
Image Morphing Using Deformation Techniques

Seung-Yong Lee�, Kyung-Yong Chwa�, James Hahn��,
and Sung Yong Shin��Department of Computer Science

Korea Advanced Institute of Science and Technology
373-1 Kusong-dong Yusong-gu Taejon, 305-701, Korea��Department of EE & CS

The George Washington University
801 22nd Street NW, Washington, DC 20052, U.S.A.

SUMMARY

This paper presents a new image morphing method using a two-dimensional deformation technique which
provides an intuitive model for a warp. The deformation technique derives a C1-continuous and one-to-one
warp from a set of point pairs overlaid on two images. The resulting inbetween image precisely reflects the
correspondence of features specified by an animator. We also control the transition behavior in a metamor-
phosis sequence by taking another deformable surface model, which is simpler and thus more efficient than
the deformation technique for a warp. The proposed method separates transition control from feature interpo-
lation and is easier to use than the previous techniques. The multigrid relaxation method is employed to solve
a linear system in deriving a warp or transition rates. This method makes our image morphing technique fast
enough for an interactive environment.

Keywords: Image morphing, Deformation technique, Energy minimization method, Variational principle,
Multigrid relaxation method

0

1 Introduction

Image morphing deals with the metamorphosis of an image to another image. The metamorphosis generates
a sequence of inbetween images in which an image gradually changes into another image over time. Image
morphing techniques have been widely used in creating special effects for television commercials, music
videos such as Michael Jackson’s Black or White[1], and movies such as Willow and Indiana Jones and the
Last Crusade[2].

The problem of image morphing is basically how an inbetween image is effectively generated from two
given images[1]. When two face images are given, for example, a middle image may look like a third face
resembling the given faces. An inbetween image can be derived from two images by properly interpolating
the positions of corresponding features and their shapes and colors. A feature of an image is its characterizing
part such as the profile of a face and eyes and usually identified by a boundary curve at which colors change
abruptly.

A warp is a two-dimensional geometric transformation and generates a distorted image when it is applied
to an image. When two images are given, an image morphing method first establishes the feature correspon-
dence between them. The correspondence is then used to compute warps that distort the images to align the
positions of features and their shapes. A cross-dissolve of colors at each corresponding pair of pixels in the
distorted images finally gives an inbetween image.

The most difficult part of image morphing is to derive warps which distort images to align their features.
The features on an image are usually specified by an animator with a set of points or line segments overlaid on
the image. A warp is then computed from the correspondence between the features on two images. Therefore,
an image morphing technique must be convenient in specifying features and show a predictable distortion
which reflects the feature correspondence.

In mesh warping[2], features are specified by a nonuniform control mesh, and a warp is computed by a
spline interpolation. Nishita et al.[3] also used a nonuniform control mesh to specify features and computed
a warp using a two-dimensional free-form deformation and Bézier clipping. Field morphing[1] specifies fea-
tures with a set of line segments and computes a warp by taking the weighted average of the influences of
line segments.

Mesh warping and the method of Nishita et al. show good distortion behaviors but have a drawback in
specifying features. A control mesh is always required while the features on an image can have an arbitrary
structure. Field morphing gives an easy-to-use and expressive method in specifying features. However, it
suffers from unexpected distortions referred to as ghosts, which prevent an animator from realizing precise
warps as shown in Section 7. The time for computing a warp is proportional to the number of line segments.
This is disadvantageous when a complicated feature set must be specified.

These drawbacks can be overcome by a physically-based approach which provides an intuitive model
for a warp. Consider an image printed on a sheet of rubber. When selected points on the sheet are moved,
the sheet deformation thus obtained makes the image appear distorted. The distorted image conforms to the
displacement of each selected point and shows a proper distortion over the entire image. If a set of point pairs
specifies the feature correspondence between two images, we can derive a necessary warp from the sheet
deformation which moves each feature point to its correspondent. There have been a number of results[4, 5,
6] in flexible object modeling that give concrete theory and techniques for supporting this approach.

This paper takes the rubber sheet model and presents a new two-dimensional deformation technique for
deriving warps. The technique efficiently generates C1-continuous and one-to-one deformations from posi-
tional constraints. This approach does not restrict a feature set to have any structure such as a mesh, allowing
more freedom in designing a warp. The resulting warps show natural distortions which precisely reflect the

1

feature correspondence between images.
Another interesting but not yet fully investigated problem of image morphing is the control of transition

behavior in a metamorphosis sequence. In generating an inbetween image, the rate of transition is usually
applied uniformly over all points on the image. This results in an animation in which the entire image changes
synchronously to another image. If we control the transition rates on different parts of an inbetween image
independently, a more interesting animation can be obtained.

Mesh warping[2] assigns a transition curve for each point of the mesh, and these curves determine the
transition rate when the positions of features are interpolated. When complicated meshes are used to specify
the features, it is tedious to assign a proper transition curve to every mesh point. Nishita et al.[3] mentioned
that the speed of transition can be specified by a Bézier function defined on the mesh. However, the details
of the method were not provided except only one example.

This paper uses a deformable surface model to control the transition behavior, by assigning the transition
curves for selected points on an image. These points are not necessarily the same as those used for specifying
features. The transition rates on an inbetween image are derived from the curves by constructinga deformable
surface. This approach separates transition control from feature interpolation and thus is much easier to use
than the previous techniques.

