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ABSTRACT 

The medialization laryngoplasty is a surgical procedure to improve the voice function of the patient with vocal fold 
paresis and paralysis. An image guided system for the medialization laryngoplasty will help the surgeons to accurately 
place the implant and thus reduce the failure rates of the surgery. One of the fundamental challenges in image guided 
system is to accurately register the preoperative radiological data to the intraoperative anatomical structure of the patient. 
In this paper, we present a combined surface and fiducial based registration method to register the preoperative 3D CT 
data to the intraoperative surface of larynx. To accurately model the exposed surface area, a structured light based stereo 
vision technique is used for the surface reconstruction. We combined the gray code pattern and multi-line shifting to 
generate the intraoperative surface of the larynx. To register the point clouds from the intraoperative stage to the 
preoperative 3D CT data, a shape priori based ICP method is proposed to quickly register the two surfaces. The proposed 
approach is capable of tracking the fiducial markers and reconstructing the surface of larynx with no damage to the 
anatomical structure. We used off-the-shelf digital cameras, LCD projector and rapid 3D prototyper to develop our 
experimental system. The final RMS error in the registration is less than 1mm.  
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1. INTRODUCTION 
It is estimated that 7.5 million people in the United States have a voice disorder, and about 1/3 of new patients with 
voice disorders are diagnosed with vocal fold paresis or paralysis. Vocal fold paralysis and paresis are debilitating 
conditions leading to difficulty with voice production. The alterations in voice production are usually severe enough to 
impede the individual's ability to work and to conduct normal social interactions. Medialization laryngoplasty is a 
surgical procedure designed to restore voice in patients with glottal insufficiency due to incomplete vocal fold adduction 
during voicing. The underlying objective of the procedure is to implant a uniquely configured (i.e. patient specific) 
structural support lateral to the paretic vocal fold through a window cut in the thyroid cartilage of the larynx. The 
implant provides vocal fold support by placing the vocal fold into a more medial position, i.e. medialization. The vocal 
folds are located deep to the thyroid cartilage, anatomical landmarks of the external laryngeal skeleton do not predict the 
exact location of the underlying vocal folds. The location is approximated by pre- and intraoperative study of the 
patient’s CT scans, visual inspection of the thyroid cartilage, and the geometry of the vocal folds as seen through a trans-
nasal endoscopic image. Therefore, it is subject to a significant level of uncertainty. Window placement errors of up to 
5mm in the vertical dimension are not uncommon in patients admitted for revision surgery. The objective of this 
interdisciplinary research is to resolve the issue of accurate implant placement by providing computer assisted surgery 
tools to improve the outcome of the procedure and to reduce the revision rate. The intraoperative image-guided system is 
developed to allow the surgeon to accurately place the implant at the desired location. During the operation, the 
preoperative laryngeal surface from 3D CT data is registered with the intraoperative surface of the larynx.  
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The image guided technology has been successfully applied to various medical domains. However, to our knowledge, 
image guided techniques have not been applied to the medialization laryngoplasty. The biggest obstacles come from (1) 
registering the geometry of the delicate anatomy of thyroid cartilage during the surgery to the preoperative 3D CT data 
(2) introducing minimal intrusion or modifications to the current surgical practices and (3) implementing with only a 
moderate increase in the additional equipment. In this paper, we will concentrate on the registration of preoperative 3D 
CT data to the intraoperative 3D surfaces of thyroid cartilage. Our proposed image guided system will use the 
anatomical and geometric landmarks and points to register intraoperative 3D surface of thyroid cartilage to the 
preoperative 3D radiological data. The proposed approach has three phases. First, the laryngeal cartilage surface is 
segmented out from the preoperative 3D CT data. Second, the surface of the exposed laryngeal cartilage during the 
surgery is reconstructed intraoperatively using stereo vision and structured light based surface scanning. The surgical 
area has non-uniform color and textures, so we take one full-lit image and non-lit image to distinguish the shadow from 
the light receiving areas and calculate the illumination change map. To reduce the surface scanning time, we combined 
the gray-code pattern with multi-line shifting approach. To resolve the ambiguity in multiple line-shifting, we used the 
dynamic programming method to maximize the sequence matching cost. Third, the two geometries are registered using 
shape priori based ICP matching. Currently the proposed technique has only been applied in a laboratory environment on 
phantom models. The proposed approach has several advantages over alternative approaches: the combination of stereo 
vision and structured light surface scanning is capable of tracking the fiducial markers, reconstructing the surface of 
laryngeal cartilage and matching the preoperative and postoperative surfaces for registration purposes. The computer 
vision based approach can be applied to delicate areas like laryngeal cartilage with no danger of causing physical 
damage. 

