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Abstract

A newregion-based external energyhich is based on thieizzy sets theorig presented.
The proposed force converges fastest and asymgtgteemong different probability-based
forces. Conditions for ensuring unigue solution arwhvergence are analyzed as well.

Additionally, a parametric contour representat®prioposed by usimgdial basis functions
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Chapter 1. Introduction

1.1. Motivation

Image segmentation is the process of distinguisluibgcts from the background. Its
importance has been increased in different apphicaitin the past years. Medical image
segmentation is one of the areas in which priomkedge such as the number and shape of
the objects to be segmented can be used. Evenhthimage segmentation remains a difficult
task due to the tremendous variability of objectpss, noise and sampling artifacts [35].

Techniques which only rely on edge detection amdstholding often fail in segmenting
images on which the previous problems are presamtthe other hand,eformable models
are contours (curves or surfaces) which are defdrimerder to minimize theinternal and
external energiesThe internal energyis computed from the curve itself and it ensures
smoothness of the contour. It can also includer pnimrmation about the object shape. The
external energyis computed from the image data and it ensuresctimvergence of the
contour to the object boundaries.

The identification of image regions belonging te tibject and background does not allow
the understanding of the object in terms of it®mation and identification of constitutive
parts. The use dhbeled deformable modedtlows the easy identification of object parteaft
segmentation. For instance, a labeled model cataicothe 17 left ventricular zones defined
by the American Heart Association [6] for myocafdiagmentation. Also, sinageformable
modelsare expressed in real-valued coordinates, theybtain sub-pixel accuracy [35].

Deformable modelsan be classified as parametric and geomddcametric deformable
modelsrepresent contours as explicit formulas in terfna small set of parameters. For any
given parameter values, the curve or surface wigiphesents the object contour can be drawn.
Geometric deformable modelspresent shapes as a level set (c.f. implicittfan) over the
image domain. After segmentation, the result isimaage of positive and negative values

corresponding to object and background pixels igpdy. Topological adaptation such as



splitting and merging parts during deformation maturally handled in geometric models [35],
while shape priors are easier to handle in paracnavdels.

Deformable modelsan be also classified as boundary-based andn-bgisedBoundary-
based deformable modetglapt by using aexternal energydriven by the gradient of the
image. This is due to the fact that object bouredaciorrespond well to strong gradients. On
the other handegion-based deformable modeldapt by using aexternal energyriven by
region descriptors [19] which for instance can heda on the probability distributions of the
intensities. Region-based approaches behave mabte seind have non-trivial local minima
that are often visually meaningful when comparethwioundary-based approaches [7]. This
is due to the fact that boundary-based methodasarally pulled towards noisy or fragmented

edges.

1.2. Problem and Objective

In applications such as medical image segmentafpimr knowledge is available
regarding the number and shape of the objects wegmented. On the other hand, region-
based information is very important in the absesfcstrong image gradients. The difference
between the distributions of the intensity or satieer texture property for the object and the
background regions can be used in order to defioee ratable energy termRegion-based
external forceswhich make use of this prior knowledge vary in expeof convergence.
Furthermore, convexity properties of the energycfioms are poorly understood.

As a result, this research reviews sevara@rnal andexternal forcesA deeper analysis of
the speed of convergence is performed for regi@athdorces which are based on probability
measures. A newvexternal forceis proposed in order to obtain a faster convergenc
Theoretical aspects such as conditions for ensunmgue solution and convergence are also

analyzed.



1.3. Original Contribution

A deformable model which is based on fhezy sets theong presented. A newegion-
basedexternal energyis derived as a result of maximizing thdsp probability that the
contour accurately separates the image into twiemegThe proposed force converges fastest
and asymptotically among different probability-béd$erces.

Unique solution and convergence is ensured fgpedect point classifier an axis-
independent warpnd a convex contour.

A parametric contour representation is proposedidiyig radial basis functionswhich
allows using an arbitrary mesh as deformable modleladditional constraints, two simple

internal energiesre defined for ensuring topology preservationtangporal coherence.

1.4. Document Organization

In Chapter 2, the common framework for deformabledets is explained. Several
boundary-based and region-basaternal energiesvhich were proposed by different authors
are reviewed. Different shape parameterizationriiegies and theiinternal energiesare
presented in this chapter as well. Finally, resafishe literature regarding unique solution,
convexity of the energy function as well as spefecbavergence are reviewed.

In Chapter 3, aexternal energys derived as a result of maximizing ttrésp probability
that the contour accurately separates the imagetwo regions. Concepts such psint
classifier as well asaxis-independent warpare also introduced. Conditions for ensuring
unique solution and convergence are analyzed srctimpter as well.

In Chapter 4, several implementation issues argepted in detailRadial basis functions
warpingis demonstrated to be a classagis-independent warpind he largely known Bayes
classifier is used as point classifier Methods for approximating contour integrals are
presented as well as additional steps for 2.5D satation.

In Chapter 5, segmentation of a 2D image, a sequehéew horizontal and vertical 2D

cardiac magnetic resonance images (MRI) as weld &D computed tomography (CT)



volume are shown. An analysis of the speed of ageree of the proposed force versus
different probability-based forces is performed.
In Chapter 6, conclusions are drawn from the resuttich were obtained in the previous

experiment. Several ways of extending this workpaioposed as well.



Chapter 2. Related Work

2.1. Deformable Models
Deformable modelsvere first introduced by [20] as a cur@eover a 2D image 0 O?
which minimizes the energy function:

E(C)=E, (C)+E.(C) ... (2.1)

int
WhereE;; andE,; are thanternal andexternal energyespectively. Thénternal energyis
computed from the curve itself and it ensures simoegs of the contour. Tlexternal energy
is computed from the image data and it ensuresdhgergence of the contour to the object
boundaries. Thénternal and external energycan be defined as a weighted sum of several
energies.
The curveC which minimizes the energy function (2.1) is foulmg using thegradient
descent methodrhe contour is made dependant on the tirmach a<C(t). Given an initial
contourC(0) and the step sizg, the next approximations of the solution are cot@pas:

w(t +0at) =w(t) +ya—w(t) for Ow(t) OC(t) Ot =00y >0
ot .. (2.2)

(‘;—\1\/ (t) = fint (W(t)) + fext (W(t))

Wherefi,; andf., are thanternal andexternal forcesespectively. Forces are computed as
the gradient of the equivalent energies with relspgecthe parameters which drive the
deformation of the contour. In most of the casgg(w) = -OE,, (w) is the negative of the

gradient of theexternal energwith respect to each image axis. Because of gasan, some

authors prefer to define forces instead of energies

2.2.  Common Notation
We want to segment @dimensional image defined over the regi@ril 0° into two
disjoint regionsQ, and Q_,

. separated by aimple closed contouC 0O such that



Q. UQ,,=Q. The regionQ, represents the object of interest, wiile, represents the

background.

QOUt

Figure 2.1: Contour and disjoint regions

A simple closed contouis a contour which does not contain end pointsheeiself-

intersections [2]. The regiof,, would be not necessarily convex neither fully-cected,
since the contou€ would be a set dfimple closed contours
Given a regionrR[0 ¢, the area in 2D as well as the volume in 3D iteddlypervolume

in a generalized way. THg/pervolumeof the region is defined qisﬁ = J.Rdw.

In the 2D cased = 2) the images are composed by pixels and thouapis a curve. In the
3D case @ = 3) the images are composed by voxels and theowois a surface. Image
locations (pixels or voxels) are callgmints in this research, in order to define a general
method for segmenting 2D and 3D images, as wellsequence of them.

Let I(w) be the image intensity at the point Let n(w):C — 0% be the unit normal

vector for a poinw in the contourC 0 O¢, such thain(w) points inside the region of the

object of interes),, as shown in figure 2.1.

2.3. Boundary-Based External Energies
2.3.1. LineDetector
The energy function for detecting black or whiteek is defined in [20] as:

Eine(C) = £[ I (W)dw ... (2.3)

Since the equation (2.1) is to be minimized, atp@ssign on (2.3) allows detecting black

lines, while a negative sign can be used if wlhited are to be detected.



2.3.2. Edge Detector
Object boundaries correspond well to strong gradierhe energy function for detecting

edges in the image is defined as a function ofrttagye gradient:
Eeqee(C) = [ 9(O1 (W)dw .. (2.4)
Since it is required that this energy be smallethatedges and greater in homogeneous

regions, one choice ig(r) = -r? as described in [20]. Another choices gi@) =1/(1+r) or

g(r) =1/(1+r?) as defined in [5].

2.3.3. Dynamic Edge

The edge detector described in (2.4) has the dmekwbé creating oscillations of the
deformable model across the pixels with high gnaidifeie to the choice of the time step [14].
A dynamic edge force was created in order to de#i ¥his problem. Letg the pixel of
maximum gradient in enxm window aroundv. The force is defined as:

FgeaeeW) = ((@=W) * N(W)N(W) ... (2.5)

This force can be seen as the projection of thexton of greatest gradient into the normal
vector. As a result, the contour will be pushedsoig or inside in order to intersect the pixel
of greatest gradient. Not any oscillations in thesimoccur since the force is proportional of
the necessary displacement in order to hit thel ppkemaximum gradient (and not the
gradient itself), and since it follows the norméedtion. Since it is possible to pre-compute
the corresponding pixel of maximum gradigntssociated to thewxm window for every

pixel w, it is not necessarily time-consuming.

2.3.4. Distance Map
The use of distance maps is proposed in [9] inroimenake edges have a bigger area of
influence. First, edge pixels are detected by usin@anny-Deriche local edge detector

Second, the value of the distance map at each igixifined as the Euclidean distance from



the pixel to the closest edge pixel. Even though distance map is calculated as a pre-
processing step, @hamfer distances used for approximating the Euclidean distamcerder
to reduce the number of computations into a twe adgorithm.

