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SUMMARY

This paper presents a hew image morphing method using a two-dimensiona deformation technique which
provides an intuitive model for awarp. The deformation technique derives a C''-continuous and one-to-one
warp from a set of point pairs overlaid on two images. The resulting inbetween image precisely reflects the
correspondence of features specified by an animator. We aso control the transition behavior in a metamor-
phosis sequence by taking another deformable surface model, which is simpler and thus more efficient than
the deformation techniquefor awarp. The proposed method separatestransition control from featureinterpo-
lation and iseasier to use than the previoustechniques. The multigridrelaxation method isemployed to solve
alinear systemin deriving awarp or transition rates. This method makes our image morphing techniquefast
enough for an interactive environment.

Keywords: Image morphing, Deformation technique, Energy minimization method, Variationa principle,
Multigrid relaxation method



1 Introduction

Image morphing deal s with the metamorphosis of an image to another image. The metamorphosis generates
a sequence of inbetween images in which an image gradually changes into another image over time. Image
morphing techniques have been widely used in creating special effects for television commercials, music
videos such as Michael Jackson’s Black or White[1], and movies such as Willow and Indiana Jones and the
Last Crusade[2].

The problem of image morphing is basically how an inbetween image is effectively generated from two
givenimages[1]. When two face images are given, for example, amiddle image may look like a third face
resembling the given faces. An inbetween image can be derived from two images by properly interpolating
the positionsof corresponding features and their shapesand colors. A featureof animageisits characterizing
part such as the profile of aface and eyes and usualy identified by aboundary curve at which colors change
abruptly.

A warp isatwo-dimensional geometric transformation and generates adistorted imagewhenitisapplied
to animage. When two images are given, an image morphing method first establishesthe feature correspon-
dence between them. The correspondence is then used to compute warpsthat distort theimagesto alignthe
positions of features and their shapes. A cross-dissolveof colorsat each corresponding pair of pixelsinthe
distorted images finally gives an inbetween image.

Themost difficult part of image morphing isto derive warpswhich distort imagesto align their features.
Thefeatureson animage are usually specified by an animator with aset of pointsor line segmentsoverlaid on
theimage. A warp isthen computed from the correspondence between thefeaturesontwoimages. Therefore,
an image morphing technique must be convenient in specifying features and show a predictable distortion
which reflects the feature correspondence.

In mesh warping[ 2], features are specified by a nonuniform control mesh, and awarp is computed by a
splineinterpolation. Nishitaet al.[3] also used anonuniform control mesh to specify features and computed
awarp using atwo-dimensional free-form deformation and Bézier clipping. Field morphing[1] specifiesfea-
tures with a set of line segments and computes a warp by taking the weighted average of the influences of
line segments.

Mesh warping and the method of Nishitaet al. show good distortion behaviors but have a drawback in
specifying features. A control mesh is always required whil e the features on an image can have an arbitrary
structure. Field morphing gives an easy-to-use and expressive method in specifying features. However, it
suffers from unexpected distortionsreferred to as ghosts, which prevent an animator from realizing precise
warps as shownin Section 7. Thetime for computing awarp is proportional to the number of line segments.
Thisis disadvantageous when a complicated feature set must be specified.

These drawbacks can be overcome by a physically-based approach which provides an intuitive model
for awarp. Consider an image printed on a sheet of rubber. When selected points on the sheet are moved,
the sheet deformation thus obtained makes the image appear distorted. The distorted image conformsto the
displacement of each sel ected point and showsa proper distortionover theentireimage. If aset of point pairs
specifies the feature correspondence between two images, we can derive a necessary warp from the sheet
deformation which moves each feature point to its correspondent. There have been a number of resultg[4, 5,
6] in flexible object modeling that give concrete theory and techniques for supporting this approach.

This paper takes the rubber sheet model and presents a new two-dimensional deformation technique for
deriving warps. The technique efficiently generates C'*-continuous and one-to-one deformations from posi-
tional constraints. Thisapproach doesnot restrict afeature set to have any structure such asamesh, allowing
more freedom in designing awarp. The resulting warps show natural distortionswhich precisely reflect the



feature correspondence between images.

Another interesting but not yet fully investigated problem of image morphing is the control of transition
behavior in a metamorphosis sequence. In generating an inbetween image, the rate of transition is usualy
applied uniformly over all pointsontheimage. Thisresultsin an animationinwhich the entireimage changes
synchronously to another image. If we control the transition rates on different parts of an inbetween image
independently, a more interesting animation can be obtained.

Mesh warping[2] assigns a transition curve for each point of the mesh, and these curves determine the
transition rate when the positions of features are interpol ated. When complicated meshes are used to specify
the features, it istediousto assign a proper transition curve to every mesh point. Nishitaet al.[3] mentioned
that the speed of transition can be specified by a Bézier function defined on the mesh. However, the details
of the method were not provided except only one example.

This paper uses adeformable surface model to control thetransition behavior, by assigningthetransition
curvesfor selected pointson animage. Thesepointsare not necessarily the same asthose used for specifying
features. Thetransitionrateson aninbetweenimage arederived fromthecurvesby constructingadeformable
surface. Thisapproach separates transition control from f eature interpolation and thusis much easier to use
than the previoustechniques.

