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Abstract 

 

A new region-based external energy which is based on the fuzzy sets theory is presented. 

The proposed force converges fastest and asymptotically among different probability-based 

forces. Conditions for ensuring unique solution and convergence are analyzed as well. 

Additionally, a parametric contour representation is proposed by using radial basis functions. 
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Chapter 1. Introduction 

 

1.1. Motivation 

Image segmentation is the process of distinguishing objects from the background. Its 

importance has been increased in different applications in the past years. Medical image 

segmentation is one of the areas in which prior knowledge such as the number and shape of 

the objects to be segmented can be used. Even though image segmentation remains a difficult 

task due to the tremendous variability of object shapes, noise and sampling artifacts [35]. 

Techniques which only rely on edge detection and thresholding often fail in segmenting 

images on which the previous problems are present. On the other hand, deformable models 

are contours (curves or surfaces) which are deformed in order to minimize their internal and 

external energies. The internal energy is computed from the curve itself and it ensures 

smoothness of the contour. It can also include prior information about the object shape. The 

external energy is computed from the image data and it ensures the convergence of the 

contour to the object boundaries. 

The identification of image regions belonging to the object and background does not allow 

the understanding of the object in terms of its orientation and identification of constitutive 

parts. The use of labeled deformable models allows the easy identification of object parts after 

segmentation. For instance, a labeled model can contain the 17 left ventricular zones defined 

by the American Heart Association [6] for myocardial segmentation. Also, since deformable 

models are expressed in real-valued coordinates, they can obtain sub-pixel accuracy [35]. 

Deformable models can be classified as parametric and geometric. Parametric deformable 

models represent contours as explicit formulas in terms of a small set of parameters. For any 

given parameter values, the curve or surface which represents the object contour can be drawn. 

Geometric deformable models represent shapes as a level set (c.f. implicit function) over the 

image domain. After segmentation, the result is an image of positive and negative values 

corresponding to object and background pixels respectively. Topological adaptation such as 
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splitting and merging parts during deformation are naturally handled in geometric models [35], 

while shape priors are easier to handle in parametric models. 

Deformable models can be also classified as boundary-based and region-based. Boundary-

based deformable models adapt by using an external energy driven by the gradient of the 

image. This is due to the fact that object boundaries correspond well to strong gradients. On 

the other hand, region-based deformable models adapt by using an external energy driven by 

region descriptors [19] which for instance can be based on the probability distributions of the 

intensities. Region-based approaches behave more stable and have non-trivial local minima 

that are often visually meaningful when compared with boundary-based approaches [7]. This 

is due to the fact that boundary-based methods are usually pulled towards noisy or fragmented 

edges. 

 

1.2. Problem and Objective 

In applications such as medical image segmentation, prior knowledge is available 

regarding the number and shape of the objects to be segmented. On the other hand, region-

based information is very important in the absence of strong image gradients. The difference 

between the distributions of the intensity or some other texture property for the object and the 

background regions can be used in order to define more stable energy terms. Region-based 

external forces which make use of this prior knowledge vary in speed of convergence. 

Furthermore, convexity properties of the energy functions are poorly understood. 

As a result, this research reviews several internal and external forces. A deeper analysis of 

the speed of convergence is performed for region-based forces which are based on probability 

measures. A new external force is proposed in order to obtain a faster convergence. 

Theoretical aspects such as conditions for ensuring unique solution and convergence are also 

analyzed. 
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1.3. Original Contribution 

A deformable model which is based on the fuzzy sets theory is presented. A new region-

based external energy is derived as a result of maximizing the crisp probability that the 

contour accurately separates the image into two regions. The proposed force converges fastest 

and asymptotically among different probability-based forces. 

Unique solution and convergence is ensured for a perfect point classifier, an axis-

independent warp and a convex contour. 

A parametric contour representation is proposed by using radial basis functions, which 

allows using an arbitrary mesh as deformable model. As additional constraints, two simple 

internal energies are defined for ensuring topology preservation and temporal coherence. 

 

1.4. Document Organization 

In Chapter 2, the common framework for deformable models is explained. Several 

boundary-based and region-based external energies which were proposed by different authors 

are reviewed. Different shape parameterization techniques and their internal energies are 

presented in this chapter as well. Finally, results on the literature regarding unique solution, 

convexity of the energy function as well as speed of convergence are reviewed. 

In Chapter 3, an external energy is derived as a result of maximizing the crisp probability 

that the contour accurately separates the image into two regions. Concepts such as point 

classifier as well as axis-independent warps are also introduced. Conditions for ensuring 

unique solution and convergence are analyzed in this chapter as well. 

In Chapter 4, several implementation issues are presented in detail. Radial basis functions 

warping is demonstrated to be a class of axis-independent warping. The largely known Bayes 

classifier is used as a point classifier. Methods for approximating contour integrals are 

presented as well as additional steps for 2.5D segmentation. 

In Chapter 5, segmentation of a 2D image, a sequence of few horizontal and vertical 2D 

cardiac magnetic resonance images (MRI) as well as a 3D computed tomography (CT) 
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volume are shown. An analysis of the speed of convergence of the proposed force versus 

different probability-based forces is performed. 

In Chapter 6, conclusions are drawn from the results which were obtained in the previous 

experiment. Several ways of extending this work are proposed as well. 
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Chapter 2. Related Work 

 

2.1. Deformable Models 

Deformable models were first introduced by [20] as a curve C over a 2D image 2ℜ⊂Ω  

which minimizes the energy function: 

)()()( int CECECE ext+=  … (2.1) 

Where Eint and Eext are the internal and external energy respectively. The internal energy is 

computed from the curve itself and it ensures smoothness of the contour. The external energy 

is computed from the image data and it ensures the convergence of the contour to the object 

boundaries. The internal and external energy can be defined as a weighted sum of several 

energies. 

The curve C which minimizes the energy function (2.1) is found by using the gradient 

descent method. The contour is made dependant on the time t such as C(t). Given an initial 

contour C(0) and the step size γ , the next approximations of the solution are computed as: 

))(())(()(

00)()(for    )()()(

int ttt
t

ttCtt
t

ttt

ext wfwf
w

w
w

ww

+=
∂
∂

>γ∧≥∧∈∀
∂
∂γ+=∂+

 … (2.2) 

Where fint and fext are the internal and external forces respectively. Forces are computed as 

the gradient of the equivalent energies with respect to the parameters which drive the 

deformation of the contour. In most of the cases, )()( wwf extext E−∇=  is the negative of the 

gradient of the external energy with respect to each image axis. Because of this reason, some 

authors prefer to define forces instead of energies. 

 

2.2. Common Notation 

We want to segment a d-dimensional image defined over the region dℜ⊂Ω  into two 

disjoint regions inΩ  and outΩ  separated by a simple closed contour dC ℜ⊂  such that 
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Ω=ΩΩ outin U . The region inΩ  represents the object of interest, while outΩ  represents the 

background. 

 

Win 

Wout 

C 

n 

 

Figure 2.1: Contour and disjoint regions 

A simple closed contour is a contour which does not contain end points neither self-

intersections [2]. The region inΩ  would be not necessarily convex neither fully-connected, 

since the contour C would be a set of simple closed contours. 

Given a region dR ℜ⊂ , the area in 2D as well as the volume in 3D is called hypervolume 

in a generalized way. The hypervolume of the region is defined as ∫=
R
dR w . 

In the 2D case (d = 2) the images are composed by pixels and the contour is a curve. In the 

3D case (d = 3) the images are composed by voxels and the contour is a surface. Image 

locations (pixels or voxels) are called points in this research, in order to define a general 

method for segmenting 2D and 3D images, as well as a sequence of them. 

Let I(w) be the image intensity at the point w. Let dC ℜ→:)(wn  be the unit normal 

vector for a point w in the contour dC ℜ⊂ , such that n(w) points inside the region of the 

object of interest inΩ  as shown in figure 2.1. 

 

2.3. Boundary-Based External Energies 

2.3.1. Line Detector 

The energy function for detecting black or white lines is defined in [20] as: 

ww dICE
Cline ∫±= )()(  … (2.3) 

Since the equation (2.1) is to be minimized, a positive sign on (2.3) allows detecting black 

lines, while a negative sign can be used if white lines are to be detected. 
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2.3.2. Edge Detector 

Object boundaries correspond well to strong gradients. The energy function for detecting 

edges in the image is defined as a function of the image gradient: 

ww dIgCE
Cedge ∫ ∇= ))(()(  … (2.4) 

Since it is required that this energy be smaller at the edges and greater in homogeneous 

regions, one choice is 2)( rrg −=  as described in [20]. Another choices are )1/(1)( rrg +=  or 

)1/(1)( 2rrg +=  as defined in [5]. 

 

2.3.3. Dynamic Edge 

The edge detector described in (2.4) has the drawback of creating oscillations of the 

deformable model across the pixels with high gradient due to the choice of the time step [14]. 

A dynamic edge force was created in order to deal with this problem. Let g the pixel of 

maximum gradient in a mäm window around w. The force is defined as: 

)())()(()( wnwnwgwf •−=dedge  … (2.5) 

This force can be seen as the projection of the direction of greatest gradient into the normal 

vector. As a result, the contour will be pushed outside or inside in order to intersect the pixel 

of greatest gradient. Not any oscillations in the mesh occur since the force is proportional of 

the necessary displacement in order to hit the pixel of maximum gradient (and not the 

gradient itself), and since it follows the normal direction. Since it is possible to pre-compute 

the corresponding pixel of maximum gradient g associated to the mäm window for every 

pixel w, it is not necessarily time-consuming. 