On the other hand, a initiatatershed segmentatida proposed in [16]. This technique
splits the image into several small regions wittmbgeneous color, which are divided by
edges. But the main drawback of this algorithnhé&rthigh sensitivity to noise which results
in an over-segmentation. Even though, it providgsad initial image partition which can be
used in order to drive the evolution of the contour

Let d(w) be the distance between a piweand the nearest edge pixel. The energy function

which attracts the contour towards the edges iseefas:
E4(C) = [ g(d(w))dw .. (2.6)
Since it is required that this energy be greatefdi@er distanceg(r) is usually chosen as

g(r)=—exp" or g(r)=-1/r as in [9]. Another choice ig(r) =r? as defined in [16].

2.3.5. Dynamic Distance

The distance energy as defined in (2.6) entailg \s#ge deformation away from the edge
pixels, which causes an unstable behavior andaitriBiguous at pixels which are equidistant
from two edges [14]. For solving this problem, ax@mic distance force was created. get
the nearest edge pixel in the direction of the radrhthe pixelv. The force is defined as:

faaie(W) =0-W ... (2.7)

A maximum number of traversed pixels in the forwartl backward direction of the
normal is used. Notice that this force pushes tbhdeahin the direction of the normal singe
is searched from the pixels on that direction. 8itiis operation is performed each time the

model deforms, it is time-consuming.



2.3.6. Gradient Vector Flow

The distance energy defined in (2.6) can causedifies when deforming a contour into
concavities. This is due to the fact that everyepis attracted to the nearest edge. In a U
shaped object, forces tend to point horizontallgpposite directions inside the concavity, but
not any force pushes the contour downward. Thezefitie model does not converge inside
the concavity. The edge detector (2.4) with a Ganddter with standard deviatioa can be
used instead as proposed originally in [20]. Itage of influence can be increased by
increasing the value a§. Even though the boundary location becomes lesaraie and
distinct, ultimately eliminating the concavity itseshen o becomes too large [34].

In order to solve these problems, a new forcefisiele in [33] [34] as:

f o (W) = V(W) ... (2.8)

Whereyv is the pre-computegradient vector flovat the pixelw. Letm(w) be an edge map
derived from the imagé(w) having the property that it is large near imadges, such as
(2.3) or (2.4). Theyradient vector flowfield is a diffused version of the gradient figlun
which keeps the desired property of having highdignats near the edges, but it extends the
gradient field further away into homogeneous regjion

Given an initial valuev(w,0)=0m, v is defined as the equilibrium solution to the

following partial differential equation:
v(w,t+0t) = v(w,t) +y% forwOQOt=00y>0
ov _ 2
5 g(Om)02v = h(Om)(v - Om)
Where O° is the Laplacian operator applied to each spat@hponent,g(r) is the

smoothing term since it produces a smoothly varyiector field,h(r) is the conformity term

since it encourages the vector field to be as do$ém as possible. In [34] these terms are
chosen to bey(r) =p andh(r) =r?, wherep should be set according to the amount of noise
present in the image, and it governs the tradesifivéen smoothing and conformity. When

little smoothing is required in the presence ofgéargradientsg(r)=exp """ and



h(r) =1-g(r) can be used instead as proposed in [33]. In @¥&|c determines to some

extent the importance between smoothing and coritfiprm

2.3.7. PressureForce

If there is not any edge detected by (2.4) asdorestant intensity area, the curve shrinks
on itself and vanishes to a point. Also, if thdiadicontour is not close to the desired solution,
the contour can fail to converge due to the presefiaveak and spurious edges. In order to
solve both of these problems, a pressure forcehhitates or deflates the deformable model
is defined in [10] as:

(W) =2n(w) ... (2.9)

fpress

A negative sign on (2.9) inflates the model, wiailpositive sign deflates it. The weighting
parameter for this force should be selected so ithigt smaller than the edge detector at
significant edges, and it avoids weak and spuriedges. As shown in [9], this force is

equivalent to the energy function:

Epes(C) =FQ,| -.- (2.10)

Minimizing this energy corresponds to obtain a canC which minimizes its area inside
it. Therefore, the force described in (2.9) pustes model in the direction of the normal
pointing outside the contour. The drawback is thatuser needs to select the sign in order to
inflate or deflate the model, so that the initiahtour has to be inside or outside the solution,

but not across [34].

2.3.8. Interactive Constraints

In some cases, automatedternal energiedail to deform the model to the desired
boundary. Interactive constraints allow the useatdbne points which are used for pushing or
pulling the model. Theping energy[20] which allows defining an attraction force Wween

two pointsw; andw; is defined as the minimization of the square distabetween them:

Eqpring (Wa, W,) =jw, —w,|” ... (2.11)

10



In the previous energy functiom; is a point on the curve awd, can be either another
point on the curve or a fixed position. Thelcano energy{20] which allows defining a
repulsive force between two pointg andw, is defined as the maximization of the square
distance between them:

(Wy,w,) = L

Evolcano
W, —w,
2.4. Region-Based External Energies
2.4.1. Ward Distance
In order to include region information in the segwadion process, [26] proposed a
heuristics that makes use of tWéard distance This distance is defined as the amount of

energy needed in order to disrupt a contour betwaercontiguous regiona andB:
d(AB) =, (1(W)=Hue)dw =] (1(w)=p,) dw=[ (I (W)-pg)*dw
Wherep,, g andp, , are the intensity means on their correspondingsareetM a
small rectangle ofx(2p — 1) pixels which follows the orientation of thermal n(w). The
rectangleM is composed by three small rectanglel; and My, of Ixp pixels inside and

outside the contou€ respectively, as well dglc of Ix1 pixels crossing the conto@. The

force is defined as:
Fuaa (W) = (=d(M;;, M) +d(M g, Mc))n(w) ... (2.13)
If the Ward distanceor the energy needed to disrupt the area insiel€dintour is greater

than the one needed for the area outside, the wowit follow the opposite direction of the

normal. This will cause the expansion of the defdrle model which is a desirable result.
24.2. Mean SquareError

By assuming that the image is composed of two regiof approximately constant

intensities, [8] proposed to reduce the mean soelaice of the intensities with respect to the

11



intensity meangit,, andp_,, inside and outside the contoGr respectively. The energy
function is defined as:
EneeC) = [, (W) —ptp)"dw+ [ (1 (W) ) dw .. (2.14)

In this model,p,, andp,, are assumed to be constant with respect to tHetewo of the

contourC in order to derive the force. The force is defimed
FrnseW) = (1 W) = 13)° = (1 (W) = ) *IN(W) .. (2.15)

When the intensity of a pixel in the contour isselbto the inside intensity mear), than

to the outside intensity mean,,, the force follows the opposite direction of thenwur

normal. This creates the desirable effect of makivegdeformable model to expand. In the
opposite case, when the intensity of a pixel iss@toto the outside intensity mean, the
deformable model contracts. In [8] texture progarguch as the curvature or the orientation

were also used in (2.14) and (2.15) instead ohgitg values.

2.4.3. Mumford-Shah Functional
It can be assumed that the objects in an image bkawaothly varying surface and
reflectance properties in small areas. Even thoughimproper to assume that the image is

piecewise smooth due to the presence of noise Muraford-Shah modelpproximates an

A

original imagel(w) by piecewise smooth approximatioﬁﬁ(w) and|_.(w) inside and

out

outside the boundary. The energy functional isrdefiin [4] as:

Erons(©) = [, [ (100) =T )" + WO, ) |+
" .. (2.16)

~ ~ 2
Jo | 100 = T w)? 0 ) e
Where the gradientsil, (w) and Ol (w) are computed with respect to each image axis.

The first terms on both integrals reduce the amofinbise, which is measured as the square
difference between the original image and its pi@se smooth approximations. The second

terms on both integrals prevent high intensity grat$ inside and outside the contour,

12



therefore generating smooth regions. The fapt@overns the tradeoff between noise and
smoothness.

The functionsi, (w) and I, (w) in [4] are chosen to be the intensity means oesgv
small areas in the image. Notice that one specif&e is the model proposed in (2.14), when

the smooth approximations are chosen to be thensitye means inside and outside the

contourC and therefore the gradients vanish.
In this model,I, (w) and,,(w) are assumed to be constant with respect to tHetéro

of the contoulC in order to derive the force. The force is defiasd

I (w) =1, 20l ?
Finshar(W) = 1 Tla ) u\ m(W)‘ , nw) - (2.17)

= (1 (W) = Ty (W))? =D o (W)

Notice that texture properties such as the cureaturthe orientation can also be used in

(2.16) and (2.17) instead of intensity values.

2.4.4. Pairwise Dissmilarity

A pairwise dissimilarity measure is proposed in][#8 order to encourage similarity
within the regions while discouraging inter-regiimilarity. The energy function is proposed
in two different versions, even though the derifede is the same. The first version of the

energy function maximizes inter-region dissimikafity minimizing:
Epua(C)=—[ [, ow,v)dvaw ... (218)
Whereg(w,v) is a dissimilarity measure between the pixelsindv, such that a greater

value indicates a lower similarity. The second iersof the energy function minimizes

dissimilarity inside each region and is given by:
Epu(C) = L L g(w, v)dvdw + jQ L g(w, v)dvaw ... (2.19)

As demonstrated in [28], both (2.18) and (2.19)verto the same force for the curve

evolution. The force is defined as:
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f (W) = ( J, gtwvav-{ g(w,v)dv)n(w) ... (2.20)

Where the dissimilarity measure is chosen to beatteplute difference of the intensity

values, such thag(w,v) =|I (W)—I(v)|. Other more sophisticated versions of dissimyarit

measures based on texture properties and pixeindistcan also be defined such as in [28].
Notice that the dissimilarity mag{w,v) between every pixel andv can be pre-computed. A
reduced resolution of the image is usedvfaevhile the original resolution is used far This

is done in order to reduce the amount of requirechory and to speed up the computation of

the integrals in the force (2.20).

