
Developing Object-Oriented Frameworks For

Computer Animation

By

Mark William Tappan

B.S. In Computer Science, June 1982, Western Washington University

A Thesis Submitted To

The Faculty Of

The School Of Engineering And Applied Science

Of The George Washington University

In Partial Satisfaction For The Degree Of

Master Of Science

September 2002

Thesis Directed by

James Hahn

Associate Professor of Computer Science

Abstract

This thesis was driven by an interest in developing a reusable framework for building behavioral

animations. The initial goal was to facilitate and automate the construction of a core behavioral animation

application that could then be extended with exquisite services to investigate concepts in specific research

areas. We wanted to develop a framework that would instantiate an executable behavioral animation that

provided the functionality common to typical behavioral animation applications. To achieve this goal, we

needed to develop a systematic approach to engineering object-oriented frameworks and then apply that

approach to the behavioral animation domain.

This thesis describes the Software Productivity Consortium’s (Consortium) Approach to Framework

Engineering and its application to the initial architecture design of an object-oriented framework for

behavioral animation applications. I developed the Consortium’s Approach to Framework Engineering

using best practices from multiple engineering and management processes. This approach is the initial

iteration towards a full methodology for the systematic development of object-oriented frameworks. During

this thesis we wanted to validate the several of the engineering activities and develop a greater insight into

current behavioral animation research programs.

Using the Consortium’s Approach to Framework Engineering approach, we identified several major

research programs relevant to behavioral animation. We performed a domain analysis of these programs to

identify major business use cases, called summary use cases, and associated actors. We combined and

consolidated the summary use cases as a set of requirements for the targeted behavioral animation

framework. We used the summary use cases and actors to drive the identification of system level use cases

for each research program and combined these use cases into a consolidated set of system requirements.

Using the actors and system use cases we developed an initial architecture containing both invariant

internal services (receptacles) and modifiable public services (hot spots). We conclude this thesis with

observations and summary of achievements that document our findings and experiences. Our conclusions

focus on the domain analysis and consolidation of use cases between five different programs concentrated

in areas relevant to behavioral animation but considerably different in focus.

 ii

Copyright Notices.1

1Company names, product names, and technologies are trademarks or registered trademarks of their respective
organizations.

 iii

Dedication

For my Family, Patsy, Trina, Erick, and Alex

 iv

Acknowledgements

I owe a great debt of gratitude to my friends and colleagues at the Software Productivity Consortium, who

have encouraged, challenged, confused, enraged me, and forced me to think and better myself. Most

prominent include, and I apologize to those not listed for I am running short on words,

� Rich McCabe, who has consistently forced me to think through my ideas, to validate them against

real scenarios, and who has inspired me to complete this thesis. I have spent many hours in long,

detailed and complex conversations with Rich, and the results of those talks have guided CAFÉ.

� Lisa Finneran who has given me the latitude to explore and develop CAFÉ, and who has

consistently believed in me and encouraged me, and given me the opportunity to better myself in

many ways.

� The 1000+ students of the Software Productivity Consortium’s Introduction to Architecture

Frameworks course whom I have instructed and who have patiently listened, (hopefully) learned

and have forced me to clarify my own understanding of frameworks, object-oriented technologies,

and software architecture.

� Assad Moini with whom I have had many deep conversations regarding the nature of computing,

the computing industry, and technology. I have (slowly) learned much from Assad and he has

helped me clarify and deepen my understanding of architecture and frameworks.

� John Blyskal with whom I have had many brain-busting discussions on the nature of enterprise

architectures, software architecture, and the use of standards.

My wife and best friend Patsy who had repeatedly refused to let me quit after I took all the fun classes. She

has been amazingly supportive throughout the whole journey, which has included the birth of our second

son, the marriage of our daughter, and many others of life’s events.

My advisor James Hahn who has been patient and accommodating, even though my thesis has undergone

several major focal points as I have wondered somewhat aimlessly. He has given me the latitude to try and

match demanding professional responsibilities with the rigors of completing a master’s thesis.

 v

Table of Contents

Abstract... ii

Copyright Notices. ... iii

Dedication.. iv

Acknowledgements ..v

Table of Contents ..vi

Table of Figures... viii

Table of Tables.. ix

Glossary..x

1 Introduction... 1

1.1 Problem Statement.. 1

1.2 Motivation .. 4

1.3 Related Work.. 5

1.4 Proposed Approach .. 24

1.5 Thesis Organization.. 26

1.6 Typographical Conventions.. 26

2 CAFÉ – Consortium Approach to Framework Engineering ... 28

2.1 Introduction .. 28

2.2 How CAFÉ Addresses Framework Development Issues ... 39

2.3 Summary .. 44

3 Behavioral Animation Framework .. 45

3.1 Introduction .. 45

3.2 Define Framework Domain .. 45

3.3 Capture Behavioral Requirements For Common Services ... 50

 vi

3.4 Reconcile Summary and System Use Cases... 64

3.5 Develop Initial Architecture ... 66

4 Future Efforts.. 69

4.1 Reflections on Accomplishments ... 69

4.2 Next Steps... 71

4.3 Alternative Domains and Framework Uses .. 72

List of References.. 74

Appendix A System Use Cases... 79

 vii

Table of Figures
Figure 1. Object-Oriented frameworks... 8
Figure 2. Basic Creature Architecture for ALIVE.. 18
Figure 3 The Architecture of Tu's Fish... 20
Figure 4. The High-Level Architecture of Persona Project .. 23
Figure 5 Define Framework Domain Task... 46
Figure 6 Capture Behavioral Requirements for Common Services.. 50
Figure 7. Initial Cadre of Actors... 54
Figure 8. System Contributions for the Actor Creature, Part 1 .. 56
Figure 9. System Contributions for the Actor Creature, Part 2 .. 57
Figure 10 Relationships Between Types of Use Cases... 63
Figure 11. CAFÉ’s Develop Initial Architecture Activity.. 66
Figure 12 Initial Architecture Class Diagram... 67
Figure 13 An Alternative Model of the Animator Actor .. 68
Figure 14 Future CAFÉ Activities.. 71
Figure 15 Relationships Between Animator Use Cases ... 79
Figure 16 Relationships Between Major Sets of Creature Use Cases .. 84
Figure 17 Relationships Between Use Cases for the Biomechanical Model .. 84
Figure 18 Relationships Between Use Cases for the Brain Model ... 87
Figure 19 Relationships Between Scripted Agent Use Cases... 90
Figure 20 Relationships Between Use Cases for the Dialogue Management Model.................................... 92
Figure 21 Relationships Between the Emotion Model Use Cases.. 95
Figure 22 Relationships Between the Environment Use Cases .. 97
Figure 23 Relationships Between the Graphical Display Use Cases.. 99
Figure 24 Relationships Between Animation Engine Use Cases ... 101

 viii

Table of Tables
Table 1. Inventory of Behavioral Animation Research Projects .. 15
Table 2. List of Conventions .. 27
Table 3. CAFÉ Management Activities.. 34
Table 4. CAFÉ Engineering Activities... 39
Table 5. Initial Identification for the Animator Actor .. 55
Table 6. System Contributions for Dynamic Environment Actor .. 57
Table 7 System Contributions for the Static Environment Actor ... 58
Table 8 The Initial Consolidation of the Creature Operations.. 59
Table 9 The Consolidation of Environment Actors and Operations... 59
Table 10 The Second Consolidation the Creature Operations.. 61
Table 11 The New Graphical Display Model and Animation Engine Actors .. 61
Table 12 Second Consolidation of the Environment Actor. ... 62
Table 13. Reconciliation Between System and Summary Use Cases... 65
Table 14 Future Extensions for the Behavioral Animation Framework... 72

 ix

Glossary
Application frameworks A system design and associated code modules that enable the

construction of complete applications within a domain.

Architecture The structure, components, interface specifications, operational, system

and technical requirements of a computer system.

Architectural framework A description of the components, interfaces, standards, and requirements

of a system.

Black box frameworks Frameworks in which the developer cannot review design and

implementation details of the framework.

Behavioral animation Computer animation where main characters are controlled by modeling

their behaviors resulting in emergent behavior.

CAFÉ Consortium Approach to Framework Engineering

COM (Microsoft) Component Object Model

Component frameworks The design and associated runtime components for construction of

component-based applications.

Connection The link between a plug and an outlet.

Consortium Software Productivity Consortium (http://www.software.org/)

COTS Commercial-off-the-shelf

Creature An autonomous character in a behavioral animation.

Ethology The study of animal behavior.

Framework A basic conceptual structure (as of ideas). [Webster 2001]

Hot spot The areas where the framework can be extended or tailored to meet the

needs of specific applications.

IBM International Business Machines

 x

http://www.software.org/

J2EE Java 2 Enterprise Edition

MFC Microsoft Foundation Classes

Object-Oriented frameworks A design and associated set of code modules for the partial construction

of an object-oriented software application.

OMG Object Management Group (http://www.omg.org/)

OO Object-oriented

OOPSLA Object-Oriented Programming, Systems, Languages, and Applications

Outlet Services provided by any receptacle.

Plug The mechanism inserted into the hot spot of a receptacle.

Product-line frameworks A design for building an application from a family of applications in a

single domain with known commonalties and variations

Receptacle The internal services implemented as private classes, which are the

immutable logic for the framework.

UML Unified Modeling Language

Use case Description of a requirement for a computer system. Summary use cases

describe the business requirements or scenarios for the system. System

use cases are a detailed description of the user requirements.

White-box frameworks Frameworks in which the design and implementation are available to the

application developer.

 xi

http://www.omg.org/

1 INTRODUCTION

A framework is simply a basic conceptual structure for organizing ideas, information, data, or anything else

for that matter. Beams and rafters are elements of the framework of a house; terms, definitions, and

classification schema are elements of a biology framework; components, interface definitions, and

standards are elements of (software) architectural frameworks; roles, responsibilities, activities, and

entrance/exit criteria are elements of process frameworks; and there are many other examples. There are

enough examples and most people seem to feel comfortable with the notion of a framework, though few

can provide a useful, working definition.

This thesis, and the related Consortium Approach to Framework Engineering (CAFÉ) report attempt to

define a framework, an approach to building frameworks, and the application of that approach towards

software development. We examine the application of frameworks to the computer graphics domain, and in

particular how CAFÉ can be used to design a more generalized behavioral animation system.

1.1 Problem Statement

Effective software reuse has been a dream of corporate America for many years. Some researchers and

technologists believe that this dream has yet to be realized, while others believe that it is commonplace

within industry. The major point in this debate appears to be what is considered effective reuse. Operating

system libraries have been used for several decades, and are arguably the primal form of reuse. Software

reuse based on component models, such as Microsoft’s Component Object Model (COM), has achieved

another level of reuse and has fostered a minor component industry. Commercial frameworks, such as the

Microsoft Foundation Classes and IBM’s San Francisco Framework, provide general computing support

beyond typical operating system libraries. These frameworks are considered infrastructure or horizontal

frameworks since they provide services applicable across many business domains and provide a general

foundation for encoding more specific business logic. Horizontal frameworks are quite complicated and

powerful – they encapsulate the best brightest practices from expert software developers, architects, and

designers. However, they are domain independent by nature – Microsoft Foundation Classes capture the

best practices for creating Windows desktop applications, and IBM San Francisco captures the best

 1

practices for creating Java-based business applications. These frameworks do not provide the typical

business logic common to applications within a specific domain.

Problem 1. For effective software reuse within industry, engineers require a means to identify,

specify, structure, and develop common domain-specific services within their

industry.

However, identifying the most effective common services and defining an optimal structure for those

services is a complex and difficult task. Effective reuse libraries are often costly endeavors requiring

several design and implementation iterations before they are of value to developers. The difficulty lies in

knowing, often as a result of significant experience, how to constrain the engineering of application

solutions without compromising an engineer’s ability to meet systems requirements.

Problem 2. Optimal solutions are elusive and require iterative approaches that capture and

leverage the experiences of domain and application development experts.

The majority of applications within a particular business domain utilize common, domain-specific

operations (or services). In many cases, these services are developed over a period of time, in isolation,

without the benefit of overarching systems engineering guidance. Industry consortia, such as the Object

Management Group (OMG), define standardized, vertical services through an open process of mutual

cooperation among application vendors in particular domains. For example, the OMG is developing several

vertical service specifications for the healthcare industry. Currently existing specifications address the need

for a common Person Identifier Specification and (medical) Lexicon Query Specification. To develop these

and other specifications, OMG elicited comments on proposed set of data types, data structures, and

interface specifications. These design artifacts are the results of cooperation among expert application

designers, architects, and developers in the healthcare domain. However, the OMG process can be quite

lengthy and often takes several years before a specification is published and even more before the

implementations are commercially available. Most industry efforts to build frameworks for internal use

cannot afford to wait years for a viable framework, and most are reluctant to share their intellectual

property with their potential competitors.

 2

Problem 3. Organizations building frameworks for internal use need a systematic engineering

process for identifying common services and architecting frameworks within their

domains.

Technology change, whether through change or extinction, is commonplace. Any substantial application or

system deployed into service for more than a couple of years faces challenges with technology refresh and

technology insertion. Object-oriented frameworks are no different. The underlying technology, whether it is

operating system, infrastructure framework, or distributed computing software, will eventually change even

for frameworks. Few organizations have a well-considered approach to technology insertion and refresh for

long-term applications or systems.

Problem 4. To keep a framework current and viable, the development process must address

activities for identifying new technologies, prioritizing updates, and inserting new

technologies into the framework.

At a recent workshop (OOPSLA 2000) on object-oriented framework construction, practitioners reported

that one of the most significant issues was that application developers were unsatisfied with available

frameworks. Developers complained that frameworks developed in their behalf were difficult to understand

and did not meet their needs. After some analysis, most developers were incorrectly applying frameworks

or were attempting to extend them beyond their intended scope. Additional analysis revealed poor and

inadequate document including little or no information on the design considerations, constraints or context

that drove the development of the framework. Similarly, the existing framework document focused on

syntax and semantic issues and little attention was given to documenting how to apply the framework in

general.

Problem 5. To efficiently and effectively use a framework, developers need detailed knowledge

and understanding of the engineering design context underlying the framework. This

context is critical to understanding the assumptions and constraints for the framework.

Without this comprehension, developers are more likely to incorrectly use the

framework.

 3

1.2 Motivation

The behavioral animation segment of computer animation has developed a great number of impressive

techniques, models, algorithms and systems to aid in the construction of believable animation. Researchers

focus in specific interest areas, such as physiological modeling, cognitive modeling, learning, facial and

body expressions, learning, memory, and emergent behaviors. While major contributions have been made

in these and other areas, the behavioral animation community lacks a unifying model or framework to

integrate these techniques together.

This thesis has admittedly had a colored and varied past. We originally started out exploring the use of

distributed object technologies as a means to enable the distribution across computers of the actors

participating in a behavioral animation sequence. In parallel, an unrelated effort at the Software

Productivity Consortium (Consortium) had started on understanding architectural and object-oriented

frameworks, and their use in software construction. As we started to develop distributed behavioral

animation actors, we developed an interest to add the best features from these major animation research

projects into our own animation. Meanwhile, at the Consortium a project focused on creating a method for

constructing domain-specific services into an OO framework had started. The resulting merger is this

thesis, the adaptation of CAFÉ towards architecting common services for behavioral animation

applications.

The end goal, which is far beyond the scope of this thesis, is to construct an object-oriented framework for

developing distributable, autonomous actors (i.e., agents) to participate in behavioral animation. The

framework would create a generalized actor which the necessary infrastructure and communication

capabilities to participate as a general actor. The framework also provides the design points for extending

the actor to include and explore new capabilities, such as a new memory model. For example, suppose an

animation includes 1000 actors distributed on a network. The framework provides a generic actor with core

capabilities of communication, sensory input, mental facilities, etc. Developers extend some of the generic

actor with unique or advanced features by extending the framework in specific ways. Almost any business

domain can benefit from using object-oriented frameworks. However, those of most interest to the author

include biomedical simulation, entertainment, imagery and geo-spatial management systems

 4

The immediate goal; however, is to discern and develop a method for creating frameworks, exercise and

verify the method, and apply the method towards architecting a framework based on a decomposition of

several leading behavioral animation research projects.

1.3 Related Work

Object-oriented frameworks are not new inventions and are more common within the software

development community than many engineers and managers realize. Behavioral animation systems are not

commonplace either, but nor are they unfamiliar. In fact, behavioral animations have contributed to several

major motion pictures including Batman and The Lion King. This section reviews recent work in both

frameworks and behavioral animation systems. The former work being directly relevant and contributing to

the development of CAFÉ and the later work is the foundation for the design of the behavioral animation in

Section 3.

1.3.1 Frameworks in General

What exactly are frameworks? What are their virtues and what are their limitations? How are they applied

in software development and where do frameworks come from? These are just a sample of the many valid

questions regarding any technology and frameworks are no different. Let’s start with the first and try to

explain what are frameworks.

Earlier in this section, we defined a framework as “simply a basic conceptual structure for organizing ideas,

information, data, or anything else for that matter” and gave a couple of examples. This simple, abstract

definition is not very satisfying to engineers since it is rather loose and leaves much up to the reader to

interpret. Unfortunately, there is no universally accepted, specific definition of “framework”. We can,

however, apply this simple definition to various software engineering concepts and end up defining various

contexts for different types of framework. The following non-exhaustive list describes some of the more

common types of frameworks.

� Architectural frameworks provide "guidance on describing architectures. An architecture

description is a representation, at some current or future point in time, of a defined 'domain' in

terms of its component parts, what those parts do, how they relate to each other, and the rules and

constraints under which the parts function" (Department of Defense 1997).

 5

� Product-line frameworks provide designs for building an application from a family of

applications in a single domain with known commonalties and variations. Product-line

frameworks are distinguished by an explicit identification and engineering of the variances

between new applications that the framework can be used to develop. The scope is generally a

single product within a business that has several different models. For instance, general market

accounting software might be specialized for three levels: enterprise edition, small business, and

personal home edition.

� Application frameworks provide designs and code modules for building complete applications

within a domain. This means that they are constrained from both above and below. From above,

an architectural framework may restrict the context in which an application must run. From below,

the target development language will restrict the development environments to which the

framework can be applied. The scope typically provides 80% of the design and code for building a

single application. Naturally, if an organization has designed a product line framework, then the

application framework can be tailored for supporting a series of applications within a single

product line.

� Object-Oriented frameworks provide a partial design of an object-oriented software application.

The intent is to support those organizations already working in or migrating to the object-oriented

paradigm. The scope might be a single application domain, which could limit the framework to

supporting only part of an application, such as the user interface or database access. Alternatively,

the scope also might support building entire applications within a single business domain.

� Component frameworks provide the designs and runtime components for component-based

development, typically supporting an object-oriented or object-based paradigm. Like object-

oriented frameworks, component frameworks can support either a single application domain or an

entire business domain. The distinguishing feature is that component frameworks are built to

support application development within a particular component model, such as J2EE or Microsoft

COM.

 6

Frameworks can also be classified according the amount of design and implementation detail available to

developers. These characteristics can also be combined with the above types, for example, you can have

white-box component frameworks that provide application developers with details about the components

and their public and private interfaces. Some combinations don’t make sense, such as a black-box

architecture framework, which would hide all the details of how to build architectures in a particular

domain2. Naturally, there are numerous shades of gray-box frameworks.

� Black-box frameworks are frameworks in which the developer cannot review design and

implementation details of the framework. The application developer relies on the documentation

and details about publicly available interfaces.

� White-box frameworks are frameworks in which the design and implementation are available to

the application developer. The application uses the interface documentation and details but also

can examine the internals of the framework for clarification and verification about how the

framework operates.

White-box frameworks appeal to application developers and engineers familiar with the domain and

software development tools. The framework itself provides the most accurate documentation on how it is

constructed and how it can best be tailored for specific applications. Black-box frameworks rely on

documentation, tutorials, and example applications to communicate the purpose, context, and use of the

framework.

Most organizations develop white- or gray-box frameworks for the following reasons. It is quicker and less

expensive to develop white-box framework. Iterative releases of a white box framework successively refine

and mature the framework to appoint where is it practical and efficient to create a black box version. The

target domain for a framework also fluctuates leaving organizations reluctant to spend precious

development time and dollars on short-lived comprehensive solutions.

2 This is counter the main purpose of the architecture framework – to be a tool for guiding the development of domain
architectures.

 7

1.3.2 Object-oriented Frameworks

An object-oriented framework is a general skeleton application that conforms to object-oriented theory and

provides the services common to applications in a particular domain. This general skeleton application is

not intended to be a useful, standalone application. An object-oriented framework must be extended to

provide the specific functionality required in a particular application within that domain.

The object-oriented framework establishes the central control of execution, and the framework invokes

objects that extend the framework. That is, the framework provides mechanisms by which the objects

provided by the developer will be invoked. Applications developed using this type of framework require

the use of object-oriented techniques to extend the framework and use its services. Figure 1 shows that an

object-oriented framework can include any or all of the following:

� Abstract class interfaces that require developers to provide class implementations

� Abstract class interfaces with reference class implementation that developers can override

� Public-class interfaces and implementations

� Private-class implementations

� Object-Oriented Frameworks and Applications

Domain ApplicationDomain Application

Object-Oriented FrameworkObject-Oriented Framework

Private Framework
Classes

Private Framework
Classes

Abstract InterfaceAbstract Interface

Public InterfacesPublic Interfaces

Public ClassesPublic Classes

Implement
Abstract Classes

Invoke
Private Classes

Custom DevelopmentCustom Development

Class
Implementations

Class
Implementations

Private ClassesPrivate Classes

MT-01

Figure 1. Object-Oriented frameworks

A skeletal application created using an object-oriented framework is an executable application that provides

some level of functionality. Without further extension or adaptation, the object-oriented framework

 8

provides whatever default behaviors were designed for it. Following are some implications that underlie

this definition:

� An object-oriented framework provides the main application executive or control loop that

invokes methods, including the adapted or extended methods provided by the application

developer.

� An object-oriented framework provides public interfaces that the application developer can use to

extend or adapt part of the framework. Object-oriented framework includes internal (private)

classes and methods that cannot be adapted or extended by the application developer. Application

developers only can customize object-oriented frameworks by extending or adapting public

interfaces.

� Framework developers have identified and analyzed the requirements of a representative set of

current and future applications to determine the private and public services that will be provided

by the framework.

