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Abstract of Thesis

“Adaptive Scan-Correlation
for Mobile Robot Localization in Unstructured Environments”

Mobile robot localization is fundamental to the development of more
proficient robots capable of operating in complex, unstructured environ-
ments. However, many environments in which mobile robots are operat-
ing may be devoid of the static landmark and/or lack geometric primitives
required for feature-based localization techniques. For such environments,
scan–correlation have been employed. These approaches rely on the tempo-
ral correlation of unprocessed data to measure the relative displacement, i.e.
motion, between successive scans obtained from a laser range finder. This
research provides a comprehensive analysis of an adaptive scan–correlation
technique that leverages previous effort to address real-time computational
constraints and data association issues for mobile robots localization in com-
plex, unstructured environments. This analysis uses a two-pronged approach
to identifying and testing performance singularities to identify errors a spe-
cific system is prone to, how these errors impact the overall performance of
that system, and how performance of that system compares with competing
approaches. This analysis will will lead to the discovering of three testing
scenarios for characterizing the performance of mobile robot localization.
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1. Introduction

Mobile robot localization is fundamental to the development of more pro-

ficient robots capable of operating in complex, unstructured environments.

Mobile robot localization is defined here as the ability of a system to sense

the environment, create internal representations of its environment, and es-

timate pose (where pose consists of position and orientation) with respect to

a fixed coordinate frame. This core competency will enable mobile robots

to autonomously navigate an unknown environment while avoiding obstacles

and potential hazards present in the environment. It will enable robots to

estimate of where they are and where they have been. However, the perfor-

mance of these systems varies greatly depending on the sensors employed and

assumptions about the operational environment. The success of an approach

relies on its ability to identify systematic and non-systematic errors and to

compensate for the errors, bounding the uncertainty in the pose estimate.

The performance of localization largely depends on its ability to reliably

accomplish two fundamental tasks. First, it must measure its surrounding

environment accurately. Second, it must determine valid correspondences

between observations reliably e.g., associating an object in one observation
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with its counterpart in another. The type and conditions of the environment

strongly influence the systems ability to accomplish either task. Furthermore,

subtle differences in similar environments can have very different effects on

overall system performance .

In an effort to mitigate performance issues, an objective evaluation frame-

works must be employed to quantify the performance in repeatable and re-

producible testing scenarios that isolate potential failure conditions in a con-

trolled environment. Often the evaluation of mobile robot localization is

based on qualitative approaches that do not take into account how specific

environmental conditions impact the performance of the system. While this

type of analysis provides some indication of the overall performance, it does

not allow researchers to understand which errors a specific system is prone

to, how these errors impact the overall performance of that system, and how

performance of that system compares with competing approaches.

1.1. Motivation

The primary motivation of this research is to foster the development of a ro-

bust mobile robot localization solution to improve the proficiency of mobile

robots operating in complex, unstructured environments and to provide a

comprehensive analysis of mobile robot localization to support the develop-

ment of the standardized test methods for for the ASTM International Stan-

dards Committee on Homeland Security Applications; Operational Equip-

ment; Robots (E54.08.01) [1]. Although the analysis presented in this thesis
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serves as the basis for developing standard test methods for robotic mapping

and localization, the actual development and validation of the test methods

is outside of the scope of this thesis. For more information regarding the

initiative to develop performance standards for response robots, please re-

fer to the Department of Homeland Security Response Robot Performance

Standards webpage [2].

1.2. Contribution

This research makes substantial contributions in the field of mobile robots

localization by addressing the technical shortfalls through two major thrusts:

1). Adaptive Scan-Correlation: Scan–correlation provides an alterna-

tive approach to mobile robot localization that uses the direct corre-

lation of data obtained from a laser range finder to measure relative

motion of the vehicle. However, real-time computational constraints

and data association issues have afflicted the progress of this approach.

Adaptive–scan correlation introduces a viable option based on a variant

of the Iterative Closest Point (ICP) algorithm that leverages previous

efforts by Zhang [45], Bailey [10], and Nuechter [32].

2). Performance Singularity Identification and Testing: The de-

velopment of standard test methods and objective evaluation method-

ologies is essential to benchmarking performance of a system and fos-

tering innovative solution to rectify divergent behavior. Performance

Singularity Identification and Testing provides a systematic approach
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to quantifying performance and identifying failure conditions. This

approach will facilitate the inter-comparison of results and introduce

three test scenarios for characterizing the performance of localization

techniques for mobile robots operating in complex, unstructured envi-

ronments.

1.3. Thesis Overview

The organization of this thesis is as follows:

Chapter 2 provides an overview of the emerging mobile robot market, ap-

proaches to mobile robot localization, and highlights the need objective

evaluation methodologies.

Chapter 3 provides an overview of the complete body of work presented in

this thesis.

Chapter 4 describes the adaptive scan–correlation as a variant of the It-

erative Closest Point (ICP) algorithm. The chapter starts by recapit-

ulating basic ICP algorithm, then describes the modification made to

improve the performance of this approach for mobile robot localization

in unstructured environments.

Chapter 5 discusses the performance evaluation adaptive scan–correlation

as a viable alternative to dead–reckoning. This evaluation decomposes

errors to reveal the presence of performance singularities and helps to
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diagnosis the cause and impact of the divergent behavior on the overall

performance of the system.

Chapter 6 presents the performance analysis of the adaptive scan-correlation

technique as compared to the basic scan–correlation. This analysis

highlights the development of test scenarios developed to challenge

scan–correlation in environments with varying degrees of complexity

and provides a quantitative analysis of the convergence characteristics

of the competing approaches.

Chapter 7 summarizes the development and analysis of the adaptive scan–

correlation technique.

Appendix A discuses a high-fidelity robot simulation testbed used to sup-

port this research.
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2. Background

Automated Guided Vehicles (AGVs) are one of the oldest established markets

for mobile robotics, valued over 900 million dollars [25]. These systems have

played a significant role in the service robot industry due to their ability to

operate in hazardous environments and to outperform humans in repetitive

or mundane tasks that require a high-level of accuracy and repeatability. For

these reasons, AGVs have enabled US industries to stay competitive in the

global market place by increasing productivity, decreasing production costs,

and assuring the safety of the existing human workforce while maintaining

the integrity of the high-quality goods to consumers [24].

Historically, AGVs have relied on a centralized control strategy that ex-

ploit highly-structured indoor environments that have been deliberatively en-

gineered with reference markers and dedicated pathways to keep vehicles free

of obstacles [25]. The dependence on infrastructure, the lack of autonomy,

and the cost associated with the installation and modifications severely limit

the flexibility and adaptability of these systems. This has led many industry

experts to speculate the most important developments in AGV technology

will be the ability to “encounter any plant layout and create its own map by
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exploration, autonomously navigate to any point within the plant, and avoid

any obstacles along the way. If the plant layout changes day to day (recon-

figuration) or even momentarily (a ladder in an aisle to change a light bulb),

they adapt intelligently”[18]. This vision of the next generation AGV will

provide a cost-effective solution that will enable these system to be rapidly

integrated into the existing workforce while increasing their versatility for

various tasks.

