
Vol. 7, No. 4: 33—42

Hardware-Assisted Rendering
of Cylindrical Panoramas

Dongho Kim and James K. Hahn
The George Washinigton University

Abstract. Cylindrical panorama is being used in many applications. Cylindrical
panoramic viewers render the panorama from the center of the cylinder by pro-
jecting the cylindrical map onto a planar screen. This process involves nonlinear
image warping, so many panoramic viewers are implemented in software. Hardware
acceleration may be used if the panorama is resampled onto the polygonal models.

This paper presents an algorithm to render cylindrical panorama with hardware

acceleration while using the input panorama as is. The rendering equation of cylin-

drical panorama is decomposed into linear approximation and nonlinear residuals.

Nonlinear parts are encoded as bump maps to perturb the texture coordinates on

a per-pixel basis. This process can be performed by environment-mapped bump

mapping (EMBM) hardware.

1. Introduction

Cylindrical panorama viewers, as popularized by QuicktimeVR, are very pop-
ular. They typically use software rendering to perform the nonlinear cylin-
drical image warping, and as such are limited by CPU speed and occupy the
CPU, preventing simultaneous application processing. [Chen 95], [McMillan,
Bishop 95], [Shum, He 99], [Szeliski, Shum 97], [panoguide xx].
In this paper, we describe a new method of hardware-assisted rendering of

cylindrical panorama. It implements nonlinear image warping using bump
mapping hardware. Therefore, high-resolution cylindrical panorama can be
rendered efficiently without intensive use of the CPU.

© A K Peters, Ltd.

33 1086-7651/02 $0.50 per page

34 journal of graphics tools

Figure 1. Projection plane and direction of projection (DOP).

2. Main Idea

Rendering with cylindrical panorama is a process of warping a cylindrical tex-
ture map onto a plane. First, we define the projection plane, onto which a
cylindrical map is warped locally on-the-fly. The projection plane lies parallel
with the axis of the cylinder. Second, we define the direction of projection
(DOP), which becomes the normal vector of the projection plane. As users
specify the viewing direction, DOP is set as the horizontal component of view-
ing direction. Because DOP is perpendicular to the cylinder, it can be defined
simply by θ0, which is the angle of DOP from the x-axis. Then, the projection
plane is placed at unit distance from the origin with the normal vector along
DOP. Figure 1 shows a two-dimensional view of this configuration.

From now on, (θ, v) denotes the cylindrical texture coordinates in [0, 1]
for the cylindrical panorama, and (uI, vI) is the planar texture coordinates on
the projection plane. The three-vector (x, y, z) is a location in the projection
coordinate system, where the origin is at the center of the cylinder. The z-axis
is aligned with the axis of the cylinder, and the x-axis is aligned with θ = 0.

2.1. Decomposition of Rendering Equation

Let H be the height of the unit cylinder given as H = 2 tan(0.5×FOV), where
FOV is the vertical field of view of the cylindrical panorama. Then, (θ, v) is
related to (x, y, z) as given in Equation 1. This is the rendering equation of
cylindrical panorama. Here, atan2() is the arctangent function in a standard
C library, which gives the angle in [-π..π] for output.

θ =
atan2(y, x)

2π
+ 0.5 (1)

v =
1

H

z0
x2 + y2

+ 0.5

Kim and Hahn: Hardware Assisted Rendering of Cylindrical Panoramas 35

Suppose that (xI, yI) is a projection of (x, y, z) onto the local coordinates of
the projection plane. Because the projection plane is placed at unit distance
from the center of the cylinder, Equation 1 becomes the following equation
which determines (θ, v)for a given (xI, yI).

θ = θ0 +
atan(xI)
2π

(2)

v =
1

H

yI0
1 + xI2

= 0.5

The main idea of our work is to decompose these equations into a linear ap-
proximation and nonlinear residuals, and fill the bump map with the nonlinear
part. The bump map is used to perturb texture coordinates determined by
the linear part. For this process, Equation 2 is decomposed as follows.

θ = θ0 + ax
I +Rθ(xI) (3)

v = 0.5 = byI +Rv(xI, yI)

Therefore, the residual parts are given as follows.

Rθ(x
I) =

atan(xI)
2π

− axI (4)

Rv(x
I, yI) =

1

H

yI0
1 + xI2

− byI

Here, a and b are the coefficients of the linear approximations of (θ, v) ac-
cording to (xI, yI). They are computed before rendering so that the maximum
magnitudes of the residual parts are minimized.