The following sections describe major architecture elements or themes related to object-oriented

frameworks.

1.3.2.1 Anatomy of a Framework
A framework addresses the common aspects of a specific problem while providing mechanisms to support

variations between different applications. Different parts of the framework express different needs.

� There must be one part that holds and organizes the common aspects of a domain.

� Another part manages the differences or variations so that the framework can be tailored for each

separate implementation.

� Another advertises the aspects that are open to tailoring.

When application is made of the framework, there must be an element that removes the variation to

produce a specific solution to a problem. Somehow the various framework parts must connect to each

other. Finally, an interaction pattern describes how all the parts work together. An object-oriented

 9

framework consists of dynamic parts that encapsulate the flexibility, areas that are modifiable by

application developers, and static parts that are immutable and serve as the foundation of the framework.

Framework literature refers to these as hot spots and receptacles, which are defined as follows:

� Hot Spot. A hot spot locates an area of variability within a domain and consequently within a

framework. Multiple applications in any domain will have differences. When these differences

stem from the same area, that area is a hot spot and should be made very flexible. Each hot spot is

associated with a responsibility that must be satisfied by an aggregation of framework elements

(Pree 1995; Schmidt 1997).

A hot spot in a framework represents the known or anticipated variations in requirements for a

particular service between applications in the domain. Hot spots identify areas where the

framework can be extended or tailored to meet the needs of specific applications. A hot spot can

be specified as an abstract class with a reference implementation of the class being provided by the

framework. Similarly, it can be a public class interface (and implementation) and provide some

guidance on how to extend or override the class. Hot spots can be generalized classes that the

application developer specialized through inheritance. Application developers also can extend the

framework by creating composite classes using framework hot spots and their own custom classes.

Hot spots also refer to the customization of a framework service through polymorphism.

� Receptacle. A framework receptacle holds the common aspects of a problem domain. This

means that the receptacle holds the data and services that must be part of every application made

using the framework. Data and services are packaged according to the type of framework—from

specification modules to abstract classes and components.

Receptacles refer to the internal services implemented as private classes, which are the immutable

logic for the framework. In a black-box framework, these services are completely transparent and

hidden from the application developer. In white-box frameworks, these services can be discovered

but are not engineered for extension or modification by the application developer.

We will not use the term "receptacle" but refers to these services as private classes or internal

services.

 10

The following are additional terms that the reader is likely to encounter while reading about object-oriented

frameworks and frameworks in general (we do not use these terms specifically, however, the concept of

patterns as a means to think about design solutions):

� Outlet. An outlet (electrical or software interface) advertises the services of any receptacle.

Tailorable services are indicated to provide a correct specification to users of the receptacle. An

outlet stands ready to receive and forward incoming events. An outlet can advertise a local or

remote service (Wang, Ungar, and Klawitter 1999).

� Plug. A plug is a mechanism inserted into the hot spot of a receptacle. The plug tailors the

framework services for a particular application. This linkage is implemented by a connection.

� Connection. A connection links the plug into a receptacle hot spot. A connection is implemented

in one of two ways. If the hot spot is a black box, then the plug must connect by selecting from

the services provided by an outlet. If the hot spot is a white box, then the plug must connect

directly to the receptacle's functionality at software compile time.

� Patterns of structure. Variability within a framework and its associated hot spots can be

structured by design patterns. When several hot spots center on a similar group of elements, that

group and their relationships can be abstracted into a structural design pattern used in each hot

spot.

� Patterns of behavior. An application's behavior is constrained by the framework. The template

services in receptacles define a protocol of interaction between the framework elements and the

application-specific elements. Once again, when there is a recurrence of behavior among hot

spots, this pattern of interaction might be abstracted and implemented as a behavioral design

pattern.

1.3.2.2 Architectural Implications for Applications
An object-oriented framework imposes constraints on any application that uses it. An application

framework typically provides executable code for as much as 80% of a complete application. The extent of

 11

this influence ranges from architectural issues to application packaging, distribution, or allocation and

patterns of interaction.

To use the framework effectively, the application developer must understand the basic system requirements

the framework is meant to resolve and the dynamic operation of the framework. The framework's

requirements description enables the application developer to understand the framework's solution space

and determine whether and how the framework can be used to construct applications. The framework

dynamics describe the stimuli that drive the framework and how the framework responds to those stimuli.

The application developer must understand these dynamics to understand how custom objects and methods

will be invoked.

The default application generated from an object-oriented framework is an executable program, and there is

a sense of the framework being "in charge" —responsible for instantiating objects and invoking public and

private methods. Framework developers may use a variety of object-oriented mechanisms to accomplish

this control.

1.3.2.3 Frameworks and Classes
Application developers adapt and extend object-oriented framework by extending, overriding, or

composing new classes with public classes in the framework. We use the following definitions and

interpretations to describe these mechanisms.

 "An abstract class is a class that cannot be directly instantiated" (Booch, Rumbaugh, and Jacobson

1999, 457).

Szyperski elaborates on abstract classes:"…that is no object can be a direct instance of an abstract

class. An abstract class can have unimplemented methods (abstract methods). Non-abstract classes

inheriting from an abstract class have to implement all such abstract methods" (Szyperski 1998, 366).

The public interfaces provided by an object-oriented framework can be specified as abstract classes, and

the implementations left for the application developer or for future efforts. This approach allows the

application to implement particular algorithms that conform to established interfaces. It also allows

framework developers to specify interfaces and develop implementations incrementally. This approach

 12

enables the priority interfaces to be developed and deployed without waiting for a complete implementation

of the framework. The abstract classes within a framework must be extended and completed, with concrete

classes.

"A concrete class is a class that can be directly instantiated" (Booch, Rumbaugh, and Jacobson 1999,

460).

Szyperski elaborates on concrete classes:"…a static description specifying the state and behavior

shared by all objects that are instances of that class" (Szyperski 1998, 368).

Object-oriented frameworks provide concrete classes that implement particular algorithms for the

framework's public interfaces. These algorithms may encapsulate an organization's proprietary algorithms

or generally agreed-upon solutions, or they may default to implementations of an interface specification.

Concrete classes can be used "off the rack," extended through inheritance or composition, or overridden by

the application developer.

 When several real-world objects share common properties, they can be defined by a concrete class.

Because a concrete class can be instantiated, it is used to implement the functionality sketched out in an

abstract class. When it is instantiated, then the functionality can be realized. Concrete classes are

instantiated into objects that are runtime entities, which do the work of an application and provide the

capability of the system (and the framework) to system users.

An object is "an entity with a well-defined boundary and identity that encapsulates state and behavior;

an instance of a class" (Booch, Rumbaugh, and Jacobson 1999, 464).

Szyperski states that an object is"… a unique identity, that is can be consistently distinguished from

all other objects of overlapping lifetime and access domain, irrespective of changes to its or other

objects' state" (Szyperski 1998, 376).

Object-oriented frameworks provide access to instantiated objects with particular capabilities that can be

useful to the custom application. Objects are available to the application at runtime.

 13

1.3.2.4 Hot Spots in Object-Oriented Frameworks
Our definition describes object-oriented frameworks as partly immutable services and partly mutable

services. The term hot spots refers to the identification of public classes in a framework in which

customization is appropriate and expected. The list of hot spots includes elements of a framework in which

the framework developers expect application developers to provide custom software.

The immutable services of a framework represent the common portions of domain applications that remain

constant from application to application. Framework developers analyze the requirements for typical

applications in the domain and identify common services that are stable and those likely to vary between

applications. The stable services are identified and implemented as the core of the framework. Likewise,

services that are common but likely to vary between applications are implemented as the mutable services

of the framework.

The term “hot spot” refers to the public classes in a framework in which adaptation and extension is

appropriate and expected. We call the classes that represent the mutable services of an object-oriented

framework.

1.3.3 Behavioral Animation Projects3

The primary experiment we investigated was the design of an object-oriented framework for creating

behavioral animation applications. Behavioral animation is an active research topic in several academic

field including computer graphics, artificial intelligence, and robotics. As a foundation for the design work

described in Section 3, we studied nine major behavioral animation programs from primarily the computer

graphics field. There are obvious areas within the framework where additional contributions could be used

to further the number and quality of frameworks services. For example, the artificial intelligence

community has studied and developed several models for learning which could be adapted into the

framework. Likewise, the framework could be expanded to include sensor and vision concepts from the

robotics field. Table 1 lists the research programs, which are further described in the following sections.

3 The research project described here are the results of tremendous effort, diligence, and thought. It is hardly fair to
summarize them in a few paragraphs. The contributions made by each effort are far more significant than summarized
here.

 14

Table 1. Inventory of Behavioral Animation Research Projects

Behavior Animation

Project

Principal Investigator Contribution

“Flocks, Herds, and

Schools: A Distributed

Behavior Model.”

Reynolds, Craig, [Reynolds

1987]

Basic distributed animation architecture

of sensory perception, behavioral rules

and selection, and motor skills.

Old Tricks, New Dogs:

Ethology and Interactive

Creatures

Blumberg, Bruce,

Massachusetts Institute of

Technology. [Blumberg 1997]

Ethological and classical animation

based approach to developing “lifelike”

autonomous creatures.

Artificial Animals for

Computer Animation:

Biomechanics,

Locomotion, Perception,

and Behavior

Tu, Xiaoyuan, University of

Toronto. [Tu 1996]

Focus on realistic appearance, motion,

and behavioral of autonomous creatures.

Making Them Behave.

Cognitive Models for

Computer Animation

Funge, David, University of

Toronto. [Funge 1998]

Adds formal semantics to the

specification of high-level behaviors and

actions using Situation Calculus.

Lifelike Computer

Characters: the Persona

project at Microsoft

Research

Ball, Gene (et al), Microsoft

Research. [Ball c. 1996]

Improved communications, i.e.,

understanding of spoken phrases and

selection of oral responses, between

autonomous creatures and interactive

users.

Modeling Emotional State

and Personality for

Conversational Agents

Breese, Jack, Gene Ball,

Microsoft Research. [Breese,

1998].

Insight into how emotions affect the

decision process and motor controls.

 15

The Distributed Behavior Model is a central theme of the behavior animation framework we design in 3.

Each of the research areas that we investigated contributed unique aspects of behavior animation to the

framework. However, the real genesis of our framework comes from a simple programming assignment in

a Computer Animation course at George Washington University. The assignment was to create a flocking

model that demonstrated emergent behavior amongst autonomous actors. This assignment was based on

Craig Reynolds’ seminal paper on animation, Flocks, Herds, and Schools: A Distributed Behavior Model

[Reynolds 1987].

My simple model required that each “boid” stay within a certain distance of its neighbor, not too close and

not too far. Each boid tried to maximize its survival chances by migrating towards the center of the flock

and by avoiding contact with non-boid objects. My boids could not stop nor could they travel in reverse,

and they had to follow a boid designated as the “lead boid.” I programmed the lead boid to fly in a circular

pattern at a constant speed. Using a flock with just a few boids, I found that the flock did stay in task and

did follow the lead boid around the circle. I also found, to my dismay, that as I added more boids, the flock

grew in length until it was shorter for some boids to cross the circle rather than follow in line. In effect,

several boids were cheating by cutting across the circle and jumping to the head of the flock. After some

analysis, it was apparent that my boid possessed a rather rudimentary decision model and a simple model

that allocated energy to actions. In addition, I had made no attempt to model any environmental elements

such as air thermals, wind, friction or hostile creatures.

From this simple experiment, Reynolds’ paper, and investigations of the projects listed below, a

generalized architecture became apparent. Each of the research projected investigated provides a unique

contribution to behavior animation, and helps to specify a unique capability of the behavior animation

framework. The set of projects we investigated is by no means exhaustive, additional projects from the

computer animation domain or from completely different domains (e.g., robotics and psychology) could be

included and used to extend the framework. For example, research programs in robotics could be analyzed

and adopted to provide a route planning service. Table 1 summarizes the insights and contributions from

the research projects we investigated.

 16

1.3.3.1 Flocks, Herds, and Schools: A Distributed Behavior Model
Craig Reynolds describes a model where animal actors such as birds and fish dynamically and

autonomously control the action of their own animation. They are guided by behavior rules that mimic the

values and constraints of their real world counterparts. Rather than key frame individual movements or

calculate the kinematics for each actor, Reynolds’ Distributed Behavior Model creates emergent behavior

amongst its actors.

1.3.3.2 Old Tricks, New Dogs: Ethology and Interactive Creatures
The Ethology-based behavioral animation project focuses on the development of Silas an animated dog.

The Old Tricks, New Dogs doctoral effort investigates how the study of animal behavior can be the basis of

interactive agents. Principal concepts from his research include the hierarchical specification of behaviors,

grouping of behaviors, mechanisms for enabling and enacting behaviors, the modeling of Silas’ motor

system and action selection. Blumberg’s research also investigated the modeling of sensor input, such as

vision, into the behavior and action selection.

Blumberg investigated the construction of autonomous creatures for the ALIVE project at the

Massachusetts Institute of Technology, specifically a creature named Silas T. Dog. The basic architecture

of these creatures is a multi-layered approach consisting of Geometry, Motor Skill, and Behavior. These

layers are depicted in Figure 2. The Sensory Input element models and simulates various sensory inputs

such as sight and hearing. The Sensory Input data is a primary driver of the behavior identification and

selection system. Different behavior selections, such as chase or lay down, utilize different computational

models in the Motor System to accomplish the desired behavior. It is the responsibility of the Motor

System to drive the Geometry System to realize the animation sequence of motion.

The Behavior System is a major contribution to the proposed animation framework. It provides a

competitive environment where potentially viable behaviors compete for the highest priority when issuing

commands to the Motor System. The Behavior System models a “release mechanism” for behaviors. These

mechanisms model events of objects that enable the potential selection of particular behaviors. For

example, a swooping bat might be a releasing mechanism for a panic behavior. These mechanisms filter out

 17

inappropriate responses to situations and allow a degree of control of the selection of behavior. For

example, a mechanism might vary the situations where a creature feels hungry.

A Releasing Mechanism creates a structure called a pronome, which enables a sort of reuse of simple

behaviors in a variety of situations. Pronomes might model jumping behavior for fish that could be enacted

as part of a fight-or-flee behavior or as part of a courtship ritual. Pronomes are important for the framework

as a mechanism for reusing or multi-purposing behaviors and enabling the construction of complex

behaviors from rudimentary ones.

Sensor
Inputs

Sensor
Inputs Behavior SystemBehavior System

GeometryGeometry

Motor System

Motor Controller
Motor Skills

Degrees of Freedom

Motor System

Motor Controller
Motor Skills

Degrees of Freedom

MT-02

Figure 2. Basic Creature Architecture for ALIVE

Blumberg experimented with a number of other dimensions for creatures in ALIVE including behavior

specification, behavior adaptation, learning, short-term memory, sensory input modeling. These elements

of distributed behavior animation are important elements of in ALIVE, and equally important to the success

of our framework. Adoption of these techniques would certainly be applicable to our framework; however,

we are also interested in integrating disparate elements from other research projects.

1.3.3.3 Artificial Animals for Computer Animation: Biomechanics,
Locomotion, Perception, and Behavior

Natural and realistic motion is important and necessary to the development of lifelike and believable

autonomous creatures. Whether we are animating an autonomous creature as part of a film or creating a

 18

believable computer assistant, natural motion is a high-priority requirement. Xiaoyuan Tu has made

exemplary contributions to behavioral animation through the Artificial Animals project at the University of

Toronto. The goal of this research program colloquially referred to, as Fishes, is to create realistic motion

and appearance of autonomous creatures, as they exist in animation.

The architecture of Tu’s Fishes is segmented into three major subsystems: a brain model, a biomechanical

or motion model, and a graphical display model. The brain model manages the collection of sensory input

data, the enactment of the behavioral model including habits, intentions, and behaviors, and the resulting

motor controller commands. The motion model receives input from the brain model and executes the

physical motion as directed by the motor commands. The graphical display is responsible for rendering the

fish. Figure 3 shows the major elements of the architecture.

The Brain Model is responsible for sensing conditions and events in the environment and enacting

appropriate action to meet the creature’s goals, such as feeding. It consists of a Perception Model that is a

combination of sensor perception and information filtering and interpretation. Perception modeling is a

core capability exhibited in many different behavioral animations systems, and has obvious links to deeper

research into computer vision, artificial intelligence, psychology, cognition, and other fields. The

architecture allows for vision sensors and extra-sensory perception sensors such as temperature sensing.

Filtering is used to constrain the information collected through sensors and passed to the decision-making

element, the behavior model. The behavior model combines creature goals, such as eating, fighting, and

fleeing, with its habits, such as preference of warmth over cold, and its behavioral rules. These rules are

encoded into a hierarchical flow that prioritizes basic survival action over other concerns. This rule

modeling derives from ethology and is consistent with the philosophy underlining Blumberg’s research on

the Alive project.4 Using sensory inputs and these behavior parameters, a series of lower level commands

are generated to move the creature.

The Biomechanical Model is responsible for interpreting the commands from the Brain Model and

converting them into elementary motor commands. There are a number of approaches to modeling the

biomechanical or motion model of a creature. Researchers like Jane Wilhelms (University of California,

 19

Santa Cruz) have experimented with developing physiological models of animals, which yield remarkably

accurate and realistic motion. Tu’s Fishes employ a less sophisticated, but computable and highly realistic

model based on springs and dampers. Creatures are modeled with a set of node points (dampers) and arcs

(springs). By varying the stiffness of the springs and resistance of the dampers, different motion effects can

be modeled. Tu’s uses the elastic properties to model the muscle expansion and contraction of fish muscles.

By contracting and expanding the springs, different “muscle movements such as swimming are possible.

Biomechanical ModelBiomechanical Model

Graphical
Rendering
Graphical
Rendering

Brain ModelBrain Model

Sensor
Model

Sensor
Model In

pu
t

Fi
lte

r
In

pu
t

Fi
lte

r

Behavior ModelBehavior Model

Habit
Model
Habit
Model

IntentionsIntentions

BehaviorsBehaviors

MT-04

Physical
Model

Physical
Model

Motion
Model

Motion
Model

Motor
Model
Motor
Model

Figure 3 The Architecture of Tu's Fish.

While we did not directly adopt the environmental modeling, it does serve to emphasize that creatures exist

within a physical world5. The creature’s physical environment model has a profound effect on the realistic

motion (e.g., gravity and resistance) and sensor input (e.g., foggy nights or strange smells). Virtual world,

or real world modeling is an important aspect of realistic animation, and we note in Section 4 that there is

an opportunity for further work.

1.3.3.4 Making Them Behave. Cognitive Models for Computer Animation
John Funge studied approaches to constructing controllers for high-level behaviors of creatures in

behavioral animation. He distinguished low-level behaviors as common among many creatures, for

example obstacle avoidance. He defined high-level behaviors as unique to particular species, for example

chimpanzees “fishing” for termites. He proposed that the representation of a creature’s knowledge is

essential in developing a cognitive model for the creature. The cognitive model, interpreted by either

4 The behavior modeling developed and emphasized, as part of the Alive project is more detailed and expressive than
used in the Fishes architecture.

 20

human or computer, requires precise semantics of the representation to avoid ambiguities. The solution he

chose for this semantic representation is a language called Situation Calculus.

Situation Calculus is a rigorously defined language that represents the world as a series of situations. The

language enables the user to define assertions, relationships, possibilities, and assignment of value. Using

these statements, logical statements of a situation and its resolution are possible. For example, situation

calculus enables users to define that a water bottle must be opened and non-empty before someone can

drink from it. Similarly, the user can define that Betty wants to drink from the water bottle and if she

cannot she becomes angry.

In the research projects we studied, autonomous behavior and action are specified in some fashion, often by

developing a particular language or notation. In our framework, we would like to provide users an ability to

specify behaviors and actions in a non-ambiguous fashion. Situation calculus seems like a valuable

contribution towards the specification of autonomous behavior. As an example, for the cheating boids in

my boid animation,

Poss (FlyStraight, b) ^ CutCrossCircle (b) => ActionCheat(b)

“If it is possible for boid, b, to fly straight and boid, b, chooses to cut across the circle, then this action

is cheating for boid, b.”

It has been our experience that the keys to interoperability of systems, the reuse of class and software, and

the refactoring of systems lie in the ability to state and comprehend the syntax and the semantics of

interfaces. Whether or not situation calculus is expressive enough, or extensible enough, or rigorous

enough, is an open question. Other formal languages may be more precise or more expressive, but tend to

be very difficult to comprehend and master.

1.3.3.5 Lifelike Computer Characters: the Persona project at Microsoft
Research

In animations involving multiple autonomous creatures, interactions between creatures involves defined

languages and notations with specific vocabularies. For expediency sake, creatures are constructed with a

5Regardless of whether that world is real physical world or imaginary physical world. Fortunately, the discussion of
real vs imaginary physical worlds is beyond the scope of this thesis.

 21

predefined language specific to their tasks, environment, and goals. However, in environments where

autonomous creatures must interactive with human users such limited communication skills may prove too

restrictive. In broader animation and even realistic simulation environments, creatures will need to

communicate with other animated creatures that have different goals, vocabularies, and communication

skills. It seems reasonable to include services within our behavioral animation framework that could

provide these skills or at least provide a hot spot for future communication technologies.

`The Persona Project at Microsoft Research focused on the investigation and exploration of technologies to

construct highly automated, highly skilled assistants that support the computer users. The goal was to

develop interactive, personable assistants that were more like human assistants and less like bland, sterile

help files, databases, and the Frequently Asked Questions lists. While not specifically a goal of this thesis

or our behavioral animation framework6, the research was interesting and demonstrates how additional

features can be integrated into a framework by investigating and including innovative concepts.

Figure 4 shows the high-level architecture used in the Persona project to create Peedy7, a conversation

agent who interfaces between human customers and a CD player. The elements process the user’s spoken

commands, in the form of music requests. The system responds by playing from a CDROM player and with

reactive gestures from the assistant. The Speech Recognition element senses input from the user and create

a series of events for major utterances and filters out background and other noises. This element maps user

utterances into elements of a context free grammar. These grammatical elements are matched against a

database of known proper names to distinguish them from normal speech. The Natural Language

Processing element then analyzes the input stream to extract meaning from the grammatical elements. The

Semantic Elements match the analyzed grammatical elements to appropriate actions and known objects.