Section 2 explains the steps for generating an inbetween image and defines the problems to be solved for
completing the steps. The following two sections concentrate on deformation techniques to give the solutions
of the problems. Section 5 introduces the multigrid relaxation method used for solving a linear system in
deriving a warp and transition rates. Section 6 presents the extensions of the basic technique employed for
the new image morphing method. Section 7 compares the presented method to the previous ones in warp
generation and gives metamorphosis examples. Section 8 summarizes the contributions of this paper.

2 Problems in Image Morphing

2.1 Application of a warp to an image

An image I can be represented by a function from a bounded two-dimensional region
 to a color space. A
warp W is a function from
 to
, which specifies a new position for each point on I . When W is applied
to I , each pixel on I is copied onto the distorted image I 0 at the position determined by W .

The four-corner mapping paradigm[2] considers each pixel on I as a square and transforms it into a
quadrilateral on I 0. The quadrilateral often straddles several pixels on I 0 or lies in the interior of one pixel. A
partial contribution is handled by scaling the intensity of the pixel on I in proportion to the fractional part of
the pixel on I 0. This technique generates a distorted image without holes and properly resolves the collapsed
pixels.

To implement the four-corner mapping, we should evaluate a warp function W at each corner of the
pixels on an image I . Hence, when the domain of W is discretized for a numerical solution, the size of a
grid is chosen as the resolution of I . Once W has been computed on the grid, the four-corner mapping can
be performed by the blending hardware of a SGI machine[7] in a short time.

2.2 Inbetween image generation

When two images I0 and I1 are given, the image morphing problem is to generate a sequence of inbetween
images I(t) such that I(0) = I0 and I(1) = I1. We assume that time t varies from 0 to 1 when the source
image I0 continuously changes to the destination image I1.

2

Let W0 be the warp function which specifies the corresponding point on I1 to each point on I0. When it
is applied to I0, W0 has to distort I0 to match I1 in the positions of features and their shapes. Let W1 be the
warp function from I1 to I0. The requirement for W1 is to map the features on I1 to the features on I0 when
it distorts I1.

To generate an inbetween image I(t), we derive two warp functions W0(t) and W1(t) from W0 and W1
by linear interpolation in time t. I0 and I1 are then distorted by W0(t) and W1(t), resulting in intermediate
images I0(t) and I1(t), respectively. The corresponding features on I0 and I1 have the same positions and
shapes on I0(t) and I1(t). Finally, I(t) is obtained by cross-dissolving the colors between I0(t) and I1(t).
That is, W0(t) = (1� t) �R+ t �W0 (1)W1(t) = t �R+ (1� t) �W1 (2)I0(t) = W0(t) � I0 (3)I1(t) = W1(t) � I1 (4)I(t) = (1� t) � I0(t) + t � I1(t); (5)

where R denotes the identity warp function, and W � I denotes the application of a warp W to an image I .
In the above procedure, time plays the role of transition rate which determines the relative influences of

the source and destination images on an inbetween image. A transition rate is a value between 0 and 1. With
a transition rate near zero, an inbetween image looks more similar to the source image. Transition rates near
one imply that inbetween images should be much like the destination image.

With the formulae (1), (2), and (5), the same transition rate t is applied to all points on the inbetween
image I(t). Therefore, the characteristics of the source and destination images are reflected in the same ratio
all over an inbetween image. The rate of transition can be made different from point to point to derive a more
interesting inbetween image. We introduce a transition function to facilitate the control of transition behavior
in generating an inbetween image. A transition function T specifies the rate of transition for each point on
an image over time.

Let T0 be a transition function defined on the source image I0. In generating I(t), T0(t) determines how
fast each point on I0 moves to the corresponding point on the destination image I1. T0(t) also determines
how much the color of each point on I0 is reflected on the corresponding point on I(t). Let T1 be the transition
function defined on the destination image I1, which specifies the same transition behavior with T0. T1 can
be derived from T0 with the correspondence of points between I1 and I0. To each point on I1, T1(t) should
assign the transition rate which T0(t) gives to the corresponding point on I0.

To control the movement of each point on an inbetween image I(t), we replace time t in formulae (1) and
(2) with T0(t) and T1(t), respectively. For the color transformation, however, time t in formula (5) cannot
be simply replaced by T0(t) and T1(t). It is because the transition functions T0 and T1 are not defined on the
distorted images I0(t) and I1(t) but the given images I0 and I1, respectively. Hence, we rearrange formulae
(3), (4), and (5) so that T0(t) and T1(t) are used to attenuate the color intensities of I0 and I1 before applying
warp functions. That is, W0(t) = (1� T0(t)) �R+ T0(t) �W0W1(t) = T1(t) �R+ (1� T1(t)) �W1I0(t) = W0(t) � ((1� T0(t)) � I0)I1(t) = W1(t) � (T1(t) � I1)

3

I(t) = I0(t) + I1(t):
The transformation of positions and colors can be independently handled by specifying different transition
functions.

2.3 Problems

To complete the above procedure for image morphing, the following two problems need further investigating:� how to get the warp functions W0 and W1, and� how to get the transition functions T0 and T1.
3 Warp Function Generation

This section presents a deformation technique for deriving warp functions and explains how to obtain the
warp functions W0 and W1 with the technique.

3.1 The deformation model

Deformation techniques based on variational principles have been widely used in computer graphics to model
flexible objects in three dimensions[4, 5, 8, 9]. In these techniques, the requirements for a deformation such
as smoothness are represented by energy functionals, and the desired shape of an object is derived by min-
imizing the sum of energy functionals. The energy minimization problems are then transformed to partial
differential equations, which are usually solved by numerical methods.