2.2. Computation of Linear Coefficients

Suppose xI is in [−Xm, Xm] and yI is in [−Ym, Ym]. These ranges are deter-
mined by the possible values of horizontal and vertical fields of view during
real-time rendering. For instance, if we always use the fields of view less
than 90◦, the ranges are [−1, 1] and [−1, 1] for xI and TyI, respectively, since
tan(0.5× 0.5π) is 1.
Figure 2(a) shows the first and second terms of Rθ(x

I) in Equation 4. While
we change the slope a, the difference of the two terms is minimal, when
Rθ(Xc)and Rθ(Xm) have the same magnitude and opposite signs. This is
the first condition. Xc is obtained by setting the derivative of Rθ(x

I) to
zero, which becomes the second condition. Therefore, we have two unknowns,
Xc and a, and two equations. The equations can be solved by substitution,

36 journal of graphics tools

Figure 2. Determination of linear coefficients.

followed by a few iterations of a simple bisection root-finding algorithm [Press
et al. 88].

For Rv(x
I, yI) in Equation 4, it is apparent that the magnitude is at a

maximum when yI is equal to Ym. Figure 2(b) is the plot of the two terms
of Rv(x

I, Ym). Similar to Rθ(xI), the maximum magnitude of Rv(x
I, Ym) is

minimal, when Rv(0, Ym)and Rv(Xm, Ym) have the same absolute values and
opposite signs. This gives the equation to solve for b.

3. Implementation

Recent improvements in texture mapping hardware introduced multitexture
mapping. With multitexture mapping, two or more textures can be applied
to a polygon in a single rendering pass., while a texture is applied at each
stage. The result of the previous stage and the texture for the current stage
can be combined by various operations, such as add, subtract, multiply, etc.

One of the operational modes of multitexturing is environment mapped
bump mapping (EMBM), where texture coordinates in the second stage are
perturbed by the texel values sampled in the first stage. This functionality is
designed originally for bumped reflection, where the environment is reflected
using environment mapping. In this work, however, this functionality is used
to perturb texture coordinates and perform nonlinear warping with hardware
support. Because residual parts shown in Equation 4 are approximated as
a bump perturbation map, the resolution of the bump map may affect the
quality of projective texturing. A 256× 256 bump map is used in this work,
and there are no noticeable artifacts due to this approximation.

Kim and Hahn: Hardware Assisted Rendering of Cylindrical Panoramas 37

Eye Space Vector

Projection Space Vector

First stage:

generated automatically

for each pixel

2D Vector on Projection

Plane

Access Bump Map

Eye Space Vector

Projection Space Vector

2D Vector on Projection

Plane

Second stage:

generated automatically

for each pixel

),(v as Linear Part of

Equation 3
Perturb Texture

Parameter

Final),(v

Perspective

Division

Perspective

Division

Vertical

Rotation
Vertical

Rotation

θ

θ

Figure 3. Determination of texture coordiantes using projective texture mapping.

Our algorithm can be implemented in one of two ways as explained in the
next two subsections. Although DirectX 8.1 is used for the implementation,
OpenGL could also be used.

3.1. Implementation Using Projective Texture Mapping

Rendering of a cylindrical panorama can be accomplished by rendering a
rectangle for the screen with a multitexture configuration as shown in Figure 3.
This screen rectangle is always attached to the viewing frustum and rotated
while the user changes the viewing direction.
For the first texture stage, the texture operation is set as EMBM and a

bump perturbation map is used as a texture. The bump map contains the
amounts of perturbation needed for all texels, which are computed from the
residual parts of cylindrical parameterization given in Equation 4. For the
second texture stage, the cylindrical panorama is used as texture. In Figure
3, a projection space means a coordinate system, where the x and y axes
are in the projection plane and the z axis is in the direction of DOP. For

38 journal of graphics tools

both stages, texture coordinates are generated as eye space coordinates by
automatic texture generation, and transformed appropriately by the texture
transformation matrix. Most of the procedure is similar to standard projective
texture mapping [Blythe et al. 00], [Weinhaus, Devich 99]. With projective
texture mapping, eye space coordinates are transformed to texture space co-
ordinates and the x and y components are divided by the z component, in
order to obtain 2D coordinates. In our case, perspective division in projection
space computes (xI, yI), the coordinates on the projection plane. Note that
the entire process is performed on a per-pixel basis by graphics hardware.