Section 2 explainsthe stepsfor generating an inbetween image and defines the problemsto be solved for
completing thesteps. Thefollowing two sections concentrate on deformation techniquesto givethe solutions
of the problems. Section 5 introduces the multigrid relaxation method used for solving a linear system in
deriving awarp and transition rates. Section 6 presents the extensions of the basic technique employed for
the new image morphing method. Section 7 compares the presented method to the previous ones in warp
generation and gives metamorphosis examples. Section 8 summarizes the contributionsof this paper.

2 Problemsin Image Mor phing

2.1 Application of awarp to an image

Animage I can be represented by a function from a bounded two-dimensional region €2 to acolor space. A
warp W isafunction from €2 to €2, which specifies a new position for each point on 7. When W is applied
to 7, each pixel on [ iscopied onto the distorted image I’ at the position determined by 1.

The four-corner mapping paradigm[2] considers each pixel on I as a square and transforms it into a
quadrilateral on I’. The quadrilateral often straddlesseveral pixelson I’ or liesin theinterior of onepixel. A
partial contribution is handled by scaling the intensity of the pixel on 7 in proportionto the fractional part of
the pixel on I’. Thistechnique generates adistorted image without holes and properly resolvesthe coll apsed
pixels.

To implement the four-corner mapping, we should evaluate a warp function W at each corner of the
pixels on an image /. Hence, when the domain of 1 is discretized for a numerical solution, the size of a
grid is chosen as the resolution of 7. Once W has been computed on the grid, the four-corner mapping can
be performed by the blending hardware of a SGI machine[7] in a short time.

2.2 Inbetween image generation

When two images I, and [; are given, the image morphing problem is to generate a sequence of inbetween
images [ (t) such that /(0) = I, and I (1) = I;. We assume that time ¢ varies from O to 1 when the source
image I, continuously changes to the destinationimage 7.



Let W, bethe warp function which specifies the corresponding point on /; to each point on /5. When it
isapplied to Iy, Wy hasto distort /, to match 7, in the positions of features and their shapes. Let I, bethe
warp function from /; to Iy. The requirement for 1¥; isto map the featureson [, to the features on I/, when
it distorts /5.

To generate an inbetween image I (¢), we derive two warp functions Wy (¢) and W (t) from W, and Wy
by linear interpolationintime ¢. I, and /; are then distorted by W, (¢) and W, (t), resulting in intermediate
images Iy (t) and I, (), respectively. The corresponding festures on /, and /; have the same positionsand
shapeson Iy(t) and I (¢). Findly, I(t) is obtained by cross-dissolving the colors between I, (¢) and [, (¢).
That is,

Wolt) = (1—1) R+t W (1)
Wi(t) = t-R+(1—t)-W; @)
I(t) = Wolt)e Iy 3)
L) = Wit)el (4)
1) = (1=0)-I(t) + - L (1), (5)

where R denotesthe identity warp function, and I/ e I denotesthe application of awarp W toan image I.

In the above procedure, time plays therole of transition rate which determines the rel ative influences of
the source and destinationimages on an inbetween image. A transitionrate isavalue between 0 and 1. With
atransition rate near zero, an inbetween image looks more similar to the source image. Transition rates near
one imply that inbetween images should be much like the destination image.

With the formulae (1), (2), and (5), the same transition rate ¢ is applied to al points on the inbetween
image [ (t). Therefore, the characteristics of the source and destinationimages are reflected in the sameratio
all over aninbetweenimage. Therate of transition can be made different from point to point to deriveamore
interesting inbetweenimage. Weintroduceatransitionfunction to facilitatethe control of transition behavior
in generating an inbetween image. A transition function T" specifies the rate of transition for each point on
an image over time.

Let 7, beatransition function defined on the sourceimage I,. In generating / (¢), 1 (¢) determines how
fast each point on /, moves to the corresponding point on the destination image ;. Ty (t) aso determines
how much the col or of each point on /, isreflected on thecorrespondingpointon (¢). Let T bethetransition
function defined on the destination image /;, which specifies the same transition behavior with T,. 7} can
be derived from 7} with the correspondence of points between /; and /. To each pointon I, 7' (¢) should
assign the transition rate which 7, (¢) gives to the corresponding point on /.

To control the movement of each point onan inbetweenimage / (¢), wereplacetimet in formulae (1) and
(2) with T (t) and T (t), respectively. For the color transformation, however, timet in formula (5) cannot
be simply replaced by 7, (¢) and 7' (¢). It isbecause the transition functions 7, and 7; are not defined on the
distortedimages /y(¢) and I () but the givenimages I, and I, respectively. Hence, we rearrange formulae
(3), (4), and (5) sothat T, (¢) and T4 (¢) are used to attenuate the color intensitiesof I, and /; before applying
warp functions. That is,

Wolt) = (1=To(t)) - R+Tolt) - Wo
Wit) = Tit)- R+ (1=Ti(0) - Wy
Io(t) = Wol(t) e ((1—To(t)) - Lo)
L) = Wi(t) e (Ty(t)- )



) = ILt)+nL).