 

2. RELATED WORKS 
Efforts to correct the voice deficits by surgical manipulation of the laryngeal framework were initially conceived in 1974 
by Dr. Nobuhiko Isshiki1, whose pioneering work revolutionized the management of vocal fold paralysis. Laryngeal 
framework surgery was modified and popularized in the U.S. by Koufman2 who coined the term medialization 
laryngoplasty. While various surgical manipulations fall under the umbrella of medialization laryngoplasty, the two-fold 
objective of these procedures is 1) to physically approximate the two vocal folds during phonation and 2) to alter the 
vibratory characteristics of the injured vocal cord. The most common medialization laryngoplasty procedure is the 
thyroplasty procedure, which is aimed at medializing the membraneous aspects of the vocal fold. The vocal fold is 
constrained within the laryngeal framework by means of a dense ligamentous attachment, the vocal ligament. In the 
adult larynx, the laryngeal cartilages have ossified into a rigid framework which is minimally deformable3. The rigidity 
and the distinctive feature of laryngeal cartilage surface inspired us to perform surface based registration in the image 
guided system. The restoration of voice production and the level of patient satisfaction with a thyroplasty are variable. 
While revision rates vary, the most recent study published in 2003 indicates an open revision rate of 24%4. Optimal 
voice outcomes are most dependent on the exact placement of the implant relative to the position of the underlying vocal 
fold and suboptimal voice outcomes and high revision rates reflect the significant challenges inherent in the thyroplasty 
procedure. The major challenge is determination of the optimal implant configuration and accurate placement of implant 
during surgery.  