245. Adaptive Fuzzy C-Means
Adaptive fuzzy C-means segmentatiiows partitioning an image into fixed different

classes. The result of this algorithm is a membershluey, (w) =0 for i = 1...n which
measures the degree of membership of the pixeb the class. One requirement for

membership values is th%i”:lui(w) =1. Lety,(w) be the membership value for the class

which corresponds to the object of interest. Thergnfunction is defined in [22] as:

(W) = M—l n(W) (2.21)
b (W)

f

afcm

Notice that when the pixel is more likely to be part of the object of intdrédsan to the

backgroundy, (w) > maxy, (w) , the factor is negative and the force follows tpposite

direction of the normal. As a desirable result, tleformable model is inflated in order to

contain the pixeiv. In the opposite case when(w) < maxy, (w), the deformable model is

deflated.
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2.4.6. Region Praobability

Maximization of the a posteriori segmentation phaliy is proposed in [25]. The authors
follow the Bayes rule while several assumptionsmaagle. First, every way of partitioning the
image into two regions (inside and outside the @ant) is assumed to be equally probable.
Second, both regions are assumed to be statigticalépendent since they depend only on
the pixels contained inside each region. Finahy, intensity of each pixel is assumed to be
statistically independent. After these assumptitims,a posteriori probability of partitioning

the image into the two regions becomes:

P(Q, N Qg 1) = |D_| P (1 (W)) D Pout (1 (W)

out

Wherepi(I(w)) andpou(l(w)) are the probability density functions of theeimsities for the
object and the background. These probability dgrsitctions are approximated by Normal
distributions or non-parametrically estimated binggheParzen window methodince the
maximization of this formula corresponds to the imimation of its negative logarithm, the

energy function is defined as:
E\ros(C) = — jQ log p,, (1 (w))dw - jQ log P, (1 (W))dw ... (2.22)

In this model,pn(I(w)) and pou{l(w)) are assumed to be constant with respect to the

evolution of the contout in order to derive the force. The force is defimsd

D))
frprob (W) = Iog(mJn(W) ‘e (223)

When the intensity of a pixel in the contour is mprobable to be part of the object than
of the backgroung,(1(w)) > pou(l(w)), the logarithm becomes negative and the forttevis
the opposite direction of the contour normal. Tt¢rsates the desirable effect of making the
deformable model to expand. In the opposite casenwthe intensity of a pixel is more
probable to be part of the background than of thjead, the deformable model contracts. In

[25] texture properties were also used in (2.22) @123) instead of intensity values.
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2.4.7. Region-Dependent Descriptor

Previous works on region-based deformable modelsotldocus on the dependence of the
energy function on the evolution of the regions][IFhis occurs for statistical descriptors
such as the mean as used in (2.14). The remarkadle done in [19] provides a general
framework for region-dependent energy functionsywell as it demonstrates that additional

terms should be used for the derived region-basea$. The energy function is defined as:

Eaescl CON = [, KWW + [k (w)dw .. (2.24)

Wherek;,(w) is the descriptor for the object region ang(w) is the descriptor for the
background region. Notice that the dependence eretlolution variablé has been made

more notorious in this framework. The derived fobeeomes:

ok ok
frdesc(W) = (kin (W) - kO“‘ (W) + IQ )a_ll:n ow + L) t(t)_;m dwjn(W) ces (225)

n(t 0

The first two terms have an intuitive interpretati&or a pixelv, ki,(w) < ky,(w) indicates
that the pixel is more likely to belong to the aitjghan to the background. In that case, the
sum of the first two terms is negative and the deéble model will follow the opposite
direction of the normal. This will cause a conti@ctwhich is the desirable effect. In [19]

several implementations based on (2.25) are destruch as descriptors based on means

and variances.

2.4.8. Information Entropy

The minimization of thentropyis proposed in [17] in order to segment the imatyetwo
regions with dominant intensities. Thidormation entropyis a negative measure, since it is
related with the amount of randomness or infornmaitioan event. Recall that tirformation
entropyis maximized when every intensity level is equadlpbable. Theentropyis lower
when only few intensity levels dominate. Therefdhe following energy function is defined

in order to minimize thentropyin both regions:
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Eenvony(C) ==, P (1 W))log py, (1 (W))cw

... (2.26)
~J,._ Paa(1 W)10g Py (1 (w))chw

Wherepi(I(w)) andpou(l(w)) are the probability density functions of theeimsities for the
object and the background. These probability dgnginctions are non-parametrically
estimated by using thParzen window methodrhe forces are derived by following the

framework described in (2.24) and (2.25).

2.4.9. Mutual Information

The maximization of thenutual informationbetween the intensity and the partition is
proposed in [21]. Recall that tmeutual informationis a measure of the mutual dependence
between two variables, such that thawtual informations zero when they are independent.
In that sense, thenutual informationmeasures how well the partition into two regions
explains well the probability density functionstbg intensities inside each region. As found
in [21], the maximization of thenutual informationis equivalent to the minimization of the
conditional entropydue to the fact that the true intensity distribng do not depend on the

contour. Therefore, the following energy functioasrdefined in [17] and [21]:

EmutuaI(C) == ‘Q‘

L. P, (I (w))log p,, (I (w))dw
m .. (2.27)

‘Qout‘

-l [ (1 (w)log py (1 W)t

Wherepi(I(w)) andpou(l(w)) are the probability density functions of theeimsities for the
object and the background. These probability dgnginctions are non-parametrically
estimated by using thBarzen window methodNotice that the energy function (2.27) is a
weighted average version of (2.26) by using thegron of the areas of the regions inside
and outside the conto@. The forces are derived by following the framewdsdscribed in

(2.24) and (2.25).
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2.4.10. Active Appearance Modd

A model which deals with shape and appearancen§ittg fitness with respect to training
images is proposed in [11] [23]. Shape and appearare represented a weighted sum of few
terms involving the most significant variability the training data. Shapes are parameterized
by a fixed set of landmarks. These landmarks areuadly identified on several training
images. Subsequently, these shapes are alignex tanmther with respect to scaling, rotation

and translation by using thBrocrustes methqgdwhich allows analyzing the landmark

variability in a common coordinate frame. Givinaligned shapeS, = (X ,, Y, ,.-X ., ¥, )"

for i = 1..N, whereL is the number of landmarks in the shape. The nsmpeS and

covariance matrbS are computed as:

_ 1 N

S==—)8
N 2S

5= 1 3(s-5)s -9
N-1& i

GivenN training image\ and by using the mean shafeas a common coordinate frame,

the mean appearande and covariance matrid are computed as:

_—iN

ATNEA

A= L S (A -A)A -
A—N_lg(A A) (A -A)

By usingprincipal component analysishe eigenvectoré;i fori = 1...n corresponding to

the largestn eigenvaluesA, of the covariance matri§ describe the most significant

variability of the landmarks in the training datderefore, any shapg®can be approximated

as the mean shape plus a weighted sum of thenfitigienvectors:
S(p)=S+>.pS
i=1

Wherep; fori = 1...n are the shape parameters. In a similar fashioghappearancé can

be approximated as the mean appearance plus ateeigim of the firatn eigenvectors:
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A@)=A+3 A

i=1
Whereq; fori = 1...mare the appearance parameters. Additional paresrete added into
the model in order to account for global transfaiores, such as a scaling facgra rotation
matrix R with angle® and a translation vectdr A landmark on the contou€ can be

calculated from a landmark{) in the undeformed common coordinate frame as:
L (p) =sR(B)(x,y,)" +t for(x,y,)IS(p)

This landmark set (p) = (I,(p),l,(p),...| _(p))" is then used to deform the contour by

2, which maps a pixek from the mean

using a warping functionv(L,x):0%* x0? - O
shapesS into the current shape of the cu@e
In order to maximize the similarity between theeigities inside the curv€ and the

model driven by the shape and appearance paraméterdollowing energy function is

proposed:
E.an(C) = [[(1W(L (), X)) = A(@, X)) clx ... (2.28)

Notice that this corresponds to the minimizatiorerothe mean shape spaSeof the
square error between the current image and the lmaeidle respect to the shape parameters as

well as to the appearance parameters.

2.5. ShapeParameterization and Internal Energies
251, Spline
As originally introduced by [20] the deformable earC is defined as a function

w(u):[01] — 0%, such that for every value af w(u) is the position on the curve associated

with that value. The energy function is defined as:

+B(u)ZTV2V

Espline(C) =%J':[G(U)Z_YJV Jdu (229)

Where the first term inside the integral contrbls tension by minimizing the length of the

curve and therefore prevents the curve to stréible. second term controls the rigidity by

19



minimizing the curvature and therefore it prevethis curve to bend. The weightgu) and

B(u) are usually chosen to be constant with respaatThie force is defined as:

=0 () 0" [ g W
fspline(w) - au (G(U) an 6u2 [B(U) aug

j ... (2.30)

The equivalent equations to (2.2), (2.29) and (Rf803D segmentation are presented in
[9], where another factor which controls the amanfntwisting is added. In order to reduce
the degrees of freedom, nodes can be preventedrfroving between slices as proposed in
[9]. A more simplified method involves joining 2[2gmented contours as in [9] [10]. The

intermediate cross section is chosen for perfornaifgist segmentation and each solution is

propagated as the initial contour for the neigtdmamtion.

