expression li sts which give
desired joint angles for each degree of freedom.
Torque at each joint is propor tional to the angular
difference between actual and desired or ientations of
the links.

Appeared in: Koza, J.R., et al. (editors), Genetic Programming 1997: Proceedings of the 2nd Annual Conference,
pp. 139-146, July 13-16 1997, Stanford University. San Francisco: Morgan Kaufmann. (1997)

4

3.4. GP Subsystem
The GP subsystem runs the basic GP algorithm described
by Koza [Koza, 1992]. Individuals are S-expressions
giving desired joint angles, which generate torques at the
joints of the simulated robot, as described in the previous
subsection. To evaluate the fitness of an individual, the
dynamics subsystem is invoked to simulate the situation,
given the particular individual as the robot controlli ng
program. When the simulation is over, the user-supplied
fitness evaluation function rates the performance based on
statistics collected by the dynamics program. GP run
parameters are summarized in Table 1.

3.5. Constructing Fitness Measures
To rate a controller as a potential solution, the fitness
function uses the dynamics system to simulate the motion
using that particular controller program, then uses statistics
supplied by the dynamics system to compute a fitness
rating. We divided the fitness measure into a main goal
and style points. The main goal is a simple metric of
whether the primary task of that motion sequence has been
fulfill ed. For example, if the point of the motion sequence
is to move the figure to the “X” , then the main goal should
simply be the distance between the figure and the “X” at
the end of the time allotment. Since the motion is so
grossly underconstrained, the GP system can often find
outrageous ways of meeting such a simple fitness
requirement. For example, it might somersault to the goal
point instead of hopping. Because of this, we find it useful
to add style points, which can be thought of as additional
rewards or penalties granted to the individual’s
performance.

In the case of the L*xo lamp locomotion, we used the
following fitness metric (described here informally):

1. Main goal: distance between base center and goal

point “X” at the end of the time allotment.
2. Style points: a weighted sum of the following:

a) bonus for completing the motion early (how
much time did it take to get to the “X”).

b) penalty for excess movement after goal was met
(this was to keep it still after it got done).

c) penalty for hitting its head or falli ng over
(“safety” considerations).

d) bonus for ending with joints at neutral angles.
These fitness criteria were admittedly developed in an

ad hoc manner, though we found out that they did
surprisingly well for a variety of tasks (and even a variety
of characters) with littl e modification.

We found that immediately placing all of the style
considerations on the motion did not give the GP process
the best opportunity to discover fit individuals, simply
because it was so restrictive. We solved this problem by
rating controller programs based on the main goal only for
the first few generations, then slowly phased in the style
considerations, generation by generation, yielding the
aggregate fitness function:

fitness = fitmain + φ(fitstyle) , φ =
g

G
where g is the current generation and G is the total number
of generations for the run. The square root merely changes
the shape of the phase curve, so that it increases more
quickly in earlier generations than in later generations.

The net effect of the phase control was to teach it how
to get to the “X” first, without regard to whether it fell over
afterward or whether it ended in a neutral position. Once it
had mastered that task, then we placed more and more
restrictions on it. By the time we got to the last generation,
the motion included the full set of style considerations. In
this manner, we allowed the motion to start crudely and get
progressively more stable over several generations. This

Table 1: The tableau for the GP run to construct a robust forward locomotion controller for the L*xo lamp.
Objective To derive a robust controller for L*xo which can locomote forward any distance.

Terminal set t (time)
a0, a1, a2 (L*xo’s internal angle sensors)
s0 (sensor 0 - the current of the floor on the base)
px, py, pz, vx, vy, vz (position and velocity of L*xo’s base relative to the goal)
goal_met (status flag - nonzero after the base is at the goal)
goal_dist (distance between the base and the goal)
ℜ (the ephemeral random constant on [-30,30])

Function set +, -, * , % , ifltz

Fitness cases Nfc = 6 distances to the goal position, chosen over [5 cm, 60 cm].

Fitness metric The average, over Nfc fitness cases, of the fitness function described in § 3.5.
Using phase, fitness = (main goal fit) + φ(style point fit)

Hits The number of cases in which L*xo came within 1.5 cm of the goal position within the time limit .

Wrapper The individual is a li st of 3 subprograms which map to the “desired angles” of L*xo’s three internall y
controllable degrees of freedom.

Misc. Parameters Population size M = 400, Number of generations G = 50
Individuals chosen using tournament selection with tournament size of 6.
Pc = 90% of individuals constructed using crossover, remainder using reproduction.

Appeared in: Koza, J.R., et al. (editors), Genetic Programming 1997: Proceedings of the 2nd Annual Conference,
pp. 139-146, July 13-16 1997, Stanford University. San Francisco: Morgan Kaufmann. (1997)

5

was easier for the system than requiring optimal motion at
the very start.