A warp can be considered as a deformation of a rectangular sheet in two-dimensional space. Previous
deformation techniques cannot be directly applicable to obtain warps because the deformations of rectan-
gular sheets are confined on two dimensions. In this paper, we present a new two-dimensional deformation
technique which efficiently generates a C1-continuous and one-to-one warp with variational principles.

Let
 be a rectangular thin plate and p = (u; v) a point on
. If every point on the plate is placed on
the xy-plane, a shape of the plate can be represented by a vector-valued function,w(p) = (x(p); y(p)). The
functionw specifies the position of each point p on the plate, lying in the xy-plane. The natural undeformed
shape of the plate is a rectangle on the xy-plane and represented by the identity function, r(p) = p.

Suppose that the selected points on the plate are required to move to the given positions on the xy-plane.
The constraints can be forced by minimizing the position energy,EP (w) = �Xk kw(pk)� qkk2 ;
where qk is the new position specified for a point pk on
. The parameter � controls the tightness of the
positional constraints.

The spline energy of a function w,ES(w) = Z Z
 24

@2w@u2

2 + 2

 @2w@u@v

2 +

@2w@v2

235dudv;
4

integrates the curvature variations of w over the domain
. Among the functions satisfying the positional
constraints, a smooth functionw can be obtained by minimizing the spline energy. The resulting functionw
has continuous first partial derivatives, @w=@u and @w=@v[10].

In addition to C1-continuity, one-to-one correspondence of a function w can be obtained by minimizing
the Jacobian energy, EJ(w) = � Z Z
(J � 1)2dudv;
where J = @x@u @y@v � @x@v @y@u:
The function w is one-to-one on
 if the Jacobian J is not zero in the interior of
 and if w is one-to-one
on the boundary of
[11]. Minimizing the Jacobian energy fulfills the first condition because it tries to makeJ one at each point on
. On the boundary of
, w will be made one-to-one by the boundary conditions
used for the numerical solution in Section 3.2. For a shape w of the plate
, the Jacobian J determines the
infinitesimal area at a point on
[12, 13]. It is easy to see that the Jacobian J is one at every point on
 when
the plate is in its undeformed shape r. Hence, the Jacobian energy integrates the area variations of the shapew from the undeformed shape r over the plate. The parameter � controls the resistance of the plate to area
variation from the undeformed shape.

Consequently, the desired function w can be derived by minimizing the energy functional,ED(w) = 12(ES(w) + EJ(w) +EP (w)):
If a function w minimizes the energy functional ED(w), the first variational derivative of ED(w) must
vanish all over the domain
[14]. The condition can be represented by the vector expression,�ED�w = 12 ��ES�w + �EJ�w + �EP�w � = 0; (6)

where �ES�w = 2 @4w@u4 + 2 @4w@u2@v2 + @4w@v4 ! ;�EJ�w = 2� @@u J @w?@v !� @@v J @w?@u !! ;�EP�w = 2� (w(pk)� qk) :
Here, w? denotes the vector (�y; x) which is perpendicular to the vector w = (x; y). The position force�EP =�w appears only at a point pk on
 for which its position qk is specified.

The partial differential equation given in Equation (6) is called the Euler-Lagrange equation. Unfortu-
nately, it is in general very difficult to obtain an analytic solution for the Euler-Lagrange equation. This sug-
gests a numerical method applied to a discrete version of the equation.

5

3.2 Numerical solution

We discretize the domain
 to an M �N regular grid and represent the function w by its values at the nodes
on the grid. The positional constraints are converted to the constraints on the values of the nodal variables.
The standard finite difference approximation[15] transforms the differential equation given in Equation (6)
into a system of equations which consists of MN unknown vectors and MN vector equations. If the nodal
variables comprising the functionw are collected into an MN dimensional vector, the system can be written
in a matrix form, Aw+ �j(w) + �(I0w � q) = 0: (7)A is anMN�MN matrix which contains the coefficients of the nodal variables resulting from the spline
force �ES=�w. j(w) is an MN dimensional vector which approximates the Jacobian force �EJ=�w on the
nodal variables. I0 is an MN �MN diagonal matrix in which an element is one only if the positional con-
straint is assigned to the corresponding nodal variable. TheMN dimensional vectorq contains the positional
constraints on the nodal variables. We use the boundary conditions @w=@u = @r=@u, @w=@v = @r=@v,
and @2w=@u2 = @2w=@v2 = 0 in deriving the matrix A and the vector j(w).

To solve Equation (7), we rewrite the equation as a diffusion equation,@w@t = Aw+ �j(w) + �(I0w � q): (8)

An initial distributionw relaxes to an equilibrium solution as t !1. At the equilibrium, all time derivatives
vanish and hence w is the solution of Equation (7). When differencing Equation (8) with respect to time, we
evaluate the right-hand side at time t rather than time t � 1, which results in the implicit Euler scheme. For
computing the y- and x-components of j(w), x- and y-components of w are assumed constant during a time
step, respectively. The assumption makes the nonlinear term j(w) linear with respect to w. The resulting
equations are �
(xt � xt�1) = Axt + �B(yt�1)xt + �(I0xt � xq) (9)�
(yt � yt�1) = Ayt + �B(xt�1)yt + �(I0yt � yq): (10)xt and yt are the x- and y-component vectors of the function w at time t. B(yt�1) and B(xt�1) are MN �MN matrices which contain the coefficients of xt and yt in the linear approximation of j(w), respectively.xq and yq denote the positional constraints on x and y. The parameter
 controls the step size in time.