Response robots is an emerging market for unmanned ground vehicles

intended to assist emergency response personnel in a variety of application

domains; such as Urban Search and Rescue (USAR), Explosive Ordnance

Disposal (EOD), and Intelligence, Surveillance, and Reconnaissance (ISR).

These systems serve as an extension of the operator to improve remote situa-

tional awareness and to provide assistive capabilities that minimizes the risk

to responders and maximize the effectiveness and efficiency of a response in

a tactical environment.

An example where response robots have been been making an enormous

impact is in the Urban Search And Rescue (USAR) community. USAR is

primarily concerned with the extrication of victims trapped in man-made

structures such as collapsed buildings. During the initial phase of a struc-

tural collapse rescue, it is imperative that the first responders “size-up” the

situation and establish an Incident Control System that allows information

to flow regarding the nature of the problem. During this size-up, reconnais-

sance teams are dispatched to assess the magnitude of the situation, identify
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hazards, and locate areas that have the lowest cost-benefit ratio of danger to

rescuers versus live victims [20]. Commonly, these environments contain un-

stable structures, undulating terrain, and hazardous or toxic debris. Recent

advancements in mobile robot localization have provided responders with

an invaluable tool, enabling them to safely and efficiently assess hazardous

environments from a remote location.

In the future, robots will play an increasingly vital role in assisting hu-

mans in a variety of domains ranging from assisting humans with household

chores to force protection supporting our serviceman operating in foreign

countries around the world [21]. As mobile robots become more ubiquitous,

their utility will rely on the ability of the robotic system to safely operate in

dynamic, unstructured environments. Central to the realization of this vision

of mobile robots is the system’s ability to develop localization techniques that

will enable a system to autonomously navigate an unknown environment, lo-

cate obstacles and hazards, and provide an estimate of where they are and

where they have been.

To date there has been many different forms of localization proposed or

implemented, some with greater success than others. The capabilities and

limitations of each of these approaches vary significantly based on the re-

quirements of the end-user, the operational domain, and the limitations of

the on-board sensor suite. Understanding the strengths and weaknesses for

each of the different forms of localization is essential for developing or select-

ing solution to meet the operational requirements within a specific domain.
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Figure 2.1: Mobile Robot Localization. In its most simple form mobile
robot localization relies on mathematical principles and observation models
for tracking landmarks to recursively compute a pose estimate consisting of
the vehicles location and orientation.

Dead-reckoning is the most basic and common approach to localization.

It is based on simple mathematical principles that ‘advances” the pose esti-

mate by recursively integrating motion to compute a new heading and the

distance traveled. Dead-reckoning is favorable because it provides a sim-

ple, cost-effective solution that is self-contained. This encapsulation enables

dead-reckoning solutions to generate pose estimates more efficiently and more

frequently. The major drawback to dead-reckoning is two-fold [13]: 1). sys-
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tematic and non-systematic dead-reckoning errors are hard to eliminate and

2). the recursive nature of the algorithms allows errors to propagate and

accumulate in an unbounded manner, thus causing the pose estimate to di-

verge.

Another form of localization is feature-based approach [30, 19]. These

approaches geometrically compute a pose estimate based on the recognition

of distinct features, occurring naturally or artificially placed, in the envi-

ronment. These approaches rely on the reliable acquisition and extraction

of features from sensory data and its ability to exploit sensor data to ac-

curately determine correspondences between perceived features with some

navigational map [27]. While these methods, in general, provide an accurate

pose estimate, they require either engineering the environment to provide an

adequate set of features, or efficient recognition of features to use as land-

marks [23]. In addition, these methods often rely on geometric primitives or

models that are not guaranteed to exist in all environments.

In lieu of the feature–based approaches, scan-correlation techniques have

been employed as another form of localization for unstructured environments.

These approaches eliminate the need to decide what constitutes a feature by

minimizing the discrepancies between the raw sensor data and a model of

the environment. Using a maximum likelihood alignment to find the best fit

between two sets of data points, scan-correlation is capable of providing a

computationally efficient pose estimates in complex, unstructured environ-

ments. Examples of scan-correlation techniques in the literature are found
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in Lu and Milios [28], Censi [15], and Segal [37]

In the late 1980s, Smith et al. [38] introduced a new approach to lo-

calization and mapping that relied on the correlation of spatial relationships

between the vehicle’s pose and features in the environment. Later formalized

by Leonard and Durant-White [27], Simultaneous Localization and Mapping

(SLAM) uses statistical methods to fuse high-frequency predictions of vehi-

cle maneuvers with low-frequency observation of the external environment

to bound the errors in the pose estimate. Over the past decade, many imple-

mentations of SLAM have incorporated scan-correlation techniques as part

of the SLAM framework to improve the versatility and accuracy these ap-

proaches [33, 31, 22].

Although recent advancements in mobile robot localization has improved

the flexibility, utility, and survivability of overall system, in large these sys-

tems have failed to achieve a technology readiness level suitable for fielded

systems deployed in their respective operational domains. Currently, there is

no way to quantitatively measure the performance of localization and map-

ping techniques against user-defined requirements. Additionally, no consen-

sus exists on what objective evaluation procedures need to be followed to

deduce the performance of localization and mapping techniques in different

domains. The lack of reproducible and repeatable test methods precludes

researchers from working towards a common goal. It prevents the communi-

cation and comparison of the results, which prevents researchers from leverag-

ing previous work and inhibits technology transfer from the “drawing board”
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Figure 2.2: Robotic Mapping Paradigm The robotic mapping paradigm
can be classified into two fundamental approaches; metric maps and topo-
logical maps. Metric maps provide a geometric representation where spatial
relationships between objects are consistent with corresponding objects in
the actual environment. Topological maps represent the environment as a
connectivity graph of significant places or objects (nodes) and relationships
between nodes (arcs) [40].

to the field.

Some researchers have recognized the need for the objective evaluation

methodologies for assessing the performance of localization techniques for

mobile robots. The common practice for characterizing the performance of

these systems has been through the analysis of the map (or image) generated

by these systems [42, 41]. Arguably, the most common mapping paradigm

employed for robotic navigation is the metric mapping paradigm, shown in

Figure 2.2. This intuitive mapping paradigm provides a representation where

the spatial relationship between any two objects in the map is proportional
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to the spatial relationship of the corresponding objects in the actual environ-

ment [40]. Therefore, assessing the quality of metric maps is based on the

spatial consistency of features, such as walls and hallways, between the map

produced by the robot and the ground truth map of the actual environment.

While the analysis of global metric maps provide some indication of the

overall performance, it does not allow researchers to identify problematic

situations or how the propagation of errors impacts the performance of the

overall system. Error propagation and sensitivity to performance singulari-

ties idiosyncratic to most localization techniques suggests the need to quan-

tify the local (or regional) consistency of areas within the map, as well as the

global consistency of the overall map. For example, some researchers [26, 16]

have proposed a more introspective approach that examines the intrinsic re-

lationships between the artifacts produced by the navigation solution, e.g.

pose estimate and scans from the laser rangefinder, and models of the envi-

ronment.