Registration in image guided procedures can be classified into three categories based on the fiducial markers: extrinsic 
invasive, extrinsic noninvasive and intrinsic markers. Extrinsic invasive markers (i.e. stereotactic frames and bone 
screwed markers) are usually fixed to a patient’s large bones. The reported accuracy of extrinsic invasive markers is less 
than 1mm5-7. Extrinsic noninvasive markers are attached to the patient’s skin. The accuracy of noninvasive markers is 
between 2 to 4mm8. Commercial systems have been used for a variety of procedures, including neurosurgery, spinal-
surgery, and orthopedic surgery. The traditional approach is to affix multi-modal fiducial markers before a CT or MRI is 
taken of the patient and then register this dataset with the patient using the same markers intraoperatively. Most 
commercial image-guided systems use optical tracking equipment with extrinsic fiducial markers. Intrinsic markers are 
anatomical and geometric landmarks, points and surfaces in the preoperative CT/MR dataset and that of the 
intraoperative medical image9,10. In this approach, surfaces, lines, or points in the CT/MR dataset are registered to 
corresponding features on the patient using intraoperative imaging modalities. The commonly used intraoperative 
imaging modalities are X-ray, ultrasound, 2D optical images and 3D laser scanning. Ultrasound imaging has been 
successfully applied to breast, liver and prostate, where the ultrasound energy can easily penetrate the anatomical 
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structure. X-ray imaging has been widely applied for image-guided spinal and orthopedic surgery. The surface based 
registration method extracts bone surfaces from CT data and contours from X-ray image. The registration is done by 
minimizing the distance between the projected surface and the contours11,12. Pixel similarity based approach directly 
matches the X-ray image with Digitally Reconstructed Radiography (DRR) image from CT data. The location of CT 
data relative to the X-ray image is estimated by optimizing the similarity between X-ray and DRR image13. Registering 
the surface from preoperative CT data and point clouds from 3D laser scanning has been applied in image-guided 
neurosurgery. The accuracy of the Point Based Registration (PBR) and Iterative Closet Point (ICP) methods has been 
reported to be 1.0-2.9mm and 0.6-2.0mm respectively10. 2D optical imaging based registration has been used for 
registering video image with CT data of human face14. The reported accuracy of registration is 1.45-1.59mm. The 
difficulty in 2D video image based registration is that the set of features must be exposed to the intraoperative imaging 
(or laser scanning) and matched accurately between the CT/MR dataset and the patient. In the case of laryngoplasty, the 
bone fixed fiducial markers would make potentially damage to the thin laryngeal cartilage. The skin affixed markers will 
move significantly relative to the laryngeal cartilage. Intraoperative medical imaging system can be used for the multi-
modal image registration in image guided surgery. However, for the medialization laryngoplasty, this will modify the 
current surgical procedure and increase the medical cost by introducing additional medical equipment. So, in our system, 
we will use the intrinsic markers for the registration. Surface based registration is a research area in image guided 
surgery, where the exposed anatomical structure is laser scanned and registered to the preoperative CT or MRI volume. 
Although, the surface based registration is mainly performed at large anatomical structures like skull, knees and hip 
joint, it provides a possibility to apply surface based registration method to the image guided laryngoplasty. The 
distinctive features in larynx and laryngeal cartilage make it possible to perform surface based registration for image 
guidance. 