The transformation of positionsand colors can be independently handled by specifying different transition
functions.

2.3 Problems

To compl etethe above procedurefor image morphing, thefoll owing two problemsneed further investigating:
¢ how to get the warp functions W, and W, and

e how to get the transition functions 7y and ;.

3 Warp Function Generation

This section presents a deformation technique for deriving warp functions and explains how to obtain the
warp functions W, and W with the technique.

3.1 Thedeformation mode

Deformati on techniquesbased on variational principleshave been widely used in computer graphicsto model
flexible objectsin three dimensiong 4, 5, 8, 9]. In these techniques, the requirements for a deformation such
as smoothness are represented by energy functionals, and the desired shape of an object is derived by min-
imizing the sum of energy functionals. The energy minimization problems are then transformed to partial
differentia equations, which are usually solved by numerical methods.

A warp can be considered as a deformation of a rectangular sheet in two-dimensiona space. Previous
deformation techniques cannot be directly applicable to obtain warps because the deformations of rectan-
gular sheets are confined on two dimensions. In this paper, we present a new two-dimensional deformation
technique which efficiently generates a C'*-continuous and one-to-one warp with variational principles.

Let © be arectangular thin plateand p = (u, v) apoint on 2. If every point on the plateis placed on
the zy-plane, a shape of the plate can be represented by avector-valued function, w(p) = (z(p), y(p)). The
function w specifies the position of each point p on the plate, lyingin the zy-plane. The natural undeformed
shape of the plateisarectangle on the zy-plane and represented by the identity function, r(p) = p.

Suppose that the selected pointson the plate are required to move to the given positionson the 2 y-plane.
The constraints can be forced by minimizing the position energy,

Ep(w) = B> [lwpe) — al,
k

where ¢, isthe new position specified for a point p; on 2. The parameter 5 controls the tightness of the
positional constraints.
The spline energy of afunction w,
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integrates the curvature variations of w over the domain €2. Among the functions satisfying the positiona
constraints, a smooth function w can be obtained by minimizing the splineenergy. The resulting function w
has continuousfirst partial derivatives, 0w /dw and 0w /0v[10].

In addition to C''-continuity, one-to-one correspondence of afunction w can be obtained by minimizing
the Jacobian energy,

Ejw) = a//(Z(J— 1)*dudv,

where

dv oy Oz dy
dudv Qv du’
The function w is one-to-one on €2 if the Jacobian .J is not zero in the interior of 2 and if w is one-to-one
on the boundary of ©[11]. Minimizing the Jacobian energy fulfillsthefirst condition becauseit triesto make
J one at each point on €2. On the boundary of 2, w will be made one-to-one by the boundary conditions
used for the numerical solutionin Section 3.2. For ashape w of the plate €2, the Jacobian .J determines the
infinitesimal areaat apoint on 2[12, 13]. Itiseasy to seethat the Jacobian ./ isoneat every point on €2 when
the plateisinits undeformed shape r. Hence, the Jacobian energy integratesthe area variations of the shape
w from the undeformed shape r over the plate. The parameter « controlsthe resistance of the plate to area
variation from the undeformed shape.

Consequently, the desired function w can be derived by minimizing the energy functional,

J =

ED(w) = S(Es(w)+ Ey(w) + Ep(w))

If afunction w minimizes the energy functional £ D(w), the first variational derivative of F D(w) must
vanish all over the domain €2[14]. The condition can be represented by the vector expression,

SED _ 1 <5E5 O, 4 5Ep) _o

ow 2 ©)

ow ow ow

where
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Here, w* denotes the vector (—y, =) which is perpendicular to the vector w = (=, y). The position force
dEp/éw appearsonly at apoint p; on £ for which its position ¢, is specified.

The partial differential equation given in Equation (6) is called the Euler-L agrange equation. Unfortu-
nately, it isin general very difficult to obtain an analytic solution for the Eul er-L agrange equation. Thissug-
gests a humerical method applied to a discrete version of the equation.



3.2 Numerical solution

We discretizethedomain €2 toan M x N regular grid and represent the function w by itsvalues at the nodes
on the grid. The positiona constraints are converted to the constraints on the values of the nodal variables.
The standard finite difference approximation[15] transforms the differential equation given in Equation (6)
into a system of equationswhich consistsof A N unknown vectorsand M N vector equations. If the nodal
variablescomprising the function w are collectedintoan M N dimensional vector, the system can bewritten
inamatrix form,

Aw + aj(w) +p(Iw—-q) = 0. (7

Aisan M N x M N matrix which containsthe coefficientsof thenodal variablesresultingfrom thespline
forced Es/ow. j(w) isan M N dimensional vector which approximates the Jacobian force 6 £; /dw on the
nodal variables. I'isan M N x M N diagonal matrix in which an element isone only if the positional con-
straint isassigned to thecorresponding nodal variable. The M N dimensional vector q containsthepositional
constraints on the nodal variables. We use the boundary conditions 0w /du = 0r/0u, 0w /dv = dr /v,
and 9*w/du? = 9*w/dv? = 0 in deriving the matrix A and the vector j(w).

