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ABSTRACT 
 

The “mkmusic” System - 

Automated Soundtrack Generation 

for Computer Animations and Virtual Environments 

 

by Suneil Mishra 

Directed by Associate Professor James K.Hahn. 
  

Traditional techniques of soundtrack production for computer animations are based on 

methods used in film and traditional animation. These methods fail to exploit the potential for 

automation of the creative process using computers. In particular, the data supplied to create the 

visuals of a computer animation are currently ignored or underutilized in soundtrack production. 

The lack of a suitable soundtrack tool for computer animators has been a major cause of this 

neglect in the past. Described here is the mkmusic system which seeks to bring sound effects and 

musical accompaniments within the reach of animators. Its creative, compositional process 

involves filtering the data generated by an animation’s motion control system and mapping those 

values to aural constructs. A simple user interface and animator-programmable filters allow 

flexible control over the nature of the sound effects or music produced. Rendering can be in the 

form of common aural scores (e.g. CSound, MIDI), or as real-time performance of composed 

pieces. Using this methodology, the system has created aesthetically pleasing, appropriate music 

and sound effects for a variety of animated sequences, with minimal animator expense. 
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Chapter One:  Introduction 

 

The development of soundtrack production techniques for computer animations has come 

from a variety of related fields. Most influential is that of film-soundtrack synchronization. In 

some ways, computer animation and multimedia in general appear to be following the 

development of film. Silent movies were for a long time the mainstay of cinema, as visual 

development was paramount in this new medium. In 1926, Warner Brothers introduced the first 

“talkie” short: “Don Juan,” followed a year later by the first full feature with sound: “The Jazz 

Singer.” Within three years, not one of the major Hollywood studios was producing any silent 

films. Silent movies seemed outdated and lacking in sophistication, and were destined to 

extinction soon after [Walk79]. Similarly, the next generation of film technology saw colour first 

become a novelty and then an expected element visually. With audio, the early technologies saw 

little change until the more recent introduction of Dolby, DTS, SDDS and THX theatre surround-

sound. In the same way, in the infancy of computer animation and multimedia, visuals have 

taken precedence, with sound an addition rather than a requirement. This is somewhat curious, as 

the technologies to create computer animation images are still developing, but the methods to 

create soundtracks have been until now based on the now well established film-soundtrack 

techniques. 

 

A major reason for this apparent developmental lag in audio over visuals is that the 

creators of animations and many multimedia products are predominantly from a visual 

arts/graphics background. Their skills and concentration are on image production, and the aural 

realm is beyond their expertise. This is compounded by a second problem: given the limitations 

of animators within the aural domain, no suitably designed tool exists to allow animators to 

create appropriate soundtracks. A further reason is multimedia designs often have several media 

competing in simultaneous presentation. rather than mutually reinforcing each other. In such 

cases, the user’s attention has been found to be selectively engaged by visual stimuli in 

preference to aural effects [Barg93]. 
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With this background it is understandable that most animators have difficulty in 

developing soundtracks to their animations independently. Even if the motivation existed, the 

traditional methods to create soundtracks are often mysterious and require time to learn and 

master. With research projects or production deadlines, it is difficult to justify the expense of 

adding sound to an animation “in-house.” The alternative is to hire outside professionals to 

supply a soundtrack satisfying certain requirements of the animator. This has its own inherent 

expense, and an associated loss of animator control over the exact nature of the soundtrack 

created. An additional problem is that modifications to an animation’s visuals or motions usually 

force the entire soundtrack to be regenerated, with all the added time and expense that entails. 

 

The lack of overall aural expertise amongst animators is a difficult one to resolve. Cross-

disciplinary teaching and training of both visual arts and audio/music may help to alleviate some 

of the fear and unfamiliarity of the aural medium from animators (as well as bringing sound 

researchers and producers closer to the visual arts in the same way). The emergence of 

multimedia as a research field is beginning to lay the foundations for this emphasis on the 

combining of sight and sound. However, without the appropriate tools, animators - regardless of 

their competence and familiarity with the aural medium - will be unable to produce quality 

soundtracks appropriate to their animations. 

 

The mkmusic system described here aims to address this problem. Specifically, the 

system attempts to provide a means for animators to create appropriate musical accompaniments, 

and simple sound-effects, to animations without the need for outside sound professionals, or 

highly specialized equipment [Mish95]. The system uses data supplied from an animation 

motion-control system to compose both musical orchestrations, and to synchronize sound-effects 

to motion-events. This data-reliance emphasizes the motion-to-sound mapping, dynamically 

binding synchronization-to-motion as a concurrent processing step. In doing so, the 
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appropriateness of the soundtrack to the specific animation is enhanced. Although automation in 

this way does reduce animator control over the production, this is also a problem with existing 

techniques, as discussed above. Using the mkmusic system, the interactivity of the composition 

process allows the animator at least some higher-level directorial control. 

 

The goals of the mkmusic system are two-fold; first, it aims to be appropriately designed 

for the use of computer animators and be a flexible and simple development tool for soundtrack 

production. Second, and more importantly, the soundtracks produced must be of a standard that 

the system is practical to use by animators. The soundtracks composed should be aesthetically 

pleasing and appropriate to the animation visuals, with minimal animator effort. In this way, the 

system can fulfill its ultimate goal of bringing soundtrack production directly to computer 

animators. 
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Chapter Two: Existing Soundtrack Production Techniques 

 
 

2.1 Film Production 
 

The majority of soundtracks for animations have been created using traditional 

techniques, and synchronized using methods similar to those in film and video production 

[Zaza9l], [Frat79]. Generally, sound-effects and musical scoring are considered independent 

until final editing of the film is done. This separation was applied early in the development of 

soundtracks for film (by 1929) [Altm85]. 

 

Musical scoring [Karl94] is often done as a somewhat concurrent process with visual 

production: a musical director (in charge of scoring the film) is provided with a screenplay, and 

generally shown rough-cuts of some shot scenes. The director of the film usually discusses 

his/her ideas for how the soundtrack should develop, with the musical director. The musical 

director then proceeds to compose a main theme for the film, and other incidental music, often 

character-thematically (recognizable pieces that reoccur when particular characters are on-

screen). When visual-editing is complete, the musical score is laid to match the visual action. 

The musical themes and incidentals are added as per the director and musical director's wishes, 

and in accordance to the editing [Lust80]. 

 

Meanwhile, on-location sound is recorded along with the visuals using standard 

techniques with microphones and recording media such as analogue tape, or linear film. On 

completion of the filming, at the editing stage, additional sound-effects and dialogue can be 

recorded. Foleying is the standard way of post-producing sound-effects, while ADR (Automated 

Dialogue Replacement) or looping techniques are used for dialogue. Foleying is the creation of 

‘faked’ sound effects on a sound-stage after visuals have been completed. By visual inspection, 

Foley-artists determine the timing of motion events, and create sounds to match with the actions. 

Sound-stages are replete with props and sound-spaces to simulate common sounds. This 
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Foleying process is highly specialized, and good Foleying is considered highly demanding. The 

soundtrack synchronization is post-processed as visual editing often destroys the continuity of 

sound-to-visuals as recorded at the time of filming. A pre-processing method was also sometimes 

used in film, but this was usually a necessity of recorded dialogue, which the development of 

looping made unnecessary. Looping involves splicing segments of the film together and 

repeatedly looping through with actors providing voice-overs on original dialogue which has to 

be changed. This manual splicing process has been overtaken by ADR in which a computer is 

used to control this replacement timing process by marking start and end points, and allowing up 

to three dialogue tracks to be stored for later selection. Most current sound production techniques 

have changed little over the past seventy years; few technological advances in computer-

assistance have been made until the recent development of digital recording and editing, with 

ADR being the main computer-aided addition to post-production [Came80]. 

 

The combining of sound-effects and musical accompaniments is done in a final mix-

down, where the relative amplitudes of dialogue, sound-effects, and music are determined, based 

on the importance of each at particular times, and on what the most effective complement to the 

visuals will be. This relationship between the visual and aural elements has been described in 

narrative terms as “mutual implication” [Gorb87]. This traditional stance is often bucked by 

avant-garde cinema, with overlaid narration of a visual storyline [Orr93], or the use of ideational 

sound [Mint85]. Such decisions are actively controlled by director, music director, and chief 

sound-editor, producing a final soundtrack for the edited visuals. The development process of 

both sound effects and musical scores is a dynamic one. The creation of sounds or music may at 

any time be preempted by changes made in the continuity of the visuals through editing. Thus, 

both effects and music must be somewhat flexible and modifiable in nature. 
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2.2 Traditional Animation Techniques 
 

The techniques described above are also predominant in animation soundtrack 

production. The use of pre-processing of soundtracks is more widespread in animations however. 

This is illustrated by the classic Disney animated features which use a prerecorded score, and 

timing-sheets for the soundtrack in order to create animation frames synchronized to the visuals. 

For computer animations, the generation of images, or frames, is an automated process. The 

timing-control is dependent on the motion-control scheme used. With dynamic simulations for 

instance, it may be impossible for the animator to create motions specifically synchronized to a 

pre-generated soundtrack. As computer animators often want to demonstrate some novel 

research concept, they usually want to retain control of motions within the visual domain. 

Therefore, pre-processing is a severely limiting technique. 

 

With the post-processing method, sounds are synchronized to existing visual events. 

Thus, the motions of objects ate determined before any sounds are generated. The sound 

synchronization is often done manually through Foleying, with visual inspection being 

augmented with a timing-sheet with information on key action events. As keyframing is used as 

the motion-control technique with traditional cel-type animation, the timing-sheet for the 

animation may in fact be the key-frame specification as used by the key-animators and in-

betweeners. A deficiency of this approach, as with its film complement, is that a change to 

visuals usually means complete post-processing of the soundtrack again. This can be time-

consuming and expensive, especially when the soundtrack has been contracted out to a sound-

production house. Traditional animation techniques give a foundation to the concept of 

synchronization and timing with a frame-by-frame animation production. They also serve to 

illustrate the limitations of the film-paradigm; with computer animation, the amount of visual 

data available to aid synchronization and sound descriptions is far superior, but until now, under-

utilized. 
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2.3 Computer Music Systems 
 

The main computer-audio research until recently has been restricted to the field of 

computer music. Systems developed here are meant specifically for musical applications, with no 

inherent design methodologies to include a binding to the visual medium, or to objects moving 

through a virtual space. What these systems do bring is the concept of parameterization of sound 

structures, and a hierarchy of control over aural (specifically musical) constructs. Several 

computer music systems have been instrumental in the development of sound renderers in 

general. The Music-N family of computer music systems was initially developed at AT&T labs. 

Many systems have descended from it. Music-V [Matt69] in particular has been a seminal work 

in computer music. This synthesis system is a score language: it represents music as a simple 

sequence of notes. There is no concept of hierarchical structuring in Music-V. The contemporary 

view of music representation is of multiple hierarchies [Dann93], [Wigg93]. Such hierarchies are 

also apparent in the motion world, so representations supporting these structures are beneficial. 

The CSound system [Verc86] is a widely used aural renderer, with versions on many operating 

systems (Mac UNIX, PC) beyond its original NeXT version. This system allows instruments to 

be written as parameterizable structures, using C-language type calls. The parameters can be 

time-varying, allowing dynamic changes in the output sounds. These instruments are passed 

parameters by means of a score which binds values to instruments using a scripted, time-stamped 

format. This system is almost ideal in its structure and generality. Two main drawbacks remain 

however. First, the processing overhead of synthesizing the sounds from instruments is high. 

This makes true multi-timbral, real-time performance difficult. Second, the parameterizations 

allowable still remain within the aural/musical field, and binding visual/virtual parameters to the 

musical instrument ones remains problematical. Other similar computer music systems include 

Platypus [Scal89], CMusic: an extension to CSound, and Fugue [Dann9l] which uses functional 

expressions as a basis for its sound synthesis. 
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2.4 Animation and Virtual Environment Systems 
 

Systems grounded in computer animation have traditionally involved pre- or post-

processing, and in general do not dynamically bind visual and aural media. There are three main 

exceptions to this: Wayne Lytle’s: “More Bells and Whistles” animation [Lytl9l] demonstrated a 

mapping from sound to motion parameters. This is the reverse of how animators normally create, 

and what most would prefer: namely a generation of images with a corresponding soundtrack. 