Structured light based surface reconstruction requires light projection device (LCD projector) and one or more cameras. 
The structured light based surface reconstruction system can be classified into three categories: time-multiplexing, 
spatial neighborhood and direct coding. Time-multiplexing is a way to encode the pixel information in the temporal 
domain. Several binary coded light stripes are projected onto the measuring surface and further decoded to calculate the 
3D coordinate using triangulation15. One problem with the binary code is that the pixel intensity at stripe boundary is 
highly sensitive to the noise and the sensor resolution. Inokuchi et al.16 improved the coding scheme with gray code to 
make the code word robust to the noise. Caspi et al.17 reduced the number of images by using colored gray codes. Hattori 
and Sato18 refined the original hierarchical stripe based technique by introducing sub-pixel offsets to the final stripe 
pattern to get better resolution. Recently, Gühring19 combined the gray code light pattern and line shifting to reconstruct 
highly accurate 3D surface model. The sub-pixel accuracy peak detection is the key component of accurate 3D 
reconstruction, which is also used in traditional laser scanning. In spatial neighborhood based coding, the code word of 
projected light pattern is obtained by considering the neighborhood pixels around it. However, due to the local 
smoothness constraint, the code word could not be recovered robustly. As a result, the spatial resolution of reconstructed 
surface is much lower than the time multiplexing. Boyer and Kak20 projected a color stripe pattern with a unique color 
intensity value. The advantage of this method is capable of obtaining shape from moving objects. The disadvantage of 
this approach is the complex decoding algorithms and the uncertainty of the code word. Vuylsteke et al.21 proposed a De 
Bruijn sequence based neighborhood coding. The code word is recovered by traversing through the Hamilton circuits of 
De Bruijn graph. The De Bruijn sequence resolves the ambiguity problem in neighborhood coding. Later, Hall-Holt and 
Rusinkiewicz22 described a coding scheme with time-varying stripe patterns. The most common problem in the 
neighborhood coding is the robust decoding of the code word. Zhang et al.23 proposed a multi-pass dynamic 
programming to recover the code word from colored De Bruijn sequence. The major advantage in neighborhood coding 
is the possibility of reconstructing dynamic scenes. However, the decoding of the code word is a global optimization 
process and the 3D reconstruction result is less accurate than time multiplexing. Direct coding is to create a pattern in 
which every pixel can be directly labeled by the image pixel value. Carrihill and Hummel24 introduced an intensity ratio 
depth sensor: the ratio between full-lit image and the linearly varying illumination pattern is used to index every pixel 
along horizontal scanline. Since the ratio based direct coding technique is highly susceptible to sensor noise, Chazan and 
Kiryati25 combined this method with hierarchical stripes to reduce noise susceptibility. Miyasaka et al.26 calculated more 
accurate intensity ratio depth map by using an LCD projector and a 3CCD camera.  Direct coding techniques are useful 
for achieving large spatial resolution with few images. Spatial neighborhood and direct coding methods are relatively 
fast and capable of measuring dynamic surfaces. However, the bandwidth of projector and quantization error introduced 
by the CCD camera will make the color and neighborhood based methods less accurate than time multiplexing methods. 
For our experimental framework, since the primary goal is to reconstruct accurate 3D surface for registration, we have 
combined gray code pattern and multi-line shifting method to reconstruct the 3D surfaces.  
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The global alignment of multiple 3D point sets or surfaces has been well studied in the field of 3D model acquisition 
area. Besl and McKay introduced ICP (Iterative Closest Point) algorithm to geometrically align two similar geometric 
models27. A new geometric transform matrix is calculated by minimizing the MSE (Mean Square Error) between the 
closet point pairs. Horn28 described a closed form solution for the quaternion calculation from matched closet point pairs. 
Chen and Medioni29 proposed a similar iterative scheme using a different criterion. Instead of searching for the closest 
distance between point pairs, they searched for the point to surface distance using surface normal vector. This method is 
restricted to the 3D models with surface description. Rusinkiewicz and Levoy30 compared various ICP algorithms based 
on sub-sampling scheme from the geometric data, closest point searching method, rejection of outliers and error 
minimization method. To reduce point samples from geometric data, Turk and Levoy31 uniformly sub-sampled the 
source data, while Masuda et al. randomly sub-sampled the point data with different sample of points at each iteration 
step32. Rusinkiewicz et al. proposed a point sub-sampling schema that maximizes the normal vector distribution of the 
selected point samples30. To remove the outliers from the matched point sets, Masuda et al reject the point pairs whose 
distance is larger than certain times of the standard deviation32.  Turk and Levoy31 removed the point pairs which 
contains a point from mesh boundary. KD-tree27 and approximated KD-tree33 is used to accelerate the closest point 
searching process. For the error metric and minimization, most people minimized the sum of squared distance for the 
matched point pairs. Masuda and Yokoya32 minimized the least median of square (LMS) distance instead of summed 
square distance. The LMS estimator minimizes the median of the squared residuals, and it is more robust to the 
mismatched point pairs. To avoid local minima, Simon et al. started with several perturbations in the initial conditions 
and select the best result34. We used the closed form solution from Horn28 to calculate the unit quaternion rotation vector, 
and rejected the outliers from sample space if the closest distance is longer than 2 times of mean closest distance. For our 
case, the shape features of the laryngeal cartilage will be a good candidate for fast initial pose estimation. We used two 
crossing planes to calculate the initial pose for fast shape matching.  

 

3. IMAGE GUIDED MEDIALIZATION LARYNGOPLASTY 
 

 
Fig. 1. Work flow of surface registration 

The work flow of our surface registration process is shown in figure 1. There are five major steps:  1) In the patient’s 
preoperative CT image, the laryngeal cartilage surface is extracted using marching cube iso-surface extraction algorithm.  
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2) Stereo camera pairs are calibrated using planar chessboard pattern image taken from different positions and 
orientations.  3) Intraoperatively, gray code pattern and multi-line shifting based surface reconstruction method is used to 
reconstruct the exposed laryngeal cartilage surface, which is defined as intraoperative surface.  4) The preoperative 
surface from step 1 is registered to the intraoperative surface from step 3 by matching the geometric shapes. A shape 
priori based ICP algorithm is designed to quickly and accurately match the two surfaces. After shape matching, the 
fiducial marker positions are registered to the corresponding positions in CT data.  5) During the surgery, the fiducial 
markers are tracked by the real-time stereo vision system and provide the rigid transformation between 3D CT data and 
patient’s space.  