Equations (9) and (10) can be arranged in the forms,(A+ �B(yt�1) +
I+ �I0)xt =
Ixt�1 + �xq (11)(A+ �B(xt�1) +
I+ �I0)yt =
Iyt�1 + �yq; (12)

in which xt and yt can be calculated from xt�1 and yt�1. The multigrid relaxation method in Section 5
efficiently solves Equations (11) and (12) by exploiting the bandedness of the matrices on the left-hand side.

This method for solving Equation (8) takes the implicit Euler scheme for the spline and position forces
and the semi-implicit Euler scheme for the Jacobian force. Hence, the solution of the equation can be found
very robustly and rapidly with a big time step. The initial shape x0 and y0 for Equations (11) and (12) is
obtained from an approximate equilibrium solution computed on a hierarchy of coarse grids. With the initial
shape, the equilibrium solution can be derived by solving Equations (11) and (12) in several times.

6

Figure 1 shows a deformation example in which the grid size is 64� 64. In the figures, black spots rep-
resent the positions of selected points to which positional constraints are assigned. It takes 1.6 seconds to
derive the deformation on a SGI Crimson. When the size of the grid is 512� 512, the computation time in-
creases to 26.7 seconds. The values of parameters �, �, and
 are 10.0, 2500000.0, and 0.0001, respectively.
This example verifies that the proposed method generates a desired deformation very effectively.

(a) The undeformed shape (b) A deformation of the plate

Figure 1: A deformation example

3.3 Generation of warp functionsW0 andW1
When two images are given, an animator specifies a set of point pairs on the images which represents the
correspondence of features. Let P be a set of point pairs (pi; qi), where pi and qi are points on the source
and destination images, I0 and I1, respectively. The warp function W0 has to distort the image I0 so that
each point pi matches the corresponding point qi in their positions. The requirement for W1 is to map each
point qi to the corresponding point pi when distorting the image I1 toward I0. Then, the warp functions are
reduced to deformations of a rectangular plate which place the specified points at the given positions.

There are several methods for deriving a warp function from the positional constraints assigned to the
points on an image. In the methods, the x- and y-components of a warp function are derived by constructing
smooth surfaces which interpolate scattered points. The warp generation in this approach was extensively
surveyed in [2, 16]. In addition, Bookstein used the thin-plate surface model and derived a solution by de-
composing a surface into a linear part and independent nonlinear deformations of progressively smaller geo-
metric scales[17]. Two similar methods were independently proposed which employ the multigrid relaxation
method to compute numerical solutions of the thin-plate surfaces[18, 19]. However, any of these methods
does not guarantee that the resulting warp functions have the one-to-one property.

The deformation model in Section 3.1 generates C1-continuous and one-to-one warp functions from the
positional constraints. When a warp function is applied to an image, the one-to-one property guarantees that
the distorted image does not fold back upon itself. In generating a warp function, the grid size is chosen

7

as the resolution of the given image. A large value is usually used for the parameter � so that the resulting
warp function exactly moves features points to their correspondents. For the parameter �, a small value is
sufficient to provide an one-to-one warp function.

4 Transition Function Generation

This section gives the deformable surface model for a transition function and the way for deriving the tran-
sition functions T0 and T1 with the surface model.

4.1 The surface model

At a given time, the transition rates of points on an image can be specified by a real-valued function defined
on a rectangular region. If we consider a function value as the height from the region, the function can be
represented by a surface deformed only in the vertical direction. The deformation technique given in Sec-
tion 3 is inappropriate for deriving the deformable surface because the technique generates a deformation in
two dimensions. Hence, we reduce the deformation model described in Section 3.1 to the thin plate surface
model[14], which is simpler and enables a more efficient numerical method. The thin plate surface model
has been used in computer vision to solve the visual surface reconstruction problem[10, 20, 21].

Let
 be a rectangular thin plate on the uv-plane and p = (u; v) a point on
. If the plate is allowed to
be deformed only in the direction perpendicular to the uv-plane, a shape of the plate can be represented by
a function, f(p). The function f specifies a real value for each point on the plate.

Suppose that the function f should have the given values at selected points on the plate. A smooth func-
tion f which satisfies the constraints can be derived by minimizing the energy functional,ES(f) = 12 0@Z Z
 24 @2f@u2!2 + 2 @2f@u@v!2 + @2f@v2!235 dudv + �Xk (f(pk)� tk)21A :
Here, tk is the value specified for a point pk on
. If a function f minimizes the energy functionalES(f), the
first variational derivative ofES(f)must vanish all over the domain
[14]. The condition can be represented
by the expression, �ES�f = @4f@u4 + 2 @4f@u2@v2 + @4f@v4 + � (f(pk)� tk) = 0: (13)

The last term containing � appears only at a point pk on
 for which a value tk is specified.

4.2 Numerical solution

We discretize the domain
 to an M �N regular grid and represent a function f by its values at the nodes
on the grid. The standard finite difference approximation transforms Equation (13) into a system of linear
equations which containsMN unknowns andMN equations. If the nodal variables comprising the functionf are collected into the MN dimensional vector f , the system may be written in a matrix form,(A+ �I0)f = �t; (14)

8

where t is an MN dimensional vector which contains the constraints on the values of f . Equation (14) can
be efficiently solved by the multigrid relaxation method given in Section 5.