The Background Music Generator (BGM) [Naka93] allows synchronization to visuals of a 

musical soundtrack composed from a database of short melodies. In addition, some simple 

sample-based sound effects can be rendered. A major shortcoming of this system is that its use of 

visual data is limited. The synchronization is scene-based and for the most part manually 

specified by the animator. The music produced also is not linked to the motions involved in any 

way, other than a temporal synchronization over the length of a specified scene. The control 

mechanism does use a similar high-level emotional context to the mkmusic system described 

below. Finally, the Sound-Renderer [Taka92], developed at the George Washington University, 

attempts to explicitly bind motion control values to parameters in sound structures. This dynamic 

linking allows synchronization and modifiable sounds to be generated. The original system uses 

a sound structure known as timbre-trees, similar to shade-trees [Cook84] in image rendering. 

Developments within the system have aimed to bridge the gap between animation-parameter 

schemes and aural-parameter schemes, as the Sound Renderer designs sounds specifically with 

animations in mind [Hahn95a]. One major drawback to the system is that in synthesizing sounds 

using timbre-trees, the processing overhead is too great to allow real-time performance unless a 

parallel implementation is utilized. Even with such an implementation, multi-timbrality remains 

a problem. However, an extension of the system to VEs (known as VAS) can real-rime 

synthesize a simple sound in a VE using timbre-trees given enough processing power [Hahn95b], 

so this seems a promising system. The main features that the Sound-Renderer/VAS systems 

deliver is their linkage to visuals and object motions, and their attempt to control soundtracks 

from a visual perspective. In particular, specialized audio knowledge is not required of the user. 
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The system has been limited by the difficulty in creating suitable parameterizable sound 

structures (timbre-trees), and has thus far been restricted to realistic sound effects, rather than 

music. The mkmusic system is an extension of the Sound-Renderer paradigm, and supports the 

timbre-tree binding format. 

 

The latter two systems seek to solve many of the problems faced by animators in creating 

soundtracks, but have been unable to achieve all the goals of a widely utilized system. The BGM 

suffers from a deficient binding between visuals and sound; the Sound-Renderer has so far been 

limited to realistic sound-effects, and has great processing overhead. What neither of these 

systems provides is true real-time performance at the level necessary for multipurpose, flexible 

usage in a virtual environment. (Though the SoundRenderer/VAS system is close to achieving 

this.) Rendering capabilities should allow for multiple concurrent sounds, with independent 

controls, and the merging of both realistic and musical sounds. Additionally, in a virtual 

environment simulation, no concept of scripting should exist if the environment is truly 

interactive. This leads to binding problems, and interpolation problems since the future 

parameter states are unpredictable. The VAS system addresses this problem, but in doing so has 

been forced to deviate from the goals of an interactive tool for animators. 

 

Several aural simulators exist for use in virtual environments. In general, they can be 

grouped according to their particular research objectives; these are localization systems and 

feedback-and-navigation systems. Each of these systems does attempt to provide real-time 

performance of auralization, since this is a perceptual requirement of realistic-seeming sounds. 
 
 

Localization systems fall into two sub-categories: loudspeaker-based, and headphone-

based techniques. Each attempts to simulate sounds as being positioned in 3-space using 

channel-loudness balancing and phase information, either through loudspeakers, or stereo-

headphones. With headphones, the most successful method to date involves Head Related 
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Transfer Functions (HRTFs) [Blau83], which simulate listener effects due to head, body, and 

pinnae differences as well as inter-aural intensity and time delays of sounds through space to the 

listener's two ears. The best known, and most important work in this area was done at the NASA-

Ames Research facility, leading to the development of the Convolvotron hardware-DSP which 

was capable of localizing up to four independent sounds in an environment through headphones. 

Many papers have been written by the developers, Beth Wenzel [Wenz88], [Wenz90], [Wenz9l], 

[Wenz92], and Scott Foster, of Crystal River Engineering [Fost88], [Fost9l].  Other systems 

include Pope’s DIVE Auralizer [Pope93], Gehring's FocalPoint [Gehr90], and the U.S. Air 

Force’s cockpit localizer developed at Wright-Patterson AFB, Dayton, Ohio [Doll86]. 

 

Feedback and navigation systems tend to often be extensions of user interface work in the 

2-D desktop metaphor. The primary papers in this field are by Gaver, [Gave93], and Blattner 

[Blat89], on auditory icons. Many other designs are feedback systems for complex-task 

environment information systems, including [Furn86], [Calh87], [Gave91], and [Patt82]. These 

are really specialized versions of sonification projects since they intend to auralize information in 

some way. 
 

The major limitation of applying such work to animations is there has long been a 

reliance in VE sound development only on the localization problem. Navigation systems have 

most often been limited in their sound generation, as they usually attempt just to provide simple 

temporal feedback, such as generic warring-sounds (e.g. sirens, beeps) when a particular event is 

triggered. For example, a user is too close to a virtual obstacle, or a measured quantity surpasses 

a set safety-level. What these systems do provide is a template for real-time sound production, 

with the possibility of added perceptual cues such as localization, which increase the 

effectiveness of the soundtrack. 
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2.5 Sonification Research 
 

Sonification is the aural analogue of visualization. The mapping between data and sound 

is the consideration here. Such work again stresses the importance of appropriately 

parameterizable sound structures. These systems are generally not designed to work interactively 

in real-time, although the advent of the virtual environment paradigm makes this a logical next 

step in development. Examples of sonification work are Smith’s exploratory data analysis 

[Smit90], and the Chua project which auralizes chaotic Chua Circuits [Maye92]. Other 

sonification research includes Kyma [Scal92], [Scal93], Kramer’s “Sonification Toolkit” 

[Kram9l], [Kram94], and the sonic maps work by Evans [Evan89]. 

 

Sonification is typically bound with visualization, so the overall data displayed is 

increased. The sonic display may mirror the visual data, in which case the aural medium 

reinforces the visualized data by the observer, increasing the impact and reliability of the 

information reception [Bly85]. Alternatively, the sonification may be of data separate from the 

visualized set. In this case the total number of displayed parameters is increased. 

 

Much of the work done in the field of acoustics theory involves sonification in simulating 

acoustical phenomena. For example, [Bori85] and [Roma87] give accurate computer simulations 

of acoustic environments such as auditoria. These simulations are often more rigorous than 

necessary for the more figurative nature of animation soundtracks, but are certainly relevant for 

virtual environments, where environmental effects of the virtual space, and realistic modeling are 

often important. 

 

The production of soundtracks for animations can be considered simply a specialized 

subset of sonification in general. We often attach sounds to visual events (such as collisions), but 

also add effects and music to provide information not visually perceptible (such as wind-sounds 

or “sad” music to set the mood of a scene). What sonification research provides is a generalized 
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framework for binding data to sonic constructs. However, the selection and effectiveness of the 

bindings is the crucial element, and this is application specific to animations, or motion-control 

in general. We can examine the underlying issues from the standpoint of sonification, but we 

must find solutions appropriate to our animation requirements in particular. 

 
2.6 Desired Features of a Soundtrack System 

 

From the above research and production fields, the technologies and methodologies for a 

variety of soundtrack development techniques have been established. We can identify the 

desirable features of an animation soundtrack system both from the advantageous elements, and 

from the drawbacks and deficiencies of the previous work What is clear is that no genuinely 

effective system yet exists, as there is no automated system in widespread animation usage. 
  

The mkmusic system attempts to include the features identified here of a practical 

soundtrack system. A simple, intuitive interface for animators is important; controls and 

constructs must be recognizable to the user, and technical aural constructs should be avoided or 

abstracted from the animator. Synchronization between motions and sounds must be established 

and maintained in order for the system to be useful. This synchronization must be dynamic, so 

that changes to motions bring corresponding adjustments to the soundtrack. Moreover, these 

adjustments should require minimal additional effort on the part of the animator, provided said 

changes are not wholesale. In particular, the measure of this effort should be related to the effort 

involved in the changes to the motion. Slight tweaking of motions should result in 

correspondingly minor adjustments being required to the soundtrack, A more general 

requirement of the system is that it produce high quality, appropriate soundtracks. In order to do 

this, the parameterizable sound constructs and hierarchical score descriptions of computer music 

systems is preferred. These sound constructs should be bound to motion parameters as supplied 

by the motion-control system of the visual simulation. Such bindings should go beyond mere 

timing, as in the BGM, but to actual sound descriptors, as in the Sound-Rendering systems. 
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While speed is not essential to soundtrack production, it is clearly desirable; close to real-time 

performance enhances interactivity, and allows refinements and modifications to be made with 

less effort. If real-time performance can be maintained, the system can be extended to use within 

virtual environments. In order to be an effective tool however, the functionality of animation and 

VE systems should be transparent to users. A common interface-design philosophy should 

therefore be used. Other minor desirable features include the ability to produce soundtracks in a 

variety of formats in addition to aural playback. This allows easier storage and modification of 

the soundtrack, as well as making it accessible to sound/music experts if commonly used formats 

are supported. 

 

Of the features identified, a few are essential while most are simply desirable in order to 

make production easier, or of higher quality. The two factors most important are that the system 

should provide links to the animation/motion world, and links to the sound world. The mkmusic 

system attempts to achieve this by application of two types of processing: intra-stream 

processing which attaches visual-context to data from a motion-controller, and inter-stream 

processing which attaches aural-context to the data streams supplied. These processes are applied 

by the data-filtering and composition modules of the system, respectively. The result of this 

context-association is a set of auditory control streams; these are passed to the rendering module 

for output as supported in a variety of formats. Figure 2.6.1 shows the mkmusic production 

pipeline, from data-input to render-formatted output. 
 
 
 

 

Data 

  

CSound

Score 

MIDI Rendering Composition
Data 

Filtering 
 
 
 
 
 
 
 

Figure 2.6.1: Mkmusic soundtrack production pipeline. 
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Chapter Three: Intra-Stream Sound Processing 

 
3.1 Overview of Intra-Stream Sound Processing 

 

The creation of soundtracks by the mkmusic system is based on data-sonification. This 

data is accepted temporally, and may be continuous or discrete in nature. In either case, this data 

is considered to consist of meaningful motion control parameter values. Each data parameter will 

be contained within an associated data stream. Which stream a parameter belongs in, what that 

stream itself represents, and whether it is used in the composition is determined by the intra-

stream sound processor, or data filtering module. 

 

Intra-stream processing applies to filtering of the data, with each input-stream considered 

a separate entity. This process provides application-context to the input data. Input streams are 

actually defined by this application context, so a single input-stream may actually consist of 

more than one input parameter. An example of this would be a stream representing an object’s 

position in a virtual space. The xyz-coordinates supplied as three separate values would be 

considered conceptually as a single ‘position stream.’ Exactly how input data-values are grouped 

as streams is controlled by the data-filters applied. Thus, the data-filtering process may be 

considered the stream-specification process. The filtering is non-destructive in nature, allowing 

streams output from the data-filtering process to consist of overlapping data components. 

 

Figure 3.1.1 shows filtering of input data to produce data-streams with application 

context. Data supplied may be directly passed-out (D1->S1), blocked (D5), filtered once (D2-

>S2, D4->S4), or multiple times (D2->S3, D3->S3, D4->S3). 
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Figure 3.1.1: Filtering supplied data into streams. 
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ignoring its aural contribution. In addition to handling of discontinuous data, Figure 3.1.2 shows 

we can also filter the input data differently based on a triggering mechanism. In this case, we 

apply filter F1 initially, and then trigger filter F2 when the time-index = j. The triggering 

mechanism could equally well be based on any recognizable control event, as specified by the 

user in the filter-design process. 

 

This filtering process provides meaning to the input data. In order to effectively do this, a 

knowledge of the parameters the data represents in the motion world is necessary. It is expected 

that the filtering-design is user-specified and customized, based on the nature of the application 

and data provided. 