3.1 Medialization Laryngoplasty 

The medialization laryngoplasty (Fig. 2) is a surgical procedure to restore the voice of patients with vocal fold paresis or 
paralysis. The etiologies of this condition are typically idiopathic or iatrogenic; examples of the latter include injury to 
the vagus nerve during thyroidectomy or skull base surgery. The medialization laryngoplasty procedure is the 
thyroplasty procedure, which is aimed at medializing the membraneous aspects of the vocal fold. In thyroplasty, a 
surgical opening is created in the lamina of the thyroid cartilage for the purpose of implanting a permanent structural 
support that pushes the injured vocal fold medially so as to approximate the normal vocal fold of the opposite side 
during phonation. The medialization laryngoplasty is a collective term for surgical manipulations of the laryngeal  
framework, including manipulations of the thyroid, cricoid, and/or the arytenoid cartilages designed to restore normal 
voice in individuals with vocal cord paralysis or paresis. The surgical implant is typically comprised of a rigid material, 
such as Silastic®, that can be modified in configuration during the surgery. A thyroplasty implant is a patient-specific 
device that must be properly aligned in reference to the underlying vocal fold and have a size and shape such that it 
medializes the vocal fold and alters the vibratory characteristics of the vocal fold to a state that most closely resembles 
that of the uninjured vocal cord. The anatomy of the thyroid cartilage varies in size and shape among individuals as does 
the precise position of the vocal folds. The vocal folds are located deep under the thyroid cartilage surface. Therefore, 
the anatomical landmarks on the external laryngeal cartilage surface are insufficient to accurately locate the underlying 
vocal folds. In surgical practice, the location is approximated by pre- and intraoperative study of the patient’s CT scans, 
visual inspection of the thyroid cartilage, and the geometry of the vocal folds seen through a trans-nasal fiber optic 
image.  

  
Fig. 2. Medialization laryngoplasty 
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3.2 Surface Extraction from CT Data and Phantom Model Construction 

For the preliminary experiment, the Visible Human CT data set from NIH National Library of Medicine is used for the 
experiment. The thyroid cartilage surface is extracted using marching cube algorithm35 with the iso-density value of 
1070. he extracted triangular mesh is rendered in wire frame, flat shading and texture mapping (Fig 3. Left). To 
experiment the surface reconstruction and registration, a phantom model with corresponding CT data set is required. It is 
difficult to find an actual scale phantom model of laryngeal cartilage. A reverse engineering approach is used to build a 
phantom model from the Visible Human CT data set. The extracted 3D surface model is converted to a solid CAD model 
and sent to 3D prototyping device (Stratasys FDM 3000). The prototyper is capable of constructing a 3D phantom model 
from the CAD input with the accuracy of 0.1mm. (Fig 3. Right). 

 
Fig. 3. Left: Iso-surface extraction from the CT data, Right: Phantom model 

3.3 Structured Light based Intraoperative Surface Reconstruction  

Structured light based surface reconstruction requires light projection device (LCD projector) and one or more cameras. 
In our case, we used LCD projector with two cameras. Since the camera to camera calibration has higher accuracy than 
camera to projector calibration, we only calibrated the camera pairs and used the LCD for illumination purpose. For the 
camera calibration, we used the planar homography based camera calibration method36 (Fig. 4). 