25.2. B-Spline

B-Splines are proposed in [24] as an efficient aatliral way for representing smoothly
curved objects. B-Splines are piecewise cubic potyials which shape is driven by control
points, even though they do not interpolate betwdem. Givenn control pointsp; for

i = 1...n, the curveC is defined as a collection of functioms(u):[01] — 0O° which return

the position on the curve for a valueuwoh the segment from;_; to p;:

-1/6 1/2 -1/2 1/6|p.,

] 12 -1 12 0 |p.
-1/2 0 12 O f|p | (2.31)
1/6 2/3 16 0 |pa

w, (s) = [33 s?

for sO[01] Oi =1...n

Wherep_; = pn1, Po = Pn andpn:1 = Po. The energy function and force follow the same
derivation as in (2.29) and (2.30). One of the draoks of this parameterization is that it is
not suitable for interactive delineation of the twam, since it does not interpolate between the

control points [15].
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253. Hermite

B-Splines are less suited for objects with sharpnexs [15]. Hermite contours are
piecewise cubic polynomials which interpolate cohfpoints as well as allow specifying
tangent vectors. Therefore they can efficientlyrespnt both smooth and sharp contours by
the adjustment of the tangent vector parametengerGi control pointsp; and tangentg at

the control points fori = 1...n, the curveC is defined as a collection of functions

w, (u) :[01] - O? which return the position on the curve for a vabiie in the segment from

Pi-1 tO pi:

2 -2 1 17p,
-3 3 -2 -1 p,
1 0 0 0]t

Wi(S)Z[SS s’ s 1]

for sO[01] i =1...n

Wherep, = p, andt, = t,. It can be observed that under this definitiop(0) =p,_, ,
w, (D) =p,, ow, /ds(0) =t,,, ow, /0s(l) =t,. The energy function and force follow the same

derivation as in (2.29) and (2.30).

2.54. Superquadric
A model which accounts for global as well as labeformations is proposed in [30]. The
global shape is modeled by a deformable superquagiriv) in 0° with three aspect ratias,

a, andaz and the squareness paramelgsndb,:

aisgn(cosj)\cosu\bl sgn(co:v)\coMbz
q(u,v) = azsgn(c0$1)\cosu\blsgn(sirv)\sin\db2
agsgn(siru)\sinu\b‘

forud[-m/2,m/2]OvO[ Tt 11
The aspect ratios allow stretching and shrinkiregghperquadric with respect to the three
different axes. For aspect ratiags= a, = a3 = 1 and squareness parametars b, = 1, a
sphere is generated. For squareness parametetsrsimah one, a rounded cube is generated.

For squareness parameters greater than one, a rdlastmpe is generated. Additional
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parameters are added into the model in order toustdor global deformations, such as a
scaling factors, a rotation matrix®R and a translation vectdr In order to account for local
deformations, a displacement functidis also imposed. Therefore, the cu@vés defined by
the functionw(u,v) as:

w(u,v) =t +R(sq(u,v) +d(u,v))
forud[-m/2, /2] OvO[ Tt 11

... (2.33)

In [30] the rotation matriR is modeled as a quaternian, {,, I3, r4) and the displacement
functiond is expressed as a weighted sum of basis functidmes.parameters which govern
the global deformatiorg(...as, by, by, S, t;...13, rl...r4)T are allow to change freely in order to
account for as much as the data as possible. Comsthg the authors do not impose any
energy function over the behavior of these parammefdthough, the local deformatiay{u,v)

must be small and continuous, which is expressexirisnizing the function:

2
+

od

Eeuao©) = [ f,jfz[a(u,v)d(u,v)z +B(u.V)( >

ad
ou

J]dudv ... (2.34)

Where the first term allows minimizing the amouhtiaral deformation, and the second

term controls the local variation of the deformatio

255, Simplex Mesh

The use of simplex meshes for representing contiours® is proposed in [14]. Simplex
meshes allow smooth deformations in a simple aficiezit manner, since they have constant
vertex connectivity. In 2-simplex meshes, eachexeis shared by only three edges, therefore
each vertexv has three neighbor vertices, w, andws.

A tangential force allows controlling the vertexsfimn with respect to its three neighbors

in the tangent plane. Let, €, ande, be the barycentric coordinates of the projecp@m)
of the vertexw into the triangle A(w,,w,,w,) in the normal direction, such that
p(w) =g,w, +&,w, +€,w, Where by definitiong, +¢,+¢e,=1. The tangential force is

defined as:
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fog(W) = P(W) —p(W) = (€, — €)W, + (€, —€,)w, + (€, —&;)w; ... (2.35)

Where€,, €, and g, are the desired barycentric coordinates. In otdehave vertices
uniformly spread over the surface of a simplex melé control parameters can be set to
€ =¢€,=¢€=1/3.

A normal force allows controlling the mean curvataf the surface through the simplex
angle. The normal vectar(w) is assumed to be normal to the triangl@v,,w,,w,) . Also,
let h(w) be the height of the vertex, which is the distance between the vertex and its
projection into the triangl&(w,,w,,w,), such thatw =p(w) —h(w)n(w) . As described in

[14], the height of the vertex can be expressed amction of the simplex angig which

measures the local curvature at the vewexX he simplex angle is computed by first finding
both a circle which crosses the vertiees w, andws; as well as a sphere which crosses the

verticesw, w;, w, andws. The simplex anglé =n/2 indicates that the center of the circle
coincides with the center of the sphepes n/2 indicates that the center of the circle is in
front of the center of the sphere, apié n/2 indicates that the center of the circle is behind
the center of the sphere. Finally, the normal fasadefined as:

fonor (W) =W =w = (=h(®) + h($))n(w) ... (2.36)

Where ¢ is the desired simplex angle. As explained in [Iggveral choices can be
selected for this control parameter. The desiregkx angle can be set §o=¢ in order to
nullify the normal force and make the surface fyd®nd around the vertex. The angle can be
set tod =0 in order to minimize the curvature. By setting #regle to an arbitrary constant
for every vertex, only global deformations are aha up to a rotation, translation and scale
transformations. The desired simplex angle can bé&sset to the average of the neighbor

vertices angles in order to entail curvature caitynover the surface.

23



2.5.6. Fourier Decomposition

A probabilistic model based on a Fourier paramedé¢ion of training curves is proposed in
[27]. This allows a compact representation of sicgtiapes where the first terms in the
Fourier expansion describe global properties of gshape such as translation, while the
following terms describe local deformations. L&t be a curve defined as a function

w(u):[01] — 0%, such that for every value af w(u) is the position on the curve associated

with that value. The approximation of the cu@edy using the firsh terms in the Fourier

expansion is given by:
w(u)=a, + Z[a2k COS@TKU) +a,,,, sin(2nku)] forud[0]]
k=1

_1n
% _Erjow(u)du .. (2.37)

a, = l.[:w(u)cos(ZTd(u)du fork=1..n
I

Apppy = %Ew(u)sin(ZTd(u)du fork=1..n

WhereA is the parameter vector of Fourier coefficieajs10* for k = 1...2h+1, andn is

usually chosen between four and six. Several imagesnanually segmented in a training

phase in order to capture the statistical varigbiif shapes and to generate an energy
function which allows measuring the fitness of aveuwith respect to the training data.

Statistical independence is assumed between Fouoefficients as well as between

components of one coefficient. Therefore, the podita of the parameter vectoA is

expressed as:

pP(A) = lel p(a,) = lel lI:_l’l2 p(a ;)

Where each component is assumed to follow a Nordtiatribution such that

p(a;) ~ N(u,;,0F,;) for k= 1..20+1,j = 1,2. Since the maximization of this expression

corresponds to the minimization of its negativealitpm, the energy function is defined as:
2n+l

Eweo(C) == > logp(a ;) --- (2.38)

k=1 j=1,2
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25.7. Active Shape Mode

Landmark based shape priors are proposed in [1Zjrdler to represent shapes as a
weighted sum of few terms involving the most sigaiht variability in the shape population.
Shapes are parameterized by a fixed set of landmarkese landmarks are manually
identified on several training images. Subsequetitigse shapes are aligned to one another
with respect to scaling, rotation and translatigrubing theProcrustes methqadvhich allows

analyzing the landmark variability in a common atinate frame. GivetN aligned shapes

S =%, Y%, Y, ) fori=1..N, whereL is the number of landmarks in the shape. The

mean shap& and covariance matri® are computed as:

vl
Il

1 N
NS

1 & ave _ay
N2 96 -9

(ks
1

By usingprincipal component analysishe eigenvectoré;i fori = 1...n corresponding to

the largestn eigenvaluesA, of the covariance matrib§ describe the most significant

variability of the landmarks in the training dafdnerefore, any shapgecan be approximated

as the mean shape plus a weighted sum of thenfirigtenvectors:
S(P)=S+>.pS - (239
i=1

Wherep; fori = 1...n are the shape parameters. Additional parameteradued into the
model in order to account for global transformagiosuch as a scaling factgra rotation
matrix R with angle6 and a translation vectdr A landmark on the contou€ can be

calculated from a landmark{) in the undeformed common coordinate frame as:

li(p) =sR(O)(x,y;)" +t for (x,y,) IS(p)
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This landmark set (p) = (I,(p).l,(p)...../ (p))" is then used to deform the contour by

2

using a warping functionv(L,x): 0% xO% — 0%, which maps a pixek from the mean

shapeS into the current shape of the cu@e
No energy function is defined in [12] since thelglbparameters are allowed to change

freely and the shape parametgisare only constrained not to fall outside the range

[-3/A;,+3,/A;]. Since the eigenvalugs for i = 1...n describe the amount of variance for

each eigenvectchi, this rule is equivalent to allow the shape toyvaot more than three

standard deviations from the mean shape.