 

2.3.4. Distance Map 

The use of distance maps is proposed in [9] in order to make edges have a bigger area of 

influence. First, edge pixels are detected by using a Canny-Deriche local edge detector. 

Second, the value of the distance map at each pixel is defined as the Euclidean distance from 
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the pixel to the closest edge pixel. Even though the distance map is calculated as a pre-

processing step, a Chamfer distance is used for approximating the Euclidean distance in order 

to reduce the number of computations into a two-pass algorithm. 

On the other hand, a initial watershed segmentation is proposed in [16]. This technique 

splits the image into several small regions with homogeneous color, which are divided by 

edges. But the main drawback of this algorithm is their high sensitivity to noise which results 

in an over-segmentation. Even though, it provides a good initial image partition which can be 

used in order to drive the evolution of the contour. 

Let d(w) be the distance between a pixel w and the nearest edge pixel. The energy function 

which attracts the contour towards the edges is defined as: 

∫=
Cdist ddgCE ww))(()(  … (2.6) 

Since it is required that this energy be greater for larger distances, g(r) is usually chosen as 

2

exp)( rrg −−=  or rrg /1)( −=  as in [9]. Another choice is 2)( rrg =  as defined in [16]. 

 

2.3.5. Dynamic Distance 

The distance energy as defined in (2.6) entails very large deformation away from the edge 

pixels, which causes an unstable behavior and it is ambiguous at pixels which are equidistant 

from two edges [14]. For solving this problem, a dynamic distance force was created. Let g 

the nearest edge pixel in the direction of the normal at the pixel w. The force is defined as: 

wgwf −=)(ddist  … (2.7) 

A maximum number of traversed pixels in the forward and backward direction of the 

normal is used. Notice that this force pushes the model in the direction of the normal since g 

is searched from the pixels on that direction. Since this operation is performed each time the 

model deforms, it is time-consuming. 
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2.3.6. Gradient Vector Flow 

The distance energy defined in (2.6) can cause difficulties when deforming a contour into 

concavities. This is due to the fact that every pixel is attracted to the nearest edge. In a U 

shaped object, forces tend to point horizontally in opposite directions inside the concavity, but 

not any force pushes the contour downward. Therefore, the model does not converge inside 

the concavity. The edge detector (2.4) with a Gaussian filter with standard deviation σ  can be 

used instead as proposed originally in [20]. Its range of influence can be increased by 

increasing the value of σ . Even though the boundary location becomes less accurate and 

distinct, ultimately eliminating the concavity itself when σ  becomes too large [34]. 

In order to solve these problems, a new force is defined in [33] [34] as: 

)()( wvwf =gvf  … (2.8) 

Where v is the pre-computed gradient vector flow at the pixel w. Let m(w) be an edge map 

derived from the image I(w) having the property that it is large near image edges, such as 

(2.3) or (2.4). The gradient vector flow field is a diffused version of the gradient field m∇  

which keeps the desired property of having high gradients near the edges, but it extends the 

gradient field further away into homogeneous regions. 

Given an initial value m∇=)0,(wv , v is defined as the equilibrium solution to the 

following partial differential equation: 

))(()(

00for    ),(),(

2 mmhmg
t

t
t

ttt

∇−∇−∇∇=
∂
∂

>γ∧≥∧Ω∈
∂
∂γ+=∂+

vv
v

w
v

wvwv
 

Where 2∇  is the Laplacian operator applied to each spatial component, g(r) is the 

smoothing term since it produces a smoothly varying vector field, h(r) is the conformity term 

since it encourages the vector field to be as close to m∇  as possible. In [34] these terms are 

chosen to be µ=)(rg  and 2)( rrh = , where µ  should be set according to the amount of noise 

present in the image, and it governs the tradeoff between smoothing and conformity. When 

little smoothing is required in the presence of large gradients 
2)/(exp)( µ−= rrg  and 
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)(1)( rgrh −=  can be used instead as proposed in [33]. In this case µ  determines to some 

extent the importance between smoothing and conformity. 

 

2.3.7. Pressure Force 

If there is not any edge detected by (2.4) as in a constant intensity area, the curve shrinks 

on itself and vanishes to a point. Also, if the initial contour is not close to the desired solution, 

the contour can fail to converge due to the presence of weak and spurious edges. In order to 

solve both of these problems, a pressure force which inflates or deflates the deformable model 

is defined in [10] as: 

)()( wnwf ±=press  … (2.9) 

A negative sign on (2.9) inflates the model, while a positive sign deflates it. The weighting 

parameter for this force should be selected so that it is smaller than the edge detector at 

significant edges, and it avoids weak and spurious edges. As shown in [9], this force is 

equivalent to the energy function: 

inpress CE Ω= m)(  … (2.10) 

Minimizing this energy corresponds to obtain a contour C which minimizes its area inside 

it. Therefore, the force described in (2.9) pushes the model in the direction of the normal 

pointing outside the contour. The drawback is that the user needs to select the sign in order to 

inflate or deflate the model, so that the initial contour has to be inside or outside the solution, 

but not across [34]. 

 

2.3.8. Interactive Constraints 

In some cases, automated external energies fail to deform the model to the desired 

boundary. Interactive constraints allow the user to define points which are used for pushing or 

pulling the model. The spring energy [20] which allows defining an attraction force between 

two points w1 and w2 is defined as the minimization of the square distance between them: 

2

2121 ),( wwww −=springE  … (2.11) 
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In the previous energy function, w1 is a point on the curve and w2 can be either another 

point on the curve or a fixed position. The volcano energy [20] which allows defining a 

repulsive force between two points w1 and w2 is defined as the maximization of the square 

distance between them: 

2

21

21

1
),(

ww
ww

−
=volcanoE  … (2.12) 

 

2.4. Region-Based External Energies 

2.4.1. Ward Distance 

In order to include region information in the segmentation process, [26] proposed a 

heuristics that makes use of the Ward distance. This distance is defined as the amount of 

energy needed in order to disrupt a contour between two contiguous regions A and B: 

∫∫∫ µ−−µ−−µ−=
B BA ABA BA dIdIdIBAd wwwwww 222 ))(())(())((),(

U
U

 

Where Aµ , Bµ  and BAUµ  are the intensity means on their corresponding areas. Let M a 

small rectangle of lä(2p – 1) pixels which follows the orientation of the normal n(w). The 

rectangle M is composed by three small rectangles: Min and Mout of läp pixels inside and 

outside the contour C respectively, as well as MC of lä1 pixels crossing the contour C. The 

force is defined as: 

)()),(),(()( wnwf CoutCinward MMdMMd +−=  … (2.13) 

If the Ward distance or the energy needed to disrupt the area inside the contour is greater 

than the one needed for the area outside, the contour will follow the opposite direction of the 

normal. This will cause the expansion of the deformable model which is a desirable result. 

 

2.4.2. Mean Square Error 

By assuming that the image is composed of two regions of approximately constant 

intensities, [8] proposed to reduce the mean square error of the intensities with respect to the 
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intensity means inµ  and outµ , inside and outside the contour C respectively. The energy 

function is defined as: 

∫∫ ΩΩ
µ−+µ−=

outin

dIdICE outinmse wwww 22 ))(())(()(  … (2.14) 

In this model, inµ  and outµ  are assumed to be constant with respect to the evolution of the 

contour C in order to derive the force. The force is defined as: 

)()))(())((()( 22 wnwwwf outinmse II µ−−µ−=  … (2.15) 

When the intensity of a pixel in the contour is closer to the inside intensity mean inµ  than 

to the outside intensity mean outµ , the force follows the opposite direction of the contour 

normal. This creates the desirable effect of making the deformable model to expand. In the 

opposite case, when the intensity of a pixel is closer to the outside intensity mean, the 

deformable model contracts. In [8] texture properties such as the curvature or the orientation 

were also used in (2.14) and (2.15) instead of intensity values. 

 

2.4.3. Mumford-Shah Functional 

It can be assumed that the objects in an image have smoothly varying surface and 

reflectance properties in small areas. Even though it is improper to assume that the image is 

piecewise smooth due to the presence of noise. The Mumford-Shah model approximates an 

original image I(w) by piecewise smooth approximations )(ˆ winI  and )(ˆ woutI  inside and 

outside the boundary. The energy functional is defined in [4] as: 

∫

∫

Ω

Ω





 ∇µ+−

+




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out
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dIII

dIIICE
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ininmshah

wwww

wwww
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)(ˆ))(ˆ)((                 

)(ˆ))(ˆ)(()(
 … (2.16) 

Where the gradients )(ˆ winI∇  and )(ˆ woutI∇  are computed with respect to each image axis. 

The first terms on both integrals reduce the amount of noise, which is measured as the square 

difference between the original image and its piecewise smooth approximations. The second 

terms on both integrals prevent high intensity gradients inside and outside the contour, 
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therefore generating smooth regions. The factor µ  governs the tradeoff between noise and 

smoothness. 

The functions )(ˆ winI  and )(ˆ woutI  in [4] are chosen to be the intensity means of several 

small areas in the image. Notice that one specific case is the model proposed in (2.14), when 

the smooth approximations are chosen to be the intensity means inside and outside the 

contour C and therefore the gradients vanish. 