 

What the intra-stream filtering provides is synchronization to visuals, and animation-

context. Later we will see how we must also apply auditory-context to produce an effective 

soundtrack. The importance of the synchronization and context, and how they relate to designing 

filters is now discussed. 

 
3.2 Synchronization and Timing 

 
3.2.1 Dynamic Modification and Local Control 

 

The multiple-synchronization problem is further exacerbated by modifications1 made to 

an animation. With a synchronization based on visual inspection (Foleying), these changes cause 

the entire synchronization process to be undertaken again. In contrast, using motion control data, 

modifications mean only a numerical difference in the data supplied. 
 

 

                                                 
1 By modifications we refer to slight adjustments. or “tweaking” of given motions. Wholesale changes 

would most likely require the redesign of data-filters, just as they would involve a complete Foleying restart. 
 
 

 16



Once the synchronization pipeline has been established, any modification to motions can 

be dynamically handled. Additionally, since the data supplied will remain the same for 

unmodified sections of the animation, local control over the soundtrack is maintained. This 

applies not only temporally (change at time A does not affect soundtrack at time B), but 

elementally also (change to object I at time A does not affect object 2 at time A). Figure 3.2.1 

demonstrates both these instances. 

 
Figure 3.2.1: Timing plots for colliding objects in an animation. 

 

In the original animation, we have four objects involved in several collisions. We modify 

the collisions between objects 1 and 2 but leave all other collisions as in the original. The O's 

represent collision events (and their corresponding sounds). The •'S represent all the events from 

the original that are affected by the modification. Using manual Foleying on an audio track, any 

modification to any element of the animation would force a re-recording of the entire soundtrack, 

as the individual tracks for each object will be overlaid and cannot be individually extracted and 

replaced. 
 

As Figure 3.2.2 shows, the only differences to the data supplied would be to the collision 

events for objects l and 2. Only the X-ed events would be reprocessed differently using the 

mkmusic system, constituting four of the ten events here, or 40% modification. With manual 

Foleying, in the modified animation all the event plots would X’s, representing complete re-

processing (100% modification). Using mkmusic, the individual events maintain an 
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independence as they are described by data control streams instead of auditory signals. This 

independence between data streams is an important characteristic; it allows local refinement to 

be performed with minimal effort, using standard data manipulation techniques rather than audio 

signal-processing. In the above example, the savings are 60% over manual Foleying with direct 

audio-track manipulation. 

 
Figure 3.2.2: Event-plots per object for collision animation. 

 

 

3.2.2 Realism 

 

Synchronization is a major factor in the realism of an animation soundtrack and its 

associated visuals. When a misalignment is evident, the animation as a whole seems unnatural. 

Human pattern-recognition and perception creates expectations of the elements necessary to 

identify an event as ‘real.’ If these expectations are not met, the animation will be dismissed as 

unconvincing. In fact, misalignments may prove distracting and make an animation worse-off 

perceptually than the animation would be without a soundtrack at all. It is thus very important 

that an accurate synchronization between sound and visuals be established and maintained. The 

automation and dynamism of this process through mkmusic is therefore an attractive feature of 

the system. 
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3.3 Data Reliance: Underlying Issues 

 
3.3.1 Uniqueness of Sound-Causing Events 

 

Sounds are caused by physical interaction between objects and the environment they 

reside in. The nature of the sound produced is based on the state of the environment at the time 

of the event causing the sound. Some of these state-parameters may be static (such as masses of 

objects, shapes of rigid-bodies, density of the environmental medium), while others may 

dynamically change through time. (Forces on objects, relative positions and orientations of 

objects, change in listener position.) Other factors may or may not affect the sound an object may 

make, although they are crucial to image-rendering. (For example, object colour, material and 

surface-texture characteristics.) In supplying data to the soundtrack system, the choice of which 

of the potential data parameters to output to mkmusic can be difficult to ascertain immediately. 

The design process to make this determination will be discussed in more detail below. 
 
 
3.3.2 Dynamic Parameterization 
 

Sound-causing events are uniquely defined by the state of the environment at the time; 

this environment is dynamic in nature in the motions and interactions of its constituent elements. 

It is desirable to base the sounds or music created for an animation on the relevant parameters of 

the environment (or its elements) for a specific sonic event. In particular, the sound should be 

described in some way using the updated current values of the chosen parameters at the time of 

the event, The data supply to the soundtrack system is inherently dynamic in nature. Thus we are 

providing the current state-space for the environment (or the relevant subset) continuously. 

 
3.3.3 Realism 

 

In addition to synchronization, realism of a soundtrack is dependent on the quality of the 

sound produced and its resemblance to the expected sound for a given sonic-event. As sounds are 
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physically caused by events in a dynamically changing environment, a creation process modeled 

on such an approach should be effective. While the underlying methodology of utilizing the 

state-space description in generating sounds is certainly valid, it must be stressed that a purely 

physically-based approach is inadequate for all soundtrack needs. The reasons for this will be 

described in the discussion of the motion-to-sound binding given below. 

 

Sounds created with regard to the motions causing them are more intimately bound to 

their visual analogues, and more easily identifiable and separable by listeners as a result. This in 

turn leads to increased perceptual confidence and the sense of realism, or effectiveness of the 

soundtrack. This is a finding that is valid for any sonification with temporally-varying data 

[Kram91]. With musical accompaniments, the quality directly affects effectiveness also, but the 

goal of a musical composition is not acousto-realism but rather an appropriate aesthetic flow 

with the visuals. 

 

There are three contributory factors to producing an effective binding between motion 

and sound: the parameters available in the motion world, the parameters available in the sound 

world, and the mapping(s) between them. 

 
3.4 Motion-to-Sound Binding 

 
3.4.1 Motion Parameters 

 

Parameters available from the motion-control system depend greatly on the sophistication 

and abstraction available in the motion-control schema used. Kinematics techniques (e.g. key-

framing) will provide position and orientation data, and associated values such as joint angles in 

articulated figures. In physically-based simulations, higher level information, such as the impulse 

response to collision events, may be supplied directly. Behavioral techniques and user control 

(such as gesture or locomotion in VEs) may provide a further level of information abstraction. 
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Typically, the mkmusic system is supplied low level motion constructs such as positions or 

orientations of objects, or rotational values for joints of articulated figures. Higher order 

constructs such as velocities or forces may be calculated within the filtering process. Such 

additional, secondary processing is applied after the primary, stream-definition processing on the 

input data parameters. While these high-level parameters are usually not provided, and must be 

computed internal to the system, it is completely the animator’s decision which data to select, 

and how much to provide. 

 

In addition to these types of motion parameters, attributes of objects can be provided to 

attach characteristics to the sound. For instance, the length of an object, or its colour may 

distinguish it from its neighbors. When similarly constructed objects move with closely matched 

motions, some variant feature is desirable to identify the contribution of each to the aural track 

on output. Such tertiary features can also be included for attachment at the intra-stream 

processing stage. 

 

Several issues factor into the selection of data to be supplied to the system from the 

motion-control program (or other external source). The data supplied should be representative of 

the main focus of the visuals (or more particularly of the desired main focus of the soundtrack); 

for instance, in a scene with dancers in a ballroom, the music should represent the dancers. The 

exact nature of the data (e.g. joint angles, position/orientation values, etc.) is a more difficult 

determination. Two strategies have been found to work well: first, parameters that are most 

indicative of the motion in the visual realm are often best to work with aurally too; second, “the 

more data the better.” It is easier to select useful data and ignore data streams contributing little 

in the mkmusic system than to attempt to create subtleties that do not exist in inadequate data-

sets. 

 
3.4.2 Sound Parameters 
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The second factor in deciding on appropriate bindings is in the available sound 

parameters in the range-set. The exact nature of the sound representation plays a major factor in 

this. With sampled sounds for instance, there is a strong limitation on the parameterization 

available within the sound. Effectively, only phase and amplitude changes are allowed. 

Additionally, effects such as attenuation and delay can be applied to the sample as a whole. This 

limits the sophistication of the mapping process. Timbre-trees are hierarchical structures, the 

nodes of which can represent constant values, variable parameters, mathematical functions, or 

sub-trees. This allows a highly flexible parameterization to be specified. These structures are 

rendered by synthesizing instantiations of a tree according to the current parameter state. The 

design problem of which synthesis parameters are most appropriate has been a drawback of this 

technique, as the tree must describe the entire sound synthesis process within its structure. 

Methods utilizing ‘external’ sound representations (such as MIDI) are limited by the specific 

protocol and scheme used by the device attached, and control-mechanisms available. With MIDI, 

a formal protocol exists which makes it easy to code for. While users should consider the 

renderer they intend to apply, it should be somewhat transparent to them what the limitations of a 

particular renderer are during the filtering or composition processes. Unfortunately, this coupling 

between modules is unavoidable as the resultant soundtrack is only as effective as the renderer. 

 

In addition to the particular internal sound structure parameterizations that are possible, 

generalized constructs such as amplitude, pitch, delay, reverberation, and pitch-bend (Doppler 

shift), are all included. These low-level elements are utilized by higher abstractions which may 

be specified by the user. Such constraints include the musical composition constraints that are 

illustrated in the mkmusic system. 

 

Whereas, in a purely physical simulation [Hahn88], the sound parameters mapped to 

would directly correspond with those in the real physical interaction, abstract bindings such as 

for musical score production clearly are not governed by the laws of the physical world. 
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Additionally, in emphasizing an action, animators - just as in the visual domain - often 

exaggerate motion response, or use sound effects to perceptually reinforce movements. Thus, a 

purely physically-based approach is impractical. In allowing a more flexible paradigm, the 

design space increases greatly. One approach in searching this space is the use of genetic 

techniques [Taka93], in which an evolutionary targeting of a desired sub-space is done. This 

method does not necessarily lead to a singular target solution, but rather guides the search to an 

appropriate area. The interactive, incremental approach we use also allows a search over this 

space, but control remains directly with the user. The genetic approach is an interesting one, 

however, and its integration would be part of any anticipated future work on the system. 

 
3.4.3 Defining the Mapping 

 

In physical simulations, the correspondence between motion and sound parameter spaces 

is provided by physical laws. In such cases, the mapping is straightforward. However, when 

acousto-realism is not the goal, the mapping is not so direct. Identifying the most effective or 

appropriate linkage is still more an art than a science currently, but common sense dictates that 

certain parameters are most appropriately bound to particular sound constructs. 

 

A combination of heuristic selection, intuitive binding, and trial-and-error has succeeded 

in creating aesthetically pleasing soundtracks. Even a simple linear mapping can lead to complex 

and subtle results. The example below is of an animation of windchimes blowing due to a wind 

force. Each chime has a closely matched oscillating motion. Two filters are applied to create a 

soundtrack from their motions. The first ties musical note values to the distance of each chime 

from a static origin. The second filter is a weighting function based on the relative length of each 

chime. This weight is applied to the result of the distance filter, and a musical part is created for 

each chime. Figure 3.4.2a shows frames from the animation; Figure 3.4.2b, gives example 

coding for the filter functions and Figure 3.4.2c illustrates the five-part score generated. 
 

 23



 
Figure 3.4.2a: Frames from WindChimes animation. 

 
 
int ChimeMap (float x, float y, float z, float length,  float longest) 
{ 
 float dist = sqrt (x * x + y * y + z * z); 
 float weight = length / longest; 
 return ((int)  dist * weight); 
} 

 
Figure 3.4.2b: Filter code extract for WindChimes animation. 

 
 

 
Figure 3.4.2c: Musical score generated for WindChimes animation. 

 
 
 
 
 

3.5 Sound and Music Issues 
 

3.5.1 Commonalities between Sound and Music 

 

In creating filters for realistic sound effects and for musical accompaniments, there are 

both commonalties and idiosyncrasies in the designs for each to address. First. as we are simply 

attaching application-context at this stage, the resultant filtered streams are mathematically 

similar. Each stream is just a flow of numerical values, representing the range-set for the 

mathematical functions defining the filter as applied to the supplied data domain. In designing 

the specific filters, composition of functions is used to create the filtering pipelines for the 
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corresponding input data parameters. 