To solve Equation (7), we rewrite the equation as a diffusion equation,

ow

ot
Aninitial distributionw relaxesto an equilibriumsolutionast — oo. Attheequilibrium, all time derivatives
vanish and hence w isthe solution of Equation (7). When differencing Equation (8) with respect to time, we
evaluate the right-hand side at time ¢ rather than time ¢ — 1, which resultsin theimplicit Euler scheme. For
computing the y- and z-components of j(w), - and y-componentsof w are assumed constant during atime
step, respectively. The assumption makes the nonlinear term j(w) linear with respect to w. The resulting
equations are

= Aw+ aj(w) + 5(I'w - q). )

—y(x¢ —x¢11) = Axi+aB(ye)xe+ ﬁ(I/Xt — Xq) 9)
(¥t —ye11) = Aye+aB(xe1)ye+ ﬁ(I/Yt - ¥Yaq)- (10)

x; and y arethe z- and y-component vectors of thefunction w at time¢. B(y; 1) and B(x11) are M N X

M N matrices which contain the coefficients of x, and y, in the linear approximation of j(w ), respectively.

Xq and y denote the positional constraintson x and y. The parameter v controlsthe step sizein time.
Equations (9) and (10) can be arranged in the forms,

(A4+aB(yi1) + I+ 8T)x; = ~Ixiur + 8xq (11)
(A4 aB(xe11) + 914+ 6T)ye = Iy + Byq, (12)

in which x; and y; can be calculated from x;,, and y;, ;. The multigrid relaxation method in Section 5
efficiently solves Equations (11) and (12) by exploiting the bandedness of the matrices on the left-hand side.

Thismethod for solving Equation (8) takes the implicit Euler scheme for the spline and position forces
and the semi-implicit Euler scheme for the Jacobian force. Hence, the solution of the equation can be found
very robustly and rapidly with a big time step. The initia shape x, and y, for Equations (11) and (12) is
obtai ned from an approximate equilibrium solution computed on a hierarchy of coarse grids. Withtheinitial
shape, the equilibrium solution can be derived by solving Equations (11) and (12) in several times.



Figure 1 shows a deformation example in which thegrid sizeis 64 x 64. In the figures, black spotsrep-
resent the positions of selected pointsto which positional constraints are assigned. It takes 1.6 seconds to
derive the deformation on a SGI Crimson. When the size of thegridis 512 x 512, the computation time in-
creases to 26.7 seconds. The valuesof parameters «, /3, and v are 10.0, 2500000.0, and 0.0001, respectively.
This exampl e verifies that the proposed method generates a desired deformation very effectively.
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(8) The undeformed shape (b) A deformation of the plate

Figure 1: A deformation example

3.3 Generation of warp functions W, and W,

When two images are given, an animator specifies a set of point pairs on the images which represents the
correspondence of features. Let P be a set of point pairs (p;, ¢;), where p; and ¢; are points on the source
and destination images, I, and I, respectively. The warp function W, has to distort the image I, so that
each point p; matches the corresponding point ¢; in their positions. The requirement for W isto map each
point ¢; to the corresponding point p; when distorting the image 7, toward /. Then, the warp functions are
reduced to deformations of a rectangular plate which place the specified points at the given positions.
There are severa methods for deriving a warp function from the positional constraints assigned to the
pointson an image. In the methods, the z- and iy-components of awarp function are derived by constructing
smooth surfaces which interpolate scattered points. The warp generation in this approach was extensively
surveyed in [2, 16]. In addition, Bookstein used the thin-plate surface model and derived a solution by de-
composing asurfaceinto alinear part and independent nonli near deformations of progressively smaller geo-
metric scales[17]. Two similar methods were independently proposed which employ themultigrid relaxation
method to compute numerical solutions of the thin-plate surfaces[18, 19]. However, any of these methods
does not guarantee that the resulting warp functions have the one-to-one property.
The deformation model in Section 3.1 generates C'!-continuous and one-to-one warp functions from the
positional constraints. When awarp functionis applied to an image, the one-to-one property guarantees that
the distorted image does not fold back upon itself. In generating a warp function, the grid size is chosen



as the resolution of the givenimage. A large value is usually used for the parameter /5 so that the resulting
warp function exactly moves features pointsto their correspondents. For the parameter «, asmall valueis
sufficient to provide an one-to-one warp function.

4 Transition Function Generation

This section gives the deformabl e surface model for a transition function and the way for deriving the tran-
sition functions 7, and 7'; with the surface mode!.

41 Thesurface moded

At agiventime, the transition rates of pointson an image can be specified by areal-valued function defined
on arectangular region. If we consider a function value as the height from the region, the function can be
represented by a surface deformed only in the vertical direction. The deformation technique given in Sec-
tion 3isinappropriatefor deriving the deformable surface because the technique generates adeformation in
two dimensions. Hence, we reduce the deformation model described in Section 3.1 to the thin plate surface
model[14], which is simpler and enables a more efficient numerical method. The thin plate surface model
has been used in computer vision to solve the visua surface reconstruction problem[10, 20, 21].