Figure 2 shows a surface example in which the grid size is 64�64. In the figure, black spots represent the
interpolated values. It takes 0.4 seconds on a SGI Crimson to generate the surface by the multigrid relaxation
method. When the size of the grid is 512 � 512, its computation time is 5.0 seconds. This shows that the
multigrid relaxation method is efficient enough for interactive use.

Figure 2: A surface example

4.3 Generation of transition functions T0 and T1
To control the transition behavior in a metamorphosis, an animator selects a set of points on an image and
specify a transition curve for each point. The point set is not necessarily the same as the point set used for
deriving warp functions. A transition curve gives the transition behavior of a point over time as shown in
Figure 3.0rate 1 1 Time

Transition
Figure 3: A transition curve

LetP be a set of points on the source image I0 for which transition curves are specified. Let C(pk) be the
transition curve for a point pk inP . For a given time t, the transition functionT0(t) should have the transition
rate C(pk; t) at each point pk in P . With the set of C(pk; t) as the constraints on values, such a transition
function can be derived by the surface model described in Section 4.1. The resulting transition function isC1-continuous and properly propagates the specified transition curves all over the image I0.

9

The transition function T1 is specified on the destination image I1 and should give the transition behavior
which is the same with T0. If a point p on I0 corresponds to a point q on I1, the transition rate T1(q; t) should
be the same with T0(p; t) for each time t. Hence, the transition function T1(t) can be derived by samplingT0(t) with the warp function W1, that is, T1(q; t) = T0(W1(q); t).

When a sequence of inbetween images is generated with transition functions, a surface should be con-
structed for determining the function T0(t) at each time t. In this case, the solution for a surface is used for
the initial solution of the surface at the next time step. Because the surfaces change smoothly with time, this
approach provides a good initial solution and reduces the computation time.

5 Multigrid Relaxation Method

Equations (11), (12), and (14) are linear systems in the form,Af = b;
where A is an MN �MN matrix, f is an MN dimensional unknown vector, and b is an MN dimensional
vector. Due to the local nature of a finite difference discretization, A has the nice computational properties
such as sparseness and bandedness.

Many types of algorithms have been developed for solving a sparse linear system. Relaxation algorithms
such as Jacobi, Gauss-Seidel, or successive-overrelaxation methods exploit the sparseness and bandedness
of the matrix A to efficiently solve the system of equations[15]. In a relaxation, the value of each node is
updated with a local computation to satisfy the equation for that node. The iteration of relaxations generates
a sequence of approximate solutions which converge asymptotically to the exact solution.

A major drawback of a relaxation scheme is that it converges slowly in general. The multigrid approach
was developed to overcome the drawback and has been actively researched by the numerical analysis community[22,
23]. Terzopoulos first applied the multigrid approach to derive a thin-plate surface for solving the visual sur-
face reconstruction problem in computer vision[21].

The multigrid approach applies the ideas of nested iteration and coarse grid correction to a hierarchy of
grids[22]. The nested iteration is the way to improve a relaxation scheme with a good initial guess. To obtain
an improved initial guess, the nested iteration performs preliminary iterations on a coarse grid and then uses
the resulting approximation as an initial guess on a fine grid. Relaxations on a coarser grid are less expensive
since there are fewer unknowns to be updated.

The coarse grid correction accelerates the speed of convergence based on an analysis of the error reduc-
tion behavior. The analysis shows that the high frequency components of an error are short-lived while its
low frequency components persist through many iterations. The important point is that a low frequency on
a fine grid may turn into a high frequency on a coarse grid. When a relaxation begins to stall, signalling the
predominance of low frequency errors, the coarse grid correction moves the relaxation to a coarser grid, on
which those errors appear more oscillatory, and thus the relaxation will be more effective.

If g is an approximation to the exact solution f , then the error e = f � g satisfies the residual equation,Ae = r = b�Ag:
Once we get the error e, the exact solution f can be immediately derived by f = g + e. The following
recursive algorithm incorporates the idea of coarse grid correction with the residual equation by relaxing the
error on a hierarchy of grids. In the algorithm, the superscript h denotes the inter-node spacing of a grid. The

10

matrix Ah on a grid
h is the approximation of the matrix A on the finest grid. The vectors fh, gh, and bh
comprise the corresponding nodal variables on the grid
h. I2hh denotes the decimation of a vector from a
finer grid
h to a coarser grid
2h while Ih2h is the interpolation in the opposite direction. �1 and �2 are the
parameters for controlling the number of relaxations.

V-Cycle Algorithmgh MV h(gh;bh)
1. Relax �1 times on Ahfh = bh with a given initial guess gh.
2. If
h is the coarsest grid, then go to 4.

Else b2h I2hh (bh �Ahgh)g2h 0g2h MV 2h(g2h;b2h).
3. Correct gh gh + Ih2hg2h.
4. Relax �2 times on Ahfh = bh with initial guess gh.

The algorithm telescopes down to the coarsest grid and then walks its way back to the finest grid. Figure 4(a)
shows the schedule for the grids in the order in which they are visited. Because of the pattern of this diagram,
this algorithm is called the V-Cycle.s s s s ss s 8h.. h2h4h 2h4h8hs s s s s s s..s s s ss s hs on
2hs s

...
...V-Cycle V-Cycleon
hV-Cycleon
4h

(a) (b)

Figure 4: Relaxation schedules for (a) V-Cycle (b) Full Multigrid V-Cycle, all on four levels

The idea of nested iteration can enhance the V-Cycle algorithm by using a hierarchy of grids to provide
an improved initial guess on the finest grid. The following recursive algorithm shows the final multigrid
relaxation scheme which incorporates the ideas of nested iteration and coarse grid correction on a hierarchy
of grid.