Although contributions by individual researchers are important steps to

overcoming technological barriers impeding the development and fielding of

localization and mapping solutions, a concerted effort among all interested

parties is crucial. Test methods establishes a confident connection between

developers and consumers regarding the expectations and performance ob-

jectives of robotic technologies. This is a cardinal step in fostering innovation

and assessing the maturity of evolving technologies. They provide the ba-

sis for developers to understand the objective performance of a system and
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allows consumers to confidently select systems that will meet their require-

ments.

Test methods consist of well-defined testing apparatuses, procedures, and

objective evaluation methodologies that isolate particular aspects of a sys-

tem in known testing conditions [7]. The development of test methods start

with a comprehensive analysis of the application domain to identify require-

ments with associated metrics and the range of performance, starting from

a baseline threshold to the objective “best-case” performance. This analysis

provides the basis for developing test methods and testing scenarios that are

intentionally abstract so as to be repeatable across a statistically significant

set of trials and reproducible by other interest parties.

The Department of Homeland Security (DHS) Science and Technology

(S&T) Directorate has initiated an effort with the National Institute of

Standards and Technology (NIST) to develop comprehensive set standard

test methods and associated performance metrics to quantify key capabili-

ties of emergency response robots as part of the ASTM International Stan-

dards Committee on Homeland Security Applications; Operational Equip-

ment; Robots (E54.08.01) [2]. The set of test methods being developed focus

on addressing responder-defined requirements for robot mobility, manipu-

lation, sensors, energy, communications, mapping, human-robot interfaces,

logistics and safety for response robots. The analysis conducted in the rest of

this thesis is an effort to identify testing scenarios and metrics for developing

test methods for robot localization and mapping.
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3. Body Of Work

The primary focus of the research presented in this thesis is to foster the

development of a robust mobile robot localization solution to improve the

proficiency of mobile robots operating in complex, unstructured environ-

ments. This thesis attempts to address the technical shortcomings through

two major thrusts. First, is the development of an adaptive scan-correlation

technique, based on a variant to Iterative Closest Point (ICP) algorithm, to

support mobile robot localization in unstructured environments. Second, is

the development of three test scenarios for characterizing the performance of

localization techniques using a two-pronged approach to identify errors a spe-

cific system is prone to, how these errors impact the overall performance of

that system, and how performance of that system compares with competing

approaches.

Scan-correlation is a popular form of localization due its ability to pro-

vide a cost-effective, computationally efficient solution that minimizes the

dependence on feature models. Scan–correlation relies range image registra-

tion techniques to measure the relative displacement, i.e. motion, between

successive scans obtained from a laser range finder. The major performance
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issue for scan–correlation is its ability to reliably determine valid correspon-

dences, e.g. associating an object in one observation with its counterpart in

another. In the field of mobile robot localization, there are two concepts of

deployment for scan-correlation: 1). a sensor-based dead-reckoning solution

commonly referred to Scan-Matching [28] or 2). the observation model within

Simultaneous Localization and Mapping (SLAM) solutions [31].

Chapter 4 presents an adaptive scan–correlation technique that leverages

previous efforts by Zhang [45], Bailey [10], and Nuechter [32] to address

real-time computational constraints and data association issues endemic to

the scan–correlation in complex, unstructured environments. The adaptive

scan–correlation approach modifies the error metric [10], adds a reject phase

for discarding invalid correspondences [45], and employs a new search strat-

egy [32] to improve the convergence characteristics and performance of tech-

niques based on the basic ICP algorithm. Since the type and conditions of

the environment strongly influence the systems performance, it is essential

to develop understand these implications and how they impact the overall

performance of the mapping system.

Chapters 5 and 6, presents the comprehensive analysis for characterizing

the performance of mobile robot localization. The premise behind this anal-

ysis is the identification of performance singularities, or the point where

a system fails to be well-behaved. This is essential for not only quantifying

performance, but understanding how errors arise and speculating strategies

for mitigating divergent behavior. This approach contains two distinct steps
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to first identify and then test performance singularities.

The first step in this process is the performance evaluation, which evalu-

ates the performance of adaptive scan–correlation at the system-level. In

Chapter 5, performance evaluation is used to assess the adaptive scan–

correlation technique as a viable alternative to traditional dead–reckoning

approaches. The evaluation of the performance will use ground truth infor-

mation to decompose errors arising in the pose estimate of the competing

approaches and will identify and diagnosis divergent behavior.

The second step is the performance analysis, which assesses adaptive

scan–correlation at the algorithmic level. In Chapter 6, performance analysis

is used to compare the performance of adaptive scan–correlation to a basic

scan–correlation based on ICP. This analysis uses ground truth to compare

the convergence characteristics of the two approaches in three test scenarios

designed to challenge the systems ability to determine valid correspondences.
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4. Adaptive Scan Correlation

Many environments in which mobile robots are currently operating may be

devoid of the static landmark and/or lack geometric primitives required for

feature-based localization techniques. For such environments, scan–correlation

provides a viable alternative. One of the most common methods for develop-

ing scan–correlation is the use of a range image registration technique known

as the Iterative Closest Point (ICP) algorithm. ICP enables scan–correlation

to measure motion by computing the relative displacement that occurred be-

tween successive scans. However, error in the association of data can impede

performance.

Adaptive scan–correlation is an ICP variant designed to address the data

association problem and improve the convergence characteristics of the ba-

sic ICP. The remainder of this chapter is dedicated to the development of

adaptive scan–correlation. It will start by recapitulating the ICP algorithm

and explain how and why adaptive scan–correlation modified ICP to support

mobile robot localization in complex, unstructured environments.

The Iterative Closest Point (ICP) algorithm refers to a class of fine range

image registration techniques [35] that is widely recognized as the predomi-
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nant method for the geometric alignment of 3D models [34]. Its popularity

stems from its ability to use the direct correlation of unprocessed data, which

eliminates the need to define feature models and avoids misclassification due

to imperfect sensor models. This simplifies the registration process and pro-

vides a computationally efficient method for finding the maximum likelihood

alignment between two sets of 3D point data, e.g. models.

min
T

∑
i

‖T pi − q̂i‖2 (4.1)

The basic ICP algorithm computes the maximum likelihood alignment

through an iterative process that minimizes the mean-square distance be-

tween two sets of data using the objective least-squares function shown in

Equation 4.1. This iterative process starts with two sets of 3D point data,

Sref : {qj} and Sobs : {pi}, and a transform that estimates the relative

displacement between the two sets of data, T . At each iteration, k, ICP

refines T , based on correspondences found between the two sets of data at

each iteration, until a termination condition has been met.

The basic ICP algorithm can be partitioned into three distinct phase; a

matching phase, a minimization phase, and a termination phase. A formal

description of each phase of the basic ICP algorithm is as follows:

1. Point-to-Point Matching

For each point pi ∈ Sobs, find its nearest neighbor, q̂i ∈ Sref under
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the current transform T k. Where q̂i is defined as:

q̂i

4
= arg min

j
‖T kpi − qj‖2 (4.2)

2. Minimization using Singular Value Decomposition

Compute the incremental transform, T , that minimizes the mean-

square distance between the correspondences found in Phase 1. using

the Singular Value Decomposition method as follows [9] :

• Compute the centroids of the correspondences.

pc =
1

N obs

Nobs∑
i=1

pi (4.3)

q̂c =
1

N obs

Nobs∑
i=1

q̂i (4.4)

• Calculate the correlation matrix, H

H =
Nobs∑
i=1

(pi − pc) (q̂i − q̂c)
T (4.5)

• Find the Singular Value Decomposition (SVD) of H

H = UΩV T (4.6)

• Compute transform, T . Note T is defined as T p
4
= Rp + t,

20



where R, is a 3x3 rotational matrix and t translational vector.