In this model, )(ˆ winI  and )(ˆ woutI  are assumed to be constant with respect to the evolution 

of the contour C in order to derive the force. The force is defined as: 

)(
)(ˆ))(ˆ)((

)(ˆ))(ˆ)((
)(

2
2

2
2

wn
www

www
wf


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






∇µ−−−

∇µ+−
=

outout

inin

mshah

III

III
 … (2.17) 

Notice that texture properties such as the curvature or the orientation can also be used in 

(2.16) and (2.17) instead of intensity values. 

 

2.4.4. Pairwise Dissimilarity 

A pairwise dissimilarity measure is proposed in [28] in order to encourage similarity 

within the regions while discouraging inter-region similarity. The energy function is proposed 

in two different versions, even though the derived force is the same. The first version of the 

energy function maximizes inter-region dissimilarity by minimizing: 

∫ ∫Ω Ω
−=

in out

ddgCEpwd wvvw ),()(  … (2.18) 

Where g(w,v) is a dissimilarity measure between the pixels w and v, such that a greater 

value indicates a lower similarity. The second version of the energy function minimizes 

dissimilarity inside each region and is given by: 

∫ ∫∫ ∫ Ω ΩΩ Ω
+=

out outin in

ddgddgCEpwd wvvwwvvw ),(),()(  … (2.19) 

As demonstrated in [28], both (2.18) and (2.19) arrive to the same force for the curve 

evolution. The force is defined as: 
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)(),(),()( wnvvwvvwwf 




 −= ∫∫ ΩΩ outin

dgdgpwd
 … (2.20) 

Where the dissimilarity measure is chosen to be the absolute difference of the intensity 

values, such that )()(),( vwvw IIg −= . Other more sophisticated versions of dissimilarity 

measures based on texture properties and pixel distance can also be defined such as in [28]. 

Notice that the dissimilarity map g(w,v) between every pixel w and v can be pre-computed. A 

reduced resolution of the image is used for v while the original resolution is used for w. This 

is done in order to reduce the amount of required memory and to speed up the computation of 

the integrals in the force (2.20). 

 

2.4.5. Adaptive Fuzzy C-Means 

Adaptive fuzzy C-means segmentation allows partitioning an image into n fixed different 

classes. The result of this algorithm is a membership value 0)( ≥µ wi  for i = 1…n which 

measures the degree of membership of the pixel w to the class i. One requirement for 

membership values is that 1)(
1

=µ∑ =

n

i i w . Let )(1 wµ  be the membership value for the class 

which corresponds to the object of interest. The energy function is defined in [22] as: 
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Notice that when the pixel w is more likely to be part of the object of interest than to the 

background )(max)(1 ww iµ>µ , the factor is negative and the force follows the opposite 

direction of the normal. As a desirable result, the deformable model is inflated in order to 

contain the pixel w. In the opposite case when )(max)(1 ww iµ<µ , the deformable model is 

deflated. 
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2.4.6. Region Probability 

Maximization of the a posteriori segmentation probability is proposed in [25]. The authors 

follow the Bayes rule while several assumptions are made. First, every way of partitioning the 

image into two regions (inside and outside the contour C) is assumed to be equally probable. 

Second, both regions are assumed to be statistically independent since they depend only on 

the pixels contained inside each region. Finally, the intensity of each pixel is assumed to be 

statistically independent. After these assumptions, the a posteriori probability of partitioning 

the image into the two regions becomes: 

∏∏
Ω∈Ω∈

=ΩΩ
outin

IpIpIp outinoutin
ww

ww ))(())(()|( I  

Where pin(I(w)) and pout(I(w)) are the probability density functions of the intensities for the 

object and the background. These probability density functions are approximated by Normal 

distributions or non-parametrically estimated by using the Parzen window method. Since the 

maximization of this formula corresponds to the minimization of its negative logarithm, the 

energy function is defined as: 

∫∫ ΩΩ
−−=

outin

dIpdIpCE outinrprob wwww ))((log))((log)(  … (2.22) 

In this model, pin(I(w)) and pout(I(w)) are assumed to be constant with respect to the 

evolution of the contour C in order to derive the force. The force is defined as: 
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 … (2.23) 

When the intensity of a pixel in the contour is more probable to be part of the object than 

of the background pin(I(w)) > pout(I(w)), the logarithm becomes negative and the force follows 

the opposite direction of the contour normal. This creates the desirable effect of making the 

deformable model to expand. In the opposite case, when the intensity of a pixel is more 

probable to be part of the background than of the object, the deformable model contracts. In 

[25] texture properties were also used in (2.22) and (2.23) instead of intensity values. 
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2.4.7. Region-Dependent Descriptor 

Previous works on region-based deformable models do not focus on the dependence of the 

energy function on the evolution of the regions [19]. This occurs for statistical descriptors 

such as the mean as used in (2.14). The remarkable work done in [19] provides a general 

framework for region-dependent energy functions, as well as it demonstrates that additional 

terms should be used for the derived region-based forces. The energy function is defined as: 

∫∫ ΩΩ
+=

)()(
)()())((

t outt inrdesc
outin

dkdktCE wwww  … (2.24) 

Where kin(w) is the descriptor for the object region and kout(w) is the descriptor for the 

background region. Notice that the dependence on the evolution variable t has been made 

more notorious in this framework. The derived force becomes: 
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The first two terms have an intuitive interpretation. For a pixel w, kin(w) < kout(w) indicates 

that the pixel is more likely to belong to the object than to the background. In that case, the 

sum of the first two terms is negative and the deformable model will follow the opposite 

direction of the normal. This will cause a contraction which is the desirable effect. In [19] 

several implementations based on (2.25) are described, such as descriptors based on means 

and variances. 

 

2.4.8. Information Entropy 

The minimization of the entropy is proposed in [17] in order to segment the image into two 

regions with dominant intensities. The information entropy is a negative measure, since it is 

related with the amount of randomness or information in an event. Recall that the information 

entropy is maximized when every intensity level is equally probable. The entropy is lower 

when only few intensity levels dominate. Therefore, the following energy function is defined 

in order to minimize the entropy in both regions: 
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Where pin(I(w)) and pout(I(w)) are the probability density functions of the intensities for the 

object and the background. These probability density functions are non-parametrically 

estimated by using the Parzen window method. The forces are derived by following the 

framework described in (2.24) and (2.25). 

 

2.4.9. Mutual Information 

The maximization of the mutual information between the intensity and the partition is 

proposed in [21]. Recall that the mutual information is a measure of the mutual dependence 

between two variables, such that their mutual information is zero when they are independent. 

In that sense, the mutual information measures how well the partition into two regions 

explains well the probability density functions of the intensities inside each region. As found 

in [21], the maximization of the mutual information is equivalent to the minimization of the 

conditional entropy due to the fact that the true intensity distributions do not depend on the 

contour. Therefore, the following energy function was defined in [17] and [21]: 
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Where pin(I(w)) and pout(I(w)) are the probability density functions of the intensities for the 

object and the background. These probability density functions are non-parametrically 

estimated by using the Parzen window method. Notice that the energy function (2.27) is a 

weighted average version of (2.26) by using the proportion of the areas of the regions inside 

and outside the contour C. The forces are derived by following the framework described in 

(2.24) and (2.25). 
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2.4.10. Active Appearance Model 

A model which deals with shape and appearance (intensity) fitness with respect to training 

images is proposed in [11] [23]. Shape and appearance are represented a weighted sum of few 

terms involving the most significant variability in the training data. Shapes are parameterized 

by a fixed set of landmarks. These landmarks are manually identified on several training 

images. Subsequently, these shapes are aligned to one another with respect to scaling, rotation 

and translation by using the Procrustes method, which allows analyzing the landmark 

variability in a common coordinate frame. Given N aligned shapes T
LiLiiii yxyx ),...,( ,,1,1,=S  

for i = 1…N, where L is the number of landmarks in the shape. The mean shape S  and 

covariance matrix Ŝ  are computed as: 
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Given N training images Ai and by using the mean shape S  as a common coordinate frame, 

the mean appearance A  and covariance matrix Â  are computed as: 
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By using principal component analysis, the eigenvectors iŜ  for i = 1…n corresponding to 

the largest n eigenvalues iλ  of the covariance matrix Ŝ  describe the most significant 

variability of the landmarks in the training data. Therefore, any shape S can be approximated 

as the mean shape plus a weighted sum of the first n eigenvectors: 
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Where pi for i = 1…n are the shape parameters. In a similar fashion, any appearance A can 

be approximated as the mean appearance plus a weighted sum of the first m eigenvectors: 
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Where qi for i = 1…m are the appearance parameters. Additional parameters are added into 

the model in order to account for global transformations, such as a scaling factor s, a rotation 

matrix R with angle θ and a translation vector t. A landmark on the contour C can be 

calculated from a landmark (xi,yi) in the undeformed common coordinate frame as: 

)(),(for    ),)(()( pStRpl ∈+θ= ii
T

iii yxyxs  

This landmark set T
L ))(),...,(),(()( 21 plplplpL =  is then used to deform the contour by 

using a warping function 222:),( ℜ→ℜ×ℜ LxLw , which maps a pixel x from the mean 

shape S  into the current shape of the curve C. 