The Dialogue Management element constructs appropriate gestures and responses based on the state of the

interaction with the user. If coupled with an emotional model, the dialogue management could generate

appropriate emotional responses, such as frustration. The Speech Controller element constructs the proper

speech elements for output back to the user. Finally, the Animation Control element creates the associated

gestures, expressions, and other noises to aid in the personification of the assistant.

6 It also seems to demonstrate that frameworks are not immune to “requirements creep”, the perilous introduction of
additional requirements mid-stream in a development cycle.

 22

MT-03

Speech
Recognition

Speech
Recognition

Dialogue
Management

Dialogue
Management

Speech
Controller
Speech

Controller
Animation

Control
Animation

Control

Semantic
Processing
Semantic

Processing
Natural

Language
Processing

Natural
Language

Processing
Proper Name
Identification
Proper Name
Identification

Figure 4. The High-Level Architecture of Persona Project

The Persona Project demonstrates the type of technologies and issues related to improving the interaction

between humans and automated assistants or autonomous creatures. There are numerous applications of

advanced interactions techniques in industry, entertainment and military applications. In entertainment for

example, imagine a gaming environment, such as a networked adventure game, populated with various

automated creatures and visited by human players. Creatures can expect to interact with various human

users for various purposes. Today, these interactions tend towards canned and static interactions rather than

allowing the player to explore deeper and broader communication. For example, in LucasArts’ pirate

adventure, Return to Monkey Island, the main character (i.e., the player) interacts with several individuals

throughout the game. The player is presented anywhere from 2-5 dialogue choices; however, players often

find themselves wishing to ask different questions or make different replies.8

1.3.3.6 Modeling Emotional State and Personality for Conversational
Agents

There is more to communication than simply understanding spoken words and selecting a response

appropriate to the situation. Facial gestures, body language, emotional content, and voice inflections can be

as important or more important than the words. Autonomous creatures, if they are interact with humans,

must identify and comprehend the emotional message associated with messages. While researching the

Microsoft’s Persona Project, we became interested in their related research into emotional modeling. We

propose that this effort yields some interesting avenues for expanding the behavioral animation framework,

and in particular could expand the quality of communication mechanisms in the framework that are based

on the Persona project.

 23

7 Peedy is a personification of a parrot who provide an avatar interface to a music system.

The Modeling Emotion research seeks develop a systematic approach to identifying the emotional and

personality basis of spoken expressions and produce an appropriate response based on the emotional and

personality makeup of the agent, or creature in our case. The establishment of the emotional content of a

creature produces modifiers that alter the behavior, motion, gestures, comprehension, and speech. This

research effort builds a Bayesian Network that maps utterances to emotions and personality traits. These in

turn are mapped into the personality and emotional Bayesian Network for the creature to produce

modifiers. Modifiers are then passed to the pertinent elements, such as a behavior model.

The proposition of improving the realistic quality of autonomous creatures, their inter-relationships, and

their relationships with interactive human users is very attractive. Suspecting that this research effort into

modeling of emotion was not unique, we undertook a brief and cursory search into the field. We discovered

that substantial effort and progress has been made in modeling emotion, and naturally several competing

theories have been developed. As we will see in Section 4, the modeling of emotion in the framework is a

prime area for future research. One benefit or advantage related to the framework development is that it can

provide a comparative tool for evaluating similar techniques, philosophies, and approaches. We suggest

that the framework could be extended to provide a test bed for evaluating various emotion models.

1.3.3.7 Summary
The initial selection of projects represents a focus on different aspects of behavioral animation and

represents a core of capabilities that our framework will provide. These basic capabilities provide a simple,

but comprehensive end-to-end model for behavioral animation. The core capabilities enable an animated

actor to maintain first and second order objectives, identify and collect sensor inputs, apply to sensor input,

decide on a course of action, and drive motor sensor functions. In some cases, such as with emotion

modeling, capabilities where identified for future adoption.

1.4 Proposed Approach

Process and methodology development is an arduous and iterative task by its nature. The proper

development of a process or methodology requires many design, document, and review sessions within a

knowledgeable and experienced group to come to consensus on generalized approaches to solving

8 To be fair, this type of simplistic interaction dramatically improves the gaming experience over less communicative

 24

particular problems. It is far simpler to document the process one uses to accomplish a task for one’s own

purposes. However, unless you are a recognized expert in the task at hand, your process will be your own

and will not benefit a larger community. Our approach was to develop an approach, without the benefit of a

prolonged review process that could be adopted and used within any software development community.

Our approach was to identify basic management and development tasks and select commonly accepted

practices for those tasks. Our goal was to integrate these disparate tasks into an approach, which could then

be tested, refined and verified by a smaller community. Our approach to developing CAFÉ and exercising

the approach is:

� Develop an initial methodology9 for the construction of object-oriented frameworks

� Exercise and refine this methodology by the construction of a simplistic object-oriented

framework

� Apply the methodology to the design of a large, comprehensive framework targeted at behavioral

animation

1.4.1 Initial Methodology Development

In 1997, the Software Productivity Consortium (Consortium) held a workshop amongst its members to

discover potential areas where the Consortium could help its members with (essentially) systems based

heavily on commercial-off-the-shelf (COTS) software. One result from that workshop was an intense

interest in the impact of architectural frameworks on their software development efforts. This ultimately led

to the development of the Consortium’s Survey of Architectural Frameworks and Integration Tools and the

Introduction to Architecture Frameworks course. Both of these products provide background information

on frameworks and their characteristics. The course generated sufficient interest in framework to warrant a

task in 2000 to develop an approach that would allow organizations to develop their own frameworks. This

games, such as Sierra’s blockbuster, Half-life.
9 A brief discussion of how approach, method, and process are used within this thesis. A process is a set of activities
that describe how to reach some ultimate goal. A method is a sequential set of steps that can be followed to achieve an
immediate goal. An approach is a set of activities and steps under development that have not matured into either a
process or a method.

 25

product, released in 2001, is the Consortium’s Approach to Framework Engineering10 (CAFÉ). Section 2

describes CAFÉ in more detail.

1.4.2 Application in Behavioral Animation

CAFÉ was then refined and applied to the design of a framework for behavioral animation based on several

major research efforts in the area. Several research projects were identified, analyzed (i.e., read), and used

to identify and select behavioral animation services for the framework. This effort, in addition to

developing a strong background in behavioral animation research, refined the CAFÉ approach to

requirements gathering and service identification. Section 3 describes the approach and refinements of

applying CAFÉ to behavioral animation..

1.5 Thesis Organization

This thesis is organized as follows:

Section 1 Introduction. This Section provides background information on the purpose and

motivation guiding this thesis.

Section 2 CAFÉ – Consortium Approach to Framework Engineering . This section describes the

approach for developing frameworks created by the author while at the Consortium.

Section 3 Behavioral Animation. This section describes the application of CAFÉ to the design of a

comprehensive frameworks focused in behavioral animation systems.

Section 4 Future Efforts. This section proposes additional ideas and potential applications of CAFÉ

and object-oriented frameworks both in and out of the computer graphics and animation domain.

1.6 Typographical Conventions

The typographical conventions and symbols used in this report are listed in Table 2.

10 I must give credit to Rich McCabe for the name CAFÉ. My original names were CAFD (Consortium Approach to
Framework Development) and CATFOOD (Consortium Approach To Framework-based Object Oriented
Development).

 26

 Table 2. List of Conventions

Typography Convention

 Georgia Conclusion drawn from this thesis

Time New Roman Main document text

 27

2 CAFÉ – CONSORTIUM APPROACH TO FRAMEWORK
ENGINEERING

The construction of object-oriented (OO) frameworks is not a new endeavor. Common commercial

examples include the Macintosh development environment, MacApp; Microsoft Foundation Classes (and

supporting toolset); the X Windows System, and IBM San Francisco Development Environment. In

industries such as healthcare, manufacturing and finance, OO frameworks are being developed to capture

domain expertise, simplify software construction, and reduce cost and time to market. Ralph Johnson,

Brian Foote and other leaders in the OO framework community have provided guidance, tutorials, and case

studies. However, there is no specific software development method or process focusing on the

construction of OO frameworks.

The nature of software development methods and processes being applied to the construction of OO

frameworks is ad hoc –they are difficult to plan and manage, costly and time consuming, and often produce

frameworks of inconsistent quality and utility. Using the goals described in 1, there is a need to develop an

approach to constructing OO frameworks using a set of manageable, reliable, effective methods. The

Consortium’s Approach to Framework Engineering is an initial effort into developing such as approach.

2.1 Introduction

CAFÉ is a set of activities for the development of object-oriented frameworks that helps organizations

define an object-oriented framework’s business and technical scope, analyze requirements for target

applications, and develop an effective framework architecture. The CAFÉ process provides guidelines for

identifying the key services needed to develop target applications within the domain. CAFÉ is a

development process that implements framework services from a prioritized set of requirements. It is

anticipated that a framework development team will apply CAFÉ repeatedly to continue evolving and

extending these framework services over time. This incremental nature provides the highest priority

services first and then implements lower priority services in subsequent development phases. It also helps

organizations manage technology change by providing opportunities for technology insertion and

identifying technology obsolescence.

 28

Object-oriented frameworks, like other software applications, are developed through a series of

management and technical activities that govern the life cycle from requirements engineering to

deployment and operations. There are issues beyond application development that are unique to the

development of object-oriented frameworks. The following list is an indication of some of the major issues

related to framework development:

� Management sponsorship is key to defining, institutionalizing, and evolving the framework.

� Object-oriented frameworks are an enterprise-level approach to reusing significant portions of

target applications. The development, deployment, and maintenance of a framework requires

commitment and support from the organization.

� Consensus among framework developers, target application developers, and stakeholders is key to

developing and deploying a viable framework.

� While technology and subject matter experts lead the framework development team, stakeholders

ensure through consensus that the framework meets business objectives and can be used by

application developers to build target applications. There also must be a consensus that the

common services of the framework represent the needs of the user community.

� Development of an object-oriented framework is a long-term commitment in which investment

returns are realized incrementally as new framework services are deployed. This commitment

includes a requisite operational and maintenance cost, which covers typical periodic costs such as

defect resolution and infrastructure upgrades.

� Organizations deploying frameworks indicate that successful frameworks are the result of many

successive, evolutionary development and deployment cycles. Many organizations and framework

development projects report that it takes several development and deployment iterations before a

framework is an effective tool supporting target application development. The major issue is

identifying the common services likely to be required by future target applications. In addition,

organizations are reluctant to spend up to 2 years developing a framework before using the

framework in development scenarios. Incremental development and deployment releases of a

framework enable organizations to use some services while others are being developed.

 29

� Defining the most effective set of common services and hot spots requires a detailed, expert

analysis of the target application domain and technology environment. An object-oriented

framework provides a skeletal application with common services typical of applications in the

target domain. Identifying and packaging those services requires careful and expert consideration.

This analysis will help decide which services are likely to change (hot spots) and how those

services might best be used from an application developer's perspective.

� Application developers need a clear understanding the intent, context, and utility of the

framework in order to adopt and tailor it correctly. Misuse of frameworks is a major impediment

to meeting the business and organizational goals for developing the framework. Often frameworks

are documented through a description of the hot spots and overall purpose of the framework.

White- box frameworks give application developers greater access to framework internals, which

can lead to unintended and unsupported tailoring of the framework. Framework documentation

must provide a clear description of the intended architecture, support the adaptation of common

services, and reference implementations of target applications.

� Framework verification requires the development of reference applications to exercise variations

provided by the framework hot spots. Framework hot spots are locations within the framework in

which variation through adaptation and tailoring is expected. There is no pragmatic restriction to

how these services might be adapted or tailored; verification of hot spot services under these

conditions is difficult. Typical approaches to framework verification include the development of

reference applications to exercise the hot- spot interfaces and tailoring mechanisms.

The following sections introduce the management and technical aspects of CAFÉ, while the activities,

issues, and roles comprising those aspects are further described in the Management and Architecture

sections.

2.1.1 Framework Management Practices.

The framework management practices initiate the framework development process and control the

evolution and deployment of the framework throughout its development phases. They consist of the steps

necessary to establish the framework team and executive sponsorship, develop information exchange

 30

mechanisms, and define the framework management procedures (e.g., configuration management, testing,

and compliance). The goal is to develop management practices necessary to ensure the successful

implementation and application of the framework throughout its life cycle.

Framework management practices also define the current and anticipated business and technical and

objectives for the framework. These are key elements for determining the scope of the technologies,

services, and components included in the framework and for determining which technologies will be

included in future development cycles. The framework scope refines and bounds the framework—

predetermining some architectural choices for target applications and improving the usability of the

framework. The goal is to define the mission of the framework accurately so that architects and developers

can understand the context for the framework. The framework management practices are as follows

(process integration is not addressed in this release of CAFÉ):

� Identify framework team. The framework is assigned to design, develop, maintain, and transfer

the framework. A central issue related to establishing a framework team is to ensure the viability,

correctness, and utility of the framework. A strong commitment by the organization's management

is necessary to engage corporate commitment to developing and institutionalizing the framework

in addition to evolving the framework over time. It is essential to engage the best domain and

technical experts to ensure that the correct framework services are identified and properly

constructed into a usable framework. Finally, users of the framework (application developers) in

addition to the target application are critical to understanding how the framework and target

systems are used to support business operations and objectives during application development.

� Define stakeholders and goals. The Identify Stakeholders activity identifies the individuals or

groups who have a significant vested interest in framework, describes their roles relative to the

framework, and describes their interests in the frameworks. Stakeholders represent two distinct

interests in developing an object-oriented framework. The management stakeholders are

concerned primarily with relative business interests, which include whether the framework will

help the organization meet business objectives such as reduced time to market or lower

development costs. Management stakeholders also are interested in providing control and support

 31

for the framework development throughout its life cycle. Typical project management goals

include the proper consideration and prioritization of the framework services so that highest

priority services are implemented before lower priority services, allowing the framework to evolve

within the cost/benefit constraints. It is critical to identify management stakeholders, as they will

be the ultimate champions, benefactors, and overseers. Without management commitment and

attention to management stakeholder goals, the framework will have little chance of meeting

business objectives and little chance of success.

The other group, the technical stakeholders, is concerned with the design, implementation, and use

of the framework. The goal for this group of stakeholders is to identify the correct set of internal

services and hot spots for the framework. Proper selection of these services is of paramount

consideration to ensure that application developers can create target applications that will meet the

needs of the end users.

� Collect supporting information resources. The Supporting Information Resources activity

identifies and collects information resources that may be useful to the framework team and target

application developers using the framework. The objective is to develop a repository of

information that can provide framework and application developers with some understanding of

the context, rational, and decisions that went into developing the framework. Furthermore, the

repository helps describe the technical environment, constraints, intended usage, and purpose of

the framework. The repository contains background information, framework documentation, and

training materials to help developers avoid an unintentional misuse of the framework.

� Identify technology standards. The Identify Technology Standards activity identifies and

collects the standards and guidelines that establish a technical foundation for the framework. In the

broad sense, framework standards include technologies, products, software assets and de facto

industry and international specifications that have been adopted or mandated within the

organization. These enterprise standards provide the common basis between the framework and its

target applications. Like frameworks, enterprise standards are an enterprise solution to business

concerns, including application consistency, application interoperability, and staff training and

 32

skill sets. Enterprise standards are also a form of architectural constraint in that they predetermine

certain engineering decisions and become anchor technologies. Within CAFÉ, anchor technologies

include engineering and industry standards, commercial products, and required software assets

that are mandated for use by target applications and are elements present within the framework.

� Define compliance procedures. The Define Compliance Procedures activity develops the rules to

measure the degree to which a target application adheres to the services, standards, and guidelines

provided by the framework. While the phrase "compliance rules" conjures up images of ominous

review boards and stifled creativity, there are valid and important benefits behind establishing

compliance rules. These rules help organizations institutionalize development practices using a

framework (and other technologies, tools, and practices) to meet the business objectives driving

the development of the framework. Compliance rules can help organizations determine how

applications are using (or not using) the framework. The rules also serve as guidelines that help

development projects follow proper development practices. The degree to which an organization

dictates compliance is largely driven by the demands of the particular domain and, to some degree,

a personification of the organization and its values.

� Establish change management practices. The Technology Change Management activity

addresses the need to monitor, predict, and manage technology change relative to an organization's

framework or frameworks. Technology change management requires considerable effort to

identify the key technologies (including development environments, infrastructure, methodologies,

and other elements supporting the framework) that are likely to change over the lifespan of the

framework. Change may be driven by new versions of products, new products introduced into the

market, early adoption of emerging technologies, or obsolescence of existing technology. Change

can be driven by new business objectives, such as a migration toward e-commerce, anticipation of

a demand for new application features, or unavoidable changes in the marketplace, such as a

vendor discontinuing a product. The essence of these activities is to be aware and sensitive to

changes in technologies that may require significant reengineering of the framework. Technology

change requires careful planning and resource allocation to minimize the cost and schedule impact

on the organization.

 33

� Integrate framework-based development processes. To have a successful framework, an

organization must adopt and use the framework as part of its practices for developing target

applications. In order to gain the fullest possible benefit from an object-oriented framework, the

development and evolution of the framework and its use as part of application development must

be a normal activity in an organization's software development processes.

CAFÉ management practices are intended to augment the business and technical management practices

used in organizations to development software-intensive systems. These practices address issues of specific

interest to object-oriented framework developmental, though organizations may already include them in

processes. Additional practices may be needed to institutionalize and improve the efficiency of framework-

based development. CAFÉ management practices and their associated inputs and outputs are depicted in

Table 3.

Table 3. CAFÉ Management Activities

Input to / Requires Management Practice Produces

 Identify Framework Team Executive Sponsorship

Subject Matter/Technical Experts

Stakeholders

Executive Sponsorship

Stakeholders

Identify Stakeholders and

Stakeholder Goals

Business Use Cases

Subject matter/Technical Experts

Business Use Cases

Collect Supporting Information

Resources

Information Repository/Training

Subject matter/Technical Experts

Stakeholders

Business Use Cases

Identify Technology Standards Framework Standards

Enterprise Technical Architecture

Stakeholders

Business Use Cases

Define Compliance Procedures Compliance Rules

 34

Subject matter/Technical Experts

Summary and System Use Cases

Framework Architecture

Establish Training Program Training Materials

Stakeholders Establish Technology Change

Management

Technology Watch Plan

Potential Technologies

Subject Matter/Technical Experts

Information Repository/Training

Compliance Rules

Integrate CAFÉ Into Existing

Development Processes

Integrated Processes

2.1.2 Framework Architecture Practices.

The framework architecture practices capture the knowledge of subject matter experts and identify the key

functionality and operations of typical and projected applications in the domain. This knowledge is

augmented with evaluations of standard architectures and reference implementations from the domain.

Domain analysis steps help framework architects plan for the future by anticipating services from emerging

technologies. The goal is to identify a set of canonical services essential to applications within the domain

and to anticipate what services will be essential to new applications in the domain. This analysis leads the

framework team to understand which common services should be inherent and immutable to the framework

and which services are hot spots representing variations between target applications.

The framework architecture step establishes use cases to form the system and software requirements for the

framework. Use cases also can be the basis for specifying and developing reference applications using the

framework. Reference applications help framework developers exercise the framework elements and

structure and capture some of the context underlying the design decisions and help document the

framework.

Object-oriented analysis techniques are used to organize the key services and to define the interaction

patterns between the various framework elements. Abstract classes are used to define interface

specifications for these framework elements. The goal is to define system and software requirements for

 35

key services within the scoped domain and to use those requirements to define the framework structure and

service representation. The following are object-oriented analysis techniques:

� Define framework domain. The Define Domain Definition activity establishes the scope of the

services provided by the framework. This activity is used to analyze the target domain identified in

by the stakeholder goals and expressed in business use cases.

The framework must provide the services that application developers require to construct

applications. If the framework service cannot be used to create target applications, then application

developers will create services on their own. The identification of these "correct" services, and

how application developers “correctly” use those services, requires domain and technical expertise

to evaluate current application trends within the domain. This analysis can take many different

forms; for example, it could consist of an extensive architectural review of existing applications, a

survey of common features among users, audit logs from applications detailing users common

operations use, and interviews with subject matter experts to determine common services.

Furthermore, the intention driving the development of an object-oriented framework is to support

future application development; hence, the domain analysis must include some level of educated

evaluation of potential future trends in the domain.

� Capture behavioral requirements for common services. The Capture Behavioral Requirements

activity initiates the framework design process by refining the summary use cases and stakeholder

goals into requirements specifications. The behavioral requirements for a framework must capture

and express the internal (private) services and the public (hot spot) services. These requirements

can be captured in the form of software (sometimes referred to as system) use cases. Because the

framework is constructed through a series of development life cycles, the software use cases must

be prioritized to determine the most effective implementation order.

The software use cases must express the services common to applications in the chosen domain.

They represent the infrastructure services that developers will customize and extend to construct

specific applications. Software use cases must capture the behavioral requirements, human and

nonhuman actors using the framework, alternative actions or failure cases, and variations on the

 36

use case. The following sections introduce these topics in more detail. (For a complete treatment

of use cases, refer to Cockburn [2000], the use cases Web site, or the OOASIS Web site. There are

many opinions on use cases and what information they should include and when they should be

used. Cockburn is considered one of the top industry sources on use cases. The guidance in

OOASIS is based on his work but is somewhat more restrictive and focused).

� Define framework architecture. The Define Framework Architecture activity analyzes the

software use cases to create static and dynamic views of the framework architecture. The system

use cases are further elaborated with details about the overall framework architecture and details

of the services. The static and dynamic architectural views are elaborated further with failure

clauses, alternative (or recovery) actions, and more detailed interactions. This elaboration and

refinement process continues until the framework architecture and elaborated use cases are fully

developed.

The OOASIS methodology provides detailed steps to analyze software use cases and produce the

initial framework architecture. Subsequent activities in CAFÉ will use OOASIS methods to

further elaborate this architecture based on a generalization of classes and an analysis of

deployment characteristics for the framework. Refer to the OOASIS Web site for a more detailed

description of these specific activities.

� Define distribution characteristics. The static and dynamic views of the architecture represent a

logical view of the framework. These views focus on the composition of the framework and

relationship between the architecture elements. The physical view of the architecture, also called

the deployment diagram, depicts the distribution of classes across physical computing devices. In

typical systems development, many issues including system performance, throughput

requirements, scalability, and redundancy are considered when allocating classes to physical

computing devices. In framework development, the framework architect can anticipate potential

distribution schemes based on an expert understanding of the target domain and current trends.