 

One especial concern is the continuity of streams. While both realistic and musical 

sounds may be discrete or continuous in nature, the mapping of discontinuous input to 

continuous flowing sound is fairly simplistic presently. This should be remembered when 

assigning steams for auditory output; in particular, when designing custom filters, the user 

should take into account the intended type of sound (realistic or musical) the output stream will 

map to. This aids the composition process in attaching constraints on the streams, as the current 

composition processor is limited in its sophistication. 

 
3.5.2 Issues Specific to Sound 

 

With regard to data continuity, realistic sound effects tend to be more often discrete in 

nature. With this in mind, filters are more likely to be short-lived in their application to the sound 

streams. The use of trigger-filters is particularly prevalent in these cases, with discrete motion-

events (such as collisions) having an associated filter; parameters of the space-state then describe 

the particular instance of the event (such as the force and direction of impact). The stream will 

then have the same filter applied, but will output identifiable filtered patterns based on the 

instancing parameters. By using such higher level, more generic filters, with triggers and 

instancing, we can reduce the total number of filters necessary to describe the soundtrack. 

Additionally, such abstractions into classes of sounds aid in ease-of-use, modularity, and 

reusability. Libraries of generalized filter-classes can be established, with modifications made to 

the class templates to produce event-specific streams. 

 
3.5.3 Issues Specific to Music 

 

With musical accompaniments, output will tend to be continuous in nature. Staccato 

music may be warranted and can be highly effective in reflecting jerky, discontinuous motions. 
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However, since most motions will have more than C0 continuity, objects will visually move with 

smooth trajectories. Musical output streams appear from results so far to be more effective if 

continuous, time-varying parameter values are used. Objects with little relative changes to their 

associated data parameters tend to produce uninteresting music. As customized filters can be 

composed, the limitations of the data can be overcome with elaborate filtering, but this can 

detract from the inherent motion-to-sound binding as represented by the original data-set. 

Essentially, to get aesthetically pleasing, flowing music. Data should be filtered to moderate any 

excessive jumps or oscillations. The composition process bounds musical output in this way also, 

mitigating the necessity of making such constraints in the intra-stream processing unless the data 

is particularly unstable. 

 

One general finding for musical score generation has been that at least three output parts 

are desirable if the music is to create and maintain an interesting sound. If fewer than three data 

streams are input, this can be accomplished by using multiple filters on each stream to produce N 

parts from M streams, where N > M.  For instance, for a positional data stream, one part could 

output the direct position, a second could be based on computed velocities, while a third could be 

on accelerations. With many objects and their associated data parameter streams, the problem 

becomes one of reducing the data streams to a more controllable output orchestration. In such a 

case, we want N output parts from M input data streams, where N < M. Here, we can combine 

data-streams using filters, or aggregate multiple streams into single ones at any stage of the 

filtering process. Such secondary filtering is attached after the primary, stream-defining filters 

are applied to input parameters. 
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Chapter Four: Inter-Stream Sound Processing 

 

4.1 Overview of Inter-Stream Sound Processing 
 

At the data-filtering stage of the mkmusic system, though the input data streams may have 

been combined and filtered, the concurrent data-streams corresponding to the various output 

sounds have remained independent. Just as data-filtering regulates application-context (what 

each data parameter represents in the motion world), the composition process attempts to place 

auditory-context to the streams. It is likely that there is some relationship between the sounds, as 

they will generally at least share the same environment. Constructs such as attenuation and delay 

due to distance from the virtual listener position are attached here. Additionally, effects such as 

mixing can be attached to the streams, allowing purely auditory control with no linkage to the 

data supplier at all. At this stage, such constructs are merely encoded to allow for translation to 

the particular renderer format in the rendering stage. This process can be seen as packaging the 

aural data into understandable and coherent information, including the concept of timing, and 

high-level instrumentation. 

 

In the musical composition process, the filtered data values are mapped to constructs 

including, but not restricted to, musical notes. These musical notes can be further constrained by 

simple musical rules that force the mood of the music to reflect emotional or stylistic 

requirements. A simple UI has been provided to allow control over the musical output, by means 

of high-level emotional and scale controls. These are based on well-established music theory; for 

instance the emotional control “sad” will constrain output to a “minor” musical scale. The exact 

nature of the notes and music composed will be determined from the data-stream passed through 

from the data-filtering module, however. 

 

The score in Figure 4.1.1 was composed from a scene of waltzing articulated figures 

within a ballroom. Here, it was appropriate that the music should reflect and match in tempo, the 
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dancers’ motions. (This is technically the reverse of what would happen in reality, where the 

dancers would follow the music.) The figures move around the room, rotate full-circle about 

themselves once per second, and around the ballroom at a slower rate. Thus three output streams 

were generated. At this stage however, these streams have no musical constraints placed upon 

them to suggest the style of music being choreographed to. Since the animator wished a waltzing 

motion to be represented, the music therefore was to take on the stylistic constraints of that form 

of music. 
Figure 4.1.1: Score extract from an animation of waltzing figures. 

 

These constraints (by no means of a complete or truly definitive nature) were that the 

music should be in ‘three-time’ as waltzes are composed in this way (three beats within a bar), 

and that the music be flowing but have an underlying rhythm. Additionally, the music was meant 

to be happy and lively in mood. These musical specifics were then applied by the following: the 

tempo was constrained by sampling the filtered streams at 3Hz. so that each bar in the above 

score represents one second of soundtrack time, and there are three notes per second. The 

repetitive rotation about the dancers’ centers itself lender to the rhythmic tempo of the 

underlying bass part (the lowest score part in the example). The emotive constraints were 

supplied by setting the emotion and scale controls to “happy” and “major” respectively. The 

rotation stream around the room also provided some temporal binding, giving both flow and 

rhythm in parts. Finally, the positional mapping gave a sweeping flow to the music as the  

figures both visually and aurally glide around the ballroom, seemingly synchronizing their 

movements to the music. In addition to the purely musical constraints, attenuation of the music 

due to the distance of the dancers from the centre of the ballroom was applied as a further 
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compositional bound. Finally, an arbitrary amount of reverberation was added to suggest the 

echoic nature of the ballroom. 

 
4.2 Applying Global Sound Effects 
 

4.2.1 Realistic Effects Design 

 

Realistic effects attached to the auditory streams tend to be environmental in nature. 

Effects such as attenuation and delay of sounds due to their distance from the listener position 

are two examples. Another would be the echoic quality of an enclosed space, represented by the 

amount of reverberation in the volume. Some concept of localization may also be required. 

These effects will eventually depend on the renderer chosen to auralize the auditory control 

streams, but the encoding of such effects is handled at this stage, abstracting the rendering 

process from the user. 

 

Environmental effects have one factor in common: information on the environment and 

the objects’ positions within it must be provided. This includes the listener’s position if it is not 

considered central to the space and non-moving (the default). Descriptors may be supplied within 

the data also used to define the input streams, or may be provided by command-line controls. For 

instance, for attenuation, the auditory bounds of the space must be specified. This is input 

through the command-line. If bounding is required and this value is not provided, the mkmusic 

system has several built-in attenuation handlers. Bounding can be based on a static default, 

dynamic on a floating-range based on current values, or range-kicked to avoid linearly increasing 

or decreasing distances forcing boundary-edge constant values. Delay effects assume the 

transmitting medium to be of air-density. Other density values such as that of water, or fog can 

be easily provided to override the default. The delay values are based simply on an inverse-

square of distance. Presently, occlusion by intermediate objects is not implemented though the 
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related sound-rendering work of the timbre-tree based systems would be a logical method of 

supporting this effect. 

 

Reverberation is currently heuristic in nature, based on an overall determination of the 

volume of a space and an averaged linear distance bound between source, listener, and 

boundaries. As reverberation is just a product of delayed reflections from boundaries, a more 

rigorous model could be implemented; the heuristic approach appears sufficient however, given 

that soundtracks for animations and VEs tend to be more for reinforcement of visuals than 

precise simulations of the sonic space. 

 

Localization eventually will be provided by a suitable renderer. Presently, as the available 

renderers to mkmusic have had limited localization potential. Only stereo-placement has been 

supported. With more sophisticated localization schemes becoming accessible, higher-order 

spatial placement will be a future enhancement. 

 

These effects are considered global in the sense that they will apply to all the sounds in 

the environment. The effects are dynamically processed, so that changes to the environment are 

reflected in the appropriate realistic global effects. For instance, changes to the listener position 

will produce relative changes in the attenuation and delay for sound-producing objects. Updating 

of such effects on each sound currently is dependent on the sampling-rate of the data components 

of each auditory stream. This may mean a slight lag in the updating of some streams over others, 

but retains consistency with the data rather than having to update sounds based on estimated 

intermediate data values for the state-space of a stream. 

 

All realistic effects attempt to produce a more natural perception of the soundtrack, 

further binding the visual and aural simulations. By using methods grounded in acoustics and 

real, physical interaction between objects in an environment, the system provides some of the 
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additional sensory cues that aid in human recognition of experienced sonic events. In order to 

effectively simulate a sound, it must appear to be as close to the listener’s expectation of what is 

heard when the corresponding real world event causes the actual sound. The more of these cues 

available, and the more effective each individually is, the more likely the listener will believe the 

sound to be real. 

 
4.2.2 Emphatic effects design 

 

While realistic effects are meant to correspond accurately with listener’s expectations of 

real events and their corresponding sounds, emphatic sounds are intended to reinforce events 

more abstractly. These sounds may be exaggerated beyond physical realism, in order to draw 

attention to particular events. For example, in traditional film, often fight scenes have blows with 

heavily over-emphasized impact sounds. This provides greater perceptual impact as to the force 

of the blows, adding a feeling of heightened action to the scene. Animations can similarly use 

such techniques to stress particular motions or events. 

 

When exaggerating sounds for emphasis, we wish them to attach to sonic events without 

the realistic global effects described previously. The mkmusic system allows such sounds to 

bypass the realistic constraints. The emphasis we require could be attached at this composition 

stage similarly to the realistic effects, but with differing parameter limits. However, the system 

actually allows such control only to be applied at the intra-stream processing stage. Conceptually 

this is consistent, as the composition stage should only apply global effects to streams. Thus we 

only allow application of globals or complete bypass of those effects. While some auditory 

streams may share common emphatic features, they are considered independent in nature and 

must be applied internally to the sound streams. 
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4.3 Musical Constraints 
 

4.3.1 Basic Musical Rules 

 The use of music in animations and more particularly in film has been researched 

extensively. Music can provide many levels of context or information about the scene being 

observed. In [Burt94], George Burt describes the influence of musical accompaniments thusly:- 
 

 “Music has the power to open the frame of reference of a story and to reveal its 

inner life...can deepen the effect of a scene or...have a telling effect on how 

characters in the story come across... Further, music being a temporal art...can 

have an enormous impact on the pacing of events.” 

Music is therefore an extremely forceful method of conveying mood or information on a 

scene, and can colour our attitudes towards the events observed. It is important that such power 

is accessible to animators in a regulated way so as to be most effective. 

 

The mkmusic system composes musical accompaniments based on the data supplied from 

the motion-control system, and constrains the composition using simple musical rules. The 

controls available are based on high-level emotional labels, and scale and key-signature 

descriptors. This simplistic control is deliberate in that animators are assumed to have no musical 

knowledge. 

 

Emotional labels apply directly to scale constraints. The link between emotion and scale 

is based on established musical knowledge of mood-transference [Senj87]. Sampling-rates may 

also be affected by the emotional-control mechanism. 

 
Emotion Scale 
Happy Major 

Sad Minor 
Evil No constraint 

 
Figure 4.3.1a: Emotion to Scale mapping. 
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Emotion Note Length 

Bright Short; staccato
Peaceful Long; flowing

 
Figure 4.3.1b: Emotion to Note Length mapping. 

 

Figure 4.3.1 shows two of the constraint mappings as part of the musical composition 

process. In addition to scale control, note length (tempo) can play an effective role in changing 

the aesthetic colour of a soundtrack For instance, “peaceful” music has more flowing, relatively 

longer, slower notes, whereas “bright” (or very peppy, cheery) music is more short, staccato, and 

jumpy in nature. 