3.6. Fitness test case generation
The goal of this particular test was to generate a general
locomotion controller for the lamp which could be used for
forward locomotion of any distance. For practicalit y, it
was assumed that useful distances to move would be
between 10 and 60 cm, though it was hoped that a general
controller could be used for indeterminate distances. A
total of Nfc fitness test cases were generated with goal
distances on [.1,.6] (measured in meters). A regular
distribution (e.g. .1, .2, .3) was not used, for fear that it
would generate adequate controllers only for multiples of
the step size.

The solution we used was to generate sample goal
distances using a Poisson disk distribution. A total of Nfc
goal distances were chosen, but as each sample was
generated, it was discarded if it was too close to a
previously chosen sample. This resulted in a selection of
goal distances which were well spread out across the
interval, yet were not multiples of some basic step size.

3.7. Animation Results
The resulting controller program produced a hopping

motion which brought the lamp to the exact spot we
desired (see Figure 3). These “robust” controllers were

able to be reused for locomotion of any distance. The
motion appeared smooth, physicall y reali stic, eff icient, and
surprisingly organic. Note that for the example in the
figure, the solution involved two hops. A solution with
such severe discontinuities (such as colli sions) would not
be found by a local gradient-based optimization method
such as spacetime constraints. Figure 3 also shows a
sample controller program which made a successful jump.
The controller programs are usually opaque to human
interpretation, but we are generall y not concerned with the
robot’s internal mechanisms for movement. Figure 4
shows more robust controllers which were used for more
constrained motion, and where used to make the short
video “L*xo Learns to Limbo.” Using a single additional
style term—a large penalty for hitting his head on the
limbo pole—we were able to produce a series of motions
for various heights of the limbo pole. The resulting motion
has slight imperfections and at times incorporates
seemingly “clever” strategies, which gives it an organic
rather than robotic appearance. Runs of this type tended to
take several minutes per generation, on an SGI R4000
processor. Generating a single robust controller therefore
took on the order of a few hours. But once a controller was
generated, it could be used for many animation sequences,
and the simulations with an existing controller could be
performed in roughly real time.

(list

(- (ifltz a0 pz a2) (% a1 t))

(ifltz (- (- (ifltz a0 pz a2) (% a1 t)) (ifltz (+ a2 15.4963) (ifltz a0 pz a2) (% a1
a2))) (ifltz (% (- s0 vx) (+ a2 s0)) (% (- s0 vx) (+ a2 s0)) (+ (- a1 a1) (- a1 t))) (%
(+ a1 vz) (ifltz (* pz a1) (% a0 pz) (% px a0))))

(- (ifltz s0 (ifltz (- (% vx a0) (% vx vx)) (- (% vx a0) (- (+ -28.4382 t) (% a1 t))) (*
16.5266 s0)) vz) (+ a1 vz)))

Figure 3: Lamp’s Jumping motion and a controller program which generates it.

Figure 4: The lamp can learn to avoid obstacles when additional constraints are added to the system.

Appeared in: Koza, J.R., et al. (editors), Genetic Programming 1997: Proceedings of the 2nd Annual Conference,
pp. 139-146, July 13-16 1997, Stanford University. San Francisco: Morgan Kaufmann. (1997)

6

4. Convergence Analysis
A disturbing feature of the GP method of controller

synthesis is that the GP run parameters are chosen so
arbitraril y. It would be much more satisfying if we could
point to empirical evidence for choosing the parameters.
In addition, since the learning process is so time
consuming, understanding how to make GP runs more
eff icient could be very beneficial in the effort to make this
entire process more interactive. Choosing the various
parameters of the GP runs is in itself an optimization
problem. In this section, we report our experiments to
determine optimal GP run parameters. The time it takes to
derive a controller (the length of the run) is proportional to
M, the population size; G, the number of generations; Nfc,
and the number of f itness cases. Therefore, we
concentrated on experiments involving variation of these
parameters.

In all of the experiments, the most important metric is
the total number of individuals examined, defined as M ×
G. This is the basic measure of work done by the GP
process. The other important quantity is of course
fitness—lower values are better. The goal here is to find
the values of the parameters which yield individuals with
very low fitness values, by examining (i.e. simulating) as
few individuals as possible. Note: all graphs are of the
fitness of the best-of-generation for runs with the same
random seed, and differing only by varying the parameter
under investigation. Raw fitness values below 0.5 tended
to correspond to good-looking motion when animated.