There is no means to anticipate all distribution needs of application developers. It is critical that

 37

the distribution characteristics of the framework (including constraints) be accurately and clearly

documented.

� Elaborate framework architecture. The static and dynamic nature of the framework has been

captured and represented in architectural views. Deployment characteristics of the framework

classes have been captured and modeled. These three views provide greater insight into the overall

structure of the framework than was available during the creation of the initial architecture. Armed

with this new insight, the software use cases can be revisited, elaborated, and used to refine the

framework architecture.

Using the static and dynamic views of the framework architecture, the framework architect and

development team revisit each of the use cases and add greater detail to the requirement

specifications. The main scenario, alternative actions, and variations are all considered and

elaborated. The team must be cautious not to introduce design-level information into the software

use cases during this elaboration process.

CAFÉ engineering practices are intended to augment the system development practices used in

organizations to construct software-intensive systems. These practices address issues of specific interest to

object-oriented framework development, which an organization may address with current development

methodologies. Additional practices may be needed to institutionalize and improve the efficiency of

framework-based development. CAFÉ engineering practices and the associated inputs and outputs are

depicted in Table 4.

 38

Table 4. CAFÉ Engineering Activities

Input to / Requires Engineering Practice Produces

Business Use Cases

Subject Matter/Technical Experts

Define the Domain of the

Framework

Summary Use Cases

Information Repository/Training

Summary Use Cases

Subject Matter/Technical Experts

User representatives

Stakeholders

Capture Behavioral Requirements

for Common Services

Software Use Cases

Prioritized List of Services for

Development Cycle

Software Use Cases

Framework Standards Enterprise

Technical Architecture

Framework Architect

Define Initial Framework

Architecture

Class Diagrams

Sequence Diagrams

Framework Hot Spots

Framework Private Services

Software Use Cases

Subject Matter/Technical Experts

Define Distribution

Characteristics

Deployment Diagram

Class Diagrams

Sequence Diagrams

Software Use Cases

Deployment Diagram

Class Diagrams

Sequence Diagrams

Framework Standards Enterprise

Technical Architecture

Framework Architect

Elaborate Framework

Architecture

Software Use Cases

Class Diagrams

Sequence Diagrams

2.2 How CAFÉ Addresses Framework Development Issues

Process solutions, such as those founded on the Software Engineering Institute’s Capability Maturity

Models, provide generic solutions to engineering and management problems. To be most effective, these

solutions must be carefully adapted and tailored to meet specific needs of organizations. Interestingly

 39

enough, technology solutions have the same characteristic – simply purchasing and installing a

configuration management tool does not make an organization effective at managing software

configurations. The following guidelines11 refer to generic solutions to the basic framework development

issues described in Section 1.1.

2.2.1 Identifying the Proper Framework Services

Intuitively, an OO framework will only be effective if it supplies the proper services and extensions to meet

the needs of application developers. Ideally, the framework must also be somewhat agile so that it can

change and evolve to meet known and unknown needs. Problem 1 restated below captures the essence of

the service identification issue.

Problem 1. For effective software reuse within industry, engineers require a means to identify,

specify, structure, and develop common domain-specific services within their

industry.

CAFÉ management activities include a strong emphasis on team composition and early and active

stakeholder (including application developers) involvement. Experts in application solution development

lead the framework development team and provide the deep experience based required to identify and

structure services for the framework. The team also includes strong technical developers who are masters

of the development processes and tools used to build the framework and subsequent applications. Together

the domain experts and technical experts judicially select services and structure the framework to the best

advantage. Most domain and technical experts know the importance of involving all stakeholders, including

senior managers, marketing experts, and users (who are developers in this case). Without support from

these key groups, the framework may fail even though it is technically sophisticated, powerful, and ideal

for building target applications. These groups, in particular the user group, help assure that the framework

is developed with the desired services and structured in a manner that is useful for non-experts.12

CAFÉ engineering activities emphasize the development of strong business use cases and the subsequent

development of system use cases for the framework services. Business use cases capture the operational

11 As of this writing, CAFÉ has yet to be adopted by a real organization working on real problems. However, the
techniques that CAFÉ is based upon have been adopted and utilized within industry for a number of years.

 40

requirements from the organization’s perspective of business goals, such as reduction in time to market and

quality improvement. These goals identify the specific business domain and business rules (or processes),

and defines a scope for the framework. The framework scope identifies the common applications that

typify the applications that will be developed using the framework. Subsequent activities refine the

business use cases into framework requirements represented as system-level use cases. This refinement is

accomplished through domain analysis where applications are examined to identify commonalities, or

through an iterative process building, adding, and refactoring the framework.

2.2.2 Optimal Solutions Require Iterative Approaches

For a fixed and known set of target applications, developing a general framework solution as the basis for

application development is a non-trivial task. Software product lines identify the variances and

commonalities amongst a closed set of applications. The product line can then be used to synthesize any

application within the set by selecting the desired characteristics. A framework on the other hand focuses

on a known set of example applications, and seeks to develop a generalized solution that is not constrained

to a closed set of applications. Unfortunately, this can often lead to developers attempting to build

applications beyond the original scope of the framework. There are legitimate reasons, namely pressure to

include new features and operations as a result of new technologies in the industry. For frameworks, the

solution space is changing and requires and iterative and cyclic process to ensure the framework evolves to

meet current needs of developers. Problem 2 restated below summarizes the issue of creating optimal

framework solutions.

Problem 2. Optimal solutions are elusive and require iterative approaches that capture and leverage

the experiences of domain and application development experts.

CAFÉ management practices emphasize an iterative development process where stakeholder goals,

business needs, and technology drivers are considered and prioritized into the new versions of the

framework. Each iteration of CAFÉ translates new business goals, technology advancements, and system

enhancements (i.e., defects in the previous version of the framework) into system use cases. System use

cases are prioritized and used by developers to implement the next release of the framework.

12 For example, professional cookbooks tend to terse, often just listing ingredients (without measurements) and a brief

 41

2.2.3 Pace of Technology Innovation

It may be trite, but technology will change and frameworks must change to accommodate change. The

proper design of any application or system isolates the volatile elements in order to minimize the impact of

change on the application. The rapid pace of technology innovation and change taxes both the process of

constructing an OO framework and the architecture of that framework. Being prepared for technology

change is at least a matter of monitoring and tracking relevant key technologies and understanding when

and how they will impact the business and system use cases of the framework. Only by knowing and

anticipating these impacts can framework architects hope to properly isolate the proper elements in the

framework.13

Problem 4. To keep a framework current and viable, the development process must address

activities for identifying new technologies, prioritizing updates, and inserting new

technologies into the framework.

In CAFÉ, relevant technologies are monitored and tracked as part of the management activities. When

technologies mature or stakeholders needs require the inclusion of a new or updated technology, these

changes are cast as system requirements. As system requirements, they are prioritized and scheduled for

development just as are new feature requests.

2.2.4 Framework Training

When I started my graduate studies (and before I knew about frameworks), I embarked on learning

Microsoft’s Visual Studio development environment. It was not too long before I ran head long into the

Microsoft Foundation Classes (MFC) and trouble. To be honest, I read only bits and pieces of the ample

documentation and none of the excellent books or tutorials. Everything I tried to do caused pain, took days

rather than hours, and caused me more than once to search for a decent Java development environment. I

eventually broke down and bought a book (Horton 1998) and started to relearn the MFC framework.

Almost immediately, things began to click into place, and what took me days of pain suddenly took

minutes. This led me to the following observation and a restating of Problem 5.

description of the cooking process. They are unusable by amateur chefs, but are fine for professional chefs.
13 There are technology impacts that are fundamental and cannot be easily isolated, but that is a matter for architects.
Eventually, the impact of technology change will drive the framework into obsolescence.

 42

Thesis Conclusion.

OO frameworks have inherent constraints, philosophies and usage models. If developers

adhere to these constraints, understand and follow the philosophy and usage models,

then they can use the framework to its fullest advantage. Ignoring these rules and models

can make the difficult or impossible to use to achieve the desired goals. Don’t swim

upstream against the current!

Problem 5. To be efficient and effective, developers need ample and sufficient training and

knowledge of the engineering design context of the framework. This design context is

key to understanding the underlying assumptions on that were built into the design of

the framework.

CAFÉ includes a specific activity to capture information pertinent to the training and indoctrination of

application developers. The training program captures the business and design rationale, design model,

specific interface protocols (parameters, syntax, and semantics), and any additional background

information required to fully document the framework. Defects or deficiencies in the training materials are

also collected as requirements and prioritized for future versions of the framework. The framework training

material also includes reference implementations of applications built using the framework. These

reference implementations demonstrate how to use the framework. For example, reference applications

show how to implement applications, extend the framework services, supersede existing services, or add

new services.

2.2.5 Domain Analysis

Problem-space analysis is key activity successful development methodologies – if you don’t identify the

problem correctly there is little chance of producing an effective solution and happy customer. For OO

framework development, requirements’ engineering –the activity of collecting and analyzing user needs –

involves handling of multiple requirements sets. In the simplest case, the framework captures the common

services from one domain application as a foundation for future applications. The framework team focuses

on one application and reengineering one set of requirements. In more complex cases, multiple applications

are analyzed, which not only involves multiple analysis activities, but also requires that the team merge the

 43

results into a single unified requirement set. The analysis of multiple domain applications is captured in

Problem 1.

CAFÉ focuses initial engineering activities on the analysis of applications in the problem space, i.e., the

target domain for the framework. Two major approaches have been tested as part of the overall

requirements specification activity. Initially, CAFÉ included domain analysis activities from the

Consortium’s approach to constructing software product lines (Product Line Management Engineering).

This activity essentially decomposes the capabilities of exemplar applications to identify where the

applications have commonalities and where there are variances (and the nature of those variances). CAFÉ

is primarily interested in identifying those commonalities, but also concerned with some variances. The

variances help identify framework hotspots and quantify extensions for the framework.

During the testing of CAFÉ, it became apparent that refactoring is another viable approach to requirements

analysis for OO frameworks. Refactoring (Opdyke 1992) is the process of restructuring existing software in

order to re-purpose the software for a different application. Refactoring is a viable approach in cases the

target set of applications is not initially known, the applications do not exist, or the domain is highly

volatile. Using refactoring, an initial framework is developed and deployed. As stakeholders identify new

applications or new capabilities, the framework team refactors and restructures to meet the new

requirements.

2.3 Summary

Although CAFÉ is still in its infancy, there are several key aspects that can help organizations construct

viable frameworks for application development. Complete testing and validation of CAFÉ requires

substantial resources in terms of time, staff, equipment, and target domain. We are not able to fully exercise

the CAFÉ approach as part of this thesis. Instead we identified what we consider the most crucial portion,

the identification of framework services, for our investigation. This focuses on the CAFÉ activity, “Capture

Behavioral Requirements for Common Services.” The remainder of this thesis recounts the investigation

into identifying common framework services.

 44

3 BEHAVIORAL ANIMATION FRAMEWORK

3.1 Introduction

As we have stated throughout this thesis, our target goal was the design of an object-oriented framework to

support the development of behavioral animation applications. We have exercised the CAFÉ approach to

framework development to identify the proper services and design the framework. During the design of our

behavior animation framework, we uncovered insights into the framework design process and developed a

substantial understanding of recent research related to behavioral animation. This section provides an

annotated description of the CAFÉ Engineering tasks used to design the framework. Key architecture

artifacts include the definition of the framework domain, relevant summary business objectives, actors, and

the framework services. The final design artifact is an engineering model specified using the Unified

Modeling Language (UML). This model is of sufficient detail to support the implementation of the

framework using a standard OO development method. For this thesis, we conclude our experiment with the

development of an initial software design. Future activities would include an analysis of potential

distributions factors and the subsequent iteration on the design. The real nugget; however, is the experience

of designing the framework and the experience developing and refining the CAFÉ approach. These nuggets

are captured as this thesis, and we have highlighted the brightest of these nuggets.

3.2 Define Framework Domain

In this section, we define the framework domain. That is, we establish the purpose, scope and intended

context for the framework. As mentioned above, the domain is important for applications developers to

understand the intended context for the framework. Without this context, application developers have little

guidance on the proper use and intent of the framework. Figure 5 shows the Define Framework Domain

task within the context of the CAFÉ Engineering Tasks.

 45

DEFINE
FRAMEWORK

DOMAIN

DEFINE
FRAMEWORK

DOMAIN

CAPTURE
BEHAVIORAL

REQUIREMENTS

CAPTURE
BEHAVIORAL

REQUIREMENTS

DEFINE
FRAMEWORK

DOMAIN

DEFINE
FRAMEWORK

DOMAIN

CAPTURE
BEHAVIORAL

REQUIREMENTS

CAPTURE
BEHAVIORAL

REQUIREMENTS

DEVELOP INITIAL
ARCHITECTURE

DEVELOP INITIAL
ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEVELOP INITIAL
ARCHITECTURE

DEVELOP INITIAL
ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEFINE
DISTRIBUTION

CHARACTERISTICS

Figure 5 Define Framework Domain Task

3.2.1 Purpose

Behavioral animation applications are a multi-disciplinary approach to developing computer animations

using autonomous and semi-autonomous creatures and a varying degree of interaction and control from

animators. These animations draw on the knowledge and experiences of researchers in areas such as

robotics, artificial intelligence, ethology, and zoology to develop realistic and believable animations and

interactive experiences. Given the complexity of these fields, it is common for most behavioral animations

to emphasize one or perhaps a few of these research programs.

Computer graphic pioneers Jim Blinn and James Foley have identified the lack of integrated techniques in

computer graphics research as one of top ten challenges for the future of computer graphics [Blinn 1999,

Foley 2000]. This challenge represents several related issues:

� Lack of a mechanism for sharing techniques without forfeiting the intellectual property of the

researcher or researchers

� Difficulty is staying aware of the latest developments from an international community

� Unnecessary duplication of effort that comes from developing similar capabilities

The Behavioral Animation Framework provides common and unique services to support animation

development throughout the research community. Common services are identified and developed as a

result of an analysis of current research programs in behavioral animation and other closely related

programs. These services enable researchers and students to reuse common constructs and focus their

design and implementation energy on their particular areas of interest. Unique services capture the

technical and domain expertise of researchers and enable other researchers and students to include these

unique services in their animation systems. Reusing unique services allows researchers to include addition

 46

techniques in their animations and thereby improving the overall quality and believability of the final

product.

A framework development organization is responsible for tracking, capturing and providing these services

through an object-oriented framework or set of frameworks. This organization provides central

sponsorship, design, implementation, and testing services, framework and application development

training, framework compliance and verification rules, and other management functions. Ideally, academic

and research institutions would contribute new services to the framework; and in turn utilize the services in

the framework.

Several approaches could be used to derive to specify, structure, and populate a framework. Four

approaches that have been used to structure available frameworks include:

� Program requirements approach seeks to identify required functionality in currently deployed

systems. The functionality identified is used to structure the framework, and to help specify the

population of components. One advantage of this approach is that the framework is more likely to

support migration from legacy application to a framework-based application. The major

disadvantage appears to be that the framework is unduly constrained by addressing only current

technical needs and is limited in its accommodation of future technologies.

� Design by committee approach seeks to specify framework services in a particular domain by

eliciting requirements from industry and academic organization with domain expertise. Through a

series of request for proposals and industry/academia responses, the services of the framework are

specified. The burden falls on industry to implement the services and provide the population of

components for the framework. The advantage of this approach is the use of industry experts and a

consensus of appropriate structure and functionality for the framework. The disadvantage is the

lengthy process sometimes requiring more than year to develop a specification. This approach,

although based heavily on industry involvement, suffers from a lack of commitment by industry to

implement products using some specifications.

� Standards-based approach seeks to leverage existing or developing industry standards or de facto

standards to identify required functionality within a domain. While very similar in nature to the

 47

design-by-committee approach, it differs in its leverage of current industry standards. In cases

where no accepted industry standards are recognized (or exist), this approach is essentially a

design by committee approach. The advantage of this approach beyond the timesavings using

existing standards is the focus on developing a reference implementation. The primary

disadvantage is the slow speed in which standards bodies develop both standards and reference

implementations. In addition, successful standards often have their future closely tied to the

success of the associated products from commercial vendors who support the development

process. For example, the Object Management Group and the OpenGIS Consortium are successful

in developing standards only if their supporting commercial vendors develop products with those

standards.

� Domain analysis techniques are most commonly used as part of either a product line approach to

designing software or in the design of reusable library of components. Regardless, domain

analysis approaches can serve to help structure and populate frameworks. The essential end

product of domain analysis is a model describing common elements within the domain. These

elements become the common categories of components within the framework. The main

advantage is the development of frameworks in domains without application standards or for

corporate product lines. CAFÉ utilizes several of the techniques from the Consortium’s Product

Line Management Engineering process.

As a result of these analyses, and the use of an iterative development process such as CAFÉ, the behavioral

animation framework will continue to evolve through the addition of new services, improvement of

existing services, and retirement of obsolete services.

3.2.2 Scope

Behavioral animation applications are a multi-disciplinary approach to developing computer animations

using autonomous and semi-autonomous creatures and a varying degree of interaction and control from

animators. These animations draw on the knowledge and experiences of researchers in areas such as

robotics, artificial intelligence, ethology, and zoology to develop realistic and believable animations and

interactive experiences. From the potential broad base of technologies and disciplines to use as an initial

 48

basis, we choose the projects listed in Table 1. The selection of these projects yields a substantial set of

capabilities suitable for a particular set of stakeholders or target audience.

There are many potential business and technology stakeholders for our framework and they are represented

three industry segments: commercial animation studios, commercial animation technology companies, and

education and research institutions.

� Commercial Animation Studios develop computer-based or computer-enhanced animations or

entertainment/education computer titles. Some organizations are engaged in research and

development of computer-generated avatars in conjunction with intelligent agents and

collaboration/communication initiatives. Studios might utilize the framework by leveraging the

more comprehensive services to develop more compelling and interesting animations and as a

basis for to include their own exquisite services.

� Commercial Animation Technology Companies develop tools and complete systems used by

other organizations to develop animation films and short features. The behavioral animation

framework would provide a broader, more comprehensive core element for the development of

their unique services.

� Research and Learning organizations are academic institutions that provide instruction and

research opportunities in areas such as computer animation programming, development of

animation titles, and advancing the technical and artistic aspects of computer animation. In short,

these institutions are home to the computer science students, art students, and researchers. The

framework enables students, faculty and researchers to focus on their unique contributions and still

leverage state-of-the-industry contributions.

It is most realistic to target the Research and Learning institutions. The intent of the framework is to

consolidate behavioral animation techniques, which would enable students and researchers to develop more

interesting animations. In additional, the framework may foster additional research to extend to enhance

services.

 49

3.2.3 Context

We envision the Behavioral Animation Framework provide a core, generic application that left unaltered

would provide the developer with an executable animation application. We define hotspots for the

framework enabling developers to extend and enhance the target animation application. The framework

shall be compatible with commercial software development tools, and someday in the future may include a

semi-automated “wizard”-like assistant14.

Successive iterations of the framework will provide more comprehensive capabilities and increased

hotspots to enable further customization of the target application. As the framework matures, the core

features become the black-box portion of the framework and hide the implementation details of those

features. New features are implemented as white-box elements and provide developers with code-level

access.

3.3 Capture Behavioral Requirements For Common Services

Once the framework domain has been established, the next step is to identify and capture the behavioral

requirements of the framework. These requirements form the services provided to application developers

by the framework. The specification of behavioral requirements involves expressing the desired capabilities

of the framework from both a system and a software perspective. The goal of these tasks are to determine

what services the framework will provide, how users will use those services, and how the services interact

with one another. Figure 6 shows how the Capture Behavioral Requirements tasks fits into the Café

Engineering tasks.

DEFINE
FRAMEWORK

DOMAIN

DEFINE
FRAMEWORK

DOMAIN

CAPTURE
BEHAVIORAL

REQUIREMENTS

CAPTURE
BEHAVIORAL

REQUIREMENTS

DEFINE
FRAMEWORK

DOMAIN

DEFINE
FRAMEWORK

DOMAIN

CAPTURE
BEHAVIORAL

REQUIREMENTS

CAPTURE
BEHAVIORAL

REQUIREMENTS

DEVELOP INITIAL
ARCHITECTURE

DEVELOP INITIAL
ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEVELOP INITIAL
ARCHITECTURE

DEVELOP INITIAL
ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEFINE
DISTRIBUTION

CHARACTERISTICS

Figure 6 Capture Behavioral Requirements for Common Services

14 Like the wizards provided in Microsoft’s Visual Studio environment and Office applications.

 50

3.3.1 Express Desired System Capabilities as Summary Use Cases

3.3.1.1 Task Objectives
� Describe the workflow processes supported by applications built using the framework.

� Identify which elements are common and will make up the core of the framework.

� Focus the summary use cases on what business function users will accomplish with the

applications rather than what user goals they will satisfy.

� Maintain a consistent level of abstraction for the summary use cases by avoiding quantifying or

qualifying the processes.

� Answer the business question, “What will the framework help our organization accomplish?”

3.3.1.2 Overview of the Summary Use Cases
An application developed using the framework will consist of several animator commands that control the

operation of an application. These commands are used to create, modify and store animation sequences. An

animation sequence consists of one or more autonomous creatures interacting among themselves and with

their environment. The environment contains dynamic, simple elements, which perform simple actions. An

example dynamic element might be a tree falling over. The environment also consists of static elements,

such as a bridge, that do not move or perform any actions. The following subsections define the business

operations of applications developed using the framework.

3.3.1.3 Create Animation15
� Create or open an animation sequence

� Modify animation parameters including character behavior and environment models

� Run animation in test or production mode

3.3.1.4 Dynamic Animated Characters
� Define one or more autonomous creatures16

 51

� Define or modify the behavior rules and decision models

� Autonomous relationships between characters

� Autonomous relationships with environment

� Define or modify mobility rules

� Define or modify sensor input rules

� Define or modify physical model

3.3.1.5 Rule-based Environment
� Define or modify “non-player” behavior scripts for dynamic objects

� Define or modify physical models for environment

3.3.1.6 Animation Analysis System
� Record or display animation decisions and behavior rules

� Capture input parameters and drive variations of the animation (i.e., using different decision and

behavior models)

� Compare results from multiple “variants” of the animations

3.3.2 Identify Set of Systems for Analysis

3.3.2.1 Task Objectives
� Identify key services by examining representative applications within the domain that meet some

or all of the summary use cases.