 
Fig. 4. Camera calibration and rectified images 
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After calibration, the images from two cameras are rectified to align the horizontal scan lines. After rectification, the 
searching of pixel correspondence has been reduced to one dimension. Furthermore, the camera internal and external 
parameters are simplified. Suppose, P1, P2 is the camera position vector and the R1, R2 is the camera rotation matrix 
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represented by quaternion. In equation 1, the M1, M2 is the pinhole camera projection matrix. If we find the pixel 
correspondence in left and right images, we can calculate the real 3D position of the pixel in camera coordinate system 
by solving the linear equations (Equation 1).                       

From equation 1, we can easily notice that the sub-pixel accuracy in pixel correspondence is the most critical issue in 3D 
reconstruction. If we only have the pixel level accuracy, the recovered depth value will not be continuous. We have 
applied Blais and Rioux sub-pixel peak detection method to reconstruct the surface of thyroid cartilage phantom model. 
Similar with laser range scanning, we swept the surface of an object with single high intensity line pattern. In order to 
increase the speed of surface scanning and reduce the number of images used for reconstruction, we have combined gray 
code pattern and multi-line shifting method. The benefit of this approach is that the number of images required for 
computation is dramatically reduced, while the accuracy of surface reconstruction is maintained at the same level of 
single line shifting method.  The key challenge in gray code multi-line shifting method is to resolve the ambiguity and 
mislabeling problem originated from image segmentation, shadows and occlusions. We have tackled these problems 
with multi-pass dynamic programming to maximize the sequence matching cost. In the first pass, since we knew the 
ground truth projection pattern, we matched the recovered pattern sequence from both left and right images to the ground 
truth pattern sequence. This will resolve the mislabeling problem in a single multi-line shifting image. In the second 
pass, we have sorted all the sub-pixel peak position from multi-line shifting images and applied dynamic programming. 
The second pass is to maximize the sequence matching cost in both spatial and temporal domain (Fig. 5).  

 
Fig. 5. Gray code and multi-line shifting for surface reconstruction 

3.4 ICP based Point Clouds Registration 

To register the 3D surface from preoperative CT data and the point clouds from the structured light based surface 
reconstruction, we need to preprocess the 3D surface from CT. The point clouds from the computer vision are only the 
front side of the thyroid cartilage. Therefore, we need to remove the back facing polygons from the preoperative CT 
surface so that the back facing polygons do not affect the registration result. We used the surface normal to separate the 
front facing and back facing polygons. In order to reduce the searching time for the closest point matching, we used 
balanced k-d tree. A KD-tree is a space-partitioning data structure for organizing points in a k-dimensional space. It uses 
splitting planes that are perpendicular to one of the coordinate system axes.  

We used the point to point euclidian distance as our closest point matching criteria. After the calculation of closest point, 
we rejected the outliers from sample space if the closest distance is longer than 2 times of mean closest distance. The 
minimization of mean square error is only considered on inliers.  Suppose M and D are 3D point sets from preoperative 
and intraoprative stage, the goal of ICP algorithm is to find the optimal rotation and translation that minimize equation 2.  
We used unit quaternion Q(q0,q1,q2q3) to represent the rotation matrix.  
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The closed form solution from [17]’s work is used to calculate the quaternion vector. To determine the rotation vector, 
we first subtract center of mass position from each point clouds set. A covariance matrix N is calculated using the 
equation 3.  The new quaternion vector Q is the eigenvector of largest positive eigen value of N.  
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The original ICP algorithm calculates the translation vector using the difference in the center of mass point. This is 
correct when the center of mass points in preoperative and intraoperative surfaces are close. But, in our case, the surface 
points from the preoperative CT consist of points that are not exposed to the camera. Furthermore, the structured light 
based reconstruction stage also consists of noise points. So we separated the translation calculation from rotation 
calculation stage. For the translation, we used the summed average of displacement vector of matched closest point 
pairs. Suppose  ]Z,Y,[X  ]Z,Y,[X M2M2M2M1M1M1 is closest matching point pair from CT and structured light based 
reconstruction, the new translation vector is calculated using equation 4. 
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The initial pose estimation will greatly affect the convergence speed and the correctness of the final result. Unlike 
original ICP based shape matching, for the medical image registration, the ground truth target mesh is known. The shape 
features of the laryngeal cartilage will be a good candidate for fast initial pose estimation. One important observation is 
that the laryngeal cartilage surface can be approximated by two crossing planes (Fig. 6). Point to plane distance is used 
to estimate the plane equation (ax+by+cz+d=0). Minimizing the sum of squared distance from point to plane will 
provide a plane equation that best fit the point clouds. The center of mass of point clouds is projected to the plane to 
provide the unique matching point on the plane. The SVD based closed form solution is used to approximate the plane 
equation. The plane equation is the vector associated with smallest singular value (Equation 5). Geometric description 
based on initial shape approximation will provide close initial pose estimation for the ICP method.  
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Fig.6. Approximation of the larynx with two crossing planes 