258. Statistical Shape Model

An energy function is built upon (2.39) in [32] byllecting global and shape parameters
into one parameter sat= (s, 0, ty, t, p1...p,)" wheres is the scaling facto is the rotation
angle,t is the translation vector and...p, are the shape parameters as described in (2.39).
Since the shape parametgxsare weights of different orthogonal eigenvectdigy are
statistically independent by definition. Also, satally independence is assumed between
scaling, rotation and translation parameters. Thegethe probability of the parameter vector

a can be expressed as:

n+4

p(a) = H p(@a)

Where each component is assumed to follow a Nordtatribution such that

p(a,) ~ N(u,,o0?) for k= 1...n+4. Since the maximization of this probability @sponds to

the minimization of its negative logarithm, the Egyefunction is defined as:
n+4

Essm(C) = _zlog p(ak) (240)

k=1
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2.6. Unique Solution and Convergence

The main disadvantage of deformable models is ¢bavexity properties of the energy
function are poorly understood. Due to this faatlugons are often locally rather than
globally optimal [13].

As stated in the original paper [2@Lale-space theorgan be used in order to avoid non-
significant local minima when performing image segwation. This requires a process for
blurring the image to a controllable degree in otdecompute energies such as the line (2.3)
and edge detectors (2.4). The Gaussian filterasottly convolution kernel which meets the
minimum-maximum principlas well as thesemi-group property18]. The first principle
states that local maximum or minimum must not iasee or decrease, respectively. The
second property states that the process can stamyacale and still get the same scale space.
Therefore, [20] proposed using a Gaussian filtehwtandard deviatioo . The value foro
should be decreased for successive steps in tiaivee energy minimization. Even though
the weakness of this approach is that there ismptestablished theorem for how to schedule
changes ino, which leads to unreliable results [35].

Proof of unique solution and convergence conditiares presented in [5] fageodesic
active contoursThis class of contours only includes the edgeeaet asexternal energy
(2.4) as well as the tension term in th&ernal energy(2.29) in order to minimize the curve
length. If the initial contour encloses the objetinterest, the curve will evolve to the object
boundaries. But notice that since the proof wasgmted in the framework afeometric
deformable modelghe topology of the curve evolves freely withauty control of the final
shape.

Convexity of the energy function is analyzed in J[1f®r the finite differences
approximationof deformable models. A general boundary-basddrnal energys assumed
as well as thénternal energy(2.29). As a remarkable result it is demonstrateat the

convexity of the energy function depends on theapeterso(u) andp(u) of theinternal

energy(2.29) which control the tension and rigidity detcurve. The feasible values for the
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regularization parameters are determined by thewr@abf the external energy Local
characteristics of the object of interest suchta<iurvature also affect the convexity of the
formulation. This phenomenon produces in practi€esticonvergence in some regions of the
object and poor convergence in some other ones.

Speed of convergence is analyzed in [31] for findge differences approximatioof
deformable models. A general boundary-basgtérnal energyis assumed as well as the
internal energy (2.29). As a main result it is theoretically pravéhat the speed of

convergence depends on the paramesérs andB(u) of theinternal energy(2.29) which

allows controlling the tension and rigidity of tdeformable model.
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Chapter 3. The Proposed Deformable M odel

3.1. External Energy
3.1.1. Poaint Classfier

Definition 3.1:

Let Q; and Q,, be the true object and background regions resmgti A point
classifier f (w):Q - [0]] is a continuous function such that:

f(w)=Prw0Q;] ... (3.1)
from (3.1) it can be easily derived:
Priw0Q,,] =1-Priw0Q; ]1=1-f(w) ... (3.2)

Assumption 3.1

Since the object is usually completely containedhia image, it is safe to assume that
f(w) = O for everyw 0 Q.
Lemma3.1:

In order to decide to which region a pombelongs to, the following rule is used:

wiQ; if f(w)=05
wioQ, . if f(w)<05

out

. (3.3)

Pr oof:

For a pointw, the best action is: “decide that0 Q; if Priw0Q, 1= Prlw0Q_,]" and

“decidewQ, , if Priw0Q; 1<PriwdQ,,]". By replacing (3.1) and (3.2), the rule (3.3)
is found.
U
3.1.2. Fuzzy Sets
Definition 3.2:
Let T be a set of parameters which control the shapleeofontourC(T) and therefore the

regionsQ, (T) andQ_,(T). Aregionindicator functionH (w,T): Q — {01} is defined as:
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1 if woQ, (T)

H(w,T) ={O w0 (T (3.4)

Theorem 3.1:
In order to maximize therisp probabilitythat the contouC(T) accurately separat€3

into two regionsQ, (T) andQ_,(T), the following energy function should be minimized

out

E.(QIT)=] oy A= 2F (W, T)dw + [ fw,T)dw ... (3.5)

Notice thatf(w,T) is used instead df{w) in order to show the possible dependence of the
point classifieron the evolution of the regions.
Pr oof:

*
i

In fuzzy sets theorfd], Priw0Q; ] and Prw 0Q; ] can be interpreted asembership

functions The crisp probability that the contourC(T) accurately separateQ into two

regionsQ, (T) andQ_,(T) should be maximized:

PQ|T]=[  PriwOQ; P(w)dw + Iom Priw 0Q;,, ]P(w)dw

in

WhereP(w) is the probability of occurrence of the poimt Since byprobability theory

IQ P(w)dw =1 and since every point over the regionis equally probable, we can conclude

that P(w) =1/|Q| and therefore:

*

]dw

out

me Priw 0 Q] Jdw + [
<

Priw0Q
)

out

PriQ|T] =

In the previous formula, the denominator can becelied since it is constant with respect

to T. Also, by replacing (3.1) and (3.2):

PQITIOf, fw.Tdw+[  @=f(w,T)dw

This formula can be rewritten by using ttegjion indicator functiordefined in (3.4), since

H(w,T) is not zero only insid€, (T) and (1 -H(w,T)) is not zero only insid€_,(T):
PrQ | T] O [ [f (W, T)H (W, T)+ @~ f (W, T))(L-H (w, T))|dw

By reordering the factors in this expression:
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PrQ| T O [ [@f (W, T) =DH (W, T) = f (w, T)]dw +|Q)
The second integral is constant with respedt,ttherefore it can be removed:
PriQ| 10 | [f (w,T)~DH (w,T) = f (w, T)]dw
SinceH(w,T) is not zero only insid&,,(T), the first term can be integrated only over the

region Q, (T) . Finally, the maximization of the previous formuis equivalent to the

minimization of its negative.
U
Observation 3.1:
The external energy(3.5) can also be derived from the framework (2.B¢ making

kin(W) = 1 —f(w,T) andkou(w) = f(w,T).

3.1.3. Gradient Descent
Let T =(t,,t,,...t,)" be a set of parameters such thatid® for i = 1..n. The

minimization of the energy function (3.5) can benedy using thgradient descent method

Given initial values for the set of paramet&f% and the step sizg, the next approximations
of the solutionT* which minimizes (3.5) are computed as:

TED =TO 4 yOE fork=00y>0

(B OB

at,, at, , ... (3.6)
Oe=| : .

O O

ot,, ot 4

Theorem 3.2:

For apoint classifierf(w,T) the update rule for thgradient descent methdmcomes:

of dW+IQ of

aEfuz — _ aH _
_IC(T)|:(1 Zf(W,T))atI’]:|dW I Oul(T)?i’de (37)

o, 20T 3t |
fori=1..n0j=1.d

Pr oof:
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By deriving (3.5) with respect tp and by regrouping the terms:

OB, oH _ of of
=| | @-2f(W,T))—-———HW,T)+——@L-H(w,T)) |dw
= a2t w )= o T A-HEeT)

i,] 1]

For the first term in the integral, notice thgd /at, ; is defined only in the contoW@(T)

and it is zero everywhere else. Therefore the mategver the regiorQ becomes the integral
over C(T). For the second and third term, recall tH&v,T) is not zero only insid€, (T)
and (1 -H(w,T)) is not zero only insid&_,(T).

U

Observation 3.2:

The external force(3.7) can also be derived from the framework (R.B§ making
kin(w) = 1 —f(w,T) andky(w) = f(w,T). The first term of thisexternal forceis remarkably
similar to the one used for experiments in [36]erethough not any formula derivation
neither theoretical proof was presented there. éustlilefined it as a pressure force as (2.9)

with a weight inside the range-1,+1] .

3.1.4. AxisIndependent Warps

Definition 3.3:
Let w(x,T):0%x0™ - 0% be a warping function which allows calculating the

deformed locationv for every pointx. The warping functiomv is axis independernit:

M _

o 0 fori=L.n0jzk0j,k=1.d ... (3.8)

i
Lemma 3.2:

For a contour generated by amis independentvarping functionw(x,T), the region
indicator derivativein (3.7) is given by:

ow.
ainn.(W)—' fori=1.n0j=1.d ... (3.9)
o, ' Tat

Pr oof:
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The chain rule can be used with the variable the formulation:

OH _0H ow =Zd:6H w,
o, owat, ow, ot

1]

Sincew is anaxis independent warpinghe derivatives witl # k are zero. Therefore this

equation is reduced to:

OH _oH w,
ot ; ow, ot

Notice thatoH /dw, is a Dirac delta pointing outside the region (T) in the contour

C(T) and zero everywhere else. Therefore, it is etudhej-th component of the normal
vectorn(w).
U
3.1.5. AxisIndependent Warpsin 2.5D

In 2D and 3D since the dimensionality of the image the dimensionality of the contour
are the same, not any further analysis is neededhd 2D cased(= 2) the images are
composed by pixels and the contour is a curve.hitn 3D cased = 3) the images are
composed by voxels and the contour is a surfacthdr?2.5D case, we have a small set of 2D
images spatially located in the 3D space, and timoarr is a surface. This problem arises in
the medical field, when a few 2D magnetic resondnm@ges are used as input (for instance
three horizontal and one vertical), and the recangbn of the 3D surface of the organ is
required.