� Base the selection of systems on those systems that support or contribute elements towards the

satisfaction of the system capabilities expressed in the summary use cases.

15 Many frameworks integrate with or are supported by a software development environment. In this case, there will be
several summary use cases that describe the business objectives of the framework tool and the goals for the animation
developer who uses the tooling.
16 For simplicity sake, we will limit our framework to one species of creature. Additional summary uses might describe
a population of numerous autonomous species – perhaps as part of a doctoral dissertation.

 52

The target framework comprises services that represent the common and essential services as indicated by

their presence in the analysis set of systems. The primary systems are listed in Table 1 and summarized

starting in Section 1.3.3.

3.3.3 Identify Actors within Each System

3.3.3.1 Task Objectives
� Analyze the identified systems and identify the actors for the system.

Actors are traditionally humans who operate the system to achieve (usually) one of the business goals

described in the summary use cases. However, we have chosen to identify non-human actors since the

creatures created with our framework must exhibit autonomous behavior. We believe this qualifies them,

and the environment as actors. Actors are shown in

Figure 7.

� Animator/User. The Animator is the primary human end-user of the system. His or her goals are

to develop believable and realistic animations using autonomous creatures.

� Autonomous creature. The animated creature or creatures that “live” in the environment as part

of the animation.

� Dynamic Environment. The environment can support different types of dynamic objects that do

not exhibit autonomous behavior but do have action and movement as part of an animation. For

example, a geyser that erupts at periodic intervals would be a dynamic object. A “canned” script

would be developed and periodically repeated.

� Static Environment. The environment also has an obvious static nature that must be modeled and

must respond to sensor requests.

The dynamic and static environments are variations of the same actor with the static environment always

present and without a dynamic script to enact. We start by modeling them as separate actors, but do not be

surprised if that changed during the analysis and design.

 53

Animator

Creature

Static Environment
(Lyster c. 1999)

Dynamic Environment

Figure 7. Initial Cadre of Actors

3.3.4 Initial Analysis of Systems for Each Actor

The objective of the Initial Analysis is to identify a master list of the types of methods employed by the

actors in each of the systems. The list is not really usefully for designing and implementing a framework,

rather it creates a catalog of all the types of methods used in the systems, and the different ways the

methods will be used by the actors. From this catalog, the list of common services and potential hotspots

will be identified.

 54

Thesis Conclusion.

Each system is decomposed to identify important elements and operations performed by

each actor. During the analysis, it is important to remain consistent with level of detail

during the analysis. It is often helpful to try and mentally map elements and operations

against a standard hierarchy, such as global, national, state, and city or local. During the

analysis, identify actions and operations and separate them from attributes and simple

attribute setting operations. Build a complete action-oriented model for each system. Try

to be as specific as possible when referring to actors and their operations. Do not worry

about consolidation, consistent terminology, or consistent naming between systems at

this point. Note any special circumstances or details that might be useful in later

refinement steps. Also, note references used in the documentation or models of the actor

and specific actions and any specialized circumstances.

The initial decomposition of operations and elements are shown in the following tables and figures. Table 5

shows a decomposition of the systems yielding two major classes of operations. Animation Control deals

with the mechanics of starting and stopping, creating, loading, and storing animation sequences. Animation

Quality and Editors refers to the manipulation of qualifiers, rules, and other factors that affect the quality

and content of an animation sequence.

Table 5. Initial Identification for the Animator Actor

Actor: Animator
Animation Control

Sequence Management
Sequence Tracing and Debugging

Animation Quality and Editors
Behavior Rules
Noise Filter
Dynamic Environment Rule
Creature Attributes

Sequence Attributes

Figure 8 and Figure 9 show the decomposition for the Creature actor. The figures show the decomposition

of each of the key systems relative to the creature actor. The decomposition shows roughly seven categories

of operations for the creatures. Architecture generally includes operations and attributes related to the

internal structure, operation, and representation of the creature or creatures. Creature generally refers to the

operations and elements that simulate the life processes of a creature. Command and Control refers the

interaction between the animator and creature where the animator requests specific operations from the

 55

creature. Theoretically, this could also include creature-to-creature interactions. Virtual Objects generally

refers to the operations of non-creature objects. Neural Network generally refers to the use of a particular

construction techniques for simulation thought processes and behaviors. Behavioral Model generally refers

to various techniques and approaches to modeling the behaviors, objectives, and constraints for creatures.

Emotion Model generally refers to emotional qualities that alter the thought and behavior process. Note the

overlap between many of the categories, for example notice the overlap between the architecture and

creature categories.

Architecture
Spoken Language Process

Input
Speech Recognition
Name substitution
NLP English parsing
Application-specific
transformation

Semantic Analysis
Template matching
Object database
Action template

Animation engine
Animation database

Dialogue management
Finite state machine
Context
Conversation state
Dialogue rules
Short term memory

Speech controller
Speech database

Video/Audio Controller
3-D model
Runtime controller
Reaction library

Actor:
Creature(s)

Actor:
Creature(s)

Source:
TU

Source:
TU

Architecture
Graphical Display Model

Geometry
Texture

Biomechanical Model
Physical Structure
Anatomical Structure
Muscle Actuators
Deformation
Physical Dynamics

Brain Model
Motor Control
Perception
Behavior Model
Other Models

Environment Model
Hydrodynamic Model
Water Temperature
Brightness and Clarity
Seaweed
Other fish

Numerical Analysis Solution
Euler method
Skyline Storage Scheme

Source:
Breese

Source:
Breese

Command and Control
Dialogue input

Virtual Objects
Emotional State

Short term
Mental State
Valence (happy)
Arousal
Non-verbal

Personality Style
Dominance
Friendliness

Emotional Response
W ording choice

Semantic paraphrases
Expressive Relations
Expressive intensity
Expression and intent
Bayesian network

Reasoning Architecture
Dual networks
Recognition
Probabilistic inference
Emotional response
Behavior generation

Source:
Ball

Source:
Ball

Source:
Blumberg
Source:

Blumberg

Creature
Geometry
Motor Skills

Controllers
Degree of Freedom
Motor Skills State

Sensory Input
Physical Sensor
Interrogation of others
Synthetic Vision
Sensors State

Navigation
Egocentric fields
Motion energy fields

Behavior System
Global queue
Action Selection
Creature goals
Competing goals
Learning
Emotion
Behavior

Time
Virtual Objects

Geometry Model
Physical Model

Architecture
Spoken Language Process

Input
Speech Recognition
Name substitution
NLP English parsing
Application-specific
transformation

Semantic Analysis
Template matching
Object database
Action template

Animation engine
Animation database

Dialogue management
Finite state machine
Context
Conversation state
Dialogue rules
Short term memory

Speech controller
Speech database

Video/Audio Controller
3-D model
Runtime controller
Reaction library

Actor:
Creature(s)

Actor:
Creature(s)

Source:
TU

Source:
TU

Architecture
Graphical Display Model

Geometry
Texture

Biomechanical Model
Physical Structure
Anatomical Structure
Muscle Actuators
Deformation
Physical Dynamics

Brain Model
Motor Control
Perception
Behavior Model
Other Models

Environment Model
Hydrodynamic Model
Water Temperature
Brightness and Clarity
Seaweed
Other fish

Numerical Analysis Solution
Euler method
Skyline Storage Scheme

Source:
Breese

Source:
Breese

Command and Control
Dialogue input

Virtual Objects
Emotional State

Short term
Mental State
Valence (happy)
Arousal
Non-verbal

Personality Style
Dominance
Friendliness

Emotional Response
W ording choice

Semantic paraphrases
Expressive Relations
Expressive intensity
Expression and intent
Bayesian network

Reasoning Architecture
Dual networks
Recognition
Probabilistic inference
Emotional response
Behavior generation

Source:
Ball

Source:
Ball

Source:
Blumberg
Source:

Blumberg

Creature
Geometry
Motor Skills

Controllers
Degree of Freedom
Motor Skills State

Sensory Input
Physical Sensor
Interrogation of others
Synthetic Vision
Sensors State

Navigation
Egocentric fields
Motion energy fields

Behavior System
Global queue
Action Selection
Creature goals
Competing goals
Learning
Emotion
Behavior

Time
Virtual Objects

Geometry Model
Physical Model

Architecture
Spoken Language Process

Input
Speech Recognition
Name substitution
NLP English parsing
Application-specific
transformation

Semantic Analysis
Template matching
Object database
Action template

Animation engine
Animation database

Dialogue management
Finite state machine
Context
Conversation state
Dialogue rules
Short term memory

Speech controller
Speech database

Video/Audio Controller
3-D model
Runtime controller
Reaction library

Actor:
Creature(s)

Actor:
Creature(s)

Source:
TU

Source:
TU

Architecture
Graphical Display Model

Geometry
Texture

Biomechanical Model
Physical Structure
Anatomical Structure
Muscle Actuators
Deformation
Physical Dynamics

Brain Model
Motor Control
Perception
Behavior Model
Other Models

Environment Model
Hydrodynamic Model
Water Temperature
Brightness and Clarity
Seaweed
Other fish

Numerical Analysis Solution
Euler method
Skyline Storage Scheme

Source:
TU

Source:
TU

Architecture
Graphical Display Model

Geometry
Texture

Biomechanical Model
Physical Structure
Anatomical Structure
Muscle Actuators
Deformation
Physical Dynamics

Brain Model
Motor Control
Perception
Behavior Model
Other Models

Environment Model
Hydrodynamic Model
Water Temperature
Brightness and Clarity
Seaweed
Other fish

Numerical Analysis Solution
Euler method
Skyline Storage Scheme

Source:
Breese

Source:
Breese

Command and Control
Dialogue input

Virtual Objects
Emotional State

Short term
Mental State
Valence (happy)
Arousal
Non-verbal

Personality Style
Dominance
Friendliness

Emotional Response
W ording choice

Semantic paraphrases
Expressive Relations
Expressive intensity
Expression and intent
Bayesian network

Reasoning Architecture
Dual networks
Recognition
Probabilistic inference
Emotional response
Behavior generation

Source:
Ball

Source:
Ball

Source:
Blumberg
Source:

Blumberg

Creature
Geometry
Motor Skills

Controllers
Degree of Freedom
Motor Skills State

Sensory Input
Physical Sensor
Interrogation of others
Synthetic Vision
Sensors State

Navigation
Egocentric fields
Motion energy fields

Behavior System
Global queue
Action Selection
Creature goals
Competing goals
Learning
Emotion
Behavior

Time
Virtual Objects

Geometry Model
Physical Model

Source:
Blumberg
Source:

Blumberg

Creature
Geometry
Motor Skills

Controllers
Degree of Freedom
Motor Skills State

Sensory Input
Physical Sensor
Interrogation of others
Synthetic Vision
Sensors State

Navigation
Egocentric fields
Motion energy fields

Behavior System
Global queue
Action Selection
Creature goals
Competing goals
Learning
Emotion
Behavior

Time
Virtual Objects

Geometry Model
Physical Model

Figure 8. System Contributions for the Actor Creature, Part 1

 56

Architecture
Spoken Language Process

Input
Speech Recognition
Name substitution
NLP English parsing
Application-specific
transformation

Semantic Analysis
Template matching
Object database
Action template

Animation engine
Animation database

Dialogue management
Finite state machine
Context
Conversation state
Dialogue rules
Short term memory

Speech controller
Speech database

Video/Audio Controller
3-D model
Runtime controller
Reaction library

Actor:
Creature(s)

Actor:
Creature(s)

Source:
TU

Source:
TU

Architecture
Graphical Display Model

Geometry
Texture

Biomechanical Model
Physical Structure
Anatomical Structure
Muscle Actuators
Deformation
Physical Dynamics

Brain Model
Motor Control
Perception
Behavior Model
Other Models

Environment Model
Hydrodynamic Model
W ater Temperature
Brightness and Clarity
Seaweed
Other fish

Numerical Analysis Solution
Euler method
Skyline Storage Scheme

Source:
Breese

Source:
Breese

Command and Control
Dialogue input

Virtual Objects
Emotional State

Short term
Mental State
Valence (happy)
Arousal
Non-verbal

Personality Style
Dominance
Friendliness

Emotional Response
Wording choice

Semantic paraphrases
Expressive Relations
Expressive intensity
Expression and intent
Bayesian network

Reasoning Architecture
Dual networks
Recognition
Probabilistic inference
Emotional response
Behavior generation

Source:
Ball

Source:
Ball

Source:
Blumberg
Source:

Blumberg

Creature
Geometry
Motor Skills

Controllers
Degree of Freedom
Motor Skills State

Sensory Input
Physical Sensor
Interrogation of others
Synthetic Vision
Sensors State

Navigation
Egocentric fields
Motion energy fields

Behavior System
Global queue
Action Selection
Creature goals
Competing goals
Learning
Emotion
Behavior

Time
Virtual Objects

Geometry Model
Physical Model

Architecture
Spoken Language Process

Input
Speech Recognition
Name substitution
NLP English parsing
Application-specific
transformation

Semantic Analysis
Template matching
Object database
Action template

Animation engine
Animation database

Dialogue management
Finite state machine
Context
Conversation state
Dialogue rules
Short term memory

Speech controller
Speech database

Video/Audio Controller
3-D model
Runtime controller
Reaction library

Actor:
Creature(s)

Actor:
Creature(s)

Source:
TU

Source:
TU

Architecture
Graphical Display Model

Geometry
Texture

Biomechanical Model
Physical Structure
Anatomical Structure
Muscle Actuators
Deformation
Physical Dynamics

Brain Model
Motor Control
Perception
Behavior Model
Other Models

Environment Model
Hydrodynamic Model
W ater Temperature
Brightness and Clarity
Seaweed
Other fish

Numerical Analysis Solution
Euler method
Skyline Storage Scheme

Source:
Breese

Source:
Breese

Command and Control
Dialogue input

Virtual Objects
Emotional State

Short term
Mental State
Valence (happy)
Arousal
Non-verbal

Personality Style
Dominance
Friendliness

Emotional Response
Wording choice

Semantic paraphrases
Expressive Relations
Expressive intensity
Expression and intent
Bayesian network

Reasoning Architecture
Dual networks
Recognition
Probabilistic inference
Emotional response
Behavior generation

Source:
Ball

Source:
Ball

Source:
Blumberg
Source:

Blumberg

Creature
Geometry
Motor Skills

Controllers
Degree of Freedom
Motor Skills State

Sensory Input
Physical Sensor
Interrogation of others
Synthetic Vision
Sensors State

Navigation
Egocentric fields
Motion energy fields

Behavior System
Global queue
Action Selection
Creature goals
Competing goals
Learning
Emotion
Behavior

Time
Virtual Objects

Geometry Model
Physical Model

Architecture
Spoken Language Process

Input
Speech Recognition
Name substitution
NLP English parsing
Application-specific
transformation

Semantic Analysis
Template matching
Object database
Action template

Animation engine
Animation database

Dialogue management
Finite state machine
Context
Conversation state
Dialogue rules
Short term memory

Speech controller
Speech database

Video/Audio Controller
3-D model
Runtime controller
Reaction library

Actor:
Creature(s)

Actor:
Creature(s)

Source:
TU

Source:
TU

Architecture
Graphical Display Model

Geometry
Texture

Biomechanical Model
Physical Structure
Anatomical Structure
Muscle Actuators
Deformation
Physical Dynamics

Brain Model
Motor Control
Perception
Behavior Model
Other Models

Environment Model
Hydrodynamic Model
W ater Temperature
Brightness and Clarity
Seaweed
Other fish

Numerical Analysis Solution
Euler method
Skyline Storage Scheme

Source:
TU

Source:
TU

Architecture
Graphical Display Model

Geometry
Texture

Biomechanical Model
Physical Structure
Anatomical Structure
Muscle Actuators
Deformation
Physical Dynamics

Brain Model
Motor Control
Perception
Behavior Model
Other Models

Environment Model
Hydrodynamic Model
W ater Temperature
Brightness and Clarity
Seaweed
Other fish

Numerical Analysis Solution
Euler method
Skyline Storage Scheme

Source:
Breese

Source:
Breese

Command and Control
Dialogue input

Virtual Objects
Emotional State

Short term
Mental State
Valence (happy)
Arousal
Non-verbal

Personality Style
Dominance
Friendliness

Emotional Response
Wording choice

Semantic paraphrases
Expressive Relations
Expressive intensity
Expression and intent
Bayesian network

Reasoning Architecture
Dual networks
Recognition
Probabilistic inference
Emotional response
Behavior generation

Source:
Ball

Source:
Ball

Source:
Blumberg
Source:

Blumberg

Creature
Geometry
Motor Skills

Controllers
Degree of Freedom
Motor Skills State

Sensory Input
Physical Sensor
Interrogation of others
Synthetic Vision
Sensors State

Navigation
Egocentric fields
Motion energy fields

Behavior System
Global queue
Action Selection
Creature goals
Competing goals
Learning
Emotion
Behavior

Time
Virtual Objects

Geometry Model
Physical Model

Source:
Blumberg
Source:

Blumberg

Creature
Geometry
Motor Skills

Controllers
Degree of Freedom
Motor Skills State

Sensory Input
Physical Sensor
Interrogation of others
Synthetic Vision
Sensors State

Navigation
Egocentric fields
Motion energy fields

Behavior System
Global queue
Action Selection
Creature goals
Competing goals
Learning
Emotion
Behavior

Time
Virtual Objects

Geometry Model
Physical Model

Figure 9. System Contributions for the Actor Creature, Part 2

Table 6 shows the decomposition of the systems for the Dynamic Environment actor. It shows that there

are two categories of operations for this actor. The Physical Model models and simulates the physical

environment or world of the creatures. The Behavior Model simulates the behavior and dynamics of the

dynamic environment, but is limited to predetermined action patterns (i.e., non-autonomous behavior).

Table 6. System Contributions for Dynamic Environment Actor

Actor: Dynamic Environment

Physical Model
Color
Lighting
Texture
Intersection
Geometry
Internal Structure

Behavior Model
Rule Base
Motion
Mobility

A similar list for the static environment is shown in Table 7. The initial list of operations focuses on the

physical characteristics of the environment such as color, lighting and other elements. The static

environment characteristics are drawn primarily from the Tu’s work on Artificial Animals [Tu 1996],

which describes a physical environment for an aquatic environment. It does include important characteristic

 57

such as collisions between the environment (e.g., rocks) and actors (e.g., fishes), and lighting models which

drive sensor perception. Additional resources, such as Virtual Reality Modeling Language and the

Geographical Modeling Language could be included as well.

Table 7 System Contributions for the Static Environment Actor

Actor: Static Environment

Physical Model
Color
Lighting
Texture
Intersection
Geometry
Internal Structure

3.3.5 Consolidate Similar Actor Characteristics: First Iteration

As noted above, the operations and attributes identified for the actors across all the systems yielded

considerable overlap. The next step is to reorganize these operations and attributes, and in some cases

combine specialized actors into more generalized actors. The objective is to construct a refined list of actors

and required operations and attributes. This list will drive the development of the system use cases that

specify the system-level requirements for the framework.

Thesis Conclusion.

Within each actor, group together similar actor operations or actions to produce a unified

set of actions performed by each actor type. Begin by categorizing the major actions or

functions of each actor. If possible, combine obvious actors, but be careful that the actors

can be generalized together. We found that sometimes the descriptive words used to

enumerate the actors’ actions in the initial list can be misleading. Consult the additional

references and notes you made in the previous step.

Examining the list of operations for the Animator actor (see Table 5), there are no obvious changes

operations or generalizations of the actor.

The Creature actor operations can be simplified into 32 categories listed in Table 8. Although this list is a

decent consolidation, there are several conflicts. For example, Behavior Selection is probably part of the

 58

Behavior System and Artificial Chemistry is probably pretty close to Biochemistry. The remaining conflicts

will be resolving during the next iteration of consolidating the operations.

Table 8 The Initial Consolidation of the Creature Operations

Actor: Creature

Action Selection

Animation engine

Artificial chemistry

Behavior system

Behavior Selection

Biochemistry

Biomechanical Model

Brain Model

Cognitive Model

Computational Model for
behaviors

Dialog or speech recognition

Dialogue management

Emotional response

Emotional state

Genetics

Geometry

Graphical Display Model

Learning system

Motor skills

Navigation

Numerical Analysis Solutions

Personality

Reasoning architecture

Scripted Agents

Semantic Analysis

Sensory input

Sensory Motor Coordination

Speech Controller

Spoken Language Processing

Structure

Video/Audio controller

Wording selection

The Static and Dynamic Environment actors can be generalized into a single Environment actor. The

operations and attributes are similar between the actors with the significant difference being the mobility of

the dynamic actor. By setting the mobility of the static elements to zero, the same generalized model can be

used for both actors. Table 9 shows the consolidated operations for the Environment actor. The list of

operations for the generalized model also contains some conflicts, such as Behavior Rules and Scripted

Behaviors. These will also be resolved during the next iteration of the consolidation step.

Table 9 The Consolidation of Environment Actors and Operations

Actor: Environment

Behavior rules
Color
Environment Model
Food
Geometry
Geometry
Intersection model

Lighting
Motion / mobility model
Physical Models
Scripted behaviors
Time
Toys

 59

3.3.6 Consolidation of Similar Actor Characteristics: Second Iteration

Several of the overlaps and inconsistencies can be resolved by iterating on the consolidation activity. The

goal of the consolidation task remains the same, to produce a list of actors and targeted operations as input

to the use case development activity. During this iteration, only the Creature and Environment actors

require additional analysis.

Thesis Conclusion.

We found during that during the initial consolidation that closely related actors or

actions could be identified and consolidated. After the initial iteration, we took a second

look at the resultant set and began to question each actor and action. Our goal was to de-

conflict the actor and action sets. For example, some researchers emphasize a cognitive

model while others allocate the same type of functions to a brain model. Do “cognitive

model” and “brain model” represent the same set of functionality? To determine whether

or not they do, additional iterations and analysis are required.

 Within each actor, group together similar actor operations or actions to produce a

unified set of actions performed by each actor type. Begin by categorizing the major

actions or functions of each actor. If possible, combine obvious actors, but be careful that

the actors really can be generalized together. We found that sometimes the descriptive

words used to enumerate the actors’ actions in the initial list can be misleading. Consult

the additional references and notes you made in the previous step.