 

These simple controls are limited, but have resulted in complex, subtle musical 

compositions. Future work will attempt to develop the creative controls beyond these elementary 

emotional constraints, while maintaining the non-specialized interface mechanism for animators. 

 
4.3.2 Compositional Effects 

Emotional labels adjust the lower level scale controls and may alter sampling rates 

dependent on the selection. These controls have the greatest effect on the musical parts 

composed at the note-level. Direct scale and key controls then have a lower-level effect. Other 

influential controls include instrumentation and part-selectors. These two controls represent the 

orchestral selection mechanism. The number of individual parts (auditory streams), the choice of 

which subset of the available parts, and the instrument which performs each part, are important 

in directing the overall effect of musical accompaniment. If objects within an animation have 

individual musical parts associated, identifiable instruments for each can aid in the flow of 

music, and its reflectance of motions visually. For instance, the motions of a red sphere and a 

blue cube in a simple animation could be reflected by musical parts for each, with a piano 

performing the sphere-part and a guitar reflecting the cube motion. In combination, the two parts 
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may produce some pleasing and flowing music, but the contribution of each object will be 

immediately identifiable. 

 
4.3.3 Level of Compositional Control 

Although the controls available within the composition process are limited, even with this 

small constraint space, the variety of possible compositions, and the associated combinations of 

constraints is large enough to have produced aesthetically pleasing, complex soundtracks. The 

auditory streams supplied to the composition module themselves are dynamically changing so 

the effects of the combined constraints can be esoteric in nature. 

 

As with the data-filtering design process, the choice of compositional constraints is often 

most successful through a combination of trial-and-error and progressive refinement. The choice 

of constraints can lead to results that were not initially desired, but which may prove more 

pleasing to the listener. And the interactivity of the process makes it an enjoyable exploration in 

most cases. 

 
4.4 Combining Realistic and Musical Sound Streams 
 

4.4.l Applying Global/Environmental Effects 

Environmental effects applied for realistic effects are certainly appropriate, and can 

create a more natural, and effective soundtrack. With musical effects, such environmental effects 

are extrinsic; musical streams do not belong to the physical environment, and thus are outside the 

associated environmental effects. However, in some cases, application of those effects can 

benefit the soundtrack. For instance, simple stereo-placement can add to the extraction of each 

object’s contribution to a soundtrack by the listener. The effect can be distracting if the object 

crosses the plane perpendicular to the listener between the ears too often, however. Delay effects 

have been found to be too distracting for musical application as the inherent tempo of a flowing 

motion is disrupted by the delay effects. Reverberation and attenuation can be effective in giving 

 34



a sense of the volume of a space without being distracting. The levels of each effect may be 

disquieting if over-applied, however. 

 

The system allows combination of musical and realistic effects through the inter-stream 

processing by applying global effects to the input auditory streams in a binary (on/off) way. 

Musical streams may bypass the realistic global effects completely and have only musical 

constraints applied; similarly, realistic effects will have no musical context applied, but will have 

environmental effects attached. Other streams may be provided both sets of constraints. 

 
4.4.2 Over-constraining sound streams 

A problem with applying several effects on sound streams is that of over-constraining the 

streams. If too many effects are applied, the effects of some may be diluted or obscured by 

others. This can lead to soundtracks where subtlety is diminished and the overall effect is 

“washed-out.” The removal of one or more constraints solves this problem; the determination of 

which constraints to remove may be evident, or may be difficult to ascertain. A trial-and-error 

method can always be employed in the latter case as the interactivity of the process allows users 

to listen to their soundtracks and then make adjustments with little delay (dependent on the 

rendering power available). This has not been perceived to be a particularly extensive problem 

however, and can be avoided if the composition constraints are applied incrementally. 
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Chapter Five: Rendering Issues 

 
5.1 Renderer Requirements and Desired Features 
 

Since the resultant soundtrack is all the user is interested in, the rendering system should 

be a “black-box” to the animator. Several renderers have been – or are currently – interfaced to, 

including MIDI and CSound renderers, which together encompass much of the computer music 

research community’s rendering capabilities. Additionally, notated musical scores can be 

produced using third party applications. In an ideal world, such composed scores could be 

“rendered” by a live orchestra with these notated parts provided to the musicians. This is beyond 

the scope of most animation productions, however, so renderers of a more accessible nature 

remain the mainstays of the system. 

 

The rendering process can actually be looked upon as two separate sub-processes 

depending on the type of renderer used. For non-real-time applications, the mkmusic system 

actually produces formatted score-files to be read by third party applications (including MIDI,   

CSOUND, TEXT and VAS renderers). This separates actual sound output from the system itself, 

and the use of scores allows for storage and later performance. In real-time applications, two 

current methods are implemented to produce sound output at interactive rates: these will be 

discussed in more detail later. 

 

For musical soundtracks, MIDI [Roth92] is an ideal rendering method, since the MIDI 

protocol was created with musical application in mind. Realistic effects can also be done 

however, with appropriate sampled sounds stored on the MIDI device, and triggered by the 

soundtrack system. The CSound renderer has been developed for computer music research so its 

sound quality is high also. Other supported renderers include the VAS renderer, developed 

locally utilizing timbre-tree sound structures, and a PC-based sequencer known as SRend. 
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The rendering of the soundtrack is all important (just as the final image produced with a 

particular shader is), so the rendering module is most influential. As aural rendering is a complex 

and specialized field, the mkmusic system deliberately tries only to support existing renderer 

formats rather than develop its own independent one. This should be left to sound experts rather 

than computer graphics and animation researchers. 

 

The rendering module of the mkmusic system works by outputting audio control 

information; the format this information takes is dependent on the actual method of auralization 

into an analogue audio signal. 

 
5.2 Supported Renderers 
 

5.2.1 CSound 

CSound was developed at the University of Leeds, UK, by Barry Vercoe. The system 

allows sound design and sequencing using C-language like functions. Users can specify 

instrument definitions and scores which describe note-sequences of instruments. 

 

Using these scripted scores, the CSound system interprets instrument definitions to 

produce sound output. The instrument specifications are parameterizable, and the score-files can 

pass time-varying parameter values to the instruments. This is very suitable for the binding 

methodology the mkmusic system uses, as it provides a template for the available parameters in 

the sound domain to which motion parameters can map. Instrument specifications themselves are 

technical in nature, as they tend to describe sounds from their fundamental synthesis processes. 

The parameter-passing protocol defines the first four values passed from a score-file to be an 

instrument index, a time-stamp, a duration, an amplitude, and a frequency for a note-value. Other 

parameters can be passed through the expected values of the instrument specification. 
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 sr = 11025 
 kr = 441 
 ksmps = 25 
 nchnls = 1 
 ; p4 amps are here doubled 

; guitar 
  instr 1 
 kamp linseg 0.0, 0.015, p4 * 2, p3 – 0.065, p4 * 2, 0.05, 0.0 
 asig pluck kamp, p5, p5, 0, 1 
 af1 reson asig, 110, 80 
 af2 reson asig 220, 100 
 af3 reson asig, 440, 80 
 aout balance 0.6 * af1 + af2 + 0.6 * af3 + 0.4 * asig, asig 
  out aout 
  endin 
 

; hammer/pull 
  instr2 
 kamp linseg 0.0, 0.015, p4 * 2, p3 – 0.065, p4 * 2, 0.05, 0.0 
 kfreq linseg p5, p7 * p3, p5, 0.005, p6, (1 – p7) * p3 – 0.005, p6 
 asig pluck kamp, kfreq, p5, 0, 1 
 af1 reson asig, 110, 80 
 af2 reson asig, 220, 100 
 af3 reson asig, 440, 80 
 aout balance 0.6 * af1 + af2 + 0.6 * af3 + 0.4 * asig, asig 
  out aout 
  endin 
 

; harmonics 
 instr 3 

kamp  linseg 0.0, 0.0l5, p4 * 2, p3 – 0.035, p4 * 2, 0.02, 0.0 
asig pluck  kamp, p5, p5, 0, 6 
 out asig 
 endin 

 
Figure 5.2.1: CSound Orchestra file for a guitar instrument. 

 

Figure 5.2.1 shows an example instrument definition (in this case a guitar). Both static 

and dynamic parameters exist: in this case additional frequency adjusters for hammer/pull effects 

in plucking the guitar strings (p5..p7). Several instruments may be defined in a single file known 

as an orchestra file. The instrument descriptions are thus abstracted from the scoring of a 

musical piece. 
 

Figure 5.2.2 shows a score-file for CSound rendering. In addition to aural information, 

the delimiter marks comments in the score. As can be seen, instruments are addressed by index, 

and provided the note-specifier lines (each score-line specifies a note) are formatted with the 
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appropriate parameter set. No user manipulation of the orchestra file is necessary. 

 

 
;Musical Score Generator 
;------------------------- 

 
;Datafile contained 105 lines. 
;105 lines processed in total. 

 
 

;Input Emotion was: ANY. (Emotional processing is bypassed.) 
;Scale is  DIMINISHED. 
;Performance is CSOUND. 
;Style is CLASS. 
 

 ;INST   TIME   DURATION   AMPL   FREQ    PART 
  i1 0.000 1.000  8000 261.632 ;Part1 
  i1 0.000 1.000  8000 261.632 ;Part2 
  i1 1.000 1.000  8000 261.632 ;Part1 
  i1 1.000 1.000  8000 261.632 ;Part2 
  i1 2.000 1.000  8000 440.000 ;Part1 
  i1 2.000 1.000  8000 440.000 ;Part2 
  i1 3.000 1.000  8000 440.000 ;Part1 
  i1 3.000 1.000  8000 349.232 ;Part2 
  i1 4.000 1.000  8000 440.000 ;Part1 
  i1 4.000 1.000  8000 349.232 ;Part2 
  i1 5.000 1.000  8000 261.632 ;Part1 
  i1 5.000 1.000  8000 261.632 ;Part2 
  i1 6.000 1.000  8000 440.000 ;Part1 
  i1 6.000 1.000  8000 440.000 ;Part2 
   

Figure 5.2.2: CSound Scorefile example for 2-part, single instrument performance. 
 

The major limitation of CSound for direct use as an animation soundtrack system is the 

non-intuitive nature of the parameters used in sound generation. The mkmusic system attempts to 

interface between these sound parameters and motion-control values so as to remove this burden 

from computer animators. In doing so, the high quality sound production of the CSound renderer 

becomes accessible. As CSound is an established sound rendering system, with cross-platform 

support, and is in wide usage amongst sound researchers, this is a powerful means of generation. 

 

The CSound rendering format can take two forms: scripted output is provided both for 

regular animation work, and a slightly different format exists to provide “real-time” 

performance. The latter will be examined in more detail below. 
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5.1.2 MIDI 

The Musical Instrument Digital  Interface (MIDI) is a control protocol for 

communication between musical instruments and other related devices (including computers). 

The standard was developed in the early  1980’s as a way of allowing musicians to control 

digital synthesizers. This provided greater creativity over composition by musicians playing 

instruments other than keyboards (for instance, guitarists wishing a piano accompaniment), as 

well as allowing keyboard players to increase their range in overlaying sounds from several 

source synthesizers. The development of the standard created an explosion in the power and 

accessibility of musical composition and performance in the same way low-cost personal 

computers and software brought desktop publishing into common use. MIDI allowed a low-cost 

introduction to music, with expandability through the interface. The protocol also gave birth to 

more widespread teaching and educational resources for music including computer-aided 

instruction. The protocol is based on 8-bit control messages passed between devices. Control is 

divided into MIDI messages common to all devices, and system-exclusive (“Sysex”) commands 

specific to particular manufacturers or devices. In just over a decade, MIDI has become a 

worldwide standard in musical rendering. Some music researchers frown on the limitations of the 

protocol for describing intricate musical pieces, but the simplicity and speed of transmission has 

been a powerful addition to musical performance. Given the MIDI-standard is so pervasive, and 

with its potential for real-time performance, it is a natural rendering format to support. One 

limitation is the requirement of a MIDI device to interpret the control messages to actually 

auralize a score. With the low cost of MIDI-synthesizers (often under $100), and the high quality 

and extensibility, this requirement is not extreme. 