In order to maximize the similarity between the intensities inside the curve C and the 

model driven by the shape and appearance parameters, the following energy function is 

proposed: 

( )∫ −=
Saam dAICE xxqxpLw 2),())),((()(  … (2.28) 

Notice that this corresponds to the minimization over the mean shape space S  of the 

square error between the current image and the model, with respect to the shape parameters as 

well as to the appearance parameters. 

 

2.5. Shape Parameterization and Internal Energies 

2.5.1. Spline 

As originally introduced by [20] the deformable curve C is defined as a function 

2]1,0[:)( ℜ→uw , such that for every value of u, w(u) is the position on the curve associated 

with that value. The energy function is defined as: 
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Where the first term inside the integral controls the tension by minimizing the length of the 

curve and therefore prevents the curve to stretch. The second term controls the rigidity by 
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minimizing the curvature and therefore it prevents the curve to bend. The weights )(uα  and 

)(uβ  are usually chosen to be constant with respect to u. The force is defined as: 
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The equivalent equations to (2.2), (2.29) and (2.30) for 3D segmentation are presented in 

[9], where another factor which controls the amount of twisting is added. In order to reduce 

the degrees of freedom, nodes can be prevented from moving between slices as proposed in 

[9]. A more simplified method involves joining 2D segmented contours as in [9] [10]. The 

intermediate cross section is chosen for performing a first segmentation and each solution is 

propagated as the initial contour for the neighbor section. 

 

2.5.2. B-Spline 

B-Splines are proposed in [24] as an efficient and natural way for representing smoothly 

curved objects. B-Splines are piecewise cubic polynomials which shape is driven by control 

points, even though they do not interpolate between them. Given n control points pi for  

i = 1…n, the curve C is defined as a collection of functions 2]1,0[:)( ℜ→uiw  which return 

the position on the curve for a value of u in the segment from pi–1 to pi: 
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Where p–1 = pn–1, p0 = pn and pn+1 = p0. The energy function and force follow the same 

derivation as in (2.29) and (2.30). One of the drawbacks of this parameterization is that it is 

not suitable for interactive delineation of the contour, since it does not interpolate between the 

control points [15]. 
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2.5.3. Hermite 

B-Splines are less suited for objects with sharp corners [15]. Hermite contours are 

piecewise cubic polynomials which interpolate control points as well as allow specifying 

tangent vectors. Therefore they can efficiently represent both smooth and sharp contours by 

the adjustment of the tangent vector parameters. Given n control points pi and tangents ti at 

the control points for i = 1…n, the curve C is defined as a collection of functions 

2]1,0[:)( ℜ→uiw  which return the position on the curve for a value of u in the segment from 

pi–1 to pi: 
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Where p0 = pn and t0 = tn. It can be observed that under this definition 1)0( −= ii pw , 

ii pw =)1( , 1)0(/ −=∂∂ ii s tw , ii s tw =∂∂ )1(/ . The energy function and force follow the same 

derivation as in (2.29) and (2.30). 

 

2.5.4. Superquadric 

A model which accounts for global as well as local deformations is proposed in [30]. The 

global shape is modeled by a deformable superquadric q(u,v) in 3ℜ  with three aspect ratios a1, 

a2 and a3 and the squareness parameters b1 and b2: 
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The aspect ratios allow stretching and shrinking the superquadric with respect to the three 

different axes. For aspect ratios a1 = a2 = a3 = 1 and squareness parameters b1 = b2 = 1, a 

sphere is generated. For squareness parameters smaller than one, a rounded cube is generated. 

For squareness parameters greater than one, a diamond shape is generated. Additional 
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parameters are added into the model in order to account for global deformations, such as a 

scaling factor s, a rotation matrix R and a translation vector t. In order to account for local 

deformations, a displacement function d is also imposed. Therefore, the curve C is defined by 

the function w(u,v) as: 

],[]2/,2/[for 
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In [30] the rotation matrix R is modeled as a quaternion (r1, r2, r3, r4) and the displacement 

function d is expressed as a weighted sum of basis functions. The parameters which govern 

the global deformation (a1…a3, b1, b2, s, t1…t3, r1…r4)
T are allow to change freely in order to 

account for as much as the data as possible. Consequently, the authors do not impose any 

energy function over the behavior of these parameters. Although, the local deformation q(u,v) 

must be small and continuous, which is expressed as minimizing the function: 
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Where the first term allows minimizing the amount of local deformation, and the second 

term controls the local variation of the deformation. 

 

2.5.5. Simplex Mesh 

The use of simplex meshes for representing contours in 3ℜ  is proposed in [14]. Simplex 

meshes allow smooth deformations in a simple and efficient manner, since they have constant 

vertex connectivity. In 2-simplex meshes, each vertex is shared by only three edges, therefore 

each vertex w has three neighbor vertices w1, w2 and w3. 

A tangential force allows controlling the vertex position with respect to its three neighbors 

in the tangent plane. Let 1ε , 2ε  and 3ε  be the barycentric coordinates of the projection p(w) 

of the vertex w into the triangle ),,( 321 www∆  in the normal direction, such that 

332211)( wwwwp ε+ε+ε=  where by definition 1321 =ε+ε+ε . The tangential force is 

defined as: 
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333222111 )~()~()~()()(~)( wwwwpwpwf ε−ε+ε−ε+ε−ε=−=stgt  … (2.35) 

Where 1
~ε , 2

~ε  and 3
~ε  are the desired barycentric coordinates. In order to have vertices 

uniformly spread over the surface of a simplex mesh, the control parameters can be set to 

3/1~~~
321 =ε=ε=ε . 

A normal force allows controlling the mean curvature of the surface through the simplex 

angle. The normal vector n(w) is assumed to be normal to the triangle ),,( 321 www∆ . Also, 

let h(w) be the height of the vertex w, which is the distance between the vertex and its 

projection into the triangle ),,( 321 www∆ , such that )()()( wnwwpw h−= . As described in 

[14], the height of the vertex can be expressed as a function of the simplex angle ϕ  which 

measures the local curvature at the vertex w. The simplex angle is computed by first finding 

both a circle which crosses the vertices w1, w2 and w3 as well as a sphere which crosses the 

vertices w, w1, w2 and w3. The simplex angle 2/π=ϕ  indicates that the center of the circle 

coincides with the center of the sphere, 2/π<ϕ  indicates that the center of the circle is in 

front of the center of the sphere, and 2/π>ϕ  indicates that the center of the circle is behind 

the center of the sphere. Finally, the normal force is defined as: 

)())()~((~)( wnwwwf ϕ+ϕ−=−= hhsnor  … (2.36) 

Where ϕ~  is the desired simplex angle. As explained in [14], several choices can be 

selected for this control parameter. The desired simplex angle can be set to ϕ=ϕ~  in order to 

nullify the normal force and make the surface freely bend around the vertex. The angle can be 

set to 0~ =ϕ  in order to minimize the curvature. By setting the angle to an arbitrary constant 

for every vertex, only global deformations are allowed up to a rotation, translation and scale 

transformations. The desired simplex angle can also be set to the average of the neighbor 

vertices angles in order to entail curvature continuity over the surface. 
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2.5.6. Fourier Decomposition 

A probabilistic model based on a Fourier parameterization of training curves is proposed in 

[27]. This allows a compact representation of smooth shapes where the first terms in the 

Fourier expansion describe global properties of the shape such as translation, while the 

following terms describe local deformations. Let C be a curve defined as a function 

2]1,0[:)( ℜ→uw , such that for every value of u, w(u) is the position on the curve associated 

with that value. The approximation of the curve C by using the first n terms in the Fourier 

expansion is given by: 
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Where A is the parameter vector of Fourier coefficients 2ℜ∈ka  for k = 1…2n+1, and n is 

usually chosen between four and six. Several images are manually segmented in a training 

phase in order to capture the statistical variability of shapes and to generate an energy 

function which allows measuring the fitness of a curve with respect to the training data. 

Statistical independence is assumed between Fourier coefficients as well as between 

components of one coefficient. Therefore, the probability of the parameter vector A is 

expressed as: 
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Where each component is assumed to follow a Normal distribution such that 

),(~)( 2
,,, jkjkjk Nap σµ  for k = 1…2n+1, j = 1,2. Since the maximization of this expression 

corresponds to the minimization of its negative logarithm, the energy function is defined as: 
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2.5.7. Active Shape Model 

Landmark based shape priors are proposed in [12] in order to represent shapes as a 

weighted sum of few terms involving the most significant variability in the shape population. 

Shapes are parameterized by a fixed set of landmarks. These landmarks are manually 

identified on several training images. Subsequently, these shapes are aligned to one another 

with respect to scaling, rotation and translation by using the Procrustes method, which allows 

analyzing the landmark variability in a common coordinate frame. Given N aligned shapes 

T
LiLiiii yxyx ),...,( ,,1,1,=S  for i = 1…N, where L is the number of landmarks in the shape. The 

mean shape S  and covariance matrix Ŝ  are computed as: 
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By using principal component analysis, the eigenvectors iŜ  for i = 1…n corresponding to 

the largest n eigenvalues iλ  of the covariance matrix Ŝ  describe the most significant 

variability of the landmarks in the training data. Therefore, any shape S can be approximated 

as the mean shape plus a weighted sum of the first n eigenvectors: 
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Where pi for i = 1…n are the shape parameters. Additional parameters are added into the 

model in order to account for global transformations, such as a scaling factor s, a rotation 

matrix R with angle θ and a translation vector t. A landmark on the contour C can be 

calculated from a landmark (xi,yi) in the undeformed common coordinate frame as: 

)(),(for    ),)(()( pStRpl ∈+θ= ii
T

iii yxyxs  
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This landmark set T
L ))(),...,(),(()( 21 plplplpL =  is then used to deform the contour by 

using a warping function 222:),( ℜ→ℜ×ℜ LxLw , which maps a pixel x from the mean 

shape S  into the current shape of the curve C. 