Full Multigrid V-Cycle Algorithmgh FMV h(gh;bh)
1. If
h is the coarsest grid, then go to 3.

Else b2h I2hh (bh �Ahgh)g2h 0
11

g2h FMV 2h(g2h;b2h).
2. Correct gh gh + Ih2hg2h.
3. gh MV h(gh;bh).
The Full Multigrid V-Cycle algorithm starts at the finest grid. Figure 4(b) shows the scheduling of relaxations
on grids. Each V-Cycle is preceded by a smaller V-Cycle designed to provide a better initial guess.

Schemes for relaxation and interpolation are required to implement the Full Multigrid V-Cycle algo-
rithm. The Gauss-Seidel method is always twice superior to Jacobi method in the speed of convergence.
The successive-overrelaxation method shows unstable approximations in the first few iterations though it is
faster than the others. Because we take small number of relaxations in the V-Cycle algorithm, the Gauss-
Seidel method is chosen as the relaxation scheme.

When a vectorv is interpolated from a coarser grid
2h to a finer grid
h, we use the Catmull-Rom spline
interpolation[24] which guarantees C1-continuity. The decimation of vector v from
h to
2h is done by
weighted averaging the values of neighborhood nodes. That is,v2hi;j = 116 [vh2i�1;2j�1 + vh2i�1;2j+1 + vh2i+1;2j�1 + vh2i+1;2j+1+ 2(vh2i;2j�1 + vh2i;2j+1 + vh2i�1;2j + vh2i+1;2j) + 4vh2i;2j]; (15)

where vi;j denotes the value of the vector v at the node (i; j).
When the relaxation is performed on a coarse grid
2h, the matrix A2h should be approximated from

the matrix Ah on the fine grid
h. A row in the matrix Ah contains the coefficients of an equation which is
solved for a nodal variable on
h in a relaxation. For a node on
2h, we derive the row in the matrix A2h
by taking the weighted average of the related rows in the matrix Ah. Each coefficient for a node on
2h is
computed by applying formula (15) to the corresponding coefficients for its neighborhood nodes on
h.

In the general multigrid approach, the convergence rate and error analysis are performed to determine
the number of relaxations on a grid[23]. The relaxation on a grid moves to a coarser grid whenever the con-
vergence rate slows down and ends as soon as the estimated error is less than a given bound. It has been
theoretically proven that the multigrid approach requires O(MN) operations to reduce the error to the trun-
cation error level[22].

We implemented the Full Multigrid V-Cycle algorithm in which the parameters �1 and �2 control the
number of relaxations. The computational efforts can be calculated in terms of the work unit W which is
defined as the amount of computation required for one relaxation on the finest grid. The necessary compu-
tational effort is less than 7=2(�1+ �2)W [22]. Because small �1 and �2 are usually sufficient for deriving a
satisfactory solution, this is a great enhancement compared to the conventional relaxation schemes.

6 Extensions

6.1 Fast approximation of a warp function

In this paper, a warp function w is derived by numerically solving Equation (7). When the parameter � is
zero, Equation (7) reduces to the linear system,(A+ �I0)w = �q: (16)

Equation (16) can be rapidly solved by deriving the x- and y-components of w with the multigrid relaxation
method given in Section 5. When images are not heavily distorted, Equation (16) can be used for generating

12

smooth warp functions which exactly reflect the feature correspondences[18]. However, the warp functions
may not be one-to-one especially when they contain large local distortions as in Figure 1.

6.2 A warp function with a fixed boundary

When a warp function is applied to an image, there may be holes near a boundary of the distorted image.
These holes are generated if the boundary of the original image is mapped to the inside of the distorted image.
The problem may be overcome by separating background from objects. However, if an object is attached to
a boundary, the boundary need to be frozen over the metamorphosis.

A frozen boundary can be obtained by adjusting the boundary condition in computing a warp function.
For the horizontal boundaries, we make the y-component of a warp function w equal to that of the unde-
formed shape r. Then, the points on the boundaries can move only in the horizontal directions. The vertical
boundaries can be handled similarly.

6.3 General feature control primitives

The multigrid relaxation method is used to solve a linear system in generating a warp function. The number
of positional constraints hardly affects the computation time required in the multigrid relaxation method.
Hence, the total computation time remains nearly constant regardless of the number of feature points. This
strong merit makes it possible to easily extend the feature control primitives to include line segments and
curves.

When a pair of line segments are specified to establish the correspondence of features between images, a
discretization of the line segments generates a set of corresponding point pairs. When curves are used to con-
trol feature correspondences, the Catmull-Rom spline curves[25] are adopted to interpolate the points spec-
ified by an animator. By properly discretizing the parameter space and computing the points on the curves,
we get a set of corresponding points lying on the matching curves. Theses generalized primitives can also
be used for controlling transition functions.

6.4 Procedural transition functions

The presented image morphing technique always generates an inbetween image on which the feature point
pairs on two images match their positions regardless of transition functions. Therefore, procedural transi-
tion functions can be used to generate various interesting inbetween images. For example, let the transition
function T0 be defined byT0(u; v; t) = (2t(1� u=umax); if 0 � t � 12 ;1� 2(1� t)u=umax; if 12 < t � 1:T0 generates a sequence of inbetween images in which the source image gradually changes to the destination
image from left to right. The corresponding transition function T1 is derived by sampling T0 with the warp
function W1.