In order to attack this problem, the first stepgdsfind the intersection between the 3D
surface and each image in order to compute the@ifoarC(T) as shown in the following

figure:
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Figure 3.1: Contour and disjoint regions in 2.5D
The warping functiorw(x, T) : 0°*x[0°% - 0% maps a poink in the 3D space to a poimt
in the 2D image under the influence of the sat phrameterd in the 3D space. Notice that
the 3D surface deforms according o and the coordinate change from 3D to 2D can be
expressed as a linear transformation. Therefore, ftinction w can be written as the

composition of two functions such as:

w(x, T) =w?® (WP (x,T))
VVfD
oy 2| M Mz M My, W,
m, My, M,z M, W33D
1

... (3.10)
W2D (W

In this formulaw?®®(x,T):0°*x0%* - O° is the warping function working in the 3D
space, anav®® (w®): 0% - 02 is the linear transformation that maps a poirBnhspace to

a location in the 2D image, and it only dependstenlocation of the 2D image in the 3D
space.
Lemma 3.3

In the 2.5D case, for @oint classifierf(w® T) and a contour generated by aris

independentvarping functionw®°(x,T), theregion indicator derivativen (3.7) is given by:

oH _

ow®
5 [mljnl(WZD)+mz’].nz(wm)]at—J fori=1..n0j=1.3 ... (3.11)
y -

1)
Pr oof:

The chain rule can be used with the variali&sandw?® in the formulation:

OH _ o0H oaw®™ ow®™ _ oH & w* owg”
ot ow® ow®™® ot ow® Fow® ot

1]

Sincew® is anaxis independent warpinghe derivatives withj # k are zero. Therefore

this equation is reduced to:

OH _ oH ow™ ow”
o, ow® aw® ot

1]

The first two terms can be expanded as:
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OH _| oH owe®  oH ow® |ow”
o, | owZ® aw®  awz aw® | ot

]

Notice thatow.®/ow™® and ow;°/ow™® are Dirac deltas pointing outside the region
Q,,(T) in the contourC(T) and zero everywhere else. Therefore, they araldguthe first
and second components of the normal veciev’®) respectively. FinallygH /ow?® and

0H /ows® are replaced from the definition (3.10).
U
3.1.6. Region-Dependent Descriptors
Definition 3.4:
For apoint classifierf(w,T) is based on region-dependent descriptors if eapXpressed

in the formf(w,T) = f(w,p(T)) where:

P(T) = (Py(T),-. P (T))'

.. (3.12)
p(T) = i(w)dw fork=1.m

Wherep(T) is the vector om region-dependent descriptqugT) for k = 1...m. Each of
these descriptons(T) are associated with a functiop(w):0¢ — O which is evaluated on
a regionR(T) which can beQ, (T) or Q_,(T). For instance, in order to generatg@ant

classifier based on means and variances of intensity, désgiguch as area, sum of

intensities and sum of square intensities are requiThese descriptors correspond to the
descriptor functions, (w) =1, r, (w) =1(w) andr,(w) =[I (w)]2 respectively.
Lemma 3.4

The derivative for aegion-dependent descriptog() on Q. (T) is given by:

op, oH , .
9P _ ot - = ... (3.13
. Icmrk(w)ati,jdw fori=1..n0j=1..d ... (3.13)

The derivative for aegion-dependent descriptog(®) on Q_,(T) is given by:

ot, .

(] ]

op, _ oH o o
= J.C(T)rk(W)Fdw fori=1..n0j=1.d ... (3.14)
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Pr oof:
Straightforward by deriving the region-dependenscdi@tor definition in (3.12) and by
using theregion indicator functiordefined in (3.4).
U
Lemma 3.5:
For apoint classifierf(w,T) which is based on region-dependent descriptdrs. ifitegral

of thepoint classifier derivativever a regioR(T) which can beQ, (T) or Q_,(T) needs to

be computed in (3.7). For a small step $izthis integral can be approximated as:

O w=t 9 | —hoP
IR(T)atiqde~2h R(T){f(w,p(T)mat_) f(w,p(T) h=~ Hdw

ij (]
;
op _[0p 9P, .. (3.15)
o, \ot; ot
fori=1.n0j=1.d

Pr oof:

Straightforward by replacingf /ot,; by its finite differences approximationand

extracting the factor 1fRoutside the integral.
U
3.2. Internal Energies
3.2.1. Topology Preservation

In order to add topology preservation to the defdiom model, we need to produce a
topology preservation measure which is not affettg@ny affine transformation (including
but not limited to translation, rotation and scg)inover the prototypical configuration

S=(s,,S,,...,S,)" such thats 00°. Recall thatT = (t,,t,,...,t,)" such that, 00" are the

current values for the set of parameters. The gndwgction for ensuring topology

o

preservation is defined as:

2

Eo(T.G) =2
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WhereG is thedx(d+1) transformation matrix which minimizés,. In other wordsG
allows converting every poirgtinto t; fori = 1...n with a minimum error, such that if every
can be expressed as a linear transformation of @athspondend, the error would be zero.

The update rule for thgradient descent methadll become:

oE, d
ot : :Z(ti,j _Zgj,ks,k _gj,d+l) - (3.16)
i k=L

1]

Let W(A,B) be adxd matrix such thalpi'j(A,B)=2E:1ak'ibk’j and let{(A) be ad-

dimensional vector such that(A) =ZE:1ak’i . A rearrangement of the equations derived in

[29] for computing the matri leads to the following linear equation system:

LG :[‘I’$S,T)}

¢ (T) 3
¥(S,S) C(S)}
&© n

. (3.17)
L(S) =[

Observation 3.3:
Since onlyT changes trough all the optimization process &nd constant, it is more
efficient to invert the matrix (S) in the beginning of the process and to calculatey matrix

multiplication, rather than solving the linear etiola system (3.17) at each iteration.

3.2.2. Temporal Coherence

Whether a sequence dfdimensional images is used in the segmentatioogss) we can
add temporal coherence so that the parameterstdivasiically change between frames. This
rule can be stated in terms minimizing the diffeeerbetween the current frame and the
previous one, as well as between the current fraamel the next one. Let

TO =ttt be the parameter set for the frageuch that(® 0O fori =1...n.

The energy function for ensuring temporal coherescfined as:

)

B T,0) = 3|19 =t 4t -
i=1

The update rule for thgradient descent methadll become:
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a(‘;?(‘i‘?o = _Zti(,?_l) + 4ti(,?) - Zti(,?ﬂ) - (3.18)
i

3.3.  Unique Solution and Conver gence

As can be noticed, the topology preservation entrggtion is convex with respect to,

since its derivative (3.16) has only one minimumtHe same way, the temporal coherence

energy function is convex with respecttﬁqi due to the behavior of its derivative (3.18).

Therefore, only theexternal energy3.5) of the proposed model needs further converge
analysis.

For some specific warping functions, different \eddor the set of parametéfscan lead
to the same shape of the contd(T). For instance in the case rHdial basis functions
warping a circular shape parameterized by four equidigt@nts admits infinite different
values for the parameters for generating the sdmpesby rotating the points around the
center of the circumference. Therefore, the prdafrdque solution and convergence should

be based not on the values of the parameters kihieashape of the contoG(T).

3.3.1. Unique Solution
Definition 3.5:

Let T* be the values for a set of parameters which nies the energy function (3.5).
According to (3.3), erfect point classifief *(w) is defined as:

f*(w)=05 if wOC(T¥
f*(w)>05 if wdQ, (T* - (3.19)
f*(w)<05 if wQ,,(T%

Theorem 3.3:
For aperfect point classifief * (w):

E.(Q|T*) <E(Q|T) forallC(T)#C(T*) ... (3.20)

fuz

This states that there is not any other contour giheduces a greater value of the energy

function, and therefore there is only one globatimum.
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Pr oof:

By replacing (3.5) in the previous formula:
ij(m (L-2f * (w))dw + jQ f* (w)dw < Lomm (L-2f * (w))dw + jQ f* (w)dw
Where the second terms on both sides can be rembigtite that by definition (3.19)
f*(w) > 0.5 in the regioQ, (T*) and therefore 1 — 2*(w) < 0. In the same way,

f *(w) < 0.5 in the regiorQ_,(T*) and therefore 1 —2*(w) > 0.

Qoul(T*) C(T*)

(o

Figure 3.2: Areas of integration

C(T)

By noticing this fact, we can split the integratine right side of the previous equation into

two terms:

IQin(T*) (=21 (w))dw < J.Q *) (d=2f = (w))dw + IQi (

n (TINQn (T*

@-2f * (w))dw

in(T)=Qi (T

In the right side of the inequality, the first igtal is performed in the region
Q.(M-Q, (™) 0Q,,(T*) and therefore it is positive. Also, notice that thiher two
integrals are negative since they are performed the regions Q (T*) and
Q.. (MNQ, (T O0Q, (T*) respectively.

In the extreme case of the inequality, the positeren should be removed by choosing
Q. (T)OQ, (T, and therefor&, (T)-Q,,(T*) =¢ andQ, (T)NQ, (T*) =Q,, (T). This
converts the previous formula into:

Jo oy @m2f*(updw < [ @-2F* (w))dw
Finally, this is true since the formula being iregtgd is the same, and the region on the

right side is contained into the region in the tefte.

U
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3.3.2. Convergence
Theorem 3.4:

For aperfect point classifief *(w) and a convex contour:

aEfuz . .
o =0 if andonlyif C(T)=C(T*)
i

fori=1.n0Oj=1.d

... (3.21)

This states that the first derivative of the enefggction is zero only in the global
minimum. Consequently, not any local minimum exsd therefore thgradient descent
methodwill return the correct contour.

Pr oof:

Since we do not have an explicit representatiom@pérfect point classifief *(w) nor the

warping functionw(x,T), it is not possible to evaluate the zeroes of fitet derivative.