There are several elements in operations list that constitute a Brain or Cognitive Model. We combine the

operations that simulate the biological, biochemical and genetics mechanisms of brain, the behavioral, and

learning models, and the control features such as motor and sensory control. The resulting list is shown in

Table 10. We combined Sensory Motor Coordination, Behavior Selection, Artificial chemistry, Learning

system, Structure, Brain Model, Biochemistry, and Genetics into a Brain/Cognitive Model. The resulting

consolidation results in a cleaner organization and the identification of six major categories. The Graphical

Display Model includes the rendering and display of graphical images and presentation of audio streams.

The Biomechanical Model combines the creature’s motor skills, physical geometry model, sensory input,

 60

and navigation models. The Brain Model analyzes sensory inputs, applies decision rules according to the

cognitive model, and generates the appropriate motor commands. The Animation Engine contains the

numerical analysis operations and the conversion from motor commands into graphical commands.

Dialogue Management handles the verbal interactions between creatures and animators and between

creatures. It includes the interpretation of utterances and generation of appropriate speech. The Emotions

operations manage the emotional state and reactions of the creature to particular circumstances and

situations.

Table 10 The Second Consolidation the Creature Operations

Actor: Creature

Graphical Display Model
Video/Audio controller

Biomechanical Model
Motor skills
Geometry
Sensory input
Navigation

Brain Model
Brain / Cognitive Model
Action Selection
Reasoning architecture
Behavior system
Scripted Agents

Animation engine
Numerical Analysis Solutions

Dialogue management
Speech Controller
Dialog or speech recognition
Wording selection
Spoken Language Processing
Semantic Analysis

Emotions
Emotional state
Personality

Emotional response

Of these six categories, the Graphical Display Model and Animation Engine are more generalized and can

be associated with other actors. We will remove them and create actors for these capabilities as shown in

Table 11.

Table 11 The New Graphical Display Model and Animation Engine Actors

Actor: Graphical Display Model

Video/Audio controller

Actor: Animation Engine

Numerical Analysis Solutions

The Environment Actor comprises both the dynamic and static aspects of the creature’s “world”. After the

second iteration, the actor has been consolidated into three categories. The Scripted Behaviors operations

manage the dynamics and scripted behaviors for non-creature elements. The Environment Model manages

the effects of time, weather, and other natural phenomena. The Physical Model manages the simulation of

 61

natural characteristics such as lighting models, interactions between creatures and the Environment, and

general motion models for non-creature element. The consolidated list of operations is shown in Table 12.

Table 12 Second Consolidation of the Environment Actor.

Actor: Environment

Scripted behaviors
Behavior rules

Environment Model
Time
Environmental conditions
Weather (fog, wind, rain, cold, heat)
Day light, nighttime

Physical Models
Color
Lighting
Intersection model
Motion / Mobility Model

Geometry

3.3.7 Develop System Use Cases for Actors and Their Actions

At this point in the CAFÉ approach, the business rationale and objectives for the framework have been

described, systems have been surveyed and the resulting actors and their actions have been documented.

The summary use cases describe the objectives of the actors and their actions and relate back to the

business use cases for the framework. This linkage is useful to ensure that there is a business rationale for

the actor, and that the framework meets all business objectives. The next step is to define the semantics of

the operations for the actors using system use cases.

The development of use cases is partly analysis and partly black art. Many approaches to describing use

cases can be found in various papers and books on object-oriented development. CAFÉ adopts many of the

concepts and notions prescribed by Alistair Cockburn (Cockburn 2001). Figure 10 shows the basic

relationship between the summary and system use cases. System use cases capture the purpose or goal of

the use case that the actor is trying to accomplish by executing the use case. The use cases also list several

related scenarios or low-level operations. We also capture failure conditions for the use case and prescribe

how these faults should be handled. Use cases also capture variations or alternative scenarios for the use

case. A use case variation is a technique that enables framework architects to describe how and where the

framework could be extended.

We have documented fifteen system use cases for the system actors in Appendix A. Of these fifteen, the

four use cases for the Creature Actor decompose into nineteen additional system use cases. We have also

 62

included in Appendix A simplistic system interface diagrams to show the potential relationship between the

use cases for all the actors. This style of diagram depicts the inter-dependencies between use cases and

shows how interface potentially flows through the framework. In the design phase for the framework,

engineers would use these system use case descriptions to derive the class hierarchy for the framework. The

system inter-dependency diagrams help to identify the necessary interfaces between components and help

define the hot spots and what variances the framework must accommodate.

Summary Use Cases

Low -level operations

System Use Cases

Summary Use Cases

Low -level operations

System Use Cases

Figure 10 Relationships Between Types of Use Cases

Thesis Conclusion.

System use cases provide the detailed information required to create the architecture.

Define the system use cases for each actor and action. Identify the purpose of the use case,

i.e., the goal that the actor obtains by performing the use case. Identify different scenarios

for the use case to provide a context and to express any desired constraints. Fault cases

express the desired responses to error conditions encountered during normal execution of

the use case. List variations to the use case by describing the other possible actions that

might augment or replace this use case in the future. The variations help to capture how

the framework might be extended through alternative or emerging algorithms.

Variations help identify and describe framework “hot spots” that indicate how the

framework might be extended or tailored in the development environment.

 63

3.4 Reconcile Summary and System Use Cases

Once the system use cases have been developed to sufficient detail, an analysis can be performed to

determine if the system cases support the summary use cases. Table 13 lists the Summary Use Cases from

Section 3.3.1 in the rows and the system use cases from Section 3.3.7. The resulting matrix is a coverage

matrix that indicates which system use cases correspond to summary use cases.

Thesis Conclusion.

The objective is to ensure that all summary use cases are implemented in system use

cases, and that all system use cases support at least one of the summary use cases. When

reviewing the coverage matrix, an empty row indicates that no system use case

implements that summary use case and that the system will not meet that requirement.

An empty column indicates that a system use case exists for which there is no

corresponding summary use case (i.e., there is no requirement).

During the analysis of the coverage matrix, we discovered that the Creature Actor contains a use case for

Dialogue Management. In the initial set of summary use cases, there was no requirement for creatures to

communicate between themselves. To simplify the framework, the Dialogue Use Cases could have been

dropped since no requirement existed. We chose to make the framework more comprehensive and revisited

the summary use cases.

 64

Table 13. Reconciliation Between System and Summary Use Cases

System
Use Cases Animator Character Environment Graphical

Display
Animation

Engine

Summary
Use Cases

An
im

at
io

n
Se

qu
en

ce

An
im

at
io

n
Ed

ito
r

Ex
ec

ut
io

n
M

od
e

Bi
om

ec
ha

ni
ca

l
M

od
el

Br
ai

n
M

od
el

D
ia

lo
gu

e
M

gm
t

Em
ot

io
ns

Ti
m

er
s

D
yn

am
ic

s

St
at

ic

R
en

de
rin

g

D
eb

ug
ge

r

Se
qu

en
ce

M
at

h
Su

pp
or

t

M
an

ag
em

en
t

Create Animation
Create
Modify
Production
Debug
Dynamic Character

Multiple Creatures

Modify behavior rules
Modify Mobility
Modify Sensors

Modify Physical Model

Modify
Inter-creature
Interactions
Rule-based
Environment

Define Non-creature
scripts

Modify physical
environment

Animation Analysis
Record animation
decisions and
behaviors

Capture/modify input
parameters

Compare results from
multiple animations

Once the Summary and System Use Cases have been reconciled, the initial system architecture can be

developed. There are numerous approaches for constructing the initial architecture from use cases. The

CAFÉ approach is independent of the specific design approach. The approach taken here is to develop for

each primary actor an aggregate class comprised of classes that provide the functionality listed in the use

 65

cases. The variations listed for the use cases are modeled into the classes and become hot spots for the

framework.

3.5 Develop Initial Architecture

The goal of the Develop Initial Architecture activity is to create the initial system structure and relationship

as a first step towards the software design and analysis activities. The Develop Initial Architecture is an

iterative activity that may require several iterations before an acceptable structure is obtained. Figure 11

shows the Develop Initial Architecture as part of the CAFÉ approach.

DEFINE
FRAMEWORK

DOMAIN

DEFINE
FRAMEWORK

DOMAIN

CAPTURE
BEHAVIORAL

REQUIREMENTS

CAPTURE
BEHAVIORAL

REQUIREMENTS

DEFINE
FRAMEWORK

DOMAIN

DEFINE
FRAMEWORK

DOMAIN

CAPTURE
BEHAVIORAL

REQUIREMENTS

CAPTURE
BEHAVIORAL

REQUIREMENTS

DEVELOP INITIAL
ARCHITECTURE

DEVELOP INITIAL
ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEFINE
DISTRIBUTION

CHARACTERISTICS
DEVELOP INITIAL
ARCHITECTURE

DEVELOP INITIAL
ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEFINE
DISTRIBUTION

CHARACTERISTICS

Figure 11. CAFÉ’s Develop Initial Architecture Activity

To create the initial architecture shown in Figure 12, create a class for each of the actors. An animation

sequence will be essentially a system that passes messages (which equate to object invocations) between

objects. For example, when the animator starts the execution of a sequence, the CAnimator class sends an

initialization message to the CAnimationEngine class. Create each actor is a composition of supporting

classes along with its own class specific operations. These secondary classes are unique to their associated

actor classes, so an alternative modeling approach is also appropriate. For example, Figure 13 shows an

alternative model for the Animator Actor. The major difference is whether to separate out the execution and

sequence models into secondary classes. The typical reason for such a separation is if there are multiple

classes that can reuse the same secondary class. Other reasons are to manage the size and complexity of

actor class. Our model separates secondary classes for manageability.

 66

CEnvironment

CAnimator

CCreature

CGraphicalDisplay

CAnimationEngine

CSequenceCExecutionCEditor

CNoiseEditorCPopulationEditorCBehaviorEditorCEnvironmentEditor

1
*

1
0..*

1
*

CMathSupportCManagement

1

1

1

1
1

1

1

1

1

1

1

*

1

*

1

1

*

1

1

1

CRender

1

1..*

CDebug

1

1

CFileManagement

1

1..*

CDialogue CBrainCBio CEmotions

1

1

1

1

1

1

1

1

CStatic

CDynamic

CTimer

1

1

1

*

1

*

Figure 12 Initial Architecture Class Diagram

The Animator actor class also uses inheritance for the multiple editor functions. A core set of editor

functions are defined in the general editor class, and specialized in the secondary editor classes. A similar

structure would be used for multiple creatures with similar physiologies.

Thesis Conclusion.

Create a secondary class for each set of use cases for the actor class. Indicate the

cardinality of the relationship between actor and secondary class, that is, show whether

there is a one-to-one, one-to-zero, or one-to-many relationship. Add associations to

indicate the relationships between classes within the system. It is acceptable for the list of

associations between classes to be incomplete at this point in the process. Future

iterations and refinements will continue to identify new associations and remove any

false associations.

Hot spots are the points of variation in the framework. Any class with public visibility is the source of

variation for the framework. Application developers can subclass, inherit, or overload any of the public

classes. For example, the intent of this version of the framework was to create one creature “specimen” and

 67

not allow any variations. The Creature Actor class should be a private class. If however, we wished to

allow for multiple species of creatures, the Creature Actor would be modeled as a public class which would

allow developers to overload or extend the Creature Actor class.

+CExecution()
+CSequence()

CAnimator

CEditor

CNoiseEditorCPopulationEditorCBehaviorEditorCEnvironmentEditor

1
0..*

Figure 13 An Alternative Model of the Animator Actor

The architecture shown in Figure 12 describes a white-box, object-oriented framework. With no extensions

or overloading of classes, developers would use the framework to create an application that provides a

basic behavior animation application. The capabilities of this default system will be consistent with the

system use cases and the summary use cases. If we have done our analysis correctly, this default system is

representative basis for animation applications in the target domain and representative of the research

programs that contributed to it.

The framework has the potential for a number of hot spots that correspond to the variations described in the

use cases. Developers can exploit these hot spots by extending current functionality through inheritance or

replacing current functionality by overloading existing classes. Since CAFÉ is an iterative and increment

development approach, we can be judicious and enable only a few hot spots at a time.

 68

4 FUTURE EFFORTS

This section reflects on the efforts to date to design an animation framework. It describes some potential

future areas of development for this thesis effort, and describes potential applications in other domains.

There are a number of viable domain areas where the development of objective oriented frameworks could

help organizations produce applications based on a standardized set of core services.

4.1 Reflections on Accomplishments

Accomplishments relative to this thesis relate to the application of the CAFÉ approach to the development

of object-oriented frameworks and the analysis of behavioral animation research to yield a target domain.

The CAFÉ approach was based on the concept of adopting in piecemeal fashion elements of existing

methods for common software engineering tasks. One of the collateral results of our work was to validate

to some degree the concept of weaving method parts into new approach. We found that the method parts

flowed nicely leveraging and supported by OO design concepts. Upon further reflection, the initial steps of

CAFÉ are independent of the ultimate conclusion of developing and OO framework. These steps are

equally valid for the analysis of legacy and heritage systems as part of a larger reengineering effort.

The consolidation of several similar but disparate systems into a single analysis model presents several

challenges. The foremost of these challenges is the semantic interpretation of the systems themselves. One

of the side effects of using research programs is the predisposition of documentation (i.e., the dissertations)

to be highly explanatory17. Still, different research use different terminology for the same or very similar

concepts. Tracing between these similarities while not glossing over distinctions is a complicated exercise.

The iterative nature of CAFÉ enables developers to reanalyze systems to ensure the more accurate

interpretation of the information. We saw this in Section 3.3.6 when trying to consolidate similar actor

characteristics.

It is difficult avoid typical software engineering problems related to requirements gathering, notably

requirements creep. We fell into this seductive trap by adding the alluring Emotion Actor to the framework.

The inclusion of an emotional model was not a service initially targeted for the framework. During the

 69

analysis of the cognitive model, I read about the concept of emotions altering the decision process. The

field of emotional modeling is quite compelling and managed to slip into the framework design, albeit in a

rather elementary fashion. Unfortunately, there is no silver bullet in CAFÉ that will slay the problem of

requirements creep.

It is intuitive, and consistent with the SPIR principle18 that domain expertise with the target systems is

critical to the successful analysis of the systems. Domain expertise enables the far deeper comprehension of

the systems including its nuances than is possible from documentation. However, one of the more

surprising and frustrating discoveries was the criticality of technical expertise with development tools. For

the most part, I have been using Visual Studio as a simple C language compiler and debugger and had

never really delved into the proper use of the tool to build Windows-based applications. Mastering the

development environment ultimately required halting the framework analysis work for a substantial period

of time, but this time was invaluable in understanding the context in which the framework would be used

by developers. This context is the basis for understanding the implementation (and hence design

considerations) for framework hot spots.

Despite the fact that the research programs we analyzed emphasized different aspects of autonomous

creatures, artificial life, and behavioral modeling, we were able to find a central core of services that appear

to be common among these systems. Using CAFÉ, we were able to synthesize other non-behavioral

animation systems, such as the Conversational Agent research, into the framework with little additional

effort.

During the course of this research, I learned a great deal about many things. I definitely improved my

knowledge and understanding of OO concepts, OO design methods (in particular use cases), and OO

programming (in particular Microsoft Windows programming). I learned a great deal about behavioral

modeling, cognitive modeling, ethology, fish, speech recognition, different models of learning, and

emotional modeling. I learned a great deal about developing and testing processes and methods. I learned a

17 Doctoral candidates try very hard to explain and convince others of the merits of their system. Their writing is far
more detailed then most industry documents I have read.
18 Smart People In a Room (SPIR) is a term I coined at the Consortium. It reflect an observation that most if not all
analysis and evaluation techniques, methods, and processes include, sooner or later, a step where the team gathers all
the experts into a room. Once gathered, the experts can distill their knowledge to the rest of the team.

 70

great deal about the world of frameworks, OO frameworks in particular, but also about architecture

frameworks, application frameworks, and product lines.

4.2 Next Steps

The CAFÉ Approach describes two major activities beyond the Developing the Initial Architecture activity.

These are shown in red in Figure 14. The Define Distribution Characteristics is an analysis of the initial

framework architecture to determine how to best partition the framework for distribution across multiple

computer systems. The intent of this step is to build in the infrastructure mechanisms that would allow, for

example, the Static Map and Dynamic Elements of the Environment Model to be transparently distributed

across a network. The CAFÉ activity for performing this analysis has not yet been completed, but is likely

to revolve around a SPIR principle.

DEFINE
FRAMEWORK

DOMAIN

DEFINE
FRAMEWORK

DOMAIN

CAPTURE
BEHAVIORAL

REQUIREMENTS

CAPTURE
BEHAVIORAL

REQUIREMENTS

DEVELOP INITIAL
ARCHITECTURE

DEVELOP INITIAL
ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEFINE
FRAMEWORK

DOMAIN

DEFINE
FRAMEWORK

DOMAIN

CAPTURE
BEHAVIORAL

REQUIREMENTS

CAPTURE
BEHAVIORAL

REQUIREMENTS

DEFINE
FRAMEWORK

DOMAIN

DEFINE
FRAMEWORK

DOMAIN

CAPTURE
BEHAVIORAL

REQUIREMENTS

CAPTURE
BEHAVIORAL

REQUIREMENTS

DEVELOP INITIAL
ARCHITECTURE

DEVELOP INITIAL
ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEVELOP INITIAL
ARCHITECTURE

DEVELOP INITIAL
ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

ELABORATE
FRAMEWORK

ARCHITECTURE

DEFINE
DISTRIBUTION

CHARACTERISTICS

DEFINE
DISTRIBUTION

CHARACTERISTICS

Figure 14 Future CAFÉ Activities

The Elaborate Framework Architecture task is another iteration of analysis similar to developing the initial

architecture. For this activity, the initial architecture is considered along with the distribution characteristics

to determine the next of level of detail for the framework architecture. The goal is to describe the structure

of the framework as a driver for the software design process. This CAFÉ activity has not yet been

developed.

Once the elaborated architecture has been developed, and the framework implemented, it must be

integrated closely into development environment to simplify development of animation applications.

Without this integration, the repetitive use of a framework is difficult with high-end tools such as Visual

Studio.

 71

The framework services themselves provide ample opportunity for future work. Each variation listed in the

use cases can be used to extend the functionality and capability of the framework. However, during the

analysis of systems that drove the framework construction three major areas of interest emerged. These

areas are quite complex, and are the focus of numerous research programs. These areas are summarized in

Table 14.

Table 14 Future Extensions for the Behavioral Animation Framework

Extension Area Description

Comprehensive Learning Model Learning is complex. Many researchers are investigating how creatures

learn, different modes of learning and how they are applied in different

circumstances, the effects of short and long-term memory, the effects

of experiences, and other phenomena. Realistic creatures utilize

realistic learning models.

Comprehensive Emotions Model We found that emotions are a complex and controversial subject. There

is a substantial amount of research on the modeling of emotions, their

effects on decisions and behaviors, and emotional problems.

Society Model The effect of society is a critical element of any animation with a

substantial population. These effects might include “the gang

mentality”, “peer pressure”, “safety in numbers”, and other similar

effects.

4.3 Alternative Domains and Framework Uses

In the domain of biomedical simulation, significant research has been conducted at numerous research

institutions. Motivations for simulating the processes and functions of the human body are varied and

include decreased testing time for new drugs, more complete testing of drugs on varying physical

conditions, and a reduction in the amount of animal-based testing. These research programs were

attempting to model the human body functions with the goal of producing a simulation environment

capable of testing the short and long-term effects of new drugs on humans. My particular interest in this

research was their goal in reducing the amount of drug experimentation on animals. The simulation

 72

environment researchers were trying to achieve was far too complex for the software and hardware

technology at the time, and maybe even with today’s technology. Still, this research is the spark for the

following example and potential future project.

Envision a simulation environment where the human body is modeled using hundreds or thousands of

autonomous agents. Each agent models a particular element of the body, for example capillaries, veins,

organs, or muscle tissue. The agents are programmed with their own particular “business rules” and know

their objectives and how to interact with other agents to achieve their goals. Each agent also contains a set

of basic services, such as communication services and message interpretation services. I envision building a

framework produces a generic “body element” agent, and that this framework contains hot spots to enable

the specialization of agents to simulate specialized body elements. Using hot spots, developers can also

model various defects and degenerative conditions for body elements. For example, the framework would

produce an agent that represents a healthy and normal liver, while hotspots within the framework would

allow the user to create diseased, aged, or malformed livers. Each “liver agent” contains the internal

services that mimic the flow of signals, fluids and other “liver processes”.

Once enough agents have been developed to simulate a body environment, agents representing drugs can

be inserted into the stable agent system. The emergent behavior models the effects of the drug on the body.

Variations in specific body-element agents can be used to test the drug on various body types under various

conditions (e.g., sick, tired, intoxicated, pregnant).

 73

List of References
Andre, Elisabeth, Thomas Rist, and
Jochen Muller
1998

Integrating Reactive and Scripted Behaviors in a Life-Like Presentation Agent.
Saarbruken, Germany: German Research Center for Artificial Intelligence.

Badler, Norman I., Cary B. Phillips,
and Bonnie L. Webber
1992

Simulating Humans: Computer Graphics, Animation, and Control.New York,
New York:Oxford University Press.

Ball, Gene, Dan Ling, David
Kurlander, John Miller, David Pugh,
Tim Kelly, Andy Stankosky, David
Thiel, Maarten Van Dantzich and
Trace Wax
1997

Lifelike Computer Characters: the Persona project at Microsoft Research.
Redmond, Washington:Microsoft Corporation. [Online] URL
http://research.microsoft.com/research/ui/persona/chapter/chapref.htm

Bargen, Bradley and Peter Donnelly
1998

Inside DirectX. Redmond Washington:Microsoft Press.

Bates, J.
1994

“The Role of Emotion in Believable Agents.” Communications of the ACM.
37(7), 1994. pp 122-125.

Bayer, Joachim, Dirk Muthig, and
Tanya Widen.
1999

“Customizable Domain Analysis.” Location, Kaiserslautern,
Germany:Fraunhofer Institute for Experimental Software Engineering.
[Online] URL http://www.netobjectdays.org/pdf/stja/bayer.pdf

Becheiraz, Pascal and Daniel
Thalman
1998

“A Behavioral Animation System for Autonomous Actors personified by
Emotions.” In Workshop on Embodied Conversational Characters. Palo Alto,
California: FX Palo Alto Laboratory. pp 57-65.