13

7 Experimental Results

7.1 Comparison with field morphing

Mesh warping[2] provides a fast and intuitive technique for deriving warps and can be easily supported by
hardwares. The method of Nishita et al.[3] can produce various types of warps which are smooth up to the
desired degree. However, these mesh-based methods have a drawback in specifying the features on an image.
The disadvantages of mesh warping are fully detailed in [1], most of which are also applied to the method of
Nishita et al.

Field morphing[1] is comparable to the warp generation technique in this paper in that the features can
be effectively specified by line segments. In this section, examples of warps are provided which show the
advantages of the proposed technique over field morphing. To generate a warp with the proposed technique,
the points on line segments are sampled as mentioned in Section 6.3.

Figure 5(a) is the original image in which a letter ‘F’ lies on a mesh. We overlay line segments on the
image and move them to obtain distorted images. Figure 5(b) is generated when the warp is computed by the
field morphing technique. In the image, the lower bar in ‘F’ does not shrink in the amount specified by the
movements of line segments. The right end of the upper bar shows a distortion while the line segment on it
is fixed. These abnormal distortions result from that the effects of two or more line segments are blended by
simple weighted averaging. In Figure 5(c), the warp is computed by the technique in this paper. Figure 5(c)
exactly reflects the movements of line segments and shows proper distortions over the entire image.

In Figures 5(d) and 5(e), the letter ‘F’ in Figure 5(a) is distorted to obtain the letter ‘T’. Field morphing
generates the image in Figure 5(d), which does not show the desired distortion. In the image, the influences
of line segments crumble each other, and the displacement of any line segment is not properly reflected. In
contrast, the proposed technique gives the exact distortion as shown in Figure 5(e). Figures 5(f) and 5(g)
show the images obtained when the image in Figure 5(a) is distorted to the letter ‘P’.

An image in Figure 5 is of size 460� 460 and it takes 19.1 seconds for the proposed technique to gen-
erate a distorted image on a SGI Crimson. The field morphing technique requires 51.95 seconds to generate
a distorted image. When the number of line segments gets larger, the computation time increases in field
morphing while the time remains nearly constant in the proposed technique.

7.2 Metamorphosis examples

Figure 6 shows a metamorphosis example. Figure 6(a) is a face image of the first author of this paper, and
Figure 6(b) is an image of a cat. Figures 6(c) and 6(d) show the features specified on the images. Figure 6(e)
is the middle image in which the same transition rate is applied to all parts. Figure 6(f) is an inbetween image
in which transition rates are different from part to part. The eyes, nose, and mouth of the image look more like
the human face than the remaining parts. Figures 6(g) and 6(h) are examples of applying procedural transition
functions explained in Section 6.4. T0(u; v; t) = u=umax and T0(u; v; t) = (sin(4�u=umax)+1)=2 are used
for Figures 6(g) and 6(h), respectively.

In Figure 7, an inconsistency of features between images is overcome by controlling the transition behav-
ior. Figures 7(a) and 7(b) show face images which are considerably different near the ears. We specify the
correspondence of features in Figures 7(c) and 7(d). Without transition control, the ears and hair are jumbled
up in the middle image as shown in Figure 7(e). To obtain a better inbetween image, we select the parts near
the ears in Figure 7(f) and assign the transition curve in Figure 7(i). The transition curve in Figure 7(j) is
specified for the line segments in the middle of Figure 7(f). Figure 7(g) shows the inbetween image at time
0.47 where the transition rates are computed from the specified transition curves. In the image, the parts near

14

(a) (b) (d) (f)

(c) (e) (g)

Figure 5: Comparison of warps: (a) is the original image; (b), (d), and (f) are from field morphing; (c), (e),
and (g) are from the proposed technique

the ears resemble the first image. Figure 7(h) is the inbetween image at time 0.53 on which the second image
dominates the parts near the ears.

In Figure 8, two different facial expressions of a person are interpolated to obtain a facial animation.
The second images in the upper and lower rows are the source and destination images, respectively. The first
images in the rows show the specified feature correspondence. The others are generated inbetween images.
They demonstrate that the features are nicely controlled by the proposed technique. For example, the motion
of the mouth looks natural in the inbetween images.

7.3 Performance

We use a workstation SGI Crimson(R4400) to generate the examples in this paper. The resolution of an
image in Figure 6 is 475 � 435. It takes 19.2 seconds to derive a warp on a 475 � 435 grid. Hence, about
38.4 seconds are taken to generate the image in Figure 6(e). When the transition rates are different from part
to part in an inbetween image, a deformable surface should be constructed to compute transition functions.
It takes 3.7 seconds to generate the surface on a 475�435 grid. Then, about 42.1 seconds are taken to obtain
the image in Figure 6(f). Except the evaluation of procedural transition functions, the computation required
for the images in Figures 6(g) and 6(h) is the same as that for the image in Figure 6(e).

An image in Figure 7 is 516�387, and it takes 18.1 seconds and 3.7 seconds to derive a warp and surface,
respectively. Each image in Figure 8 is 449 � 423, and it takes 17.2 seconds to generate a warp. Once the
warps are derived, an inbetween image can be obtained in less than one second.