No energy function is defined in [12] since the global parameters are allowed to change 

freely and the shape parameters pi are only constrained not to fall outside the range 

]3,3[ ii λ+λ− . Since the eigenvalues iλ  for i = 1…n describe the amount of variance for 

each eigenvector iŜ , this rule is equivalent to allow the shape to vary not more than three 

standard deviations from the mean shape. 

 

2.5.8. Statistical Shape Model 

An energy function is built upon (2.39) in [32] by collecting global and shape parameters 

into one parameter set a = (s, θ, t1, t2, p1…pn)
T where s is the scaling factor, θ is the rotation 

angle, t is the translation vector and p1…pn are the shape parameters as described in (2.39). 

Since the shape parameters pi are weights of different orthogonal eigenvectors, they are 

statistically independent by definition. Also, statistically independence is assumed between 

scaling, rotation and translation parameters. Therefore, the probability of the parameter vector 

a can be expressed as: 
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Where each component is assumed to follow a Normal distribution such that 
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kkk Nap σµ  for k = 1…n+4. Since the maximization of this probability corresponds to 

the minimization of its negative logarithm, the energy function is defined as: 

∑
+

=

−=
4

1

)(log)(
n

k
kssm apCE  … (2.40) 

 



 27 

2.6. Unique Solution and Convergence 

The main disadvantage of deformable models is that convexity properties of the energy 

function are poorly understood. Due to this fact, solutions are often locally rather than 

globally optimal [13]. 

As stated in the original paper [20], scale-space theory can be used in order to avoid non-

significant local minima when performing image segmentation. This requires a process for 

blurring the image to a controllable degree in order to compute energies such as the line (2.3) 

and edge detectors (2.4). The Gaussian filter is the only convolution kernel which meets the 

minimum-maximum principle as well as the semi-group property [18]. The first principle 

states that local maximum or minimum must not increase or decrease, respectively. The 

second property states that the process can start at any scale and still get the same scale space. 

Therefore, [20] proposed using a Gaussian filter with standard deviation σ . The value for σ  

should be decreased for successive steps in the iterative energy minimization. Even though 

the weakness of this approach is that there is not any established theorem for how to schedule 

changes in σ , which leads to unreliable results [35]. 

Proof of unique solution and convergence conditions are presented in [5] for geodesic 

active contours. This class of contours only includes the edge detector as external energy 

(2.4) as well as the tension term in the internal energy (2.29) in order to minimize the curve 

length. If the initial contour encloses the object of interest, the curve will evolve to the object 

boundaries. But notice that since the proof was presented in the framework of geometric 

deformable models, the topology of the curve evolves freely without any control of the final 

shape. 

Convexity of the energy function is analyzed in [13] for the finite differences 

approximation of deformable models. A general boundary-based external energy is assumed 

as well as the internal energy (2.29). As a remarkable result it is demonstrated that the 

convexity of the energy function depends on the parameters )(uα  and )(uβ  of the internal 

energy (2.29) which control the tension and rigidity of the curve. The feasible values for the 
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regularization parameters are determined by the nature of the external energy. Local 

characteristics of the object of interest such as its curvature also affect the convexity of the 

formulation. This phenomenon produces in practice a fast convergence in some regions of the 

object and poor convergence in some other ones. 

Speed of convergence is analyzed in [31] for the finite differences approximation of 

deformable models. A general boundary-based external energy is assumed as well as the 

internal energy (2.29). As a main result it is theoretically proven that the speed of 

convergence depends on the parameters )(uα  and )(uβ  of the internal energy (2.29) which 

allows controlling the tension and rigidity of the deformable model. 
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Chapter 3. The Proposed Deformable Model 

 

3.1. External Energy 

3.1.1. Point Classifier 

Definition 3.1: 

Let *
inΩ  and *

outΩ  be the true object and background regions respectively. A point 

classifier ]1,0[:)( →Ωwf  is a continuous function such that: 

]Pr[)( *
inf Ω∈= ww  … (3.1) 

from (3.1) it can be easily derived: 

)(1]Pr[1]Pr[ ** www finout −=Ω∈−=Ω∈  … (3.2) 

Assumption 3.1: 

Since the object is usually completely contained in the image, it is safe to assume that  

f(w) = 0 for every Ω∉w . 

Lemma 3.1: 

In order to decide to which region a point w belongs to, the following rule is used: 

5.0)( if   

5.0)( if   
*

*

<Ω∈

≥Ω∈

ww

ww

f

f

out

in  … (3.3) 

Proof: 

For a point w, the best action is: “decide that *
inΩ∈w  if ]Pr[]Pr[ **

outin Ω∈≥Ω∈ ww ” and 

“decide *
outΩ∈w  if ]Pr[]Pr[ **

outin Ω∈<Ω∈ ww ”. By replacing (3.1) and (3.2), the rule (3.3) 

is found. 

+ 

3.1.2. Fuzzy Sets 

Definition 3.2: 

Let T be a set of parameters which control the shape of the contour C(T) and therefore the 

regions )(TinΩ  and )(ToutΩ . A region indicator function }1,0{:),( →ΩTwH  is defined as: 
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



Ω∈
Ω∈

=
)( if   0

)( if   1
),(

Tw

Tw
Tw

out

inH  … (3.4) 

Theorem 3.1: 

In order to maximize the crisp probability that the contour C(T) accurately separates Ω  

into two regions )(TinΩ  and )(ToutΩ , the following energy function should be minimized: 

∫∫ ΩΩ
+−=Ω wTwwTwT

T
dfdfE

in
fuz ),()),(21()|(

)(
 … (3.5) 

Notice that f(w,T) is used instead of f(w) in order to show the possible dependence of the 

point classifier on the evolution of the regions. 

Proof: 

In fuzzy sets theory [1], ]Pr[ *
inΩ∈w  and ]Pr[ *

outΩ∈w  can be interpreted as membership 

functions. The crisp probability that the contour C(T) accurately separates Ω  into two 

regions )(TinΩ  and )(ToutΩ  should be maximized: 

∫∫ ΩΩ
Ω∈+Ω∈=Ω

)(

*

)(

* )(]Pr[)(]Pr[]|Pr[
TT

wwwwwwT
outin

dPdP outin
 

Where P(w) is the probability of occurrence of the point w. Since by probability theory 

1)( =∫Ω ww dP  and since every point over the region Ω  is equally probable, we can conclude 

that Ω= /1)(wP  and therefore: 

Ω

Ω∈+Ω∈
=Ω

∫∫ ΩΩ )(

*

)(

* ]Pr[]Pr[
]|Pr[ TT

wwww
T outin

dd outin
 

In the previous formula, the denominator can be cancelled since it is constant with respect 

to T. Also, by replacing (3.1) and (3.2): 

∫∫ ΩΩ
−+∝Ω

)()(
)),(1(),(]|Pr[

TT
wTwwTwT

outin

dfdf  

This formula can be rewritten by using the region indicator function defined in (3.4), since 

H(w,T) is not zero only inside )(TinΩ  and (1 – H(w,T)) is not zero only inside )(ToutΩ : 

[ ]∫Ω −−+∝Ω wTwTwTwTwT dHfHf )),(1))(,(1(),(),(]|Pr[  

By reordering the factors in this expression: 
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[ ] Ω+−−∝Ω ∫Ω wTwTwTwT dfHf ),(),()1),(2(]|Pr[  

The second integral is constant with respect to T, therefore it can be removed: 

[ ]∫Ω −−∝Ω wTwTwTwT dfHf ),(),()1),(2(]|Pr[  

Since H(w,T) is not zero only inside )(TinΩ , the first term can be integrated only over the 

region )(TinΩ . Finally, the maximization of the previous formula is equivalent to the 

minimization of its negative. 

+ 

Observation 3.1: 

The external energy (3.5) can also be derived from the framework (2.24) by making  

kin(w) = 1 – f(w,T) and kout(w) = f(w,T). 

 

3.1.3. Gradient Descent 

Let T
n ),...,,( 21 tttT =  be a set of parameters such that d

i ℜ∈t  for i = 1…n. The 

minimization of the energy function (3.5) can be done by using the gradient descent method. 

Given initial values for the set of parameters T(0) and the step size γ , the next approximations 

of the solution T* which minimizes (3.5) are computed as: 
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Theorem 3.2: 

For a point classifier f(w,T) the update rule for the gradient descent method becomes: 
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∫∫∫ ΩΩ TTT
wwwTw  … (3.7) 

Proof: 
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By deriving (3.5) with respect to ti,j and by regrouping the terms: 

∫Ω 

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For the first term in the integral, notice that jitH ,/ ∂∂  is defined only in the contour C(T) 

and it is zero everywhere else. Therefore the integral over the region Ω  becomes the integral 

over C(T). For the second and third term, recall that H(w,T) is not zero only inside )(TinΩ  

and (1 – H(w,T)) is not zero only inside )(ToutΩ . 