 

Further advantages of the MIDI standard include its low storage overhead (as files are 8-

bit, binary format), and cross-platform and multi-manufacturer portability. Sequencing software 

and hardware devices are readily available, and with the newer General MIDI standard, and 
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Downloadable Samples (DLS), auralization is more consistent between systems and renderers. 

 

Rendering output from mkmusic can take two forms, as with the CSound renderer: both 

scripted soundtrack files, and real-time piping are supported. With MIDI, control messages are 

exactly alike for both scripted and piped output, though script-files contain additional timing and 

miscellaneous information, such as the soundtrack title, and composer. Real-time performance 

will be described further below, but the process involves sending control messages directly to a 

MIDI device “on-the-fly.” The mkmusic system currently does this by passing these formatted 

control streams out of the serial port of the host machine, through a simple serial-to-MIDI 

interfacing box to the MIDI instrument. With the scripted method, these control streams are 

written to a file and on performance of the scorefile, a similar passing of the messages through 

the serial ports will be done. 

 

The MIDI standard supports several hundred messages. Currently, the mkmusic system 

supports a core subset of these. Common messages include Note-On, Note-Off, Program-

Change, and Pitch-Bend. The first two control actual playing of assigned notes on the MIDI 

device; the Program-Change allows instrumentation changes (dynamically); the Pitch-Bend 

message performs a frequency change on output notes. This can be useful in rendering effects 

such as Doppler shifting of moving sound-sources. 

 

The sounds available to the MIDI renderer are limited to the device connected. One 

drawback is that these sounds tend to be musical in nature as MIDI was primarily designed for 

musical performance. Sampling synthesizers provide a way of extending the sounds available to 

the renderer, but their parameterization in limited. Physically-based modeling synthesizers are 

now available that generate sounds based on their real-world analogues. These synthesizers are 

capable of synthesizing sounds in real-time with a wider range of accessible parameters. One 

example is the Yamaha VL-l synthesizer which physically models wind instruments. Common 
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instruments such as trumpets can be simulated, as can mile-long metallic tubes, with the 

available parameters for air passing through hollow-cylinders which the synthesis is based on 

This technique uses virtual acoustic synthesis methods implemented in hardware on the Yamaha 

keyboard. 

 

Such new developments to MIDI-controllable devices are bridging the gap between 

control and performance. While audio-DSP has greater flexibility and bandwidth [Smit85], the 

processing overhead and inadequacies of current physical models make MIDI a practical 

alternative. As we are dealing with event-driven sounds in animations, and MIDI is inherently an 

event-driven protocol (with its high-level note-triggering), it is an effective rendering 

technology. 

 
5.2.3 Other supported renderers 

 

Several other renderers are supported that are of some utility to animators. The TEXT 

renderer simply outputs note events and their associated indexing and timing information for 

human reading. This is useful in debugging scores when sampling-rates on different sound-

streams are set. For instance, given the cryptic nature of some of the specialized renderer 

formats, their outputs may be difficult for animators to interpret. While listening to the 

soundtrack can provide information on changes necessary, it is often useful to see how individual 

streams are contributing at particular times; this is not always possible to determine from the 

layered audio tracks. Figure 5.2.3 shows a text-format score. 
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Musical Score Generator 
------------------------------ 
Rendering = TEXT. 
Input Emotion was: HAPPY. 
Scale is:  MAJOR. 
Performance is: SOLO. 
Style is: ROCK. 
 

Frame: 15  Time: 0.5000 Part: 1 A-4 FREQ: 440.000 
Frame: 30  Time:  l.0000 Part: 1 F-4 FREQ: 349.232 
Frame: 45  Time: 1.5000 Part: 1 C-4 FREQ: 261.632 
Frame: 60  Time: 2.0000 Part: 1 G-3 FREQ: 196.000 
Frame: 75  Time: 2.5000 Part: 1 A-4 FREQ: 440.000 
Frame: 90  Time: 3.0000 Part: 1 D-4 FREQ: 293.664 
Frame: 105  Time: 3.5000 Part: 1 D-4 FREQ: 293.664 
Frame: 120  Time: 4.0000 Part: 1 C-4 FREQ: 261.632 
Frame: 135  Time: 4.5000 Part: 1 D-4 FREQ: 293.664 
Frame: 150  Time: 5.0000 Part: 1 E-4 FREQ: 329.632 
Frame: 165  Time: 5.5000 Part: 1 E-4 FREQ: 329.632 
Frame: 180    Time:  6.0000   Part: 1  D-4   FREQ: 293.664 
 

Figure 5.2.3: Text-Format score extract. 

 

The VAS format is for use by the Virtual Audio Server system developed at the George 

Washington University. This renderer uses timbre-tree structures to describe sounds in a virtual 

environment. The VAS system can produce localized sounds through loudspeaker technology, 

and can maintain real-time performance for simple sampled-sounds, provided processing power 

is adequate. The VAS renderer is currently under development, and future advances should make 

this a particularly suitable renderer for virtual environment simulations. 

 

The SONG renderer format is for the SRend renderer which is a PC-based utility from 

which MIDI-format files can be obtained. This renderer now runs on the SGI systems on which 

mkmusic was originally developed. The format produced by SRend is also readable by a DOS 

sequencing package, allowing manipulation in this environment as well. The SRend format was 

developed by Hesham Fouad - a fellow audio researcher at the George Washington University. 
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do part 1000 
dos 1 2 

 
so 1 400 1 15 
eo 1 6400 
so 1 6400 1 17 
eo 1 6800 
so  l 6800 1 19 

   eo 1 7199 
so 1 7199 1 22 
eo 1 7599 
so 1 7599 1 27 
eo 1 8000 

 
Figure 5.2.4: SRend format score. 

 

Figure 5.2.4 shows an SRend format score extract; the first two lines declare an 

instrument, and the following so-eo pairs start and end notes for the instrument. The values 

following the so-eo pairs index the instrument, time-stamp the event, and trigger the appropriate 

note-on for the so’s and stop the current note for the eo’s. 

 

The support of a variety of renderers is deemed important as it makes the mkmusic 

system accessible to a wider set or users. The system itself has been successfully ported from 

UNIX systems, to both DOS and Macintosh environments. With supported renderers available 

on these platforms, the system is thus available beyond the users of high-end graphics 

workstations. Though interactivity may be more limited on less powerful machines, the 

underlying design processes of the soundtrack production are consistent. This should also allow 

users to transparently switch between platforms and operating systems while retaining a core 

rendering capability regardless of machine-type. 

 
5.3   Real-Time Rendering Capability and VEs 

Using the mkmusic system, musical soundtracks can be composed and generated in real-

time, both for animations and virtual environment simulations. This requires all three processing 

modules to maintain real-time performance, regardless of data input rates. Realistic effects based 
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on sampled-sounds are also currently handled. Synthesized sounds may be produced in real-time 

given sufficient processing power. 

 

The data-filtering and composition modules are both designed to require no inherent 

batch-processing. This allows them to work in real-time, with no need for any determinism of 

how a simulation will progress. The customizable nature of the filtering process does allow for 

this, but it is assumed that the user will plan the filter design according to the application. We 

assume no lower limit on data supply for composition to take place. The system will continue to 

output the last composed note for each part unless explicitly countermanded. Even if there is a 

lag on data supply, the soundtrack should maintain its integrity. Unfortunately, this could mean 

that the soundtrack does not synchronize to visuals, due simply to delays in receiving data. This 

is addressed in two ways. First, the use of common data by motion controller and soundtrack 

producer should eliminate these effects. If for some reason this is not the case (such as passing 

the soundtrack data to a remote machine for mkmusic processing), timing constructs within the 

composition module can be made to re-synchronize the audio track to the motion controller. 

 

Two renderers are supported which allow compositions to be performed at interactive 

rates. These are the MIDI renderer, which outputs directly to a serially connected MIDI device, 

and a score-based CSound renderer. The CSOUND_RT renderer works by processing scores on 

a line-by-line basis. The mkmusic system pipes suitably formatted lines to the renderer allowing 

interactive composition and performance. One drawback is that the processing overhead of 

CSound is heavy, and real-time performance may not be maintained. The VAS renderer, also 

capable of real-time sound output, is not included in this discussion as its current state of 

development has not allowed sufficient testing. Early trials have suggested this renderer to be an 

ideal one for the future, due to its flexible parameterization scheme, and its own targeting of 

motion-control bindings with aural simulation. 
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i1 0.000 0.500   5727 l23.472 
i1 0.500 0.500 15506 146.528 
i1 1.000 1.000 15991 880.000 
i1 2.000 2.000 14627 440.000 
e 
 

Figure 5.3..l: CSOUND score extract. 
 

Figure 5.3.1 shows an extract of piped output to the CSOUND_RT renderer. Each line 

has several expected parameters for a particular instrument specification. (In this case a guitar 

instrument.) The first parameter is an instrument index and the numbers following represent a 

time-stamp, duration, amplitude, and frequency (note-value) for the instrument. Each line thus 

represents a single note in the performed ‘score.’ This format is very similar to the regular 

CSound output, and is still fundamentally a scripted rendering. With the non-deterministic nature 

of virtual environment simulations, scripting is a limiting technique, as foreknowledge of future 

events is often required. 

 

In the case of the MIDI renderer, either a non-interactive MIDI-format file can be 

generated, or direct message-passing to an external MIDI device can be done. The file format 

method does not allow for interactive performance, but allows easy porting within the MIDI 

domain. The direct output method supports real-time applications, and virtual environment 

simulations. The great advantage of the MIDI renderer is that it offers real-time performance 

without placing too great a processing burden on the simulation machine. The direct MIDI 

rendering also avoids the batch-processing limitations of other renderers. Output is based purely 

on the current audio-state, with updating of sounds done on a frame-by-frame basis (constrained 

additionally by set sampling-rates). 

 

Such interactive production also allows filters to be refined incrementally. In some sense 

this development can be compared to developing shaders in a system such as RenderMan, where 
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modifications to code lead to an image that can be viewed and inadequacies can then be 

addressed in the code again. 

 

As the mkmusic system accepts data input, this supply can be extended beyond motion-

control program output. In virtual environments, interaction devices such as data-gloves and 

head-mounted-displays (hmd’s) often have positional-trackers on them. These trackers, often 

magnetic or ultra-sonic in design, may provide position and orientation information in 3-space. 

This data can be supplied to the mkmusic system in the same way as regular motion-control data 

is. In fact, the two sources can be combined so that both user action, and simulation feedback are 

sonified. The data used in this way can provide aural feedback within a VE which may be useful 

for tasks such as navigation, or used creatively to compose music through user motions in the 

virtual space. 

 
 

Figure 5.3.2: VE composed score. 
 

Figure 5.3.2 shows an extract of a musical score composed interactively in a VE through 

use of a 6-DOF ultrasonic mouse. The musical parts were linked to the motions of the mouse 

through virtual space, binding position and orientation pairs, in each coordinate axis, to three 

musical parts. Tempo was controlled by linking each part to the average velocity of motion over 

that dimension. Actual auralization was through a Korg Wavestation MIDI synthesizer. Stereo 

localization, and attenuation through MIDI velocity controls to left and right channels on the 

synthesizer were also performed. 
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Using MIDI devices, or the CSound rendering software, animators and VE researchers 

can successfully produce soundtracks with performance rates suitable for real-time applications. 

These include accurately-timed previewing of soundtracks, rendered interactively, and in aural 

feedback generation for virtual environment simulations. The flexible nature of the filter design 

and composition processors also allows powerful and customizable control over aural output in 

such applications. Real-time performance also benefits the refinement and design processes for 

animation uses, as interactivity is increased with the immediate feedback that is provided. 
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Chapter Six: Using mkmusic: Results and Examples 

 
6.1 Guidelines for Use 
 

6.1.1 Data-File Format 

The mkmusic system accepts data line-by-line, with no comments or content other than 

data values. Each parameter must have an entry for each line of the data-file. Each of these lines 

represents one frame of the animation. Default frame-rate is assumed to be 30 frames-per-

second. This is modifiable through a command-line parameter. The system reads and processes 

each line as it is input so the resultant sound output is instantaneous. The data is sampled 

however, at a default rate of every 10 frames. This can also be set by command-line input, and 

further specification of individual sampling-rates for each sound-part can be made in this way 

also. This is especially useful when mixing realistic sound effects and musical accompaniments. 