Let © be arectangular thin plate on the wv-planeand p = (u, v) apoint on €. If the plateis allowed to
be deformed only in the direction perpendicular to the wv-plane, a shape of the plate can be represented by
afunction, f(p). Thefunction f specifiesareal value for each point on the plate.

Supposethat the function f should have the given values at sel ected pointson the plate. A smooth func-
tion f which satisfies the constraints can be derived by minimizing the energy functional,

s (// (aw) (aajgv)2+ (sz) ] dudv+ 83 (/) — 1) ) ‘

Here, ¢, isthevaluespecified for apoint py, on €. If afunction f minimizestheenergy functional £.5( f),the
first variational derivativeof £S( f) mustvanishall over thedomain2[14]. The condition can berepresented
by the expression,

SES  9'f ?*f o0 _
57~ out T 2guon T gt TAUE — ) = 0. 49
Thelast term containing 3 appears only at a point p; on €2 for which avauet;, is specified.

4.2 Numerical solution

We discretize the domain €2 toan M x N regular grid and represent afunction f by itsvalues at the nodes
on the grid. The standard finite difference approximation transforms Equation (13) into a system of linear
equationswhich contains M N unknownsand M N equations. If thenodal variables comprising the function
f arecollected into the M N dimensional vector f, the system may be written in a matrix form,

(A + 5T = t, (14)



be efficiently solved by the multigrid relaxation method given in Section 5.

wheret isan M N dimensional vector which contains the constraints on the values of f. Equation (14) can
multigrid rel axation method is efficient enough for interactive use.
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interpolated values. It takes 0.4 secondson a SGI Crimson to generate the surface by the multigrid relaxation
method. When the size of the grid is 512 x 512, its computation timeis 5.0 seconds. This shows that the
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Figure 2: A surface example
4.3 Generation of transition functions7y and 73
Figure 3.

Transition
rate

To control the transition behavior in a metamorphosis, an animator selects a set of points on an image and
14

specify atransition curve for each point. The point set is not necessarily the same as the point set used for

deriving warp functions. A transition curve gives the transition behavior of a point over time as shown in

Time

Figure 3: A transition curve

Let P beaset of pointson the sourceimage /, for which transition curvesare specified. Let C'(py,) bethe
transitioncurvefor apoint py, in P. For agiventimet, thetransitionfunction 7 (¢) should havethetransition
rate C'(py; t) at each point py in P. With the set of C'(py;¢) as the constraints on values, such a transition
function can be derived by the surface model described in Section 4.1. The resulting transition function is
C-continuous and properly propagates the specified transition curves all over the image .



Thetransition function T} isspecified on the destinationimage /; and should givethetransition behavior
whichisthesamewith 5. If apoint p on I, correspondsto apoint ¢ on Iy, thetransitionrate 74 (¢; ¢) should
be the same with T (p; t) for each time ¢. Hence, the transition function 77 (¢) can be derived by sampling
To(t) with thewarp function W7y, that is, T (¢; t) = To(W1(q);t).

When a sequence of inbetween images is generated with transition functions, a surface should be con-
structed for determining the function 75 (¢) at each timet¢. In thiscase, the solution for a surface is used for
theinitial solution of the surface at the next time step. Because the surfaces change smoothly with time, this
approach provides agood initial solution and reduces the computation time.

5 Multigrid Relaxation M ethod
Equations (11), (12), and (14) are linear systemsin the form,
Af = b,

where A isan M N x M N matrix, f isan M N dimensiona unknown vector, and b isan M N dimensiond
vector. Dueto the local nature of afinite difference discretization, A has the nice computational properties
such as sparseness and bandedness.

Many types of algorithms have been developed for solving asparselinear system. Relaxation agorithms
such as Jacobi, Gauss-Seidel, or successive-overrelaxation methods exploit the sparseness and bandedness
of the matrix A to efficiently solve the system of equations[15]. In a relaxation, the value of each nodeis
updated with alocal computation to satisfy the equation for that node. Theiteration of relaxations generates
a sequence of approximate solutionswhich converge asymptotically to the exact solution.

A major drawback of arelaxation schemeisthat it converges slowly in general. The multigrid approach
wasdeveloped to overcomethe drawback and hasbeen actively researched by thenumerical analysiscommunity[22,
23]. Terzopoulosfirst applied the multigrid approach to derive a thin-plate surface for solving the visual sur-
face reconstruction problem in computer vision[21].

The multigrid approach appliestheideas of nested iteration and coarse grid correction to a hierarchy of
grids[22]. Thenested iterationistheway to improve arelaxation schemewith agoodinitial guess. To obtain
animproved initial guess, the nested iteration performs preliminary iterations on acoarse grid and then uses
the resulting approximation asan initial guesson afinegrid. Relaxationson a coarser grid are lessexpensive
since there are fewer unknownsto be updated.