Therefore, the previous statement is divided imto ¢quivalent statements:

OE,, -
——=0 forallC(T) =C(T*) Oforalli, j

ot; | ... (3.22)
fori=1.n0j=1.d
and:
aEf“Z;tOf IC(T) # C(T*) Of i, j
a5 orallC(T) # C(T*) Oforsomd, j .. (3.23)

]

fori=1.n0Oj=1.d
By expanding the formula (3.22) by using (3.7) #8®) and by replacin@(T*) instead
of C(T) since the contours are equivalent:

. ow, of * of* .
Lma 2f * (w)n, (w)adw '[an(T*)('?'[Lde+ LM(T*)at”dw_o

By definition (3.19)f *(w) = 0.5 in the contou€(T*) and therefore 1 — *(w) = 0. Also,
since theperfect point classifief *(w) does not depend on the evolution of the regions

of */ot,, =0. This fact makes the three integrals equal to.z&€herefore, the statement

(3.22) is true.

On the other hand, the statement (3.23) can be ghoyeontradiction:
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)=
?‘“Z =0 forallC(T) #C(T*) Oforalli, j
i

fori=1.n0j=1.d

.. (3.24)

Let assume that we parameterize agylimensional pointwOC(T) in a lower
dimensional spacé&) =[01]x...x[01] 0 0°". In 2D images, the shape of a curve is
parameterized by a variabiein the rangg0]1]. In 3D images, the shape of a surface is

parameterized by two variables andu, both of them in the rang@1]. Let x(u):U - 0O°

be the position of a point in the prototypical ufimed contour associated with the
parameteu. SinceC(T) is asimple closed contouit allows a one-to-one parameterization
such that only one positiax(u) is related with a value fau, and viceversa [2]. Equations

(3.7) and (3.9) can be rewritten as:

OB, [ e ow, = of * of *
e |, a-2f (W), (W) 5 ij(T)atudw ij(T)atudW

fori=1.n0j=1.d ... (3.25)
w(u) =w(x(u),T)

Since theperfect point classifief *(w) does not depend on the evolution of the regions
of */ot,; =0 and the last two terms can be removed. met):U - 0¢ be the normal

vector pointing inside at the positiofu) in the same prototypical contour. The unit normal

vectorn(w(u)) pointing inside the regioQ, (T) in the deformed contour is defined as:

_ W(u) —w(u)
n(W(U)) - ‘VT/(U) _W(U)‘

W(u) =w(x(u) +m(u), T)

By replacing the previous formula in (3.25):

aEfuz _ _ofx a\NJ VTIJ' (u)_WJ (u)
e J, a=2f* (w(u)) {

" }du fori=1..n0j=1.d
i

[W(u) - w(u)
By replacing this in (3.24) and separating the teraide the brackets to both sides of the

equality:
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[ &WW, uydu = [ &u)w, (u)du fori=1.n0j=1.d
_ (@=2f*(w(u)))dw, /ot | - (3.26)
O]

&(u)

Notice that the pointgy(u) draw a shape which is smaller than the one drayihb

pointsw(u) which form the contou€(T), as shown in the following figure:

C(T)={w(u)}

{w(u)}

Figure 3.3: Convex contour and its displaced vergianormal direction

Also, if the deformed contour is convex, the fisbiape is always inside the second one.
Moreover, if we assume the centerof the contourC(T) as the center of our coordinate

system, any line drawn with origin mwill intersect the contour created by the poif{s)
before than the conto@(T). Specifically, for lines traveling in the axigéction:
W, (u)~z;| <|w,()~z]| forj=1.d ... (3.27)

Notice that sincev(u) is the displacement of a point in the contourhi& normal direction
of the prototypical undeformed contow¥, (u) -z, has zeroes in the same valuesdhan
w, (u) -z, and they both have the same sign. By the addiireperty of the integrals, the
termz can be added into both sides of equation (3.26):

ju E(U)(W, (u) - z;)du = ju E(u)(w, (u)-z)du for j=1.d

Which leads to an absurd by the property (3.27).
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Chapter 4. Implementation Issues

4.1. Radial BasisFunctions Warping

Given two sets ofi corresponding source and target points dhdamensional space called
S=(s,S,,--,S,)" andT =(t,,t,,...,t,)" such thats 00" andt, 00° fori = 1..n. We are
looking for a warping functionw(x,T):0¢x0™ - 0 which allows calculating the

deformed locationv for every point, such that the source points are mapped exaddytie

target points. For solving this problem tlagial basis functions warpinf] is employed:
n d
W T) =D 0 (S T)OX =5, ) + 2y (ST)+D b u(ST)X - (A1)
j= j=1

In the previous formula (4.1) eadh (S,T)OO¢ is a weight for the radial basis function

@(r) =r?log(r) for j = 1...n+d+1. The last two terms account for the constant lavehr

portions ofw. As it was stated before, we want a functie¢x,T) such that it maps each
source point to its correspondent target point:

w(s,T)=t, fori=1..n

ixj(s,T)zo . (4.2)

j=1

n L;(ST)s;; =0 fori=1.d

j=1

Let 0,q and 1,4 be pxq matrices of zeroes and ones respectively. Let

AGT)= (S T)A(ST) A (ST, T=(t,t,.t,04q)" and ®(S) be a nxn

matrix such thaty ;(S) = @(s ~s[). Formulas (4.1) and (4.2) can be expressed asearli

equation system:

K(SAST) =T

K (S) = 11xn
ST Od +1xd+1

Lemma4.1:
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Everyradial basis functions warping linearly depends on the set of paramefeend it
is axis independent
Pr oof:

Formula (4.3) can be rewritten as:

A(ST)=R(ST
R(S) =K (S)

Let r ()00 be thej-th row of the matrixR(S). The previous formula for theth

weight can be written as:
., (ST)=r,(S)T forj=1.n+d+1

Since the lasti+1 rows of the matrixT are zeroes, the previous formula can be reduced

to:
A (ST)=Dr (S, forj=Ll.n+d+1 ... (4.4)
i=1

By replacing (4.4) in (4.1), the warping functiancan be expressed in terms of the target

pointst;:
w(x,T) = > t,b(x,S)
i=1
n d
b (%,9) = X1, (SO(X =5,) + 10,1 (S) + D vy (9)X,
j=1 j=1
Finally:
ow,
a_sz'(X’S) fori=L..n0j=1..d
b, .. (4.5)
%zo fori=1.n0j#k0j,k=1.d
i
L

Observation 4.1:
Since onlyT changes trough all the optimization process 8nd constant, it is more

efficient to invert the matrix(S) in the beginning of the process and to recaleudS, T)
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by using (4.4) at each step, rather than solvirg lthear equation system (4.3) at each

iteration.

4.2. BayesClassifier

Remember that by definition (3.1) theint classifierf(w,T) represents the probability that
the pointw belongs to the true object regi@y, . In order to make use of the Bayes rule, we

introduce an equivalent notation:

P(Q, |w)=Priw0Q,]

p(w|Q,) = p, (I (W))
for k =in,out

Where P(Q, |w) is the so callegbosterior probabilityand p(w|Q,) is thelikelihood

The first one corresponds to the probability ofongling to a region given an intensity level,

while the second one is the probability densityction of the intensity levels on each region.

Let P(Q,) theprior probability, thepoint classifier fw,T) is defined as:

pin (I (W))P(an) + pout(l (W))P(Qout)

In our implementation of (4.6) we assumed thatgher probabilitiesare equal such that
P(Q;) = P(Q,,) = 05. Thelikelihoodsfollow a Normal distribution in both regions ananc
be modeled in two different ways. When no prior Wiexlge is available regarding the
intensities for the object and background regiting,means and variances are approximated
by using themaximum likelihood estimationn this case, the sample means and variances
approximate the real means and variances:

P (1 (W)) ~ N1, (T),0%(T)) fork=in,out ... (4.7)

When prior knowledge is available regarding thernsities for the object and background

regions, the means can be approximated by usinBdlesian parameter estimatiom this

case, we have an initial guess of the mqad](swith an uncertainty:yék for k = in,out After
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n iterations, the sample means are averaged witiniti@ guess in order to approximate the

real means:

G(ZJ,k w (T)+o; (MM
nog, +0;(T)

P (1 (W) ~ N(n ,02(T)) fork =in,out ... (4.8)

Image classification is usually performed for déter points, such as pixels or voxels.
Bilinear interpolation is performed for 2D imagesadrder to evaluate non-discrete locations.

Trilinear interpolation is performed for 3D images.

4.3. Integral Approximation

A contour integral needs to be computed in ordecdmpute the update rule for the
gradient descent methaab presented in (3.7). For segmenting 2D imadeesgcontour is a
curve which is approximated by using a set of cotew segments. The integral over the
contour is evaluated as the summation of the iatdgr each segment. If we assume that the

size of each segment is smaller than the sizepiked, thetrapezoidal rulewill generate a

good approximation. Le#,b 002 be the coordinates of the extremes of the segntertt)

and g(w):02 - O be the function to be integrated. The integralgproximated by:
a)+g(b
L(a,b)g(w)dwza_bw (49)

For segmenting 3D images, the contour is a surféteh is approximated by using a
triangle mesh. The integral over the contour iduatad as the summation of the integral for

each triangle. If we assume that the size of edahdle is smaller than the size of a voxel, the

trapezoidal rulewill generate a good approximation. Lagb,c00° be the coordinates of the

vertices for the trianglé(a,b,c) and g(w):0° — O be the function to be integrated. The

integral is approximated by:

_b-a)x(c-b) (9@ +g(b) + g(c))
L(a,b,c) g(w)dw = 2 3 ... (4.10)

The first part of the equation corresponds to theohute value of the signed area of the

triangle A(a,b,c) . Finally, recall that in order to compute the ugdaile (3.7), the derivative
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of thewarping function(3.9) needs to be computed as in (4.5). This foameturns a value
which depends on the undeformed coordinates gbibitypical contour. Notice that we are
evaluating the function only on known vertices leé tontour, such as segment extremes and
triangle vertices. Therefore, the underformed coarte x for every deformed coordinate

after applying thevarping functioris known.