 

Proc. of SPIE Vol. 6509 650908-8



 
 

 
 

4. EXPERIMENT AND RESULT 
We used Intel Xeon 3.2GHz Workstation with 4GB memory for our experiment. We have implemented a prototype 
system with Visual Studio 2005 and MFC. For the camera calibration and image processing, we have utilized the Intel 
OpenCV library. The prototype system can directly import the DICOM format CT data and extract iso-surface (Fig 7).  

     
Fig. 7. Iso-surface extraction result 

For the structured light based surface reconstruction, we have experimented with two Logitec Quickcam cameras, Nikon 
D70s digital cameras and LCD projector. The surface reconstruction result with sub-pixel accuracy line shifting is show 
on figure 8. To mimic the real situation, color dotted model and animal bone are used for the experiment  (Fig 9). 

  
Fig. 8. Surface reconstruction result for phantom model 

  
Fig. 9. Animal bone surface reconstruction 
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To reduce the number of images required for surface reconstruction, we have implemented multi-pass dynamic 
programming to resolve the ambiguity issue in gray code multi-line shifting method. The surface reconstruction results 
are shown on figure 10. 

 
Fig. 10. Multi-pass dynamic programming for surface reconstruction 

In ICP based point clouds registration, the computation time for kd-tree construction is 94 ms. Shape priori based ICP 
matching takes 515 ms to match the two point clouds with RMS error 0.9mm. The original ICP method with the same 
RMS error takes 4 sec. The final mean square error in two matched point clouds is 0.899mm and the registration result is 
shown on figure 11. 

   
Fig. 11. Shape priori based ICP matching result and interface 

 

5. CONCLUSIONS AND FUTURE WORKS 
In this paper, we proposed an image guided system for the medialization laryngoplasty. To our knowledge, this is the 
first attempt to apply image-guided techniques to the medialization laryngoplasty. Due to the delicate nature of thyroid 
cartilage surface, we could not directly use the fiducial marker based optical tracking system for the image registration. 
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Instead, we introduced a structured light based stereo vision system that could be used for 3D surface reconstruction and 
feature tracking. We used the sub-pixel accuracy gray code multi-line shifting for the 3D reconstruction. To resolve the 
ambiguity in multiple line-shifting, we used the dynamic programming method to maximize the sequence matching cost. 
To mimic the real situation, color dotted phantom model and animal bone is used for experiment. To match the 3D 
surface from preoperative CT and the point clouds from structured light based reconstruction, we proposed a shape priori 
based initial pose estimation combined with the ICP algorithm to register two sets of point clouds. The mean square 
error of ICP based registration is less than 1.0mm. Our experimental framework can be applied to other image guided 
applications. For the future work, we will use the registration result and the projective texture mapping techniques to 
render the preoperative thyroid cartilage surface and visualize the important anatomical structures (vocal fold and airway 
lumens) beneath the thyroid cartilage surface. This work is supported by a grant from the National Institute of Health 
(No. R01-DC007125-0181) for developing computer-based tools for medialization laryngoplasty. 
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