The coarse grid correction accel erates the speed of convergence based on an analysis of the error reduc-
tion behavior. The analysis shows that the high frequency components of an error are short-lived while its
low frequency components persist through many iterations. The important point is that alow frequency on
afine grid may turn into a high frequency on a coarse grid. When arelaxation beginsto stall, signalling the
predominance of low frequency errors, the coarse grid correction moves the relaxation to a coarser grid, on
which those errors appear more oscillatory, and thus the rel axation will be more effective.

If g isan approximation to the exact solution f, then the error e = f — g satisfiesthe residual equation,

Ae=r=Db - Ag.

Once we get the error e, the exact solution f can be immediately derived by f = g + e. The following
recursive a gorithmincorporatestheideaof coarse grid correction with the residual egquation by relaxing the
error on ahierarchy of grids. Intheagorithm, the superscript 7 denotestheinter-node spacing of agrid. The
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matrix A" onagrid Q" isthe approximation of the matrix A on the finest grid. The vectorsf”, g, and b”
comprise the corresponding nodal variables on the grid Q”. 72" denotes the decimation of a vector from a
finer grid Q" to a coarser grid Q%" while I}, istheinterpolationin the opposite direction. v, and v, arethe
parameters for controlling the number of relaxations.

V-Cycle Algorithm
g" « MV"(gh b
1. Relax v, timeson Af"* = b" with agiveninitia guessg”.
2. If Q" isthe coarsest grid, then go to 4.
Else b2 « (b — Algh)
th 0
g2h — Mv2h(g2h7b2h)_
3. Correct g" « g + 1}, g%
4. Relax v, timeson A*f* = b’ withinitial guessg”.

The algorithmtel escopes down to the coarsest grid and then walksits way back to thefinest grid. Figure 4(a)
showsthe schedulefor thegridsin the order inwhich they are visited. Because of the pattern of thisdiagram,
thisalgorithmis called the V-Cycle.

h
h
2h
2h
4h
4h
: : : : : 8h
V-Cycle V-Cycle V-Cycle
8h on Q4 on Q" on Q"

@ (b)

Figure 4: Relaxation schedulesfor (a) V-Cycle (b) Full Multigrid V-Cycle, all on four levels

Theidea of nested iteration can enhance the V-Cycle algorithm by using a hierarchy of gridsto provide
an improved initial guess on the finest grid. The following recursive agorithm shows the fina multigrid
rel axation scheme which incorporates the ideas of nested iteration and coarse grid correction on a hierarchy
of grid.

Full Multigrid V-Cycle Algorithm
gh «— FMV"(g" b
1. If Q" isthe coarsest grid, then go to 3.
Else b?" « [#(b" — Algh)
g 0

11



g2h — FMv2h(g2h7b2h)_
2. Correct g « g + 1}, g%
3. gh «— MV(gh bh).

TheFull Multigrid V-Cycle algorithm startsat thefinest grid. Figure4(b) showsthe scheduling of relaxations
on grids. Each V-Cycleis preceded by a smaller V-Cycle designed to provide a better initial guess.

Schemes for relaxation and interpolation are required to implement the Full Multigrid V-Cycle ago-
rithm. The Gauss-Seidel method is always twice superior to Jacobi method in the speed of convergence.
The successive-overrel axation method shows unstable approximationsin thefirst few iterationsthoughit is
faster than the others. Because we take small number of relaxations in the V-Cycle agorithm, the Gauss-
Seidel method is chosen as the rel axation scheme.

When avector v isinterpol ated from a coarser grid Q2" to afiner grid Q*, we usethe Catmull-Rom spline
interpol ation[24] which guarantees C'*-continuity. The decimation of vector v from Q" to Q2" is done by
weighted averaging the values of neighborhood nodes. That is,

UZZ? = %[U%u,zy‘u + UgiJ_l,Zj-l—l + U§i+1,2jJ_1 + U§i+1,2j-|—1 (15)
+ 2(”32’,2]1_1 + Ugi,Zj-l—l + U%U.laj + U§i+1,2j) + 4”32',2]']7

where v; ; denotes the value of the vector v at the node (7, j).

When the relaxation is performed on a coarse grid ©2", the matrix A" should be approximated from
the matrix A" on thefine grid Q”. A row inthe matrix A" contains the coefficients of an equation whichis
solved for a nodal variable on Q" in arelaxation. For anode on 92", we derive the row in the matrix A 2"
by taking the weighted average of the related rows in the matrix A”. Each coefficient for a node on Q%" is
computed by applying formula (15) to the corresponding coefficients for its neighborhood nodes on 9.

In the general multigrid approach, the convergence rate and error analysis are performed to determine
the number of relaxationson a grid[23]. The relaxation on agrid movesto a coarser grid whenever the con-
vergence rate slows down and ends as soon as the estimated error is less than a given bound. It has been
theoretically proven that the multigrid approach requires O (M N) operationsto reduce the error to the trun-
cation error level[22].

We implemented the Full Multigrid V-Cycle algorithm in which the parameters vy and v, control the
number of relaxations. The computational efforts can be cal culated in terms of the work unit W which is
defined as the amount of computation required for one relaxation on the finest grid. The necessary compu-
tational effort islessthan 7/2(vy + v2)W[22]. Because small v, and v, are usually sufficient for deriving a
satisfactory solution, thisis agreat enhancement compared to the conventional rel axation schemes.