All metamorphosis examples in this section are directly derived from the given images. An inbetween
image is generated without a masking process which extracts objects from the background. No additional
manipulations are taken to enhance the generated inbetween images. To prevent holes near a boundary of a

15

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: A metamorphosis example: from a person to a cat

16

(a) (b)

(c) (d)

(e) (f)

(g) (h)

0.53 1
Time

0.47

Transition
rate 1

0

1

1
Time

Transition
rate

0

(i) (j)

Figure 7: Transition control for overcoming an inconsistency between features

17

Figure 8: A facial animation

distorted image, a warp function is computed by freezing the boundary as described in Section 6.2.
General primitives of lines and curves mentioned in Section 6.3 enable an animator to efficiently specify

the feature correspondence between two images. In deriving an inbetween image, the positions of features
are repeatedly adjusted until the desired metamorphosis is obtained. Because the warp computed in this paper
precisely reflects the specified feature correspondence, the iterative process can be successfully completed in
a few trials. Each metamorphosis example in this section was generated from the given images in less than
one hour.

8 Conclusions

This paper presents a new approach to image morphing in deriving a warp and controlling transition behav-
ior. We develop a two dimensional deformation technique to generate a warp from a set of feature point pairs
overlaid on two images. The resulting warp is C1-continuous and one-to-one and precisely reflects the fea-
ture correspondence between the images. Because any structure such as a mesh is not necessary for feature
specification, an animator enjoys freedom in designing a metamorphosis. The freedom together with good
warps make it possible to obtain a desired inbetween image very effectively.

We separate the transition behavior control from the feature interpolation in generating a metamorphosis
sequence. The separation results in a method which is much easier to use and more effective than the previous
techniques. A transition scenario is realized by specifying the transition curves for selected points on an
image. In addition, more interesting transition behaviors can be derived by procedural transition functions.

The multigrid relaxation method is taken to solve a linear system in deriving a warp or transition rates.
This method shows a great enhancement in computation time compared to the conventional relaxation schemes.
With the stable numerical method for a differential equation and the multigrid relaxation method, the pre-
sented image morphing technique is fast enough for an interactive environment.

18

The most tedious part of image morphing is to establish the correspondence of features between images
by an animator. Techniques of computer vision may be employed to automate this task. An edge detection
algorithm can provide important features on images, and an image analysis technique may be used to find
the correspondence between detected features. One of the most challenging problem in image morphing is
to develop an efficient method for specifying features and their correspondence, especially in the morphing
between two image sequences.

References

[1] T. Beier and S. Neely. Feature-based image metamorphosis. Computer Graphics, 26(2):35–42, 1992.

[2] G. Wolberg. Digital Image Warping. IEEE Computer Society Press, 1990.

[3] T. Nishita, T. Fujii, and E. Nakamae. Metamorphosis using Bézier clipping. In Proceedings of the
First Pacific Conference on Computer Graphics and Applications, pages 162–173, Seoul, Korea, 1993.
World Scientific Publishing Co.

[4] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. Computer Graphics,
21(4):205–214, 1987.

[5] D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture.
Computer Graphics, 22(4):269–278, 1988.

[6] J. C. Platt and A. H. Barr. Constraint methods for flexible models. Computer Graphics, 22(4):279–288,
1988.

[7] Silicon Graphics Inc. Graphics Library Programming Guide.

[8] G. Celniker and D. Gossard. Deformable curve and surface finite-elements for free-form shape design.
Computer Graphics, 25(4):257–266, 1991.

[9] W. Welch and A. Witkin. Variational surface modeling. Computer Graphics, 26(2):157–166, 1992.

[10] D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. IEEE Transaction
on Pattern Analysis and Machine Intelligence, PAMI-8(4):413–424, 1986.

[11] G. Meisters and C. Olech. Locally one-to-one mappings and a classical theorem on schlicht functions.
Duke Mathematical Journal, 30:63–80, 1963.

[12] R. C. Buck. Advanced Calculus. McGraw-Hill, third edition, 1978.

[13] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Academic Press, second edition, 1990.

[14] I. Gelfand and S. Fomin. Calculus of Variations. Prentice-Hall, 1963.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge
University Press, second edition, 1992.

[16] D. Ruprecht and H. Müller. Image warping with scattered data interpolation methods. Research Report
443, Fachbereich Informatik der Universität Dortmund, 44221 Dortmund, Germany, 1992.

19

[17] F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE
Transaction on Pattern Analysis and Machine Intelligence, 11(6):567–585, 1989.

[18] S. Y. Lee, K. Y. Chwa, J. Hahn, and S. Y. Shin. Image morphing using deformable surfaces. In Proceed-
ings of Computer Animation ’94, pages 31–39, Geneva, Switzerland, 1994. IEEE Computer Society
Press.

[19] P. Litwinowicz and L. Williams. Animating images with drawings. In SIGGRAPH 94 Conference
Proceedings, pages 409–412. ACM Press, 1994.

[20] W. Grimson. An implementation of a computational theory of visual surface interpolation. Computer
Vision, Graphics, and Image Processing, 22:39–69, 1983.

[21] D. Terzopoulos. Multilevel computational processes for visual surface reconstruction. Computer Vi-
sion, Graphics, and Image Processing, 24:52–96, 1983.

[22] W. L. Briggs. A Multigrid Tutorial. SIAM, Lancaster Press, Lancaster, PA, 1987.

[23] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation,
31(138):333–390, 1977.

[24] D. H. Kochanek and R. H. Bartels. Interpolating splines with local tension, continuity, and bias control.
Computer Graphics, 18(3):33–41, 1984.

[25] G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, second edition,
1990.

20