R = V UT (4.7)

t = q̂c − Rpc (4.8)

3. Termination

If the magnitude of the translation recovered in Phase 2., e.g. ‖t‖2,

falls below a predefined threshold, say τ , or if the predefined limit to

the number of iterations is exceeded then terminate, else iterate.

Although the basic ICP algorithm is guaranteed to monotonically con-

verge to a local minimum, the convergence characteristics rely on the deter-

mination of valid correspondences. The association of data between the two

data sets is complicated by spurious points, occlusions, and outliers. This

can lead to correspondence errors and jeopardize the integrity of the algo-

rithm. Although not addressed here, it is important to note that a good

initial estimate of T , say T 0, is an important step to assure convergence to

the global minimum.

Since first introduced by Besl and McKay [12] and Chen and Medioni [17],

there has been many variants to the basic ICP algorithm proposed to im-

prove the efficiency and the determination of valid correspondences [34]. New

search strategies using kd-trees have reduced the time required for finding

matches between the two sets of data, making it a viable candidate for real-
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Figure 4.1: Point-to-Line Matching. The error metric modifies the tradi-
tional point-to-point error metric to approximate the real distance between
a point and a line, represented as a series of points.

time applications [32]. Alternative error metrics [10, 15] and robust method

for rejecting invalid correspondences have improved the convergence charac-

teristics of the basic ICP algorithm [45].

The adaptive scan–correlation technique introduces an ICP variant lever-

aging previous efforts by Zhang [45], Bailey[10], and Nuechter [32] to address

real-time computational constraints and data association issues to support

mobile robots localization in complex, unstructured environments. The re-

maining two section in this chapter will discuss the modification made to

the basic ICP algorithm and provides insight into how these modifications

address the inherent shortcoming of ICP to rectify divergent behavior.

4.1. Point-to-Line Matching

Point-to-point matching employed by the basic ICP algorithm treats scan

data as a set of discrete locations. It does not account for noise inherent

to the sensor data or how slight perturbations between sensor reading can
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affect the locations of the hit points. It is obvious to see how this can lead

to spurious point matching, which can in turn influence the convergence

characteristics of the basic ICP algorithm.

q1,2 ← min
j,l
‖T kpi − qj,l‖2 (4.9)

qc = q1 +
(pi − q1) � (q2 − q1)

‖q2 − q1 ‖2
(q2 − q1) (4.10)

Adaptive scan–correlation addresses this shortcoming by assuming data

obtained from a laser range finder represents a surfaces rather than a set

of discrete locations. It modifies the error metric to approximate the real

distance between a point in the observation model, pi ∈ Sobs, and a surface

defined by Sref . Figure 4.1 illustrates point-to-line matching, where qc is

the corresponding point in Sref for pi ∈ Sobs. Point-to-line matching first

determines pi’s two nearest neighbors, q1,2 ∈ Sref , formally expressed in

Equation 4.9. Using q1 and q2 to approximate a line, qc can be computed

using the Equation 4.10.

4.2. Adaptive Thresholding

The least–square objective function used by the basic ICP algorithm (Equa-

tion 4.1) has no means to address uncertainties in the sensor data and to

evaluate the validity of correspondences. This means all correspondences
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will be considered during the registration process, increasing the uncertainty

in the pose estimate due to spurious points, occlusions, and outliers. This

uncertainty can impact the performance of the algorithm and ultimately lead

to the divergent behavior. Therefore, adaptive scan–correlation modifies the

least–squares error function, shown in Equation 4.11, to address the uncer-

tainty and correspondences errors that may arise.

min
T

∑
i

wi ‖T pi − q̂i‖2 (4.11)

w =


0 for di > Dmax

k

1 otherwise

(4.12)

The modified least–squares error function (Equation 4.11) adds a mech-

anism, wi, to weight or reject correspondences determined at each iteration,

i. In this application, w is a binary weighting mechanism used to sim-

ply discard potential correspondence errors. The rejection criteria, shown

in Equation 4.12, is based on an adaptive threshold, Dmax
k and Euclidean

square distance between correspondences, denoted di
4
= ‖pi − q̂i‖2.

24



µ =
1

N

N∑
i=1

di; σ =

√√√√ 1

N

N∑
i=1

(di − µ)2 (4.13)

Dmax
k+1 =



µ + 3σ for µ < D

µ + 2σ for µ < 3 D

µ + σ for µ < 6 D

µ + ε otherwise

(4.14)

The value for the adaptive threshold is determined through the statistical

analysis of di of valid correspondences found in the current iteration. The

analysis of di, shown in Equation 4.13, is used to assess how the mean–square

distance of the correspondence, µ, compares to the desired resolution of the

registration process specified by the user, D. Shown in Equation 4.14, this

assessment is used to set the adaptive threshold for the next iteration, Dmax
k+1 .

Note ε is the median di for all valid correspondences.

As previously stated, D is a user-defined variable that represents the

desired resolution or the expected mean–square distance between correspon-

dences to be achieved during the registration process. It serves as the basis for

characterizing the quality of the registration and computing a new value for

Dmax accordingly. For instance in Equation 4.14, the first case, µ < D, sug-
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gests the registration between the correspondences is good and the adaptive

threshold is adjusted so more correspondences are considered. Conversely,

the third case, µ < 6 D, indicates the registration process is not achieving

the desired accuracy so the adaptive threshold is set more conservatively to

discard potential outliers or spurious points influencing the registration of

the scans.

When defining D there are two observation to consider:

1. If D is too small, then valid correspondences may be discarded increas-

ing the number of iterations required to converge

2. If D is too big, then correspondences errors may be included increasing

the probability for divergent behaviors.
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5. Performance Evaluation

Performance evaluation is a vital first step in quantifying the performance

of mobile robot localization. It uses the ground truth information about

the location of the robot and the surrounding environment to decompose

errors arising in the pose estimate. The juxtaposition of these errors provides

the basis for the quantitative comparison of competing approaches. The

decomposition of errors also reveals the presence of performance singularities

and helps to diagnosis the cause and impact of the divergent behavior on the

overall performance of the system.

This chapter will evaluate the performance of the adaptive scan–correlation

as a stand-alone sensor-based dead-reckoning solution, commonly referred to

as scan-matching. The performance of the scan-matching solution will be

compared to two commonly used dead-reckoning solutions; Inertial Navi-

gation System (INS) and encoder-based odometry using Unified System for

Automation and Robot Simulation (USARSim) [6] and Mobility Open Archi-

tecture Simulation and Tools (MOAST) [4]1. The remainder of this chapter

will provide an overview of the dead–reckoning approaches and present ex-

1Appendix A provides an overview of the MOAST and USARSim as a high-fidelity
robotic simulation testbed

27



perimental results on the performance evaluation of the three solutions.