4.4. Additional Stepsfor 2.5D

As explained in 3.5, the first step in 2.5D segragah is to find the intersection between
the 3D surface and each 2D image in order to coentheg 2D contouC(T) as shown in
figure 3.1. This is performed by intersecting eveigngle in the deformed mesh with each

2D image. A triangleA(w?,w°,w°) intersects the image plane when two segmentseof th

triangle intersect that plane, as shown in thefailhg figure:

b

w2 w
: Wbc
Wa< <

C

Now
Figure 4.1: Intersection between a triangle andyeralane
In the previous figure, the poimt® is the intersection of the segmeiftv®,w°) with the

image plane, and™ is defined in a similar way. By using these twormhnates, the integral
of the segment(w®,w"™) is evaluated by using (4.9). The 3D normal veofothe triangle
A(w?,w°,w°) is also projected into the image plane as neeuégi11).

Finally, recall that in order to compute the updatie (3.7), the derivative of thearping
function(3.11) needs to be computed as in (4.5). This ftameturns a value which depends
on the undeformed coordinates of the prototypicalt@ur. Notice that we are not relying on
known vertices of the contour due to the intersectirocess, but on the coordinate and
W™, Letx?, x°, x° be the undeformed coordinates for the deformeddinatesw?, w®, w®, we

can compute the linear approximation:

a7



ac a
‘ -W

X% = x? + (XC _Xa)

w - w|

While x*° is computed in a similar way. Notice that thisais approximation since the

radial basis functions warping not linear on the undeformed coordinates
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Chapter 5. Results

5.1. 2D Segmentation of an Image
The image to be segmented was immersed in the ioabedsystenj—-1,+1] x[-1,+1] . The

initial configuration was set as the known solutadter rotating 10° and translating (0.1, 0.1)
units as shown in figure 5.1. The step size forgralient descent methd8.6) was set to

y = 005 and the weights for the fuzzy set and the topologaservation energies were both
set to 1.0. The step size for the derivative appmation (3.15) was set tb = 0.001.
Maximum likelihood estimatioms in (4.7) was used for approximating the meam$ a
variances for the object and background regiongurgi 5.2 shows the curve after 35

iterations.

Figure 5.2: Final configuration for the 2D segmépta
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5.2. 2.5D Segmentation of a Cardiac MRI Sequence

The sequence of 25 magnetic resonance images ([dRBH segmented were immersed in
the coordinate systefr1+1]x[-1+1]x[-1,+1]. The initial configuration for all frames was
set as the known solution in the mid frame aftéatiog 5° and translating (0.1, 0.1, 0.1) units
as shown in figure 5.3. The step size forghadient descent methdd.6) was set tg = 001
and the weights for the fuzzy set, topology prestom and temporal coherence energies
were set to 1.0, 1.0 and 20.0 respectively. Thp siee for the derivative approximation
(3.15) was set tdh = 0.001.Bayesian parameter estimatioms in (4.8) was used for
approximating the means and variances for the blgjled background regions. The initial

guesses of the means were set g =04 and p,,, =005 with an uncertainty

o2 =02 =0.025. Figure 5.4 shows the surface after 80 iteratfonshree different frames.

0,in

0,out

Figure 5.4: Final configuration for the 2.5D segation (three different frames)
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5.3. 3D Segmentation of aLaryngeal CT

The computed tomography (CT) volume to be segmentedimmersed in the coordinate
system[-1+1]x[-1,+1] x[-1,+1] . The initial configuration was set as the knowruson
after rotating 2.5° and translating (0.05, 0.05059 units as shown in figure 5.5. The step
size for thegradient descent methd@8.6) was set ty = 015 and the weights for the fuzzy
set and the topology preservation energies weré bet to 1.0. The step size for the
derivative approximation (3.15) was sethi= 0.001.Maximum likelihood estimatioas in
(4.7) was used for approximating the means andanees for the object and background

regions. Figure 5.6 shows the surface after 5atitars.

Figure 5.5: Initial configuration for the 3D segntetion

Figure 5.6: Final configuration for the 3D segmépta
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5.4. Comparison of Probability-Based Forces

A comparison between different probability-basetemal forces was performed in order
to measure the advantage of using the proposed.fohe initial configuration, step sizes and
topology preservation factor were the same as ti@s ased in the 2D implementation. The
region-dependent descriptor framework as defind@.24) and (2.25) was used.

The following table shows the different externarckes as well as their object and
background descriptors 2and & columns). The probability density functions of the
intensity levelspi,(1(w)) andpou(l(w)) were approximated as Normal distributions. Défe

force factors (4 column) were used since the magnitudes of thergarforces are different.

Object Background Force
External force descriptor descriptor =
actor
Kin Kout
Adaptive fuzzy C-means in Pout 1 0.1774
(2.21) p_
(maximum
value: 8)
Region probability in (2.22) -logp, —log p,y 0.2310
and (2.23)
Entropy in (2.26) - p, logp, ~ Pou 109 Py 0.2572
Mutual information in (2.27) ‘Qm‘ | |Qout| I 0.4476
— . 10 . — (0]
‘Q‘ pln gpln |Q| pout gpout
ProposedFuzzy sets in (3.5 Pout [ 1.0000
and (37) pin + pout pin + pout

Table 5.1: Description of probability-based forces

The rationale for computing the force factors iggemerate the same average magnitude

for every different force. In order to do this, tt@al absolute force magnitude over all

intensities should be equal for every force. Thigiven by:

5

(kin (V) - kou'( (V))(

‘Qin‘
2
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Where the first term is the force magnitude foiraansity levelv by assuming that it does
not depend on the evolution of the contour. Theosdcterm is the probability density

function of the intensities in the overall image.rof the known solution

P (1 (W) ~ N (0640400085 , p,,(I(W)) ~ N(0432000177 , |Q,|/]Q/=0.1217 and

\Qout\/\Q\ =0.8783
In order to compare the results, the mean squaoe ef the landmarks was chosen as a
measure of convergence. Given the known solufiband its approximatioii, each of them

composed oh two-dimensional landmarks, the mean square esrdefined as:

MSET,T*) =%Z S, -t,)

i=1 j=12
The following chart shows the mean square errothin Y axis versus the number of

iterations in the X axis for each technique:

0.04

0.035 +

0.03 4

0.025 4

0.02 4

0.015 4

0.01 ~

0.005 +

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

AFCM — Region probability Entropy — Mutual information — Fuzzy sets

Figure 5.7: Convergence of probability-based forces

The fastest convergence was reached by the profozeg setdorce. Only theentropy
force behaved similar to the proposed force, sbath converge asymptotically to the known
solution. Adaptive fuzzy C-meanas well asregion probability have a slow linear
convergence. It is also shown that timeitual informationforce is sensitive to the initial

contour, since it did not converge to the knowmugoh.
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In order to graphically understand this behavitie force magnitudeg, -k , were

computed from the known solution. Figure 5.8 shidvesprobability density functions, where
the X axis corresponds to the intensity levels.id¢othat the two curves intersect each other

when the intensity value is approximately 0.55.

P E DI PP HED>PLELELN O HED L >
o > NN PN N N U S PN M PN U

‘ — Object —Background ‘

Figure 5.8: Probability density functions for timeaige

Figure 5.9 shows the force magnitudes for eachaitity-based force, where the X axis
corresponds to the intensity levels. From figui& B&.is expected that force magnitudes are
positive for intensity values less than 0.55 anglatige for intensity values greater than 0.55.
The rationale is that the curve should shrink wadrackground pixel is detected, and expand
when an object pixel is detected. Even thought ean be noticed th@formation entropyas
well as themutual informationforces does not follow this rule for very low aslias very
high intensity values. Notice also that thetual informatiorforce do not cross the X axis in
0.55. Theadaptive fuzzy C-mearas well as theegion probability shrink and expand the
deformable model properly, but the magnitude isbradénced. A small negative value at the
right compared with a larger positive value at léfe indicates a small expansion compared
with a larger contraction. Only the propodedzy set$orce properly equilibrates the amount

of expansion and contraction.
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——AFCM —Region probability Entropy — Mutual information —— Fuzzy sets

Figure 5.9: Magnitude of probability-based forces
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Chapter 6. Conclusion and Future Work

6.1. Conclusion

A deformable model which is based on thezy sets theonyas presented. A nesxternal
energywas derived as a result of maximizing tnesp probabilitythat the contour accurately
separates the image into two regions. Unique swiudind convergence is ensured for a
perfect point classifigranaxis-independent wargnd a convex contour.

The proposed force obtained the fastest convergaimn compared versus different
probability-based forces. This force asymptoticalbnverged to the known solution. It was
also shown that the proposed force properly eqaids the amount of expansion and
contraction of the deformable model.

Radial basis functionsvere used for contour parameterization, whichvadlaising an
arbitrary mesh as deformable model. As additiooalstraints, two simpleternal energies

were defined for ensuring topology preservation t@neporal coherence.

6.2. FutureWork

There are several ways of extending this work. Aerstatistically rigorous comparison of
convergence speed of the proposed force versudiffeeent probability-based forces should
be performed.

A more general proof of unique solution and congacg should be developed. This
general proof should take into account the useoofaonvex contours as well as noisy point
classifiers, which can formally include non-spdgiand spatially correlated error.

Boundary-based external energies based on fuzgycaatbe defined. Finally, regularized
region indicator functions can be applied insteddhe one used in our formulation. This
allows integration over the contour neighborhoogtéad on only in the infinitesimally thin
contour. As a result, this enhancement can adavarflof smoothing and give more hints for

the evolution of the contour.
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