Population size — how many individuals do we
actually need in each generation? Clearly there is some
minimum population size for any given problem; with
smaller populations, there will not be enough genetic
diversity to converge to an adequate solution. Also there is

some population size, above which only increases
computation time without yielding better controller
programs. To find this criti cal number, we ran several
training runs for the robust L*xo locomotion described
earlier. All of the trials used G=35, Nfc=3, and Pc=90%.
Runs were performed with population sizes of 10, 50, 100,
150, 200, 300, 400, 500, 600, and 700 individuals. Figure
5 graphs fitness value vs. number of individuals examined
for these different population sizes. Population sizes under
200 did not converge to good fitness values. However, for
population sizes of 200 or more, the population size made
littl e difference in the fitness of the best-of-run individual.
Thus, it was most cost-effective to do runs with 200-300
individuals, and not beneficial to waste computation with
population sizes of 500 or more.

Number of generations to run — we found that a
population size of around 300 was optimal, but how many
generations do we need to find a good solution? Again,
some minimum probably exists. Fewer generations will
simply not provide enough “ time” to evolve fit controllers.
But also there is li kely some maximum, after which the
controllers will not continue to improve. Using M=300, as
suggested by the last experiment, Nfc=3, and Pc=90%,
runs were performed with G = 10, 20, 30, 40, 50, 75, and
100 generations. Figure 6 graphs fitness value vs. number
of individuals examined for runs of different number of
generations. Remember that the graphs do not coincide
because the phase function causes the fitness ratings to be
dependent on the total number of generations to be run.
The optimal value of G turned out to be 30. Presumably,
fewer than 30 generations do not allow the controllers to
evolve to good fitness. More than 30 generations not only
does not produce more fit individuals, but in fact as G gets
very large, the runs do not produce individuals as fit as
G=30! This is not easy to explain, but one hypothesis is
that the “selection pressure” of the phase function with

Figure 5: Graph of f itness vs. number of individuals
examined for r uns of different population sizes.

Figure 6: Graph of f itness vs. number of individuals
examined for r uns of different number of generations.

Appeared in: Koza, J.R., et al. (editors), Genetic Programming 1997: Proceedings of the 2nd Annual Conference,
pp. 139-146, July 13-16 1997, Stanford University. San Francisco: Morgan Kaufmann. (1997)

7

short runs forces fit individuals to flourish. When G is
very large, there is less pressure to get rid of individuals
with low style, and other individuals with potentiall y
important (for style points) genetic material eventually are
eliminated prematurely.

Type of selection for individuals — a variety of
methods may be used to actuall y select the individuals for
the next generation. Most of the examples from Koza
[Koza, 1992] use fitness-proportionate selection, though
other authors have suggested that tournament selection is
more stable. We ran several trials which derived a robust
hopping controller for L*xo. All of the trials used M=300,
G=30, Nfc=3, and Pc=90%. Six trials were run: one using
fitness-proportionate selection of individuals, and five
using tournament selection using tournament sizes of 2, 4,
6, 10, and 20. Figure 7 shows a chart graphing fitness
value vs. number of individuals examined for these
individual selection methods. Tournament selection,
regardless of the tournament size, clearly outperformed
fitness-proportionate selection. But the size of the
tournament seems to matter littl e; a tournament size of 6
appears to be optimal, but not by very much.

Crossover rate — Koza suggests that each generation
should be constructed from the previous generation using
the reproduction operator 10% of the time, and the
crossover operator the remaining 90% of the time.
However, littl e evidence is given to support this particular
number. To verify these values, we ran several using
M=300, G=30, Nfc=3, and using tournament selection (size
= 6). Seven trials were run with Pc taking on the values
0% (indicating that only reproduction should be used),
10%, 50%, 70%, 80%, 90%, and 100% (indicating no
reproduction).

Figure 8 shows fitness value vs. number of individuals
examined for various crossover rates. When only
reproduction was used, fitness values never improved, as
expected (the Pc=0% curve appears to indicate that fitness
is improving very slightly, but is an artifact of calculating
the fitness using the phase value described earlier). A
value of Pc=10% actuall y converges surprisingly quickly,

though it is clearly not as good as when even higher values
of Pc are used. The empirical evidence from this
experiment indicates that the exact value of Pc does not
seem to have a great effect on the convergence rate as long
as it is at least 50%. A value of Pc=80% seemed to be the
optimum, but was only slightly better than either 90% or
100%.

Summary: Optimal Run Parameters. In the previous
section, when deriving robust locomotion controllers for
L*xo, we ran runs of 400 individuals for 50 generations,
using tournament selection and 90% crossover as suggested
by Koza. The experiments of this chapter demonstrate that
optimal fitness convergence is achieved with runs of 250
individuals for 30 generations, with individuals selected by
tournaments of size 6, with 80% of individuals produced
by crossover. These new parameters allow the derivation
of controllers just as fit as the ones described in the
previous chapter, using only half the computational
resources as when we used naive values for these
parameters.