5.1. Dead-Reckoning Approaches

This section provides an overview of the three dead-reckoning approaches be-

ing evaluated and describe the implementation of the virtual sensor models in

USARSim developed for this research. As stated previously, dead-reckoning

is the most basic form of localization, using simple mathematical principles

measure relative motion and recursively “advances” the estimate of the pose.

These solutions are beneficial because of their ability to supply short-term

pose estimates at high-data rates, but lack mechanisms measure and bound

uncertainty in the system.

5.1.1 Encoder-based Odometry

Encoder-based Odometry is the most commonly used dead-reckoning ap-

proach. This approach computes a 2D pose estimate based on a kinematic

model of the vehicle and measurements of wheel rotation and steering angle.

Discrepancies between the kinematic model and the actual vehicle, i.e. un-

equal wheel diameters, can lead to systematic errors that accumulate over

time. While systematic errors impact the performance of these solutions,

Encoder-based Odometry is more susceptible to non-systematic errors re-

sulting from undulating terrain or wheel slippage.

The virtual Odometry model implemented in USARSim utilizes internal

state information, available in the game engine, about the wheel velocities

and diameter to compute the distance each of the tracks have travels on a
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skid–steering vehicle, [UL,UR]. This information is used to compute a 2D

pose estimate, [x̂, ŷ, φ̂], in USARSim as follows:

Given a previous pose estimate, [x̂t−1, ŷt−1, φ̂t−1], and the distance trav-

eled by the left and right tires/tracks over the past time step, [UL
t ,U

R
t ], com-

pute a new pose estimate based on a skid-steered kinematic model shown in

Equation 5.1, where ` represents the wheel separation.


x̂t

ŷt

φ̂t

 =


x̂t−1

ŷt−1

φ̂t−1

+


UL

t +UR
t

2
cos φ̂t−1

UL
t +UR

t

2
sin φ̂t−1

arctan
UL

t −UR
t

`

 (5.1)

5.1.2 Inertial Navigation System

An Inertial Navigation System (INS) is another commonly used dead–reckoning

solution based on Newton’s laws of motion. It assumes that an object will

remain in uniform motion unless it is acted on by an outside force. Forces

acting on the system will produce accelerations in an inertial reference frame

that can be measured and integrated over time to compute the relative mo-

tion of the vehicle. The change in position and orientation is accumulated to

estimate its current pose with respect to a previously determined pose [39].

In many cases, inertial sensors are not able to dissociate accelerations due to

external forces, such as gravity, from kinematic accelerations [29]. The failure
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of the systems to properly classify or compensate for non-kinematic noise will

produce error in the inertial measurements. These errors coupled with nu-

merical errors produced from the double integration of the accelerations will

produce a gradual degradation of the navigation solution, commonly referred

to as drift.

To support this research, a virtual model of an INS was developed for

USARSim. This model utilized ground truth pose information obtained from

the game engine to derive angular accelerations and the distance traveled

to compute a pose estimate. The virtual model of the INS developed for

USARSim computes a 3D pose estimate as follows:

1. Compute angular velocities, [ωx
t ,ω

y
t ,ω

z
t ], of the robotic platform for

current time step, t, using the ground truth information obtained from

the simulated world about the robots orientation,[θ̂, ψ̂, φ̂]:


ωx

t

ωy
t

ωz
t

 =
1

∆t

(
θt

ψt

φt

−

θt−1

ψt−1

φt−1


)

(5.2)

2. Update the current orientation estimate using the angular velocities

computed in Step 1. and the Gaussian noise model, G(µ,σ), based on
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predefined mean, µ, and variance, σ:


θ̂t

ψ̂t

φ̂t

 =


θ̂t−1

ψ̂t−1

φ̂t−1

+


ωx

t

ωy
t

ωz
t

 G(µ,σ) ∆t (5.3)

3. Calculate an estimate of the Euclidean distance traveled over the past

time step using ground truth and G(µ,σ):

V̂dist =
√
∆x2 +∆y2 +∆z2 G(µ,σ) (5.4)

4. Update the current position estimate using a 3D motion model [39]

that takes into consideration the pitch of the vehicle, ψ̂t, and the yaw,

φ̂t, computed in Equations 5.3 and 5.4.


x̂t

ŷt

ẑt

 =


x̂t−1

ŷt−1

ẑt−1

+


V̂dist cos φ̂t cos ψ̂t

V̂dist sin φ̂t cos ψ̂t

V̂dist sin ψ̂t

 (5.5)

5.1.3 Scan-Matching

An alternative to traditional dead-reckoning is a sensor-based dead-reckoning

approach known as scan-matching. Scan-matching measures the relative

motion of a vehicle through the temporal correlation of consecutive scans

obtained laser range finder. While scan-matching is also vulnerable to er-
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ror propagation, the use of external observations minimizes the impact of

systematic and non-systematic errors that plague other dead-reckoning so-

lutions. As stated previous, the prominent source of errors arising in this

solution is due to the data association problem, or the inability to determine

valid correspondences during the registration process.

min
T

∑
i

wi ‖T pi − q̂i‖2 (5.6)

The scan-matching solution developed for this research is based on the

adaptive scan–correlation algorithm discussed in Chapter 4. This approaches

uses 2D scans obtained from a simulated laser range finder mounted on the

vehicle in USARSim. Using the modified least–square objective function,

shown in Equation 5.6, scan-matching measure the between the two scans to

compute the a 2D pose estimate of the vehicle, [x̂, ŷ, φ̂].

5.2. Experimental Results

This experiment was conducted in USARSim using a simulated skid–steering

vehicle shown in Figure 5.1. This skid–steered vehicle was configured with

the simulated INS sensor (Section 5.1.2), a simulated Odometry sensor (Sec-

tion 5.1.1), and a simulated 2D laser range finder configured to have a field

of view of 180◦with a beam separation of 1◦, consisting of 181 returns. The

data frequency for each the sensors was configured to serve data at 5 Hz. The

simulated skid–steering vehicle was teleoperated in USARSim using MOAST

32



Figure 5.1: Skid–Steered Vehicle. A skid–steered vehicles refer to a tracked
or wheeled ground vehicle that is maneuvered using differential control of the
left and right tracks or wheels. The picture on the left shows the simulated
skid–steered vehicle used for this research that was modeled in USARSim.
The picture on the right shows the actual vehicle.

for approximately 4.5 minutes and traveled almost 26 meters at an average

speed of 0.097 m/s. During the run, data streams were logged, processed,

and compared to ground truth to quantify the performance of the three

dead–reckoning solutions.

In this text, a cumulative sensor map refers to a composite map consist-

ing of raw sensor data mapped into a relative coordinate frame using the

pose estimate. This rudimentary map does not employ mapping facilities

to improve the accuracy of the map, i.e. no filtering of data or pruning of

the map. Close examination of the cumulative map produced by the scan-
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Figure 5.2: Scan-Matching Cumulative Sensor Map. This figure shows
rudimentary map based on the scan–matching solution and raw sensor data.

matching solution, shown in Figure 5.2, illustrates the integrity and robust

nature of an exteroceptive approach to formulating a pose estimate with only

marginal errors being produced at the end of the run, visible in the top-right

corner of the map.