+ 

Observation 3.2: 

The external force (3.7) can also be derived from the framework (2.25) by making  

kin(w) = 1 – f(w,T) and kout(w) = f(w,T). The first term of this external force is remarkably 

similar to the one used for experiments in [36], even though not any formula derivation 

neither theoretical proof was presented there. Authors defined it as a pressure force as (2.9) 

with a weight inside the range ]1,1[ +− . 

 

3.1.4. Axis Independent Warps 

Definition 3.3: 

Let ddnd ℜ→ℜ×ℜ ×:),( Txw  be a warping function which allows calculating the 

deformed location w for every point x. The warping function w is axis independent if: 

dkjkj...ni
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∂  … (3.8) 

Lemma 3.2: 

For a contour generated by an axis independent warping function w(x,T), the region 

indicator derivative in (3.7) is given by: 
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Proof: 
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The chain rule can be used with the variable w in the formulation: 

∑
= ∂
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Since w is an axis independent warping, the derivatives with j ∫ k are zero. Therefore this 

equation is reduced to: 
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Notice that jwH ∂∂ /  is a Dirac delta pointing outside the region )(TinΩ  in the contour 

C(T) and zero everywhere else. Therefore, it is equal to the j-th component of the normal 

vector n(w). 

+ 

3.1.5. Axis Independent Warps in 2.5D 

In 2D and 3D since the dimensionality of the image and the dimensionality of the contour 

are the same, not any further analysis is needed. In the 2D case (d = 2) the images are 

composed by pixels and the contour is a curve. In the 3D case (d = 3) the images are 

composed by voxels and the contour is a surface. In the 2.5D case, we have a small set of 2D 

images spatially located in the 3D space, and the contour is a surface. This problem arises in 

the medical field, when a few 2D magnetic resonance images are used as input (for instance 

three horizontal and one vertical), and the reconstruction of the 3D surface of the organ is 

required. 

In order to attack this problem, the first step is to find the intersection between the 3D 

surface and each image in order to compute the 2D contour C(T) as shown in the following 

figure: 

 

W2 

C 

W1 

 



 34 

Figure 3.1: Contour and disjoint regions in 2.5D 

The warping function 233:),( ℜ→ℜ×ℜ nTxw  maps a point x in the 3D space to a point w 

in the 2D image under the influence of the set of n parameters T in the 3D space. Notice that 

the 3D surface deforms according to T, and the coordinate change from 3D to 2D can be 

expressed as a linear transformation. Therefore, the function w can be written as the 

composition of two functions such as: 
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 … (3.10) 

In this formula 3333 :),( ℜ→ℜ×ℜ nD Txw  is the warping function working in the 3D 

space, and 2332 :)( ℜ→ℜDD ww  is the linear transformation that maps a point in 3D space to 

a location in the 2D image, and it only depends on the location of the 2D image in the 3D 

space. 

Lemma 3.3: 

In the 2.5D case, for a point classifier f(w2D,T) and a contour generated by an axis 

independent warping function w3D(x,T), the region indicator derivative in (3.7) is given by: 
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Proof: 

The chain rule can be used with the variables w2D and w3D in the formulation: 
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Since w3D is an axis independent warping, the derivatives with j ∫ k are zero. Therefore 

this equation is reduced to: 
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The first two terms can be expanded as: 
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Notice that D
j

D ww 32
1 / ∂∂  and D

j
D ww 32

2 / ∂∂  are Dirac deltas pointing outside the region 

)(TinΩ  in the contour C(T) and zero everywhere else. Therefore, they are equal to the first 

and second components of the normal vector n(w2D) respectively. Finally, DwH 2
1/ ∂∂  and 

DwH 2
2/ ∂∂  are replaced from the definition (3.10). 

+ 

3.1.6. Region-Dependent Descriptors 

Definition 3.4: 

For a point classifier f(w,T) is based on region-dependent descriptors if can be expressed 

in the form f(w,T) = f(w,p(T)) where: 
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Where p(T) is the vector of m region-dependent descriptors pk(T) for k = 1…m. Each of 

these descriptors pk(T) are associated with a function ℜ→ℜd
kr :)(w  which is evaluated on 

a region R(T) which can be )(TinΩ  or )(ToutΩ . For instance, in order to generate a point 

classifier based on means and variances of intensity, descriptors such as area, sum of 

intensities and sum of square intensities are required. These descriptors correspond to the 

descriptor functions 1)( =wkr , )()( ww Irk =  and [ ]2)()( ww Irk =  respectively. 

Lemma 3.4: 

The derivative for a region-dependent descriptor pk(T) on )(TinΩ  is given by: 
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The derivative for a region-dependent descriptor pk(T) on )(ToutΩ  is given by: 
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Proof: 

Straightforward by deriving the region-dependent descriptor definition in (3.12) and by 

using the region indicator function defined in (3.4). 

+ 

Lemma 3.5: 

For a point classifier f(w,T) which is based on region-dependent descriptors. The integral 

of the point classifier derivative over a region R(T) which can be )(TinΩ  or )(ToutΩ  needs to 

be computed in (3.7). For a small step size h, this integral can be approximated as: 
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Proof: 

Straightforward by replacing jitf ,/ ∂∂  by its finite differences approximation, and 

extracting the factor 1/2h outside the integral. 

+ 

3.2. Internal Energies 

3.2.1. Topology Preservation 

In order to add topology preservation to the deformation model, we need to produce a 

topology preservation measure which is not affected by any affine transformation (including 

but not limited to translation, rotation and scaling) over the prototypical configuration 

T
n),...,,( 21 sssS =  such that d

i ℜ∈s . Recall that T
n ),...,,( 21 tttT =  such that d

i ℜ∈t  are the 

current values for the set of parameters. The energy function for ensuring topology 

preservation is defined as: 
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Where G is the dä(d+1) transformation matrix which minimizes Etop. In other words, G 

allows converting every point si into ti for i = 1…n with a minimum error, such that if every ti 

can be expressed as a linear transformation of each correspondent si, the error would be zero. 

The update rule for the gradient descent method will become: 
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Let ),( BAΨ  be a däd matrix such that ∑ =
=ψ n

k jkikji ba
1 ,,, ),( BA  and let )(Aζ  be a d-

dimensional vector such that ∑ =
=ζ n

k iki a
1 ,)(A . A rearrangement of the equations derived in 

[29] for computing the matrix G leads to the following linear equation system: 
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Observation 3.3: 

Since only T changes trough all the optimization process and S is constant, it is more 

efficient to invert the matrix L(S) in the beginning of the process and to calculate G by matrix 

multiplication, rather than solving the linear equation system (3.17) at each iteration. 

 

3.2.2. Temporal Coherence 

Whether a sequence of d-dimensional images is used in the segmentation process, we can 

add temporal coherence so that the parameters do not drastically change between frames. This 

rule can be stated in terms minimizing the difference between the current frame and the 

previous one, as well as between the current frame and the next one. Let 

Tqqqq ),...,,( )(
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)( tttT =  be the parameter set for the frame q such that dq
i ℜ∈)(t  for i = 1…n. 

The energy function for ensuring temporal coherence is defined as: 
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The update rule for the gradient descent method will become: 
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3.3. Unique Solution and Convergence 

As can be noticed, the topology preservation energy function is convex with respect to jit ,  

since its derivative (3.16) has only one minimum. In the same way, the temporal coherence 

energy function is convex with respect to )(
,
q
jit  due to the behavior of its derivative (3.18). 

Therefore, only the external energy (3.5) of the proposed model needs further convergence 

analysis. 

For some specific warping functions, different values for the set of parameters T can lead 

to the same shape of the contour C(T). For instance in the case of radial basis functions 

warping, a circular shape parameterized by four equidistant points admits infinite different 

values for the parameters for generating the same shape by rotating the points around the 

center of the circumference. Therefore, the proof of unique solution and convergence should 

be based not on the values of the parameters but on the shape of the contour C(T). 

 

3.3.1. Unique Solution 

Definition 3.5: 

Let T* be the values for a set of parameters which minimizes the energy function (3.5). 

According to (3.3), a perfect point classifier f *(w) is defined as: 
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Theorem 3.3: 

For a perfect point classifier f *(w): 

*)()( allfor    )|(*)|( TTTT CCEE fuzfuz ≠Ω<Ω  … (3.20) 

This states that there is not any other contour that produces a greater value of the energy 

function, and therefore there is only one global minimum. 
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Proof: 

By replacing (3.5) in the previous formula: 

∫∫∫∫ ΩΩΩΩ
+−<+− wwwwwwww
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Where the second terms on both sides can be removed. Notice that by definition (3.19) 

f *(w) > 0.5 in the region *)(TinΩ  and therefore 1 – 2 f *(w) < 0. In the same way,  

f *(w) < 0.5 in the region *)(ToutΩ  and therefore 1 – 2 f *(w) > 0. 
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Figure 3.2: Areas of integration 

By noticing this fact, we can split the integral in the right side of the previous equation into 

two terms: 
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In the right side of the inequality, the first integral is performed in the region 

*)(*)()( TTT outinin Ω⊂Ω−Ω  and therefore it is positive. Also, notice that the other two 

integrals are negative since they are performed in the regions *)(TinΩ  and 

*)(*)()( TTT ininin Ω⊂ΩΩ I  respectively. 