6 Extensions

6.1 Fast approximation of awarp function

In this paper, a warp function w is derived by numerically solving Equation (7). When the parameter « is
zero, Equation (7) reduces to the linear system,

(A+pT)w = faq. (16)

Equation (16) can berapidly solved by deriving the z- and y-components of w with the multigrid relaxation
method givenin Section 5. When images are not heavily distorted, Equation (16) can be used for generating
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smooth warp functionswhich exactly reflect the feature correspondences[18]. However, the warp functions
may not be one-to-one especially when they contain large local distortionsasin Figure 1.

6.2 A warp function with afixed boundary

When a warp function is applied to an image, there may be holes near a boundary of the distorted image.
Theseholesare generated if theboundary of the origina imageis mapped to theinsideof thedistortedimage.
The problem may be overcome by separating background from objects. However, if an object is attached to
a boundary, the boundary need to be frozen over the metamorphosis.

A frozen boundary can be obtained by adjusting the boundary condition in computing awarp function.
For the horizontal boundaries, we make the y-component of a warp function w equal to that of the unde-
formed shape r. Then, the points on the boundaries can move only in the horizontal directions. The vertical
boundaries can be handled similarly.

6.3 General feature control primitives

The multigrid relaxation method is used to solve alinear system in generating awarp function. The number
of positiona constraints hardly affects the computation time required in the multigrid relaxation method.
Hence, thetotal computation time remains nearly constant regardless of the number of feature points. This
strong merit makes it possible to easily extend the feature control primitives to include line segments and
CUrves.

When apair of line segments are specified to establish the correspondence of features between images, a
discretization of theline segments generates a set of corresponding point pairs. When curves are used to con-
trol feature correspondences, the Catmull-Rom spline curves[25] are adopted to interpolate the points spec-
ified by an animator. By properly discretizing the parameter space and computing the points on the curves,
we get a set of corresponding points lying on the matching curves. Theses generalized primitives can aso
be used for controlling transition functions.

6.4 Procedural transtion functions

The presented image morphing technique always generates an inbetween image on which the feature point
pairs on two images match their positions regardless of transition functions. Therefore, procedural transi-
tion functions can be used to generate various interesting i nbetween images. For example, let the transition
function T, be defined by

2t(1 — u/Umaz), if 0
1
2

<t
TO(uvvvt) - {1—2(1—t>u/umax7 if <t

IAIA
—_ N

9

T, generates a sequence of inbetween imagesin which the source image gradually changes to the destination
image from left to right. The corresponding transition function T is derived by sampling T, with the warp
function ;.
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7 Experimental Results

7.1 Comparison with field morphing

Mesh warping[2] provides a fast and intuitive technique for deriving warps and can be easily supported by
hardwares. The method of Nishitaet al.[3] can produce various types of warps which are smooth up to the
desired degree. However, these mesh-based methods have a drawback in specifying the features on an image.
The disadvantages of mesh warping arefully detailed in [1], most of which are also applied to the method of
Nishitaet al.

Field morphing[1] is comparable to the warp generation technique in this paper in that the features can
be effectively specified by line segments. In this section, examples of warps are provided which show the
advantages of the proposed technique over field morphing. To generate awarp with the proposed technique,
the pointson line segments are sampled as mentioned in Section 6.3.

Figure 5(a) is the origina image in which aletter ‘F lies on a mesh. We overlay line segments on the
image and move them to obtain distortedimages. Figure 5(b) i s generated when thewarp is computed by the
field morphing technique. In the image, the lower bar in ‘F does not shrink in the amount specified by the
movements of line segments. Theright end of the upper bar shows a distortion whilethe line segment on it
isfixed. These abnormal distortionsresult from that the eff ects of two or more line segments are blended by
simple weighted averaging. In Figure 5(c), the warp is computed by the techniquein this paper. Figure 5(c)
exactly reflects the movements of line segments and shows proper distortions over the entire image.

In Figures 5(d) and 5(e), the letter ‘F in Figure 5(a) is distorted to obtain theletter ‘ T'. Field morphing
generates the image in Figure 5(d), which does not show the desired distortion. In theimage, the influences
of line segments crumbl e each other, and the displacement of any line segment is not properly reflected. In
contrast, the proposed technique gives the exact distortion as shown in Figure 5(€). Figures 5(f) and 5(g)
show the images obtained when the image in Figure 5(a) is distorted to the letter ‘P'.

Animagein Figure5isof size 460 x 460 and it takes 19.1 seconds for the proposed technique to gen-
erate adistorted image on a SGI Crimson. The field morphing technique requires 51.95 seconds to generate
a distorted image. When the number of line segments gets larger, the computation time increases in field
morphing while the time remains nearly constant in the proposed technique.