Figure 5.3 shows a comparison of the position estimates produced by the

dead–reckoning approaches, using the ground truth trajectory as a basis of

comparison. This figure shows the scan-matching solution exhibits a more

accurate representation of the actual path traveled by the vehicle. Although

the paths of the odometry and INS solution appear to mimic the actual path,
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Figure 5.3: Pose Estimate Comparison. This figure compares the pose
estimates of the three dead–reckoning approaches using ground truth infor-
mation as the basis of comparison.

both have induced substantial errors spawning from a potential performance

singularity occurring three-fourths of the way through the run, coordinates

(x ≈ 6, y ≈ 10) in Figure 5.3.

Examining the positional errors in Figure 5.4 confirms the presence of a

performance singularity occurring in both the odometry and INS between

150 and 200 seconds (approximately 180 seconds), causing the solutions to

diverge. The simultaneous occurrence of the error in both the odometry

and INS solutions anecdotally suggests the error can be attributed to a non-

systematic error, i.e. hitting a wall. The divergent behavior emanating from

this performance singularities exemplifies the how errors can propagate and

grow unbounded in dead–reckoning approaches.
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Figure 5.4: Evaluation of Positional Errors. This figure decomposes
and compares the positional errors occurring in the dead–reckoning solutions
with respect to time.
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Comparing the positional errors depicted in Figure 5.4 affirms the scan–

matching solution outperforms the other dead–reckoning approaches. The

relative stability and accuracy exhibited in the scan–matching solution evinces

its resilience to systematic and non-systematic errors that plague dead–

reckoning approaches. In fact, the performance singularity causing divergent

behavior in the odometry and INS solutions does not appear to influence the

solution produced by the scan–matching approach. Using the error curves

for the INS solution and Odometry as the basis for inferring trends, suggests

errors accumulating in these solutions may have grown without bounds. In

contrast, the error curves for the scan–matching solution indicates it provides

a more robust approach to localization.

Looking at the orientational errors in Figure 5.5 shows a significant spike

between 150 and 200 seconds in the odometry and INS solutions. This spike

coincides with the divergent behavior seen in seen in Figure 5.4 for the odome-

try and INS solutions. This suggests the divergent behavior in these solutions

is directly related oreintational errors. This also reinforces the assumption

the noted performance singularity is due to non-systematic errors and not

systematic errors biased to a specific approach.

In comparison, the heading errors for the scan–matching solutions shown

in Figure 5.5 indicates the pose estimate produced by the scan–matching ap-

proach is more stable and accurate than odometry and INS. This stability is

also reflected in the positional errors for seen in Figure 5.4. However, a sharp

spike in the orientational errors of the scan–matching solution just after the
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Figure 5.5: Evaluation of Orientational Errors. This figure compares
the orientational errors occurring in the dead–reckoning solution with respect
to time.

200 second mark indicates a potential systematic error has occurred. While

this spike did not have significant impact on the positional errors, it could

have contributed to the mapping errors in the upper-right hand corner of the

cumulative sensor map shown in Figure 5.2. This systematic error ,which

occurrs near the end of the run, is most likely a result of correspondence

issues in the scan–matching algorithm. Furthermore, this identifies potential

test scenarios for analyzing what factors contributed to systematic errors in

scan–matching approach.
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6. Performance Analysis

The primary focus of this chapter is to quantitatively analyze the perfor-

mance of adaptive scan–correlation as compared to the basic scan–correlation

discussed in Chapter 4. This analysis will introduce testing scenarios de-

signed to challenge the ability to the system to determine valid correspon-

dences in environments with different levels of complexities. The use of

reference data sets within each test scenario will quantify the convergence

characteristics of each solution and facilitate the inter-comparison of results.

The ensuing subsections will first describe the test scenarios and how each

of the scenarios will challenge the scan–correlation solutions. This will be

followed by the performance analysis of the two scan-correlation variants in

each of these scenarios with an emphasis on vehicle speed.

6.1. Testing Scenarios

In order to quantify the performance of the scan-correlation techniques, three

testing scenarios were identified to challenge the system’s ability determine

valid correspondences in isolated, repeatable tests. Each test scenario is

composed of a reference data set that simulates linear motion of the vehicle
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using Unified System for Automation and Robot Simulation (USARSim).

Three dimensional scan data and the ground truth location of the vehicle is

captured at 10 cm intervals along a straight line trajectory. The scan data has

a horizontal field-of-view of 180◦ and vertical field-of-view of 20◦, both with

an angular resolution of 1◦. This produces 3D scans that may contain 3801

hit points. Using different combinations of the reference scans will enable

developers to test how linear displacement, a function of vehicle speed and

the data rate of the sensor, affects the overall performance of scan-correlation

algorithms.

6.1.1 Environments with Distinct Features

Environments with distinct features provides a scenario that limits environ-

mental complexities to provide the best-case scenario, where scan–correlation

solutions should perform optimally. As seen in Figure 6.1, this scenario uses

a closed set of distinct mapping features and vertical walls that produces

unique observations. This enables mapping systems to associate features

and increases the likelihood of determining valid correspondences. Perpen-

dicular surfaces, which allow for more accurate measurements of motion,

appear in almost every scan. Limiting the environmental complexities allows

developers to tune their systems and establishes baseline a for comparison.

6.1.2 Environments with Occluded Features

Environments with occluded features is designed to challenge the scan–correlation

solution ability to determine valid correspondences as a result of occlusions,
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Figure 6.1: Environments with Distinct Features. This figure provides
a 3D visualization of the testing scenario that provides an environment with
distinct features. It uses the ground truth in the reference data set to compute
the sensor hit points and plot the locations where the scans were logged.
Scanner hit points are colorized based on height.

outliers, etc. In this test scenario, shown in Figure 6.2, nearby features

may periodically occlude more distant features as the robot moves through

the environment. This produces a situation where consecutive observations

may not contain the same set of features, increasing the likelihood of corre-

spondence errors. However, the nearby features, which are not obstructed,

enable the system to make accurate measurements of the immediate vicin-

ity and should help the system avoid catastrophic failures. This menagerie

of features and occlusion in this scenario is indicative of unstructured en-
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Figure 6.2: Environments with Occluded Features. This figure provides
a 3D visualization of the testing scenario thatprovides an environment with
occluded features. It uses the ground truth in the reference data set to
compute the sensor hit points and plot the locations where the scans were
logged. Scanner hit points are colorized based on height.

vironments; therefore, this is an essential test understanding how the scan-

correlation approaches will perform in the real world.

6.1.3 Environments with Minimal Features

Environments with minimal features implements the degenerative case for

scan-correlation techniques. As shown in Figure 6.3, this scenario presents

a symmetric and featureless environment. This inhibits the system’s ability
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Figure 6.3: Environments with Minimal Features. This figure provides
a 3D visualization of the testing scenario that provides an environment with
minimal features. It uses the ground truth in the reference data set to com-
pute the sensor hit points and plot the locations where the scans were logged.
Scanner hit points are colorized based on height.

to make accurate measurements of its environments and it’s ability to deter-

mine valid correspondences. The only distinct feature in the scenario is the

far wall, which presents a perpendicular surface to the robot. The lack of

distinct features increases the potential for catastrophic errors by prevent-

ing the convergence of the pose estimate in the scan-correlation techniques.