Composing music requires to sample the data far less than at each frame (l/30 of a second) as 

musical notes of this length would be far too short. The default rate of 10 frames gives three 

notes-per-second of musical output, assuming the default frame-rate. With realistic effects, we 

normally wish to trigger discrete events exactly at a particular frame; we thus set the realistic 

parts’ sampling-rates to be 1 - i.e. we process every frame. We then set triggers in the data-

mapping to check whether sound output should proceed in a particular manner. 

 
  0.00 0.00 0.0  0.00 0.00 1.00  0.0  0.00 
  0.00 0.18 0.0  1.00 0.00 0.95  0.0  3.00 
 -0.02 0.37 0.0  2.00 0.01 0.90  0.0  6.00 
 -0.04 0.55 0.0  3.00 0.01 0.84  0.0  9.00 
 -0.08 0.73 0.0  4.00 0.02 0.79  0.0 12.00 
 -0.12 0.92 0.0  5.00 0.03 0.74  0.0 15.00 
 -0.17 1.10 0.0  6.00 0.05 0.69  0.0 18.00 
 -0.23 1.28 0.0  7.00 0.07 0.64  0.0 21.00 
 -0.31 1.46 0.0  8.00 0.09 0.59  0.0 24.00 
 -0.39 1.64 0.0  9.00 0.11 0.55  0.0 27.00 
 -0.48 1.82 0.0 10.00 0.13 0.50  0.0 30.00 
 -0.58 2.00 0.0 11.00 0.16 0.46  0.0 33.00 

  
Figure 6.1.1: Data-file extract with six parameters. 
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Figure 6.1.1 shows an example data-file, with six parameters. These were supplied for 

the animation of dancing figures described previously. The file itself contains just numbers, and 

it is the animator’s responsibility to know what each parameter represents, and use that 

knowledge to filter accordingly. 

 

     -1   l  2 

     -l -1 -1 

     -1 -1 -1 
      . 
      . 
      . 
 30 2 3 
 31  1 3 
 -1 -1 -l 
      . 
      . 
      . 
  
 

Figure 6.1.2: Data-file showing time-stamped collision events. 
 

Figure 6.1.2 shows another data-file. This is an example of a file that may be used to 

produce realistic sound effects.  The three parameter values represent the frame-number, and the 

indices of two colliding objects from a simulation. The -1 values refer to frames where no 

collisions occur. This data-file contains much redundant information (periods of time when no 

collisions occur), and this is an area in which the mkmusic system requires more interface 

improvements. As the system was originally designed for musical accompaniments only, the 

processing was assumed to be for continuously flowing music from the data, and hence a frame 

continuous input is required. A suitable data-filter handling this file will be described below. 
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6.1.2 Command-line controls 

In early development of the mkmusic system, animator control was restricted to emotion, 

scale and instrumentation, and only limited file-IO was implemented. The original interface was 

prompt-based, as illustrated in Figure 6.1.3. At this stage, only a textual rendering could be 

produced which was then input by hand into a MIDI sequencer for playback. As the functionality 

has grown, the use of command-line parameters has completely superseded this prompted 

interface. The prompted interface does remain however, and can be invoked by running mkmusic 

without any parameters. 

 

 
MKMUSIC 

 
Table of Musical Selectors 

 
 EMOTIONS              SCALE INSTRUMENTATION 

 
 NONE -1 NONE -1 ANY (of 1-3) 0 
 ANY  0 ANY  0 SOLO (1-pt) 1 
 SAD  1 MAJOR  1 BAND (3-pt) 2 
 HAPPY  2 MINOR  2 ORCH (6-pt) 3 
 BRIGHT  3 BLUES  3 
 EVIL  4 DOMINANT  4 
 PEACEFUL  5 DIMINISH  5 
   HALF-DIM  6 
 
 Enter name of input file: 
 

 
Figure 6.1: Prompted interface for mkmusic. 

 

The full range of command-Line options is given in Appendix A. Some of the more 

influential controls are described here. The -i and -o flags provide the input and output file 

specifiers. If the supplied input file does not exist, the system will switch to prompting the user 

for the filename before processing will take place. If no output file is supplied, output is assumed 

to be to stdout. Other flags can specify both input and output to be stdin and stdout respectively. 
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This is particularly useful when piping data from a motion control program directly to mkmusic, 

or piping the output score information from executing mkmusic to a renderer, such as CSound. 

 

The -C, -I and -S flags control emotion, instrumentation, and scale settings respectively. 

Each has a default associated, and the full set of defaults can be specified by the -D flag. This 

also sets the renderer (-R), duration (-d) and part-selection (-p) defaults. The emotion default is 

happy, the instrumentation is solo (1-part per auditory stream), and the scale is major. The 

defaults for duration and parts are to set these according to the data in the file. Parts will 

correspond to the number of input data parameters in the file. Duration will be the number of 

frames in the file. The renderer defaults to the Song-format, as this is used to produce MIDI 

score-files for later performance, and thus is most useful for development. 

 

The -p flag sets the number of parts to be output by the system. Additionally, with 

optional index inputs, delimited by the + character, which parts are to be output can be 

controlled.  For instance, the setting: -p3+2+4 will output 3 parts, namely parts 1,2 and 4. 

 

Similarly, the -s flag sets the sample-rate for the data-filtering process. Although all data 

is parsed by the system, the filters are only applied at sampled frames. A single global state can 

be set by specifying a single number after the flag, or values for each part can be set with the + 

delimiter between. For example, -s10+20+1 would set a sampling-rate of 10 frames for part 1, 

20 frames for part 2 and 1 for part 3. All other rates would be the same as that for part 1, namely 

10 frames in this case. This is useful when certain parameters and motions are more active than 

others and thus require higher sampling-rates. Note that the "sampling-rate" specifier is really a 

"sampling-period" as it actually defines the number of frames between samples rather than the 

number of samples-per-unit-time. 
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The frame-rate is set by the -f flag. This is a very useful control as animations are often 

laid to tape with duplicated flames in order to lengthen the animation without having to render all 

the frames. For instance, rendering 150 frames of an animation would provide a 5 second 

duration, at 30fps. By laying each frame to tape twice, the animation doubles in length to 10 

seconds. The motions will all be slowed by a factor of two in this case. The data provided by the 

motion control system will still only represent the original 150 frames however. By setting the 

frame-rate to 15 instead of the default 30, mkmusic can compensate for this. The filter-

application process is controlled by the -N flag. Several default filters exist that can be applied to 

the input data. These will be described more, below. The -Ncustom flag is the most likely setting 

for users who have designed their own, application-specific filters. This custom setting is also the 

default. Other flags that influence the output include volume controls, and attenuation bounds 

that allow attenuation based on the specified size of the environment (limit-of-audibility). Flags 

controlling particular renderer set-ups are also provided and can be reviewed in Appendix A. 
 

Figure 6.1.4 shows a typical command-line execution of the mkmusic system. In this 

example, an input file named “In.data" is processed to output a text-rendered, three-part score, 

saved to a file “Out.score." The music for the composition will be custom filtered, and will have 

sad, blues characteristics. The data will be sampled at a frame period, with a frame-rate of 10 fps. 

The use of the -D flag is optional, but is included as it guarantees any un-set controls will be at 

their default values. 
 

mkmusic –iIn.data -oOut.score -D -Rtext -Ncustom -p3 -55 -f~0 -esad –Sblues  

 
Figure 6.1.4: Sample command-line execution of mkmusic. 

 

The mkmusic system has several default filters that can be applied generically to input 

data. These include bound, cutoff, and kick filters. The cutoff filter is a static bounding filter that 

constrains input data values to a range. Values below or above the range are set to the minimum 

or maximum range values respectively. 
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The bound filter takes this further by implementing a floating-bounded-range dependent 

on the previous input. Values exceeding the range become the new bounds so that a dynamic 

normalization is done on subsequent values. This is a more useful filter as the static settings of 

the cutoff filter are dependent on the initial data values read in, and this may not be 

representative of the data following. 

 

The kick filter is similar to the bound filter but rather than setting the range bounds to the 

current maximum and minimum values, it 'kicks' these values beyond the current extremes. This 

filter was written in response to data supplied being monotonically increasing or decreasing. In 

this case, using the bound filter the range-bounds would constantly be the current value read. The 

filter would then output a constant value corresponding to the upper or lower normalization-

bound value, and lead to music with a single note value. The kick filter, while still limited, at 

least replaces this with a sawtooth-like output. 

 

In addition to these simple data manipulation filters, several utility functions are 

provided. All mathematical functions available within the C-language math library are available. 

System functions providing magnitude operations on vectors, checking whether values are 

contained within lists, and pseudo-velocity/acceleration calculators are some of the other utilities 

included. 

 

These utility functions are provided for users in their custom filters. Custom filters are 

expected to be designed if the soundtrack produced is to be truly application-specific. The 

custom filter design process involves the user defining the body of a system-declared custom 

filter. The user modifies “custom.c” and “custom.h” files, and links them with the mkmusic 

library which contains the rest of the system functionality.  Figure 6.1.5 shows sample custom 

files, in this case for a sonification of 3D morphing data. 
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 /*  */ 
 /* custom.h: Put user-custom definitions here. */ 
 /*  */ 

 
#include “globals.h” 
 
#ifndef GENERAL 
 #define GENERAL 
 
 #include <stdio.h> 
 #include <ctype.h> 
 #include <stdlib.h> 
 #include <stddef.h> 
 #include <string.h> 
 #include <math.h> 
#endif 
 
#ifndef CUSTOM 
 #define CUSTOM 
 
 /* Do not modify this. */ 
 extern int CustomDataMap(int ndata, float *data, 
   int nparts, int *note, float *supp); 
 
 
/*****************/ 
/* Add stuff below. */ 
/****************/ 
 
/* Custom Defines */ 
#define USER1  100000 
#define USER2  316.0 
 
#endif 
/* End of custom.h. */ 
  
 

Figure 6.1.5a: Custom header file for filter design process. 
 
 
/********************************************************/ 
/*      Music Generator    */ 
/*       (Custom.c)    */ 
/*             */ 
/*  Map parameters from an input file to musical notes. */ 
/*  This file should contain the module: CustomDataMap. */ 
/********************************************************/ 
 
#include “music.h” 
#include “datamap.h” 
#include “custom.h” 
 
/********************************************************/ 
/* NB: The following module must be defined at least as a dummy. */ 
/*             */ 
/* CustomDataMap: This is the user-defined custom mapping. */ 
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/* INPUTS:  int ndata  = number of data values. */ 
/*    float *data = data storage array.  */ 
/*    int nparts = number of music parts. */ 
/*    int *note = array of output notes.  */ 
/*    float *supp = array of supplemental info. (frame)*/ 
/* OUTPUT: int ~ ignored for now. [Error checking.] */ 
/********************************************************/ 
 
int CustomDataMap(int ndata, float *data, int nparts, int *note, float *supp) 
{ 
 /* Example custom map for datafile: cube/cyl.data.           */ 
 /* cube/cyl.data have 4 data values. data[0..2], [3..5] etc.  */ 
 /* are xyz coordinates.        */ 
 int  i,     /* Temp. counter variable.  */ 
  vs = 3,    /* Data points are 3D vectors. */ 
  num_notes = 4;  /* Output four notes.  */ 
 
 /* We take magnitudes of xyz triplets for the point motions. */ 
 for (i = 0; i < num_notes; i++) 
  /* VecMag is a system utility magnitude calculator function. */ 
  note[i] = (int) (VecMag(vs, data, (i * vs), USER1, USER2)); 
 
 return (num_notes);  /* Return the number of parts we custom-set here. */ 
} /* End of CustomDataMap. */ 
 
/* Place local utility functions here. */ 
 
/* End of Custom.c. */ 
 

Figure 6.1.5b: Custom source file for filter design process. 