Blinn, Jim
1999

“SIGGRAPH 1998 Keynote Address.” In ACM SIGGRAPH -Computer
Graphics. New York, New York:Association for Computing Machinery. pp
43-47

Bosch, Jan, Peter Molin, Michael
Mattsson, and PerOlof Bengtsson
1999

“Object-oriented Frameworks – Problems & Experiences.” In Object-Oriented
Application Frameworks. New York, New York John Wiley & Sons.

Booch, Grady, James Rumbaugh,

and Ivar Jacobson

1999

The Unified Modeling Language User Guide. Reading, Massachusetts:
Addison-Wesley. Page 457.

Blumberg, Bruce Mitchell
1997

Old Tricks, New Dogs: Ethology and Interactive Creatures. PhD Thesis.
Cambridge Massachusetts: Massachusetts Institute of Technology.

Blumberg, Bruce M. and Tinsley A.
Galyean
1995

Multi-Level Direction of Autonomous Creatures for Real-Time Virtual
Environments. Cambridge, Massachusetts:Massachusetts Institute of
Technology.

Binsted, Kim
1998

“Designing Portable Characters.” In Workshop on Embodied Conversational
Characters. Palo Alto, California: FX Palo Alto Laboratory. pp 77-87.

Bowman, Ivan
1998

An Architectural Investigation: Extracting Architectural Facts From a Large
Software System. Waterloo, Ontario: University of Waterloo. [Online] URL
http://plg.uwaterloo.ca/~itbowman/CS746G/proj/Project.html

Breese, Jack and Gene Ball
1998

Modeling Emotional State and Personality for Conversational Agents. MSR-
TR-98-41. Redmond, Washington:Microsoft Corporation.

Canamero, Dolores
1997

“Modeling Motivations and Emotions as a Basis for Intelligent Behavior.” In
Proceedings of the First International Conference on Autonomous Agents.
Marina del Rey, California: ACM Press. pp.148-155

 74

http://www.netobjectdays.org/pdf/stja/bayer.pdf
http://plg.uwaterloo.ca/~itbowman/CS746G/proj/Project.html

Cassell, Justine, Yasmine B. Kafia,
and Mary Williamson
1997

“The Implications of a Theory of Play for the Design of Computer Toys.” In
Computer Graphics Proceedings. New York, New York:Association for
Computing Machinery. Pp 431-433.

Cheng, Lili
1999

 Microsoft Virtual Worlds v1.5 Designers’ Guide for 3D Worlds. Redmond,
Washington:Microsoft Corporation.

Chicago
1982

The Chicago Manual of Style .Chicago, Illinois:University of Chicago Press.

Cockburn, Alistair
2001

Writing Effective Use Cases. Upper Saddle River, New Jersey:Addison-
Wesley.

De Champeaux, Dennis, Doug Lea
and Penelope Faure
1995

“Domain Analysis. Chapter 13 In Object-Oriented System Development.
Reading, Massachusetts: Addison-Wesley. [Online] URL
http://g.cs.oswego.edu/dl/oosdsw3/ch13.html

Foley, James
2000

“Getting There: The Top Ten Problems Left.” IEEE Computer Graphics and
Applications. 20:1, 2000. pp. 66-68.

Funge, John David
1998

Making Them Behave. Cognitive Models for Computer Animation. PhD Thesis.
Toronto, Canada:University of Toronto.

Funge, John, Xiaoyuan Tu, and
Demetri Terzopoulos
1999

Cognitive Modeling: Knowledge, Reasoning, and Planning for Intelligent
Creatures. In Proceedings of SIGGRAPH 99. 1999. New York, New York:
Association for Computing Machinery. pp 205-216.

Gordon, Diane F.
1998

“Well-Behaved Borgs, Bolos, and Berserkers.” In Proceedings of the 15th
International Conference on Machine Learning. San Francisco, California:
Morgan Kaufman Publishers

Grand, Stephen, Dave Cliff, and
Anil Malhotra
1997

“Creatures: Artificial Life Autonomous Software Agents for Home
Entertainment.” In Proceedings of the First International Conference on
Autonomous Agents. Marina del Rey, California: ACM Press. pp. 22-29

Gritz, L. and J. K. Hahn
1995

“Genetic Programming for Articulated Figure Motion.” The Journal of
Visualization and Computer Animation. 6:3 pp.129-142.

Goodall, Jane
1971

In the Shadow of Man.Houghton Mifflin Company:Boston Massachusetts.

1990

Through a Window. Houghton Mifflin Company:Boston Massachusetts.

Hayes-Roth, Barbara, Lee
Brownston, and Erik Sincoff
1995

Directed Improvisation by Computer Characters. KSL-95-04. Palo Alto,
California:Stanford University.

Hahn, James
1997

“Behavior Animation” CS 206 Computer Animation Course Notes.
Washington D.C.:George Washington University.

Horton, Ivor
1998

Beginning Visual C++ 6. Birmingham, United Kingdon:Wrox Press Limited.

Kang, Kyo C., Sholom G. Cohen,
James A. Hess, William E. Novak,
and A. Spencer Peterson.
1990

Feature-Oriented Domain Analysis (FODA) Feasibility Study. CMU/SEI-90-
TR-21. ESD-90-TR-21. Pittsburg, Pennsylvannia:Software Engineering
Institute.

Kim, Hyseob and Cornelia Boldyreff
1997

“Formalizing Design Patterns and Frameworks: A Survey Report.” Technical
Report 97/2. Durham, United Kingdom:University of Durham.

Kovach, Peter J.
2000

Inside Direct3D. Redmond Washington:Microsoft Press.

Hodgins, J.K. and W.L. Wooten
1998

“Animating Human Athletes.” [Online] URL
http://www.cc.gatech.edu/gvu/animation/papers/isrr.ps.gz Atlanta,
Georgia:Georgia Institute of Technology.

 75

http://g.cs.oswego.edu/dl/oosdsw3/ch13.html
http://www.cc.gatech.edu/gvu/animation/papers/isrr.ps.gz

Isla, Damian, Robert Burke, Marc
Downie, and Bruce Blumberg
No date.

“A Layered Brain Architecture for Synthetic Creatures.” [Online] URL
http://web.media.mit.edu/~solan/layeredArchitecture.pdf
Cambridge, Massachusetts: Massachusetts Institute for Technology.

Lewandowski, Scott M.
1998

“Frameworks for Component-Based Client/Server Computing.” ACM
Computing Surveys.301. pp3-27

Liu, Zicheng and Michael F. Cohen
1995

An Efficient Symbolic Interface to Constraint Based Animation Systems.MSR-
TR-95-27. Redmond, Washington:Microsoft Corporation.

Lyster, Alec
c. 1999

Lyster, Alec and Greg Murdoch. The Casa Grande Burn - Recognizing Critical
Fire Weather Patterns. National Weather Service Midland/Odessa, Texas.
[Online] URL http://www.srh.noaa.gov/maf/html/Alecfwxi.htm

Maes, Pattie
1989

How to Do the Right Thing. Cambridge, Massachusetts. Massachusetts Institute
of Technology. [Online] URL
http://agents.www.media.mit.edu/groups/agents/publications/Pattie/consci/

1994

“Modeling Adaptive Autonomous Agents.” Journal of Artificial Life. 1:1/2.
Cambridge, Massachusetts:MIT Press.

1995

“Artificial Life Meets Entertainment: Lifelike Autonomous Agents.”
Communications of the ACM. 38:11. Pp. 108-114.

Mataric, Maja J., Victor B. Zordan,
and Mathew M. Williamson
1999

“Making Complex Articulated Agents Dance.” Autonomous Agents and Multi-
Agent Systems. 2,1999. pp. 23-43.

Microsoft Corporation
1998

Designing Characters for Microsoft Agent. Redmond, Washington: Microsoft
Corporation.

O’Neill, Barry
2000

Approaches to Modeling Emotions in Game Theory. DRAFT, Palo Alto,
California:Stanford University. [online] URL
http://www.stanford.edu/~boneill/emotions.html

Opdyke, William F.
1992

Refactoring Object-Oriented Frameworks. PhD Thesis. Urbana,
Illinois:University of Illinois at Urbana Champaign.

Perlin, Ken and Athomas Goldberg
1996

“Improv: A System for Scripting Interactive Actors in Virtual Worlds.” In
Proceedings of SIGGRAPH 96. 1996. New York, New York: Association for
Computing Machinery. pp 205-216.

Perlin, Ken
1995

“Real time responsive animation with personality.” IEEE Transactions on
Visualization and Computer Graphics. 1:1. Pp 5-15.

Pisanich, Greg and Michael Prevost
1996

“Representing Human Characters in Interactive Games.” In Proceeding of the
Computer Game Developers Conference. San Francisco, California:Miller-
Freeman, Inc.
[Online] URL http://reality.sgi.com/prevost _studio/personality.htm

1997

“Representing Artificial Personalities.” Presented at 1997 Computer Games
Developers Conference. Santa Clara, California.
[Online] URL http:// reality.sgi.com/prevost studio/GDC97_paper.htm

Pree, Wolfgang
1995

Design Patterns for Object-Oriented Software Development. Wokingham,
England: Addison-Wesley.

Reynolds, Craig
1987

“Flocks, Herds, and Schools: A Distributed Behavior Model.” In Computer
Graphics Proceedings Annual Conference Series, 1987. pp. 25-34.

Richardson, Stephen D., William B.,
Dolan, and Lucy Vanderwende
1998

MindNet: acquiring and structuring semantic information from text. MSR-TR-
98-23. Redmond, Washington:Microsoft Corporation.

Roberts, Don and Ralph Johnson
1996

Evolving Frameworks: A Pattern Language for developing Object-oriented
Frameworks, Urbana-Champaign,Illinois:University of Illinois. [Online] URL
http://st-www.cs.uiuc.edu/~droberts/evolving.pdf

 76

http://web.media.mit.edu/~solan/layeredArchitecture.pdf
http://www.srh.noaa.gov/maf/html/Alecfwxi.htm
http://agents.www.media.mit.edu/groups/agents/publications/Pattie/consci/
http://www.stanford.edu/~boneill/emotions.html
http://st-www.cs.uiuc.edu/~droberts/evolving.pdf

Rogerson, Dale
1997

Inside Com. Redmond, Washington:Microsoft Press.

Sims, Karl
1994

“Evolving Virtual Creatures.” In Computer Graphics Proceedings Annual
Conference Series, 1994. New York, New York: Association for Computing
Machinery. pp.15-22.

Schneider, Phillip J. and Jane
Wilhelms
1998

Hybrid Anatomically Based Modeling of Animals. USCS-CRL-98-05. Santa
Cruz, California:University of California, Santa Cruz.

Sharp, David C.
2000

Containing and Facilitating Change Via Object-oriented Tailoring Techniques.
The Boeing Company: St. Louis Missouri.

Schmidt, Hans Albrecht
1997

“Systematic Framework Design by Generalization.” Communications of the
ACM 40,10:39-42.

Strassman, Steven Henry
1991

Desktop Theater: Automatic Generation of Expressive Animation. PhD Thesis.
Cambridge, Massachusetts. Massachusetts Institute of Technology.

Strauss, Paul S.
1988

BAGS: The Brown Animation Generation System. PhD Thesis. Providence,
Rhode Island. Brown University.

Szyperski, Clemens

1998

Component Software : Beyond Object-Oriented Programming. Reading,
Massachusetts: Addison-Wesley. Page 366.

Thomas, Frank and Ollie Johnson
1981

The Illustration of Life. Disney Animation. New York, New York: Hyperion.

Template University
1997

“Bayesian Networks.” In SUMMER WORKSHOP FOR EDUCATORS
“Providing and Integrating Educational Resources for Faculty Teaching
Artificial Intelligence” [Online] URL
http://yoda.cis.temple.edu:8080/UGAIWWW/lectures/bnets.html

Terzopoulos, Demetri, Tamer Rabie,
and Radek Grzeszczuk
1996

“Perception and Learning in Artificial Animals.” In Artificial Life V:
Proceedings Fifth International Conference on the Synthesis and Simulation of
Living Systems.

Tu, Xiaoyuan and Demetri
Terzopouls
1994

“Artificial Fishes: Physics, Locomotion, Perception, Behavior.” In SIGGRAPH
94 Conference Proceedings. New York, New York: Association for
Computing Machinery.

Tu, Xiaoyuan.
1996

Artificial Animals for Computer Animation: Biomechanics, Locomotion,
Perception, and Behavior. Toronto, Canada:University of Toronto.

Unuma, Munetoshi, Ken Anjyo, and
Ryozo Takeuchi
1995

Fourier Principles for Emotion-based Human Figure Animation.” In Computer
Graphics Proceedings Annual Conference Series, 1995. New York, New York:
Association for Computing Machinery. Pp 91-96.

Vellon, Manny, Kirk Marple, Don
Mitchell, and Steven Drucker
1998

“The Architecture of a Distributed Virtual Worlds System..” In The Fourth
Conference on Object-Oriented Technologies and Systems (COOT)
Proceedings. Berkeley, California:USENIX Association. pp 211-218

Wang, Guijun, Liz Ungar, and Dan
Klawitter
1999

Component Assembly for OO Distributed Systems. IEEE Computer 32,7:71-
78

Wang, Yi-Min, Wilf Russell, Anish
Arora, Jun Xu, and Rajesh K.
Jagannathan
2000

Towards Dependable Home Networking: An Experience Report. MSR-TR-
2000-26. Redmond, Washington: Microsoft Corporation.

Webster’s II
1984

Webster’s II New Riverside Dictionary. New York, New York:Berkley
Publishing Group.

 77

http://yoda.cis.temple.edu:8080/UGAIWWW/lectures/bnets.html

Wermter, Stefan, Jim Austin, David
Willshaw, and Mark Elshaw
2001

“Towards Novel Neuroscience-inspired Computing.” In Emergent Neural
Computational Architectures based on Neuroscience. Heidelberg, Germany
York:Springer-Verlag

Wilhelms, Jane and Allen Van
Gelder
1997

Anatomically Based Modeling. UCSC-CRL-97-10. Santa Cruz,
California:University of California, Santa Cruz.

Yang, Young Jong, SoonYong Kim,
Gui Ja Choi, Eun Sook Cho, and Soo
Dong Kim
1998

“A UML-based Object-Oriented Framework Development Methodology.” In
Asia-Pacific Software Engineering Conference. New York, New York:IEEE
Computer Society. pp 211-218

Zambonelli, Franco, Nicholas R.
Jennings, Andrea Omicini, and
Michael Wooldridge
2000

“Agent-Oriented Software Engineering For Internet Applications.”
Chapter 13 in Coodination of Internet Agents: Models, Technologies,
and Applications. Heidelberg, Germany York:Springer-Verlag..

 78

APPENDIX A SYSTEM USE CASES

A.1 Animation Actor Use Cases

The Animator is the principle actor using the framework to create and modify animation sequences. The

animator can also modify the parameters of the sequences using a variety of editors. The relationships

between the elements of the Animator Actor are shown in Figure 15.

Animation
Engine

Animation
Commands

Animator Actor

Sequence
Editor

Noise
 Editor

Behavior
 Editor

Population
 Editor

Execution
Control

Environment
 Editor

Parameter
Values

Figure 15 Relationships Between Animator Use Cases

 79

A.1.1 Modify Animation Sequence

Purpose: The animator opens a new sequence. The system stops and closes the current sequence

offering to save any changed work. The system clears the user interface and the animation display.

The system displays the environment variable and the sequence definition editors. The animator

closes the current animation sequence. The systems stops the current sequence, offers to save or save

as if the environment has changed, prompts for file location, prompts for description if new file,

writes the environment and other pertinent information to indicated file, clears the user interface,

clears the animation display, reports status to the animator. The animator reviews the current

animation sequence. The system stops the current sequence, rests the environment variables, clears

the animation display, and begins to play the sequence.

Scenario: Animator creates a new sequence or opens an existing one. The animator stops and closes

the current animation sequence. The animator deletes existing sequences.

Fault Cases: The system experiences file I/O errors opening the sequence file. The sequence file

opens successfully but does not contain properly formatted data.

Variations: No variations currently identified.

A.1.2 Manipulate Noise Filters

Purpose: The animator creates new noise filters (i.e., Perlin Noise functions) from the menu and

defining their characteristics through the noise filter editor. These filters are used to create different

random number distributions that provide different and (hopefully) more interesting behaviors. One

motivation for providing multiple noise filters is to drive different motion of dynamic objects or the

selection of different actions. The system creates a new instance of the noise filter and sets the

appropriate parameters. The system displays the characteristics of the new filter and prompts for a

name. Menu options enable the animator to modify the parameters of an existing noise filter or to

delete a filter. Animation sequences referencing deleted filters are mapped to an existing or default

filter. The animator loads an animation sequence by selecting from a menu of sequences described by

title, length, and textual or keyword descriptions. The system offers to save the current sequence,

 80

closes the current sequence, clears the user interface and sequence display, opens the associated files,

sets the related environment variables, updates the user interface, and posts a status (ready or error) to

the animator.

Scenarios: Noise filters are available to every subsystem in the framework. Framework elements can

use existing noise filters or the animator can create filters with specific characteristics for particular

subsystems.

Fault Cases: The system cannot locate or access the desired filter. The system cannot instantiate a

new filter. The requested parameter changes cause mathematical error (such as dividing by zero).

Variations: A genetic algorithm can be constructed to automatically tune and manipulate the filter

parameters while searching for a “most correct” solution.

A.1.3 Manipulate Behavior Parameters

Purpose: The animator uses the menu to open the behavior editor. The system displays the behavior

editor and enables the animator to specify goals, emotions, personal values, constraints and other

parameters. The animator can review or update existing parameter values.

Scenarios: The animator can manipulate the behavior of any autonomous creature by altering the

weighting and priority of its parameters. The Animator can also alter the behavior of non-creature

elements of the animation. The animator uses the action map editor to display the current action map.

The system displays a list of the current actions, input syntax, output syntax, and semantics

Fault Cases: The data entered leads to contradictory behaviors or evokes a fault during the parameter

processing.

Variations: A genetic algorithm can be constructed to automatically tune and manipulate the behavior

parameters while searching for a “most correct” solution.

A.1.4 Manipulate the Population Editor

Purpose: The animator uses the menu to select the population editor. The system displays the

population editor window, allows the user to change population, creature characteristics, mappings to

 81

behaviors and noise filters. The animator uses the menu to open the behavior editor. The system

displays the behavior editor and enables the animator to specify goals, emotions, personal values,

constraints and other parameters. The animator can review or update existing parameter values.

Scenarios: The animator sets the number and type of autonomous creatures in the animation. For each

creature or set of creatures, the animator can allocate particular behaviors and assign noise filters. The

animator can use the behavior or the noise filter editors to manipulate the qualities of the individual

creatures.

Fault Cases: The population size is too large to create an effective a sequence. The system cannot

instantiate enough creatures to meet the demand of the animator.

Variations: A genetic algorithm can be constructed to automatically tune and manipulate the

population parameters while searching for a “most correct” solution.

A.1.5 Modify Execution Mode

Purpose: The animator controls the operation of the current sequence. The animator selects either a

“run” or single step mode. The animator selects whether a trace of events, actions, and decision paths

is displayed and/or logged. While these options are being set, the system pauses the current animation

sequence, updates the user interface, removes the trace window, and resumes the sequence. In single-

step mode, the system conducts one iteration, updates the trace windows and animation display, and

pauses.

Scenarios: The animator resets the single step mode option on the user interface. The system resets

the trace mode, resets the single step mode, removes the trace windows, updates the animation

display, and resumes the sequence. The animator resets the trace mode to false. The animator selects

the single step mode option on the user interface.

Fault Cases: The system cannot display the log window. The system cannot create the log file. There

is no current animation sequence to execute, trace or debug.

Variations: No variations currently identified.

A.1.6 Manipulate the Environment Editor

 82

Purpose: The animator modifies the default environment variables for a sequence. The system pauses

the current sequence, provides an user interface for changing the values, the default values are saved,

the new values are saved as baseline, the user interface is updated, and the current animation

continued.

Scenarios: The animator modifies the current environment to include static and dynamic objects. The

animator uses the editor to control the placement and characteristics of the environment elements

Fault Cases: The data leads to contradictory placement of characteristics of elements, such as a tree

and a rock occupying the same space.

Variations: A genetic algorithm can be constructed to automatically tune and manipulate the

environment parameters while searching for a “most correct” solution. Environment patterns can be

used to quickly patch together an environment

A.2 Creature Actor Use Cases

The Creature Actor is the central character of an animation sequence. It must include a decision making

authority to give it autonomy; a mobility element to give it motion; a dialogue model so that it can interact

with other creatures; and a emotion model so that it believable. The relationships between the models

within the Creature Actor are shown in Figure 16.

Animation
Engine Environment

Graphical
Display

Creature Actor

Brain
Model

Biomechanical
Model

Emotions
Model

Dialogue
Management

Model

Rendering
Commands

Sensor
Inputs

Animation
Commands

 83

Figure 16 Relationships Between Major Sets of Creature Use Cases

A.2.1 Creature Actor: Biomechanical Model Use Case

The Biomechanical Model is responsible for the physical movement of the creature and its interaction with

its physical environment. It includes models for sensory input, that is the hearing and seeing of the creature.

The relationships between the elements of the Biomechanical Model are shown in Figure 17.

Biomechanical Model

 Motor Skills
Model

Geometric
Model

Graphical
Display
Model

Final
Positions

Desired
Positions

Final
Positions

Emotions
Model

Emotional
State

Brain
Model

Final
Positions

Motor
Commands

Environment
Model

Sensory Input
Model

Env ironment
Query

Env ironment
Data

Sensory
Data

Sensory
Query

Emotional
Query

Nav igation
Query

Nav igation
Data

Navigation
Model

Dialogue
Management

Model

Dialog
Commands

Dialog
Input

Figure 17 Relationships Between Use Cases for the Biomechanical Model

A.2.1.1 Motor skills

Purpose: Motor commands are received from the brain model to move portions of the actor anatomy.