While this situation does not occur commonly (except in culverts, sewers, and

tunnels), this testing scenario is essential to understanding how the system

fails.
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6.2. Performance Analysis & Experimental Results

Performance analysis takes advantage of the ground truth in the reference

data sets to measure the error in the pose estimate at each iteration. These

errors are plotted to produce a convergence profile. The convergence pro-

file not only shows how well the scan-correlation algorithm converges, it

elucidates the convergence characteristics, such as the stability of the pose

estimate. Other vital information can also be logged to help understand the

performance characteristics found in the convergence profile. For instance,

the correspondence profiles help to infer how the number of correspondences

found at each iteration influences the performance of the system. In the case

of the adaptive scan-correlation algorithm, an adaptive threshold profile is

plotted to gain insight into how the value of Dmax reflects the quality of the

registration and the stability/accuracy of the pose estimate. This analysis

can also expose the presence of meta-level knowledge that may enable the

system to recognize and diagnosis failure conditions arising in the system at

run-time.

The performance analysis of the two scan-correlation techniques, dis-

cussed in Chapter 4, will be discussed using the basic scan-correlation tech-

nique as a baseline for analyzing the effects of the point-to-line matching and

adaptive thresholding in the adaptive scan–correlation approach. In each

testing scenario, described in Section 6.1, the algorithm will be subjected to

several runs to measure how vehicle speed and/or data rate of the sensor
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Figure 6.4: Correspondence Profiles: Distinct Features. The conver-
gence profiles use the ground truth in the reference data set to compute the
error in the pose estimate at each iteration of the scan-correlation algorithm.
Each of the figures shows the results of 5 runs of linear displacements along
a straight line trajectory. The linear displacements for each of the runs is
depicted in the legend.

impacts the algorithm’s ability to compute a single pose estimate in test sce-

narios with varying degrees of complexity. The linear motion of the vehicle

is simulated by using different combination of scans in the referenced data

set along a straight line trajectory. The first scan in each of the referenced

data sets will serve as the reference scan, Sref , in the registration process, or

starting location. For each of the runs, the algorithm will iterate through the

referenced data set, using each of the other scan location as the observation

scan, Sobs, or the end location. Each of the combination will produce a test

case simulating different linear displacements of 10 cm, 20 cm, 30 cm, 40 cm,

and 50 cm along the straight line trajectory in each of the scenarios. Data
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will be logged for each test case and be used to analyze the performance of

the competing approaches below.

In each of the test cases, the termination criteria for each of the scan–

correlation algorithms was configured to run for 30 iterations. This was done

in an effort to gain a better understanding the convergence characteristics for

each of the scan–correlation techniques. Therefore, for each test cases, the

scan–correlation techniques were required to register the two 3D data sets

consisting of 3801 points. Although the computational complexity for each

of the algorithms was not explored in this research, each of the algorithms

were able to complete 30 iterations in under 200ms, or at 5Hz.

6.2.1 Analysis In Environments with Distinct Features

The convergence profiles of the two scan–correlation techniques in the test

scenario with distinct features, shown in Figure 6.4, shows both approaches

were able to rapidly converge to an accurate pose estimation (within 5 cm

of ground truth) in under 10 iterations. However, it is noteworthy to point

out three residual artifacts that are present in the convergence profile. First,

in the 10 cm linear displacement run, the pose estimate computed by both

algorithms is less accurate than their counterparts at larger displacements.

Second, perturbations in the tail of the convergence profiles of the basic

scan-correlation technique suggests the adaptive scan-correlation technique

produces a more stable solution. Finally, the pose estimate in the basic

scan-correlation algorithm appears to converge quicker than the adaptive
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Figure 6.5: Adaptive Threshold Analysis: Distinct Features. The two
figures here show the correspondence profile and the threshold profile of the
adaptive scan-correlation algorithm in environments with distinct features.
The correspondence profile plots the number of correspondences found at
each iteration. The threshold profile shows the value of adaptive threshold,
Dmax, at each iteration. Each of the figures shows the results of 5 runs of
linear displacements along a straight line trajectory. The linear displacements
for each of the runs is depicted in the legend.

scan-correlation technique in the run with 50 cm linear displacement.

In order to gain insight into the nature of these artifacts, a close exam-

ination of the correspondence and threshold profiles of the adaptive scan-

correlation technique is needed, as shown in Figure 6.5. First, the number

of correspondences found in the 10 cm test case begins to plateau almost

immediately and remains fairly constant for the remaining iterations. This

differs drastically from the other runs where the number of correspondences

is monotonically decreasing leading to more accurate pose estimates. Sec-
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Figure 6.6: Correspondence Profiles: Occluded Features. The conver-
gence profiles use the ground truth in the reference data set to compute the
error in the pose estimate at each iteration of the scan-correlation algorithm.
Each of the figures shows the results of 5 runs of linear displacements along
a straight line trajectory. The linear displacements for each of the runs is
depicted in the legend.

ond, the adaptive scan-correlation technique uses statistical analysis of the

data to eliminate correspondence errors and improve registration between

the data. Looking at the threshold profile, the value of Dmax fluctuates un-

til finally converging to a value close to zero. This indicates there is good

registration between the points, making the pose estimate more stable. Fi-

nally, the adaptive scan-correlation uses a threshold based on distance that

discards correspondences with large spatial relationships, preventing it from

converging as quickly under ideal conditions with no occlusions.

48



Figure 6.7: Adaptive Threshold Analysis: Occluded Features. The
two figures here show the correspondence profile and the threshold profile
of the adaptive scan-correlation algorithm in environments with occluded
features. The correspondence profile plots the number of correspondences
found at each iteration. The threshold profile shows the value of adaptive
threshold, Dmax, at each iteration. Each of the figures shows the results of
5 runs of linear displacements along a straight line trajectory. The linear
displacements for each of the runs is depicted in the legend.

6.2.2 Analysis In Environments with Occluded Fea-

tures

In environments with occluded features the convergence profiles in Figure 6.6

shows the adaptive scan-correlation algorithm is more proficient and is able

to outperform the basic scan-correlation algorithm. In the 50 cm test case,

neither of the scan-correlation variants were able to converge to an accurate

pose estimate. However, in the other test cases the adaptive scan-correlation
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algorithm was able to maintain stability, where the basic scan-correlation

pose estimate diverges.

In order to understand why the adaptive scan–correlation algorithm was

able to exhibit superior performance in this test scenarios, it is important

to examine the correspondence and threshold profiles shown in Figure 6.7.

Recall that each scan in the reference data set contains approximately 3801

hit points. The correspondence profile for the adaptive scan-correlation tech-

nique shows the number of correspondences found at each iteration is mono-

tonically decreasing. This is driven by the value of Dmax, shown in the thresh-

old profile. The statistical analysis of the data causes the value of Dmax to

converge as the registration between the data improves. It is also impor-

tant to note two additional observation that indicate the presence meta-level

knowledge that may help the adaptive scan-correlation technique recognize

the stability of the system. First, the convergence of the threshold profile

coincides with the convergence of the pose estimate. Second, the correspon-

dence profile for the 50 cm test case is noticeably different than the profiles

for the other run.