5. Discussion
By treating animated characters as dynamically

simulated robots, and using a GP process to generate
control programs for those robots, we have successfull y
generated motion which can adhere to specific goals and
constraints. The resulting motion is fluid, physicall y and
biologicall y believable; obeys many of the important
“principles of animation” ; and often appears very organic.

We were able to generate robust controllers for more
general skill s, rather than simple actions. We constructed
fitness metrics with several terms, phasing in some of the
more constraining terms as the evolution continued, which
appears to generate fit individuals with more reliabilit y
then with a static fitness function. We also tried to
empiricall y find optimal parameters to the GP process
itself, which yielded interesting data for our problem,
though it is exceedingly hard to generali ze to other
problems.

Fitness Convergence vs. Tournament Size

0.25

0.5

0.75

1

1.25

1.5

1.75

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Individuals Examined

F
it

n
es

s
V

al
u

e

Fitness-proportionate selection
ts = 2
ts = 4
ts = 6
ts = 10
ts = 20

Figure 7: Graph of f itness vs. number of individuals
examined for var ious methods of selecting individuals.

Fitness Convergence vs. Crossover Rate

0.25

0.5

0.75

1

1.25

1.5

1.75

0 2000 4000 6000 8000 10000
Number of Individuals Examined

Fi
tn

es
s

V
al

ue

Pc = 0%

Pc = 10%

Pc = 50%

Pc = 70%

Pc = 80%

Pc = 90%

Pc = 100%

Figure 8: Graph of f itness vs. number of individuals
examined for var ious crossover rates.

Appeared in: Koza, J.R., et al. (editors), Genetic Programming 1997: Proceedings of the 2nd Annual Conference,
pp. 139-146, July 13-16 1997, Stanford University. San Francisco: Morgan Kaufmann. (1997)

8

The motion resulting from our technique was specified
implicitl y through the fitness functions, rather than
explicitl y through key framing. In this case, it was easier
to use the implicit method (we assure the reader that
neither author is a skill ed animator and could never have
generated motion this good by key framing). However, the
general problem exists that real-world computer animators
are familiar and comfortable with the key framing
paradigm, and would be reluctant to program fitness
functions. We are continuing research on how to combine
the two paradigms in ways which leverage both the
automation and physical realit y of our methods, and the
animator-friendly interfaces of more traditional methods.

Bibliography
Armstrong, Willi am W. and Mark W. Green. 1985. The

dynamics of articulated rigid bodies for purposes of
animation. Visual Computer. Springer-Verlag, 1985, pp. 231-
240.

Gritz, Larry and James K. Hahn. 1995. Genetic Programming
for Articulated Figure Motion. Journal of Visuali zation and
Computer Animation. 6(3): 129-142.

Hahn, James K. 1988. Reali stic animation of rigid bodies.
Computer Graphics, 22(4) (Proceedings of SIGGRAPH ’87),
pp. 299-308.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural Selection.
Cambridge, MA: MIT Press.

Lasseter, John. 1987. Principles of traditional animation applied
to 3D computer animation. Computer Graphics, 21
(Proceedings of Siggraph ’87), pp. 35-44.

Ngo, J. Thomas and Joe Marks. 1993. Spacetime Constraints
Revisited. Computer Graphics Proceedings, Annual
Conference Series 1993 (Proceedings of SIGGRAPH ’93),
pp. 343-350.

Pixar. 1986. Luxo, Jr. (computer animated film), 1986.
Sims, Karl. 1991. Artificial evolution for computer graphics.

Computer Graphics, 25(4) (Proceedings of SIGGRAPH ’91),
pp. 319-328.

Sims, Karl. 1994. Evolving Virtual Creatures, Computer
Graphics Proceedings, Annual Conference Series 1994
(Proceedings of SIGGRAPH ‘94), pp. 15-22.

Steele, G. 1984. Common Lisp, The Language. Digital Press.
Thomas and Johnston. 1984. Disney Animation: The Ill usion of

Life, New York: Abbevill e Press.
van de Panne, Michiel and Eugene Fiume. 1993. Sensor-actuator

networks, Computer Graphics Proceedings, Annual
Conference Series 1993 (Proceedings of SIGGRAPH ’93),
pp. 335-342.

Wilhelms, Jane. 1990. “Dynamics for Computer Graphics: a
Tutorial,” ACM SIGGRAPH ’90 Course notes #8 (Human
Figure Animation: Approaches and Appli cations), pp. 85-115.

Witkin, Andrew and Michael Kass. 1988. Spacetime
Constraints, Computer Graphics, 22(4) (Proceedings of
SIGGRAPH ’88), pp. 159-168.