In the extreme case of the inequality, the positive term should be removed by choosing 

*)()( TT inin Ω⊂Ω , and therefore φ=Ω−Ω *)()( TT inin  and )(*)()( TTT ininin Ω=ΩΩ I . This 

converts the previous formula into: 
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Finally, this is true since the formula being integrated is the same, and the region on the 

right side is contained into the region in the left side. 

+ 
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3.3.2. Convergence 

Theorem 3.4: 

For a perfect point classifier f *(w) and a convex contour: 
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This states that the first derivative of the energy function is zero only in the global 

minimum. Consequently, not any local minimum exist and therefore the gradient descent 

method will return the correct contour. 

Proof: 

Since we do not have an explicit representation of the perfect point classifier f *(w) nor the 

warping function w(x,T), it is not possible to evaluate the zeroes of the first derivative. 

Therefore, the previous statement is divided into two equivalent statements: 
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and: 
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By expanding the formula (3.22) by using (3.7) and (3.9) and by replacing C(T*) instead 

of C(T) since the contours are equivalent: 
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By definition (3.19) f *(w) = 0.5 in the contour C(T*) and therefore 1 – 2 f *(w) = 0. Also, 

since the perfect point classifier f *(w) does not depend on the evolution of the regions 

0/* , =∂∂ jitf . This fact makes the three integrals equal to zero. Therefore, the statement 

(3.22) is true. 

On the other hand, the statement (3.23) can be proved by contradiction: 



 41 

djni

jiCC
t

E

ji

fuz

...1...1for 

, allfor *)()( allfor    0
,

=∧=

∧≠=
∂
∂

TT
 … (3.24) 

Let assume that we parameterize any d-dimensional point )(Tw C∈  in a lower 

dimensional space 1]1,0[...]1,0[ −ℜ⊂××= dU . In 2D images, the shape of a curve is 

parameterized by a variable u in the range ]1,0[ . In 3D images, the shape of a surface is 

parameterized by two variables u1 and u2 both of them in the range ]1,0[ . Let dU ℜ→:)(ux  

be the position of a point in the prototypical undeformed contour associated with the 

parameter u. Since C(T) is a simple closed contour, it allows a one-to-one parameterization 

such that only one position x(u) is related with a value for u, and viceversa [2]. Equations 

(3.7) and (3.9) can be rewritten as: 
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Since the perfect point classifier f *(w) does not depend on the evolution of the regions 

0/* , =∂∂ jitf  and the last two terms can be removed. Let dU ℜ→:)(um  be the normal 

vector pointing inside at the position x(u) in the same prototypical contour. The unit normal 

vector n(w(u)) pointing inside the region )(TinΩ  in the deformed contour is defined as: 
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By replacing the previous formula in (3.25): 
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By replacing this in (3.24) and separating the term inside the brackets to both sides of the 

equality: 
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Notice that the points )(~ uw  draw a shape which is smaller than the one drawn by the 

points )(uw  which form the contour C(T), as shown in the following figure: 

C(T)={w(u)}
}

~ 
{ w(u)}

}
z 

 

Figure 3.3: Convex contour and its displaced version in normal direction 

Also, if the deformed contour is convex, the first shape is always inside the second one. 

Moreover, if we assume the center z of the contour C(T) as the center of our coordinate 

system, any line drawn with origin in z will intersect the contour created by the points )(~ uw  

before than the contour C(T). Specifically, for lines traveling in the axis direction: 

djzwzw jjjj ...1for    )()(~ =−<− uu  … (3.27) 

Notice that since )(~ uw  is the displacement of a point in the contour in the normal direction 

of the prototypical undeformed contour, 
jj zw −)(~ u  has zeroes in the same values for u than 

jj zw −)(u  and they both have the same sign. By the additive property of the integrals, the 

term zj can be added into both sides of equation (3.26): 

djdzwdzw
U jjU jj ...1for    ))()(())(~)(( =−ξ=−ξ ∫∫ uuuuuu  

Which leads to an absurd by the property (3.27). 

+ 
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Chapter 4. Implementation Issues 

 

4.1. Radial Basis Functions Warping 

Given two sets of n corresponding source and target points in a d-dimensional space called 

T
n),...,,( 21 sssS =  and T

n ),...,,( 21 tttT =  such that d
i ℜ∈s  and d

i ℜ∈t  for i = 1…n. We are 

looking for a warping function ddnd ℜ→ℜ×ℜ ×:),( Txw  which allows calculating the 

deformed location w for every point x, such that the source points are mapped exactly into the 

target points. For solving this problem the radial basis functions warping [3] is employed: 
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In the previous formula (4.1) each d
j ℜ∈)( TS,λ  is a weight for the radial basis function 

)log()( 2 rrr =φ  for j = 1…n+d+1. The last two terms account for the constant and linear 

portions of w. As it was stated before, we want a function w(x,T) such that it maps each 

source point to its correspondent target point: 
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Let 0päq and 1päq be päq matrices of zeroes and ones respectively. Let 

T
n ))(),...,(),(()( 21 TS,λTS,λTS,λTS,Λ = , T

ddn ),,...,,(
~

121 +×= 0tttT  and )(SΦ  be a nän 

matrix such that )()(, jiji ssS −φ=φ . Formulas (4.1) and (4.2) can be expressed as a linear 

equation system: 
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Lemma 4.1: 
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Every radial basis functions warping w linearly depends on the set of parameters T and it 

is axis independent. 

Proof: 

Formula (4.3) can be rewritten as: 
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Let 1)( ++ℜ∈ dn
j Sr  be the j-th row of the matrix R(S). The previous formula for the j-th 

weight can be written as: 

11for    
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 are zeroes, the previous formula can be reduced 

to: 
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By replacing (4.4) in (4.1), the warping function w can be expressed in terms of the target 

points ti: 
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Finally: 
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+ 

Observation 4.1: 

Since only T changes trough all the optimization process and S is constant, it is more 

efficient to invert the matrix K(S) in the beginning of the process and to recalculate )( TS,Λ  
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by using (4.4) at each step, rather than solving the linear equation system (4.3) at each 

iteration. 

 

4.2. Bayes Classifier 

Remember that by definition (3.1) the point classifier f(w,T) represents the probability that 

the point w belongs to the true object region *inΩ . In order to make use of the Bayes rule, we 

introduce an equivalent notation: 
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Where )|( * wkP Ω  is the so called posterior probability and )|( *
kp Ωw  is the likelihood. 

The first one corresponds to the probability of belonging to a region given an intensity level, 

while the second one is the probability density function of the intensity levels on each region. 

Let )( *
kP Ω  the prior probability, the point classifier f(w,T) is defined as: 
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In our implementation of (4.6) we assumed that the prior probabilities are equal such that 

5.0)()( ** =Ω=Ω outin PP . The likelihoods follow a Normal distribution in both regions and can 

be modeled in two different ways. When no prior knowledge is available regarding the 

intensities for the object and background regions, the means and variances are approximated 

by using the maximum likelihood estimation. In this case, the sample means and variances 

approximate the real means and variances: 

outinkNIp kkk ,for    ))(),((~))(( 2 =σµ TTw  … (4.7) 

When prior knowledge is available regarding the intensities for the object and background 

regions, the means can be approximated by using the Bayesian parameter estimation. In this 

case, we have an initial guess of the means k,0µ  with an uncertainty 2
,0 kσ  for k = in,out. After 
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n iterations, the sample means are averaged with the initial guess in order to approximate the 

real means: 
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Image classification is usually performed for discrete points, such as pixels or voxels. 

Bilinear interpolation is performed for 2D images in order to evaluate non-discrete locations. 

Trilinear interpolation is performed for 3D images. 

 

4.3. Integral Approximation 

A contour integral needs to be computed in order to compute the update rule for the 

gradient descent method as presented in (3.7). For segmenting 2D images, the contour is a 

curve which is approximated by using a set of connected segments. The integral over the 

contour is evaluated as the summation of the integral for each segment. If we assume that the 

size of each segment is smaller than the size of a pixel, the trapezoidal rule will generate a 

good approximation. Let 2, ℜ∈ba  be the coordinates of the extremes of the segment ),( bal  

and ℜ→ℜ2:)(wg  be the function to be integrated. The integral is approximated by: 
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For segmenting 3D images, the contour is a surface which is approximated by using a 

triangle mesh. The integral over the contour is evaluated as the summation of the integral for 

each triangle. If we assume that the size of each triangle is smaller than the size of a voxel, the 

trapezoidal rule will generate a good approximation. Let 3,, ℜ∈cba  be the coordinates of the 

vertices for the triangle ),,( cba∆  and ℜ→ℜ3:)(wg  be the function to be integrated. The 

integral is approximated by: 
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The first part of the equation corresponds to the absolute value of the signed area of the 

triangle ),,( cba∆ . Finally, recall that in order to compute the update rule (3.7), the derivative 
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of the warping function (3.9) needs to be computed as in (4.5). This formula returns a value 

which depends on the undeformed coordinates of the prototypical contour. Notice that we are 

evaluating the function only on known vertices of the contour, such as segment extremes and 

triangle vertices. Therefore, the underformed coordinate x for every deformed coordinate w 

after applying the warping function is known. 