The texture transformation matrix for the first stage (M0) and the second
stage (M1) are set as given in Equation 5. These matrices are multiplied by
the eye coordinate vector for each pixel, so that following perspective division
can give (xI, yI). In Equation 5, Mrot is the vertical rotation matrix, which
transforms from the eye coordinates to the projection space coordinates. Note
that a vertex is represented as a row vector and the transformation matrix is
post-multiplied in DirectX. Minus signs appear at the (2,2) elements in both
matrices, because textures are addressed from the top in DirectX.

M0 =Mrot ·

a 0 0 0
0 −b 0 0
θ0 0.5 1 0
0 0 0 1

 M1 =Mrot ·

1

2Xm
0 0 0

0 − 1
2Ym

0 0

0.5 0.5 1 0
0 0 0 1

 (5)

Figure 4 shows a part of the DirectX source code for this configuration.
This implementation works well with very recent graphics hardware, such as
nVIDIA GeForce4 Ti 4600 and ATI Radeon 8500, as well as DirectX refer-
ence rasterizer. However, we found that some 3D graphics hardware have
problems with this implementation. For instances, nVIDIA GeForce3 does
not work correctly when the texture coordinates obtained by projective tex-
ture mapping are perturbed in the next stage. ATI Radeon cannot perform
projective texture mapping correctly when both stages use projective texture
mapping. It seems that some hardware did not implement the entire function-
ality because this usage is beyond the scope of its original objective, which is
bumped environment mapping.

3.2. Implementation with Per-Vertex Projection

While the previous implementation is limited to recent graphics hardware,
the second rendering method presented here can be used with any graphics

Kim and Hahn: Hardware Assisted Rendering of Cylindrical Panoramas 39

pd3dDev->SetTexture(0, m_pBumpMap);

pd3dDev->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_BUMPENVMAP);

pd3dDev->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX,

D3DTSS_TCI_CAMERASPACEPOSITION);

pd3dDev->SetTextureStageState(0, D3DTSS_TEXTURETRANSFORMFLAGS,

D3DTTFF_COUNT3 | D3DTTFF_PROJECTED);

pd3dDev->SetTexture(1, m_pPanorama);

pd3dDev->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_SELECTARG1);

pd3dDev->SetTextureStageState(1, D3DTSS_COLORARG1, D3DTA_TEXTURE);

pd3dDev->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX

D3DTSS_TCI_CAMERASPACEPOSITION);

pd3dDev->SetTextureStageState(1, D3DTSS_TEXTURETRANSFORMFLAGS,

D3DTTFF_COUNT3 | D3DTTFF_PROJECTED);

D3DXMATRIX mat;

... /* matTexture is set as M0 in Eq 5 */

pd3dDev->SetTransform(D3DTS_TEXTURE0, &matTexture);

... /* matTexture is set as M1 in Eq 5 */

pd3dDev->SetTransform(D3DTS_TEXTURE1, &matTexture);

Figure 4. Source code for multitexture configuration.

hardware with EMBM capability. Moreover, the performance is better than
the previous method, since it does not require per-pixel projective texture
mapping.

In this implementation, projective texture mapping is applied explicitly for
each vertex of the screen rectangle before rendering takes place. Then, the
resultant 2D texture coordinates are used for texture mapping. Therefore,
there is no need to use per-pixel projective texture mapping. For the four
vertices of the rectangle, transformation matrices in Equation 5 are multiplied
and perspective division is performed. This gives 2D texture coordinates for
the two stages defined on the projection plane.

But correct results cannot be obtained if the screen rectangle is rendered
as is. This is because 2D texture coordinates are distorted perspectively. In
other words, the mapping is not linear inside the rectangle. In order to get
correct texture mapping inside the rectangle, the rectangle should also be
projected onto the projection plane. If the viewing direction is not horizontal,
the rectangle is projected to a trapezoid. Rendering of this trapezoid gives
the same results as the method in Section 3.1, since the 2D geometry and
texture coordinates are defined on the same two-dimensional domain, which
is the projection plane. For this implementation, texture transforms should
be disabled from the source code in Figure 4, and the locations and texture
coordinates are pretransformed per vertex.

40 journal of graphics tools

3.3. Zoom In/Out

Zooming in can be implemented by reducing the field of view for real-time
rendering. Similarly, the enlargement of the field of view gives zooming out.
The screen rectangle should be scaled appropriately.