7.2 Metamorphosis examples

Figure 6 shows a metamorphosis example. Figure 6(a) is a face image of the first author of this paper, and
Figure 6(b) isanimage of acat. Figures 6(c) and 6(d) show the features specified on theimages. Figure 6(e)
isthemiddleimagein whichthe sametransitionrateisapplied toal parts. Figure 6(f) isan inbetween image
inwhichtransitionrates are different from part to part. Theeyes, nose, and mouth of theimagelook morelike
the human face than the remaining parts. Figures6(g) and 6(h) are examples of applying procedural transition
functionsexplainedin Section 6.4. Ty (u, v;t) = /e, @dTo(u, v;t) = (sin(47u/wpmq,)+1)/2 areused
for Figures 6(g) and 6(h), respectively.

InFigure 7, aninconsistency of features between imagesisovercome by controlling thetransition behav-
ior. Figures 7(a) and 7(b) show face images which are considerably different near the ears. We specify the
correspondence of featuresin Figures 7(c) and 7(d). Without transition control, the ears and hair are jumbled
up in the middleimage as shownin Figure 7(€). To obtain a better inbetween image, we select the parts near
the ears in Figure 7(f) and assign the transition curve in Figure 7(i). The transition curve in Figure 7(j) is
specified for the line segments in the middle of Figure 7(f). Figure 7(g) shows the inbetween image at time
0.47 where the transition rates are computed from the specifi ed transition curves. In theimage, the parts near
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Figure 5: Comparison of warps: (a) isthe original image; (b), (d), and (f) are from field morphing; (c), (€),
and (g) are from the proposed technique

the ears resemble thefirst image. Figure 7(h) istheinbetween image at time 0.53 on which the second image
dominates the parts near the ears.

In Figure 8, two different facial expressions of a person are interpolated to obtain a facial animation.
The second imagesin the upper and lower rows are the source and destination images, respectively. Thefirst
images in the rows show the specified feature correspondence. The others are generated inbetween images.
They demonstrate that the features are nicely controlled by the proposed technique. For example, themotion
of the mouth looks natural in the inbetween images.

7.3 Performance

We use a workstation SGI Crimson(R4400) to generate the examples in this paper. The resolution of an
image in Figure 6is475 x 435. It takes 19.2 seconds to derive awarp on a475 x 435 grid. Hence, about
38.4 seconds are taken to generate theimage in Figure 6(€). When the transition rates are different from part
to part in an inbetween image, a deformable surface should be constructed to compute transition functions.
It takes 3.7 secondsto generate the surface on a4 75 x 435 grid. Then, about 42.1 secondsare taken to obtain
the image in Figure 6(f). Except the evaluation of procedural transition functions, the computation required
for the images in Figures 6(g) and 6(h) is the same as that for theimage in Figure 6(e).

AnimageinFigure7is516 x 387, and it takes 18.1 secondsand 3.7 secondsto derive awarp and surface,
respectively. Each imagein Figure 8 is 449 x 423, and it takes 17.2 seconds to generate a warp. Once the
warps are derived, an inbetween image can be obtained in less than one second.

All metamorphosis examples in this section are directly derived from the given images. An inbetween
image is generated without a masking process which extracts objects from the background. No additional
mani pul ations are taken to enhance the generated inbetween images. To prevent holes near aboundary of a
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Figure 6: A metamorphosis example: from a person to acat
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Figure 8: A facia animation

distorted image, a warp function is computed by freezing the boundary as described in Section 6.2.

General primitivesof linesand curves mentioned in Section 6.3 enable an animator to efficiently specify
the feature correspondence between two images. In deriving an inbetween image, the positions of features
arerepeatedly adjusted until the desired metamorphosisis obtained. Because thewarp computed in thispaper
precisely reflects the specified feature correspondence, theiterative process can be successfully completed in
afew trials. Each metamorphosis example in this section was generated from the given images in less than
one hour.

8 Conclusions

This paper presents a new approach to image morphing in deriving awarp and controlling transition behav-
ior. We devel op atwo dimensional deformation techniqueto generate awarp from aset of feature point pairs
overlaid on two images. The resulting warp is C'!-continuous and one-to-one and precisely reflects the fea-
ture correspondence between the images. Because any structure such as amesh is not necessary for feature
specification, an animator enjoys freedom in designing a metamorphosis. The freedom together with good
warps make it possibleto obtain a desired inbetween image very effectively.

We separate the transition behavior control from the feature interpol ationin generating ametamorphosis
sequence. The separation resultsinamethod whichismuch easier to use and more effective than theprevious
techniques. A transition scenario is realized by specifying the transition curves for selected points on an
image. In addition, more interesting transition behaviors can be derived by procedural transition functions.

The multigrid relaxation method is taken to solve alinear system in deriving awarp or transition rates.
Thismethod showsagreat enhancement in computati ontime compared to the conventional rel axation schemes.
With the stable numerical method for a differential equation and the multigrid relaxation method, the pre-
sented image morphing techniqueis fast enough for an interactive environment.
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The most tedious part of image morphing is to establish the correspondence of features between images
by an animator. Techniques of computer vision may be employed to automate this task. An edge detection
algorithm can provide important features on images, and an image analysis technique may be used to find
the correspondence between detected features. One of the most challenging problem in image morphing is
to devel op an efficient method for specifying features and their correspondence, especialy in the morphing
between two image sequences.
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