 

4.4. Additional Steps for 2.5D 

As explained in 3.5, the first step in 2.5D segmentation is to find the intersection between 

the 3D surface and each 2D image in order to compute the 2D contour C(T) as shown in 

figure 3.1. This is performed by intersecting every triangle in the deformed mesh with each 

2D image. A triangle ),,( cba www∆  intersects the image plane when two segments of the 

triangle intersect that plane, as shown in the following figure: 

 

wa
 

wac
 

wbc
 

wb
 

wc
  

Figure 4.1: Intersection between a triangle and image plane 

In the previous figure, the point wac is the intersection of the segment ),( ca wwl  with the 

image plane, and wbc is defined in a similar way. By using these two coordinates, the integral 

of the segment ),( bcac wwl  is evaluated by using (4.9). The 3D normal vector of the triangle 

),,( cba www∆  is also projected into the image plane as needed in (3.11). 

Finally, recall that in order to compute the update rule (3.7), the derivative of the warping 

function (3.11) needs to be computed as in (4.5). This formula returns a value which depends 

on the undeformed coordinates of the prototypical contour. Notice that we are not relying on 

known vertices of the contour due to the intersection process, but on the coordinates wac and 

wbc. Let xa, xb, xc be the undeformed coordinates for the deformed coordinates wa, wb, wc, we 

can compute the linear approximation: 
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While xbc is computed in a similar way. Notice that this is an approximation since the 

radial basis functions warping is not linear on the undeformed coordinates x. 
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Chapter 5. Results 

 

5.1. 2D Segmentation of an Image 

The image to be segmented was immersed in the coordinate system ]1,1[]1,1[ +−×+− . The 

initial configuration was set as the known solution after rotating 10º and translating (0.1, 0.1) 

units as shown in figure 5.1. The step size for the gradient descent method (3.6) was set to 

05.0=γ  and the weights for the fuzzy set and the topology preservation energies were both 

set to 1.0. The step size for the derivative approximation (3.15) was set to h = 0.001. 

Maximum likelihood estimation as in (4.7) was used for approximating the means and 

variances for the object and background regions. Figure 5.2 shows the curve after 35 

iterations. 

 

Figure 5.1: Initial configuration for the 2D segmentation 

 

Figure 5.2: Final configuration for the 2D segmentation 



 50 

 

5.2. 2.5D Segmentation of a Cardiac MRI Sequence 

The sequence of 25 magnetic resonance images (MRI) to be segmented were immersed in 

the coordinate system ]1,1[]1,1[]1,1[ +−×+−×+− . The initial configuration for all frames was 

set as the known solution in the mid frame after rotating 5º and translating (0.1, 0.1, 0.1) units 

as shown in figure 5.3. The step size for the gradient descent method (3.6) was set to 01.0=γ  

and the weights for the fuzzy set, topology preservation and temporal coherence energies 

were set to 1.0, 1.0 and 20.0 respectively. The step size for the derivative approximation 

(3.15) was set to h = 0.001. Bayesian parameter estimation as in (4.8) was used for 

approximating the means and variances for the object and background regions. The initial 

guesses of the means were set to 4.0,0 =µ in  and 05.0,0 =µ out  with an uncertainty 

025.02
,0

2
,0 =σ=σ outin . Figure 5.4 shows the surface after 80 iterations for three different frames. 

 

Figure 5.3: Initial configuration for the 2.5D segmentation (mid frame) 

   

Figure 5.4: Final configuration for the 2.5D segmentation (three different frames) 
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5.3. 3D Segmentation of a Laryngeal CT 

The computed tomography (CT) volume to be segmented was immersed in the coordinate 

system ]1,1[]1,1[]1,1[ +−×+−×+− . The initial configuration was set as the known solution 

after rotating 2.5º and translating (0.05, 0.05, –0.05) units as shown in figure 5.5. The step 

size for the gradient descent method (3.6) was set to 15.0=γ  and the weights for the fuzzy 

set and the topology preservation energies were both set to 1.0. The step size for the 

derivative approximation (3.15) was set to h = 0.001. Maximum likelihood estimation as in 

(4.7) was used for approximating the means and variances for the object and background 

regions. Figure 5.6 shows the surface after 50 iterations. 

 

Figure 5.5: Initial configuration for the 3D segmentation 

 

Figure 5.6: Final configuration for the 3D segmentation 
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5.4. Comparison of Probability-Based Forces 

A comparison between different probability-based external forces was performed in order 

to measure the advantage of using the proposed force. The initial configuration, step sizes and 

topology preservation factor were the same as the ones used in the 2D implementation. The 

region-dependent descriptor framework as defined in (2.24) and (2.25) was used. 

The following table shows the different external forces as well as their object and 

background descriptors (2nd and 3rd columns). The probability density functions of the 

intensity levels pin(I(w)) and pout(I(w)) were approximated as Normal distributions. Different 

force factors (4th column) were used since the magnitudes of the generated forces are different. 

 
External force 

Object 
descriptor 

kin 

Background 
descriptor 

kout 

Force 
Factor 

Adaptive fuzzy C-means in 
(2.21) 

in

out

p

p  

(maximum 
value: 8) 

1 0.1774 

Region probability in (2.22) 
and (2.23) 

inplog−  outplog−  0.2310 

Entropy in (2.26) 
inin pp log−  outout pp log−  0.2572 

Mutual information in (2.27) 
inin

in pp log
Ω

Ω
−  

outout
out pp log

Ω
Ω

−  
0.4476 

Proposed: Fuzzy sets in (3.5) 
and (3.7) 

outin

out

pp

p

+
 

outin

in

pp

p

+
 

1.0000 

Table 5.1: Description of probability-based forces 

The rationale for computing the force factors is to generate the same average magnitude 

for every different force. In order to do this, the total absolute force magnitude over all 

intensities should be equal for every force. This is given by: 
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Where the first term is the force magnitude for an intensity level v by assuming that it does 

not depend on the evolution of the contour. The second term is the probability density 

function of the intensities in the overall image. From the known solution 

)00850,64040(~))(( ..NIpin w , )01770,43200(~))(( ..NIpout w , 1217.0/ =ΩΩ in  and 

8783.0/ =ΩΩout . 

In order to compare the results, the mean square error of the landmarks was chosen as a 

measure of convergence. Given the known solution T* and its approximation T, each of them 

composed of n two-dimensional landmarks, the mean square error is defined as: 
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n
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jiji tt
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1 2,1

2*
,, )(

1
),( T*T  

The following chart shows the mean square error in the Y axis versus the number of 

iterations in the X axis for each technique: 
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Figure 5.7: Convergence of probability-based forces 

The fastest convergence was reached by the proposed fuzzy sets force. Only the entropy 

force behaved similar to the proposed force, since both converge asymptotically to the known 

solution. Adaptive fuzzy C-means as well as region probability have a slow linear 

convergence. It is also shown that the mutual information force is sensitive to the initial 

contour, since it did not converge to the known solution. 
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In order to graphically understand this behavior, the force magnitudes outin kk −  were 

computed from the known solution. Figure 5.8 shows the probability density functions, where 

the X axis corresponds to the intensity levels. Notice that the two curves intersect each other 

when the intensity value is approximately 0.55. 
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Figure 5.8: Probability density functions for the image 

Figure 5.9 shows the force magnitudes for each probability-based force, where the X axis 

corresponds to the intensity levels. From figure 5.8, it is expected that force magnitudes are 

positive for intensity values less than 0.55 and negative for intensity values greater than 0.55. 

The rationale is that the curve should shrink when a background pixel is detected, and expand 

when an object pixel is detected. Even though, as it can be noticed the information entropy as 

well as the mutual information forces does not follow this rule for very low as well as very 

high intensity values. Notice also that the mutual information force do not cross the X axis in 

0.55. The adaptive fuzzy C-means as well as the region probability shrink and expand the 

deformable model properly, but the magnitude is not balanced. A small negative value at the 

right compared with a larger positive value at the left indicates a small expansion compared 

with a larger contraction. Only the proposed fuzzy sets force properly equilibrates the amount 

of expansion and contraction. 
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Figure 5.9: Magnitude of probability-based forces 
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Chapter 6. Conclusion and Future Work 

 

6.1. Conclusion 

A deformable model which is based on the fuzzy sets theory was presented. A new external 

energy was derived as a result of maximizing the crisp probability that the contour accurately 

separates the image into two regions. Unique solution and convergence is ensured for a 

perfect point classifier, an axis-independent warp and a convex contour. 

The proposed force obtained the fastest convergence when compared versus different 

probability-based forces. This force asymptotically converged to the known solution. It was 

also shown that the proposed force properly equilibrates the amount of expansion and 

contraction of the deformable model. 

Radial basis functions were used for contour parameterization, which allows using an 

arbitrary mesh as deformable model. As additional constraints, two simple internal energies 

were defined for ensuring topology preservation and temporal coherence. 

 

6.2. Future Work 

There are several ways of extending this work. A more statistically rigorous comparison of 

convergence speed of the proposed force versus the different probability-based forces should 

be performed. 

A more general proof of unique solution and convergence should be developed. This 

general proof should take into account the use of non-convex contours as well as noisy point 

classifiers, which can formally include non-spatially and spatially correlated error. 

Boundary-based external energies based on fuzzy sets can be defined. Finally, regularized 

region indicator functions can be applied instead of the one used in our formulation. This 

allows integration over the contour neighborhood instead on only in the infinitesimally thin 

contour. As a result, this enhancement can add a flavor of smoothing and give more hints for 

the evolution of the contour. 
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