6.2.3 Analysis In Environments with Minimal Features

Figure 6.8 shows the effects of the degenerative case, environments that lack

distinct features, on the scan-correlation algorithms. Even though the basic

scan-correlation algorithm appears to converge slightly better, both scan-

correlation variants fail to produce valid pose estimates. The lack of features
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Figure 6.8: Correspondence Profiles: Minimal Features. The conver-
gence profiles use the ground truth in the reference data set to compute the
error in the pose estimate at each iteration of the scan-correlation algorithm.
Each of the figures shows the results of 5 runs of linear displacements along
a straight line trajectory. The linear displacements for each of the runs is
depicted in the legend.

produces identical scan signatures where the points in each of the result-

ing scans are located in the same place from the perspective of the sensor.

This undermines the ability of both techniques to determine valid correspon-

dences, which impedes their ability to compute a valid pose estimate. Since

the majority of the points in the resulting scans are aligned, the adaptive

scan-correlation algorithm assumes good registration between the data and

discards valid correspondences. The basic scan-correlation algorithm does

not weight the correspondences, so all available information is used. This

suggests valid correspondences are not discarded, which enables the pose

51



Figure 6.9: Adaptive Threshold Analysis: Minimal Features. The two
figures here show the correspondence profile and the threshold profile of the
adaptive scan-correlation algorithm in environments with minimal features.
The correspondence profile plots the number of correspondences found at
each iteration. The threshold profile shows the value of adaptive threshold,
Dmax, at each iteration. Each of the figures shows the results of 5 runs of
linear displacements along a straight line trajectory. The linear displacements
for each of the runs is depicted in the legend.

estimate in the basic scan-correlation to converge slightly better.

In order to better understand the effects of this scenario on adaptive

scan-correlation technique, it is essential to examine the correspondence and

threshold profiles in Figure 6.9. First, it is important to note that the value

of Dmax in the threshold profile converges instantly. This indicates that the

statistical analysis of the data incorrectly assumes there is good correspon-

dence between the data sets. Moreover, the correspondence profile shows the

number of correspondences are not monotonically decreasing and actually

level out after 10 iterations. This differs drastically from the threshold and
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correspondence profiles seen the the other test scenarios where the adaptive

scan-correlation algorithm was able to compute a valid pose estimate.
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7. Conclusions and Further Discussions

The development of robust localization techniques is a core competency

to improve the utility and proficiency of mobile robots operating in com-

plex, unstructured environments. This research introduces an adaptive scan-

correlation approach for mobile robot localization that minimizes the de-

pendence on feature models and improve the convergence characteristics of

scan-correlation. In an effort to quantify the performance and facilitate the

inter–comparison of results, an evaluation methodology was developed to

quantify performance based on the principle of identifying and testing per-

formance singularities.

The performance evaluation, presented in Chapter 5, assesses the adap-

tive scan–correlation technique as a viable alternative for dead-reckoning.

Evaluating the performance at the system level enabled the inter-comparison

of three dead-reckoning approaches; Scan-Matching, Inertial Navigation sys-

tem, and Encoder-based Odometry. Assessment at this level, explored the

performance characteristics of each of the solutions and helped identify the

capabilities and limitations for each solution.

The performance evaluation was able to show, through simulation, that
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the adaptive scan–correlation approach is more resilient to errors that plague

the other dead-reckoning solutions and was able to bound uncertainty in the

system. Although the adaptive scan–correlation is a computationally effi-

cient form of localization and exhibits good performance in complex envi-

ronments, it is vulnerable to failure due to the lack of redundancy and its

inability to measure the amount of uncertainty in the system at any given

time. Therefore, the concept of deployment should consider these limitations.

For instance, a small unmanned ground vehicle conducting operations in a

confined space may only need scan-matching solutions. However, for long

duration missions the adaptive scan–correlation should be fused with other

techniques to take into account errors and measure uncertainty.

The performance analysis, presented in Chapter 6, shows three testing

scenarios developed to analyze the performance characteristics of the adap-

tive scan-correlation algorithms with an emphasis on linear displacement.

These testing scenarios facilitated the analysis how correspondence determi-

nation can jeopardize the integrity of the techniques. It was illustrated how

these methods facilitate the inter-comparison of experimental results between

the basic scan–correlation approach and the adaptive scan–correlation ap-

proach. Testing at the algorithmic level also unearths meta-level knowledge

that may help identify failure conditions, allowing mechanisms to help these

solutions overcome and/or avoid performance singularities.

The performance analysis of the two scan-correlation techniques has shown

that the adaptive scan-correlation technique is a more proficient solution. It
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provides a more robust data association technique that enables it to overcome

performance issues in complex, unstructured environments. This analysis

also shows the adaptive scan-correlation algorithm produces a more stable

solution with meta-level knowledge that indicates when performance singu-

larities may be occurring. Future research is necessary here to evaluate how

to apply this knowledge and develop mechanisms to compensate for errors

that may be introduced into the scan-correlation process.
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Appendices
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A. High-Fidelity Simulation Testbed

Robotic simulation systems, such as Micrsoft Robotics Studio [3] and The

Player Project [5], are commonly used in the development of the autonomous

systems and advanced robotic algorithms. They provide a cost-effective tool

that enables developers to customize repeatable testing scenarios to challenge

specific aspects of a system over potential failure conditions under the same

environmental conditions [36]. In order to provide convincing arguments

about a system’s performance and reliability, the simulation systems must

be capable of capturing the stochastic nature of a real world environment.

Unified System for Automation and Robot Simulation (USARSim) [6] is

an open-source package that provides a high-resolution, physics-based simu-

lation that solves many of the practical problems faced by robotic simulators.

Initially developed to support development of robotic algorithms in the urban

search and rescue environment, USARSim has expanded its core functional-

ity to provide a general-purpose, multi-agent simulation system with a set of

unique characteristics unmatched by other simulation systems [44].

MOAST [4] is an open-source, turn-key hierarchical control system that

was originally developed to promote the research of advanced robotic algo-
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rithms [11]. Based on the 4-D Real-time Control System (4D/RCS) architec-

ture [8], MOAST provides a modularized hierarchical framework that allows

for the transparent transference of data between a matrix of real and virtual

components. This framework is glued together through well-defined inter-

faces and communications protocols, and detailed specifications on individual

subsystem input/output (I/O) that allows developers to freely swap compo-

nents. Internal tools provide developers with state-by-state, time-stamped

snapshots that allow researchers to quantitatively measure and classify the

performance characteristics of new algorithms and the means to analyze the

overall impact on the system’s performance by means of comparison.

Since the validity of the results obtained from such algorithms are directly

related to the accuracy and realism of the underlying simulation models, it

is important that the sensors provide realistic data. Significant efforts on

the validation of simulated models in USARSim have resulted in close corre-

spondence between simulated data extracted from USARSim and their real

world counterparts [14, 43]. Therefore, integration of these high-fidelity mod-

els with MOAST allows researchers to develop advanced robotic algorithms,

classify their performance characteristics, and evaluate the overall impact of

the algorithms on a robotic system before implementation on real robotic

hardware.
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