4. Dynamic Range of Bump Map

For the texture format of bump maps, DirectX provides 8-bit format
(D3DFMT V8U8) and 16-bit format (D3DFMT V16U16). If the 16-bit for-
mat is supported by the hardware, the perturbation values in [-1, 1] are rep-
resented by 16 bits for u and v, respectively. Therefore, perturbation can be
represented in much detail.
Currently, ATI Radeon 8500 is the only hardware with the support of

D3DFMT V16U16. An 8-bit bump map can represent the values of only
256 levels in the [-1, 1] range. In order to utilize this dynamic range effec-
tively, DirectX provides the scaling of bump map texels. This is done by
setting D3DTSS BUMPENVMAT00 and D3DTSS BUMPENVMAT11 para-
meters with the SetTextureStageState() API. In other words, the perturba-
tion values are scaled up when they are encoded in the bump map, and they
are scaled down to the original values when they are used during rendering.
Therefore, 8-bit bump maps can be used effectively if the magnitudes of per-
turbation values are small. This is the reason why optimal linear coefficients
should be found in Section 2.2.

5. Results and Discussion

With the implemented panoramic viewer, the user can look around with hor-
izontal and vertical rotations. Zooming in and out is also supported. Figure
5(b) shows the rendering results from the panorama given in Figure 5(a).
Rendering performance is shown in Figure 6. In this figure, #1 indicates the
implementation in Section 3.1 and #2 indicates the method in Section 3.2. R1
through R5 represent the resolutions of 640×480, 800×600, 1024×768, 1280×
960, and 1600× 1200, respectively. GeForce3, GeForce4 Ti 4600, and Radeon
8500 were used for the test.
Errors are introduced by using a look-up table. We define the error as the

Euclidean distance between the accurate texture coordinates and the approx-
imated values in 2D texture space with range [0, 1] . This can be measured
by rendering the texture with color-encoded texture coordinates. Then, the
measured average per-pixel error is about 8.66×10−6. Because the bump map
is interpolated linearly, increasing the bump map resolution does not reduce
the error significantly.

Kim and Hahn: Hardware Assisted Rendering of Cylindrical Panoramas 41

(a)

(b)

Figure 5. Result of cylindrical panoramic rendered.

Figure 6. Rendering performance.

We believe that hardware-based nonlinear warping could overcome the lim-
itation of texture mapping hardware that the texture coordinates are interpo-
lated only linearly. Therefore, it could be used in many real-time applications.

Acknowledgements. This work was supported in part by GW Presidential
Fellowship and ONR Grant N000140110582.

References

[Blythe et al. 00] D. Blythe et al. “Advanced Graphics Programming Techniques
using OpenGL.” Siggraph 2000 Course Notes, New York: ACM SIGGRAPH,
2000.

[Chen 95] S.E. Chen. “Quicktime VR–An Image-Based Approach to Virtual En-
vironment Navigation.” In Proceedings of SIGGRAPH 95, Computer Graphics
Proceedings, Annual Conference Series, edited by Robert Cook, pp. 29—38,
Reading, MA: Addison-Wesley, 1995.

[McMillan, Bishop 95] L. McMillan and G. Bishop. “Plenoptic Modeling: An
Image-Based Rendering System.” In Proceedings of SIGGRAPH 95, Computer

42 journal of graphics tools

Graphics Proceedings, Annual Conference Series, edited by Robert Cook, pp.
39—46, Reading, MA: Addison-Wesley, 1995.

[Shum, He 99] H. Y. Shum and L. W. He. “Rendering with Concentric Mosaics.” In
Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Con-
ference Series, edited by Alyn Rockwood, pp. 299—306, Reading, MA: Addison-
Wesley, 1999.

[Szeliski, Shum 97] R. Szeliski and H.Y. Shum, “Creating Full Panoramic Mosaics
and Environment Maps.” In Proceedings of SIGGRAPH 97, Computer Graphics
Proceedings, Annual Conference Series, edited by Turner Whitted, pp. 251—258,
1997.

[Weinhaus, Devich 99] F. M. Weinhaus and R. N. Devich. “Photogrammetric Tex-
ture Mapping onto Planar Polygons.” Graphical Models and Image Processing
61: 2 (1999), 63—83.

[Press et al. 88] W.H. Press et al. Numerical Recipes in C. Cambridge, UK: Cam-
bridge University Press, 1988.

[Microsoft xx] Microsoft. DirectX 8.1 Programmer’s Manual, xxxx.

[panoguide xx] Available from World Wide Web (http://www.panoguide.com/).
xxxx

Web Information:

http://www.acm.org/jgt/papers/KimHahn02

Dongho Kim, Department of Computer Science, The George Washington Unviersity,
Washington, DC (dkim@gwu.edu)

James K. Hahn, Department of Computer Science, The George Washington Unvier-
sity, Washington, DC (jhahn@gwu.edu)

Received April 2002; accepted September 2002.