Motor skills interpret the brain commands and compute desired geometric positions and intermediary

transition points of the anatomy. The Emotion Model is interrogated to determine the emotional

adjectives, which alter the motor skill computations. Geometric positions are sent to Geometry Model

 84

to validate the new positions and orientations of the anatomy and any collisions are reported back to

the Motor Skills Model. Final positions are sent to the Graphical Display Model for rendering

Scenarios: Stand, Walk, Run, Jump, Swim, Fly, Facial Gesture, Body Gesture, Hand Gesture, Nod,

Shake Head, Shake Body, Fidget, Push, Pull, Grab Object, Release Object, Throw Object, Catch

Object

Fault Cases: Brain commands are not understood or does not match motor skills repertoire. Geometry

model reports collision and brain command not possible. Brain command is only partially possible.

Variations: Motor Skill learning model is added. Alternative anatomical models are introduced

including quadrupeds and disabled anatomy models. Additional motor skills are introduced. An Aging

Effects Model is introduced.

A.2.1.2 Geometry

Purpose: The Geometry Model calculates the final position and oriented of anatomical elements

based on the desired position and orientation received from the Motor Skills Model. The Geometry

Model accounts for the physical location of objects and other characters in the environment to

determine collisions.

Scenarios: Desired position and orientation do not cause any collisions and the final position and

orientation can be calculated directly. Desired position or orientation violates a physical law of the

environment and the final position or orientation is calculated based on the collision position.

Fault Cases: Input data or final data is nonsensical.

Variations: Variations on the geometric modeling data and degree of detail. Anatomical models (e.g.,

Jane Wilhelms) can be included.

A.2.1.3 Sensory Input

Purpose: The Sensory Input Model interrogates the Physical Environment Model to input data into

the decision making processes in the Brain Model. The Brain Model interrogates the Sensory Model

to determine the current state of the character’s observable environment.

 85

Scenarios: Visual, Audio, Aural, Taste, and Touch.

Fault Cases: The current position and orientation of the character cannot be matched to the

environment.

Variations: Additional sensory models, such as extrasensory perception can be included. Diminished

capacity or reduced sensory perception models, such as tired, intoxicated, illness, or disease can also

be included.

A.2.1.4 Navigation

Purpose: The Navigational Model defines, monitors, plans, and re-plans paths through the physical

environment. It calculates both short/local routes and longer/global routes to meet objectives from the

Brain Model. The Brain Model interrogates the Navigational Model to determine short-term (i.e., next

step) objectives and to contribute to the overall decision process.

Scenarios: Short-term planning; long-term planning

Fault Cases: The Navigational model cannot create short or long-term plans to meet objectives.

Variations: The Navigational Model can be extended to include contingency planning.

A.2.2 Creature Actor: Brain Model Use Cases

The Brain Model is the central element of an autonomous creature. It is responsible for sensing elements of

the environment and executing actions to achieve its goals and objectives. The Brain Model includes within

its decision process the effects of learning and emotion. Notice the introduction of a Learning Model in the

Brain Model. The relationships between the elements of the Brain Model are shown in Figure 18.

 86

Brain Model

 Motor Skills
Model

Cognitive
Model

Motor
Commands

Sensory
Data

Sensory
Query

Nav igation
Query

Nav igation
Data

Navigation
Model

Sensory Input
Model

Emotion
Model

Emotional
State

Emotional
Query

Action
Selection

Model

New
Experences

Experences

Potenial
Actions

Actions

Learning
Model

Dialogue
Management

Model

Dialog
Commands

Reasoning
Model

Sensory
Data

Interpreted
Sensory
Data

Emotional
Query

Emotional
State

Experiences

Experience
Query

Sensory
Query

Sensory
Data

Behavior
Model

Behav ior
Query

Figure 18 Relationships Between Use Cases for the Brain Model

A.2.2.1 Cognitive Model

Purpose: The Cognitive Model expresses and executes the thought and decision process to achieve

character goals within behavior and environment constraints. The Cognitive Model determines how

characters will react and interact with their environment, circumstances, and other characters.

Scenarios: Prioritize basic character goals based on the behavior rules and current circumstances.

Prioritize tasks to determine course of action. Interrogate Sensory Model to determine current

conditions and presence of unexpected events. Analyze goals, tasks, and conditions to determine

potential courses of action. Interrogate learning model to determine of experience exists on how to

best achieve goals given current circumstances. Update Learning Model with results from previous

tasks and actions and effectiveness for the given circumstances. The Cognitive Model interrogates the

Emotion model to determine the current emotion conditions and its behavior modifiers. Constraints

 87

from the environment, behavior model, and previous bad experiences (from Learning Model) are

applied to the decision process. The Cognitive Model issues potential actions to the Action Selection

Model, which in turn selections the appropriate actions. The selected actions are issued as commands

to the Motor Skill model, and the Dialogue Management Model. Updates on short-term and long-term

plans are issued to Navigational Model and to the Emotion Model.

Fault Cases: The Cognitive model cannot correctly process an input from the sensory model. The

model cannot determine a course of action based on objectives and sensory inputs. The cognitive

model cannot determine how to respond or react to events in the environment or the actions of others

characters.

Variations: Personalities traits, flaws, mental illness, variations, sociopath behaviors, and other

alternative models can be incorporated into the Cognitive Model.

A.2.2.2 Learning Model

Purpose: The Learning Model matches potential tasks and actions for given goals and circumstances.

It constructs experiences based on the outcome of circumstances and selected actions and decisions.

The model weights the outcome of these experiences to be able to mimic good and bad experiences.

Scenarios: The Brain Model interrogates the Learning Model as part of the action selection, decision-

making, and dialog communications. Results of the taking specific actions and making specific

decisions in specific circumstances and the outcome of responses to specific utterances are recorded.

Fault Cases: The learning model can incorrectly fail to match current circumstances and situations

causing (incorrectly) no experience modifications.

Variations: Any number of learning disorders can be modeled and incorporated into the framework.

A.2.2.3 Action Selection

Purpose: The Action Selection Model determines and computes which actions are possible with the

available energy. The Cognitive Model sends a list of prioritized tasks to the Action Selection Model,

which returns a list of the doable actions.

 88

Scenarios: Various algorithms are used to determine, in priority order, which actions can be

accomplished. Once selected, an action is allocated a percentage of available energy and its outcome

is computed. The results of the Action Model are returned to the Cognitive Model.

Fault Cases: There is no energy or not enough energy to complete any of the requested actions. The

Action Model does not include any of the requested actions.

Variations: Variations in energy consumption that model exhaustion, emotional stress, illness and

other factors can be included.

A.2.2.4 Reasoning Architecture

Note: the reasoning architecture referred to here is from the conversational actor research. It refers to

the recognition and comprehension of gestures and speech from other actors. The architecture seeks to

reason the meaning of the gesture and form an appropriate response.

Purpose: The Reasoning Model attempts to recognize and interpret gestures and speech from other

characters in the environment and to develop an appropriate response given the circumstance and

behavior traits of the character.

Scenarios: The Cognitive Model acquires data from the Sensory Input Model. These inputs are sent

to the Reasoning Model for interpretation. The Reasoning Model interrogates the Emotion Model,

Sensory Input Model, and the Learning Model for a context in which to interpret these inputs. The

model matches gestures or speech elements with known elements and modifies their interpretation

according to the developed context. The results are return to the Cognitive Model.

Fault Cases: The Reasoning Model does not understand the gesture or speech element. The Emotion

Model clouds the interpretation of the element. The Learning Model returns contrary advice on a

course of action, or returns advice that violates a basic behavioral rule.

Variations: No variations currently identified.

A.2.2.5 Behavior System

 89

Purpose: The Behavior Model represents the basic personality rules, primary goals and objectives,

and constraints for the character.

Scenarios: The Cognitive Model interrogates the Behavior Model to determine basic objectives for

the current set of circumstances. The Cognitive Model refines and modifies these objectives according

to input data from other models. The Behavior rules are static rules defined offline.

Fault Cases: The Behavior Model does not have a basic objective for the given circumstances.

Variations: The Learning Model, given sufficient time and experiences could alter the basic behavior

rules.

A.2.2.6 Scripted Agents

The Scripted Agent Model controls the simplistic behavior of dynamic elements of an animation that are

not modeled are autonomous creatures. That is, they exhibit no unplanned behaviors. We have debated

whether Scripted Agents are part of the larger Brain Model or whether they fit better into the Environment

Model. For this iteration, we have chosen to include them in the Brain Model. The relationships between

the elements of the Scripted Agents are shown in Figure 19.

Environment
Model Current

Conditions

Biomechanical
Model

Commands

Scripted Agent
Model

Figure 19 Relationships Between Scripted Agent Use Cases

 90

Purpose: The Scripted Agent Model executes non-player characters according to a predefined action

script.

Scenarios: The Scripted Actor Model interrogates the environment and executes the next series of

actions in the appropriate script. The action commands are translated into commands for the

biomechanical model.

Fault Cases: No variations currently identified.

Variations: Scripted agents could include actions input from VR devices, network connections, or

other agents whose actions and cognition are controlled outside the framework.

A.2.3 Creature Actor: Dialogue Management Use Case

The Dialogue Management model is responsible the interpretation of utterances whether they come from

interactively from humans or from other creatures. It is also responsible for constructing appropriate

responses based on the current context and emotional state of the creature. The relationships between the

elements of the Dialogue Management Model are shown in Figure 20.

 91

Dialogue Management Model

Cognitive
Model

Speech
Controller

Model
Speech
Command

Speech
Recognition

Model

Sensory Input
Model

Deciphered
Speech
Elements

Speech
Signals

Wording
Model

Target
Production

Tailored
Production

Learning
Model

Emotion
Model

Experiences

Emotional
State

Spoken
Langauge

ModelInterpreted
Elements

Speech
Elements

Semantic
Analysis
Model

Deciphererd
Elements

Interpreted
Elements

Figure 20 Relationships Between Use Cases for the Dialogue Management Model

 92

A.2.3.1 Speech Controller

Purpose: The Speech Controller Model produces audible or electronic, inter-character speech

elements. It simulates the physical act of talking.

Scenarios: The Cognitive Model issues a command to the Speech Controller Model to speak or make

audible noises.

Fault Cases: The Speech Controller Model cannot articulate the requested sounds.

Variations: Several speech impediments, regional dialogs, or speech difficulties can be included in

the Speech Controller Model.

A.2.3.2 Dialog or Speech Recognition

Purpose: The Speech Recognition Model parses incoming audible or electronic signals into speech

elements and renders those elements into words, phrases, and noises.

Scenarios: The Speech Recognition Model interrogates the Sensory Input Model to determine if there

are any detectable audible signals. The Speech Recognition Model parses any detected signals into

recognized speech or sound elements. These elements are sent to the Cognitive Model as sensory.

Fault Cases: The Speech Recognition Model cannot parse or recognize all or some of input signal.

Variations: Variations on hearing or word comprehension can be included.

A.2.3.3 Wording Selection

Purpose: The Wording Model selects the desired vocabulary, phrases, words, or sounds depending on

the goals, behaviors, circumstances, and emotional state of the character.

Scenarios: The Cognitive Model signals the Speech Controller Model to produce a words or sounds.

The Speech Controller Model interrogates the Wording Model to tailor and adapt the given target

production to account for circumstances and emotional state. The Wording Model interrogates the

Emotion Model and the Learning Model to transform the requested production.

Fault Cases: No fault cases have been identified yet.

 93

Variations: No fault cases have been identified yet.

A.2.3.4 Spoken Language Processing

Purpose: The Spoken Language Model translates the recognized speech or sound elements into

commands or experiences relevant to the character.

Scenarios: The Speech Recognition Model requests a translation of a given phrase or sounds before

returning it to the Cognitive Model. The Spoken Language Model interrogates the Learning and

Emotion Models to help decipher the phrase or sound. The Spoken Language Model uses the results

from the Learning and Emotion Models to match the given sound elements against the known

elements. The Spoken Language Model queries the Semantic Analysis Model to postulate an

interpretation of the given sound elements into known event, commands or actions in the

environment.

Fault Cases: The Spoken Language Model cannot interpret the given sounds or speech element due

to a lack of experience or command reference. The Semantic Analysis Model cannot interpret the

sounds elements into a known event, command, or action.

Variations: No variations have been identified yet.

A.2.3.5 Semantic Analysis

Purpose: The Semantic Analysis Model translates known sound elements into known events, actions,

or commands.

Scenarios: The Spoken Language Model queries the Semantic Analysis Model to translate a set of

known sound elements into known events, commands, or actions based on input from the Learning

and Emotion Models.

Fault Cases: The Semantic Analysis Model cannot translate all or part of the set of sounds into

known events, actions, or commands.

Variations: Variations include physiological and narcotic impediments to comprehension, analysis,

memory recall, or other aspects of semantic analysis.

 94

A.2.4 Creature Actor: Emotions Use Cases

Emotions are a difficult and complex subject matter, but add tremendous realism to animation. The Disney

book describes in great detail how emotional qualities, such as happiness and sadness add tremendous

quality to Disney Animations. The following is a highly simplistic attempt to model a basic personality and

emotion characteristic. Emotion and personality are very active, broad and comprehensive areas of study

and research within human psychology. A proper study to support the specification and development of

framework objects would require a very significant effort. The relationships between the elements of the

simplistic Emotion Model are shown in Figure 21.

Brain Model

Emotional
Modif iers

Emotion Model

Emotional
State

Emotional
Response

Personality

Parameter
Values

Figure 21 Relationships Between the Emotion Model Use Cases

 95

A.2.4.1 Emotional State

Purpose: The Emotional State Model simulates the current stimuli and their effects. It models the

onslaught of emotional effects and manages the deterioration of those effects over short period of

times.

Scenarios: The Cognitive Model signals the results of commands, efforts to reach objectives, current

events from the environment, reaction of other characters and other emotional state drivers. The

Emotional State model interrogates the Personality Model to determine a foundation of the emotional

state and then calculates how the effect of these inputs changes the emotional state. The Emotional

State Model then sets emotional state modification parameters.

Fault Cases: Inputs create conflicting emotional states parameters (such as simultaneously being

happy and sad).

Variations: Long-term emotional states, perhaps best described as moods, can be included as

variations.

A.2.4.2 Personality

Purpose: The Personality Model manages a static model of the general emotional traits exhibited by a

character.

Scenarios: The Emotional Response Model interrogates the Personality Model to determine the basic

response to situations, events, and circumstances. The Emotional State Model also interrogates the

Personality Model to as part of the calculation of the emotional state.

Fault Cases: No fault cases have been identified yet.

Variations: Multiple personalities, triggered under specific circumstances could be included in this

model.

A.2.4.3 Emotional Response

Purpose: The Emotional Response Model generates modifications to planned actions or commands

based on the current emotional state.

 96

Scenarios: The Cognitive Model interrogates the Emotional Response Model to determine how

planned actions or commands should be modified according to the current emotional state.

Fault Cases: No fault cases have been identified yet.

Variations: No variations have been identified yet.

A.3 Environment Actor Use Cases

The Environment Actor models and executes the physical environment for the creature or creatures. TIT

contains static elements, such as buildings, trees, and mountains but also contains dynamic elements such

as blowing leaves, rain, and other effects. The Environment Actor also provides and manages multiple

timers to manipulate the dynamics in a sequence. The relationships between the elements of the

Environment Actor are shown in Figure 22.

Creature
Actor

Sensor
Inputs

Environment Model

Timers

Static Map

Dynamic
Environment

Model

Parameter
Values

Graphical Display

Graphical
Commands

Figure 22 Relationships Between the Environment Use Cases

 97

A.3.1 Timer Model

Purpose: The Timer Model manages the passing of time in different contexts within the environment.

Scenarios: A Model requests the creation of a timer with a given handle, reoccurrence, and duration.

When activated, the timer counts from zero to the duration and halts. Any timer can be reinitialized

and restarted at any point. Reoccurring timers automatically reset and restart when the duration is

reached.

Fault Cases: A timer cannot be created.

Variations: A timed event could be included in the Timer model, where when the timer reaches its

duration, a callback is invoked.

A.3.2 Dynamic Environment Model

Purpose: The Dynamic Environment Model manages the changing aspects of the environment and

their effects on movement, sensory readings, emotions, and other character aspects.

Scenarios: The Dynamic Environment Model initializes to create timers for each dynamic element in

the environment. It manages the movement and changes of these elements according to a prescribed

static rule base. The Sensory Input and the Motor Skills Models interrogate the Dynamic Environment

Model to determine identifiable elements, objects, events or actions and to determine collisions with

other elements in the environment.

Fault Cases: No failure cases have been identified yet.

Variations: No variations have been identified yet.

A.3.3 Static Map

Purpose: The Static Map Model manages the location of permanent elements and their interaction

with characters and dynamic environment elements.

 98

Scenarios: The Sensory Input and Motor Skills Models interrogate the Static Map to determine

observable elements, events, or actions and to determine collisions with elements in the Static Map

Model.

Fault Cases: The Static Map Model cannot observe the environment from the given reference point.

Variations: No variations have been identified yet.

A.4 Graphical Display Model Actor Use Cases

The role of the Graphical Display Actor is to render the output of the animation processing. The Graphical

Display Actor typically renders animation commands and objects into a graphical language for visual

display. However, it also must be able to render information and data to files and trace windows. The

relationships between the elements of the Graphical Display Actor are shown in Figure 23.

Creature
Actor

Sensor
Inputs

Graphical Display Model

Render
Frame

File
Management

Animation
Sequence

Environment
Model

Graphical
Commands

Debugger
Operations

Animator Actor

Operational
Commands

Figure 23 Relationships Between the Graphical Display Use Cases

A.4.1 Render Animation Frame

Purpose: The Render Animation operations convert graphical commands and objects into screen

renderings through the graphical library calls.

Scenarios: The processing of the animation sequence derives the content of the current camera view

and issues commands (and object references) to the Render Frame.

 99

Fault Cases: The Render Frame cannot process the amount of input commands for the animation

sequence step frame.

Variations: Variations include the rendering of animation sequence for multiple graphical systems

such as OpenGL or DirectX.

A.4.2 Animation Sequence

Purpose: The Animation Sequence operations provide control the execution of the sequence.

Scenarios: The Animation Sequence operations increment the frame counter and control the iteration

of timers, creatures, and dynamic environment elements.

Fault Cases: No faults currently identified.

Variations: The animation sequence operations provide the hot spot for extending the framework

with unique capabilities for the sequence (i.e., the part of the animation that the developer

customizes).

A.4.3 File Management

Purpose: The File Management operations handle the general input and output of data related to an

animation sequence and any data logging required in support of sequence debugging.

Scenarios: The File Management operations respond to Animator request to load or save an

animation sequence. File Management operations support the logging of data during sequence

debugging.

Fault Cases: File Management operations encounter operating system file I/O errors.

Variations: No variations currently identified.

A.4.4 Debugger operations

Purpose: The Debugger Operations enable the Animator to single step through an animation

sequence. Debugger Operations also enable the Animator to trace the path of execution by logging

data and decision information to a trace window or log file.

 100

Scenarios: The Animator selects the trace mode to log data and decision information to a window or

file. As the animation sequence executions, key information is written out. The Animator can also

select a single step mode to execute a single animation frame.

Fault Cases: The Debugger Operations encounter operating system file I/O errors.

Variations: No variations currently identified.

A.5 Animation Engine Actor Use Cases

The Animation Engine is primarily responsible for the execution of the animation. It contains the unique

math routines required by the animation and provides the overall control loop. The basic relationships

between elements of the Animation Engine are shown in Figure 24.

Creature
Actor Math

Operations

Animation Engine Model

Math
Support

Environment
Management

Environment
ActorMangement

Operations

Figure 24 Relationships Between Animation Engine Use Cases

A.5.1 Mathematical Support

Purpose: The Mathematical Support operations provide a math library to support the calculation used

throughout the systems. These routines include functions beyond the math library support provided by

the operating system including interpolation, quaternion routines, fractal generation, filters, and other

required operations.

Scenarios: Objects in the system access various math support operations to support calculations.

Fault Cases: Mathematical support operations can encounter math errors such as dividing by zero.

Variations: Numerous algorithmic variations are possible.

 101

 102

A.5.2 Environment Management

Purpose: The Environment Management operations provide support for defining and modifying the

“business rules” for scripted agents and the static portion of the environment.

Scenarios: The Animator access the Environment Editor, which provides support for the

manipulation of the environment. The Environment Editor accesses the Environment Management

support operations to store the desired settings.

Fault Cases: The Environment Management operations can encounter File I/O errors.

Variations: No variations currently identified.

	INTRODUCTION
	Problem Statement
	Motivation
	Related Work
	Frameworks in General
	Object-oriented Frameworks
	Anatomy of a Framework
	Architectural Implications for Applications
	Frameworks and Classes
	Hot Spots in Object-Oriented Frameworks

	Behavioral Animation Projects
	Flocks, Herds, and Schools: A Distributed Behavior Model
	Old Tricks, New Dogs: Ethology and Interactive Creatures
	Artificial Animals for Computer Animation: Biomechanics, Locomotion, Perception, and Behavior
	Making Them Behave. Cognitive Models for Computer Animation
	Lifelike Computer Characters: the Persona project at Microsoft Research
	Modeling Emotional State and Personality for Conversational Agents
	Summary

	Proposed Approach
	Initial Methodology Development
	Application in Behavioral Animation

	Thesis Organization
	Typographical Conventions

	CAFÉ – CONSORTIUM APPROACH TO FRAMEWORK ENGINEER�
	Introduction
	Framework Management Practices.
	Framework Architecture Practices.

	How CAFÉ Addresses Framework Development Issues
	Identifying the Proper Framework Services
	Optimal Solutions Require Iterative Approaches
	Pace of Technology Innovation
	Framework Training
	Domain Analysis

	Summary

	BEHAVIORAL ANIMATION FRAMEWORK
	Introduction
	Define Framework Domain
	Purpose
	Scope
	Context

	Capture Behavioral Requirements For Common Services
	Express Desired System Capabilities as Summary Use Cases
	Task Objectives
	Overview of the Summary Use Cases
	Create Animation
	Dynamic Animated Characters
	Rule-based Environment
	Animation Analysis System

	Identify Set of Systems for Analysis
	Task Objectives

	Identify Actors within Each System
	Task Objectives

	Initial Analysis of Systems for Each Actor
	Consolidate Similar Actor Characteristics: First Iteration
	Consolidation of Similar Actor Characteristics: Second Iteration
	Develop System Use Cases for Actors and Their Actions

	Reconcile Summary and System Use Cases
	Develop Initial Architecture

	FUTURE EFFORTS
	Reflections on Accomplishments
	Next Steps
	Alternative Domains and Framework Uses