 

This example will be discussed in more detail below. These two files are the only files 

expected to be modified by the user. The filter may be fully-described within the body of the 

CustomDataMap function, or be sub-specified by user functions included below it. 

 

This is the most common way of designing the custom filters. More examples of these 

sub-filters can be found in Appendix B. The user can write a subfilter to handle all the output 

streams, or can write individual filters for each, and call them from the system filter. One thing 

of note is that the supp parameter to the custom filter contains supplementary information, most 

important of which is the current frame index. 

 

In addition to filters such as the one seen above in Figure 6.1.5 which produces a 

continuous data sonification, we can write discrete timing-filters for the data. For example, a 
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filter for the data-file described in Figure 6.1.2 could be defined as in Figure 6.1.6. 
 
 

int CollisionHandler(int frame, int obj1_ind, int obj2_ind) 
{ 
 coll_ind = obj1_ind + obj2_ind. 
 
 if (frame != -1) 
 { 
  switch (coll_ind) 

    { 
     case 3: 

     return(COLL_3_NOTE); 
    break; 
 
   case 4: 
    return(COLL_4_NOTE); 
   break: 
 
   case 5: 
    return(COLL_5_NOTE); 
   break: 
 
   default: 
    return(GENERIC_COLL_NOTE); 
   break; 
  } 
 } 
 else 
   return(-1); 
} 
 
Figure 6.1.6: Trigger-filter example for collision-event sounds. 

 

We can supply the collision_handler function with the input parameters in(O.2J, and 

assign the output note notefof based on the collision event. If we define different note values to 

the COLL_NOTE’s and define a default sound for collisions we haven't planned for, GENERIC 

_COLL_NOTE, we can distinguish on output which collision occurred. By outputting -1 when no 

collisions are triggered, we define a NULL-stream in-between. We could equally well filter 

based on other combinations other than adding colliding-objects' indices. The above method 

would not distinguish between collision-object pairs of 2-3 and 1-4 for instance. This is a simple 

example of a trigger-filter. We do not use the frame-number for instance; we could add an 

additional parameter which changed the sound of a collision based on how far into the animation 

it occurred. Double triggering on both collision event and global-time in that case. 
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In designing filters, we are assuming no knowledge of the command-line options 

provided. The filtering-mode must of course be set to custom, but the user must be careful in 

setting parameters such as sample-rate. In a trigger filter where a sound is started at frame t for 

instance, the user must be careful that the sampling-rate is a factor of t, or the filter may be called 

at a frame preceding t, and then next called at a frame after t.  Thus, formally, we want a 

sampling-rate S,  where t mod S = 0. 

 
6.2 Animation Examples 
 

We now present a couple of scores produced with the system as soundtracks for 

animations. The image production was with RenderMan™ in the first example, and with 

SoftImage™ in the second. 
 

 Frame 0 Time 0 
 camera  0.2 2 0.5 0 0 0.3 0 0 1 
 hinge1  –0.291519 0.0 0.0718462 –2.88312 
 hinge2 -0.443678 0.0 0.201645 –0.305678 
 hinge3 -0.302622 0.0 0.34343 –1.1705 
 headforce 0 
 baseforce 0.447398 
 
 Frame 1 Time 0.0333333 
 camera  0.2 2 0.5 0 0 0.3 0 0 1 
 hinge1  –0.284728 0.0 0.0830806 –6.17764 
 hinge2 -0.458547 0.0 0.18201  0.675101 
 hinge3 -0.314729 0.0 0.320993 –2.1993 
 headforce 0 
 baseforce 0.152364 
 
   . 
   . 
   . 

 Frame 240  Time 7.99999 
 camera  0.2 2 0.5 0 0 0.3 0 0 1 
 hinge1  0.328212 0.0 0.0678433 –2.77636 
 hinge2 0.141395 0.0 0.139254 –0.715218 
 hinge3 0.319698 0.0 0.229851 –1.98297 
 headforce 0 
 baseforce 0.464356 
 

Figure 6.2.1: Data-file for lamp animation. 
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This animation was demonstrating a motion-control technique utilizing genetic 

programming in searching a dynamic constraint space for an articulated figure. The lamp in the 

simulation learns how to move towards a certain goal, under physical constraint factors, using 

genetic evolution [Grit95]. The soundtrack was generated from the data-file in Figure 6.2.1. This 

data-file was pre-filtered prior to input to the mkmusic system to format it appropriately. 
 

The target of the lamp was to jump to a specific spot in front of it. Given this goal, any 

motion not in the direction of the goal would be detrimental. With this simple musical direction, 

a filter was designed to map the lamp's motion (based on its joint positions and base force) to 

musical notes. If the motion was backwards, away from the target, the music should reflect this 

as something incorrect. The filter in Figure 6.2.2 was used to map the motions to music. 
 

 
int LuxoMap(int dir, float dis, float st) 
{ 
 int  val; 
 float scale = 3.5f; 
  
 if (dir  = = 1)  val = (int) (dir * dis * st); 
 else  val = (int) (st + dir * dis * st * (scale * drand48())); 
 return (val); 
} 

 
Figure 6.2.2: Data-filter for lamp animation. 

 

The filter was based on three input parameters: a direction which was established from 

the position values of the joints relative to the starting position; the distance from the starting 

position; and finally, the baseforce parameter was used as a scaling factor. In the case of the 

lamp moving in the wrong direction, the same mapping was applied but with the additional 

attachment of a random element being multiplied into the output note value. This would throw 

the musical output several notes higher (with the additional scale value). and provide feedback 

that something was “not right." The filter was designed heuristically and was more an intuitive 

consideration of what should happen, rather than a well-planned and tested theory. Adjustments 

were made to the scale-factor and to the amount of influence the random element had, during a 

refinement process. For example, originally, the random element was added rather than 
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multiplied, but this was found to produce an insignificant difference in output between the two 

directions of motion. The final soundtrack was fairly effective, with the music jumping 

erratically when the lamp falls backwards in the animation, but flowing more predictably when 

the motions were towards the target. 

 
int TexMap(float val) 
{ 
 int i; 
 
 val = val / 10; 
 
 for (i = 0; i < 2; i++) 
  val = (val * val) + i; 
 
 return((int) val); 
} 

  
Figure 6.2.3: Data-filter applied to texture information for cloud objects. 

 

This animation extract was a segment of a longer animation containing windchimes. The 

rocking-chair is seen to be slowly rocking back-and-forth at the end of the animation, with a 

background cloud-filled sky rapidly turning dark as the sun sets. The soundtrack was composed 

using mkmusic for both the earlier chime movements and this chair-segment. The first 

requirement was that the switch to the chair from the chimes as the object of attention be 

reflected by the music. This was accomplished by an instrumentation change from a layered 

piano and choral sound for the chimes to a stringed-orchestral sound for the chair. The second 

requirement was that the music reflected both the chair and also gave some sense of the changing 

light of the sunset. Data was provided for both the angular changes in the orientation of the chair, 

and texture and lighting information for the clouds. These were layered together to produce a 

flowing musical output which was both peaceful and yet had an underlying dynamism consistent 

with the coming dusk. Figure 6.2.3 shows the data-filter for the cloud-texture input data. 

 

The exact nature of the filter is to first reduce the texture-data value to smooth the input 

changes, and then apply a repeated multiplication with the indexed-offset to produce an 
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abstracted note from the specific numerical value. Although a fairly arbitrary mapping, it was 

quite effective in concert with the related chair and lighting filters. The above filter however, 

came about as a series of adjustments and refinements. Initially, a linear filter was written and 

the output was then observed. From here, the smoothing of the input was introduced to the data 

values. At this point, the mapping was far too direct; the repeated multiplication came about as 

first a single application, and then incrementally to a single-repetition, and then the addition of 

the offset. At this point, the music was suitably abstracted but still flowed well with the visuals. 

 

 
6.3 Sonification Processing 
 

Finally, an example illustrating a slightly divergent use of the mkmusic system from its 

aesthetically-pleasing musical-accompaniment goals is presented. This is a direct sonification of 

a 3-D morphing animation. Here, no aesthetic quality to the output soundtrack was desired. 

Rather, a straight aural processing of the data was the aim of this soundtrack. The sonification of 

a morphing from a cube to a cylinder was done using the data-filter described in Figure 6.1.5 

previously. In the example below, this filter was applied to four input parameter points on each 

of the objects. Figure 6.3.1 shows the input data file containing the positions of the points as 

they progress in the morph. 

 
 0.000000  1.000000  0.000000 -0.462333  0.731166 -0.462333 
 0.499617 -0.707007 -0.499617  0.460221 -0.730111  0.460221 

 0.000000  1.000000  0.000000 -0.468890  0.734445 -0.468890 
 0.505720 -0.709267 -0.505720  0.466804 -0.733402  0.466804 

 0.000000  1.000000  0.000000 -0.475447  0.737723 -0.475447 
 0.511822 -0.711526 -0.511822  0.473386 -0.736693  0.473386 

 0.000000  1.000000  0.000000 -0.482004  0.741002 -0.482004 
 0.517924 -0.713786 -0.517924  0.479969 -0.739985  0.479969 

 0.000000  1.000000  0.000000 -0.488560  0.744280 -0.488560 
 0.524026 -0.716045 -0.524026  0.486552 -0.743276  0.486552 

Figure 6.3.1: Data-file extract for morphing animation. 
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Each pair of lines in the above extract represents a single line of the data-file (formatted 

to fit the page). The data values represent the xyz-coordinates of four points on the 3-D object. 

The changes in each parameter are very small, and are exaggerated in the VecMag function with 

the USER1 scaling-value. The USER2 value is then used to rescale the resultant magnitude back 

down. The resultant score for the two objects is given in Figure 6.3.2. 

 
 

 
Figure 6.3.2: Score extract for 3-D morphing sonification. 

 

One interesting feature is that in the scaling of the magnitude using the USER* values, we 

introduce some numerical error as we use 100000 to scale up our squared-values, but in using 

316.0 in the scaling down, we are not precisely using the square-root of 100000. This is reflected 

in the score: two of the data values for the morph are for constant positions on the objects. That 
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is to say, neither changes position throughout the animation. These should lead to constant 

musical notes on output. In the extract shown here, it can be seen that all eight parts change 

through time. Using sqrt (USER1)  instead of USER2 in the data-filter was found to remove this 

numerical anomaly. 

 

More scores can be found in Appendix C. These include full-scores of some of the 

example extracts given throughout, as well as other scores which represent soundtracks created 

by varying either command-line parameters or data-filters on common data. All such scores can 

be seen to be similar in nature but are recognizably different on examination of each part 

individually. 
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Chapter Seven: Future Work and Conclusions 

 
7.1 Future Work 
 

The goals of the mkmusic system are to be a soundtrack development tool suitable for use 

by animators, and to create effective and pleasing soundtracks. Given these two goals, future 

work is aimed at enhancing the system's capabilities in these two areas. 

 

The development of a "drag-and-drop" interface for filter design should aid in the 

creation and refinement of data-filters greatly. Currently, the development requires code changes 

followed by system processing to hear results. Code changes must then again be performed to 

make modifications. Often, this trial-and-error method is unintuitive and tedious. Allowing 

graphical interfacing, and the intuitive feedback of connecting filter icons into a viewable 

pipeline should benefit users' understanding of the filtering taking place. Users with little 

technical programming background would also be aided by such an addition. 

 

The creation of more effective soundtracks involves two types of sound, but a similar 

solution. Sound effects would be improved by refining the parameter bindings between motion 

and sound worlds. With musical accompaniments, the infinite variety of compositions from a 

given data-set is limited to and by the simplistic musical constraints of the system. Each of these 

limitations can be considered as search-problems, either within parameter-space for realistic 

sounds, or musical construct-space for accompaniments. The use of genetic techniques has been 

shown to aid in both sound effects [Taka93] and music production [Uotri9l]. Genetic algorithms 

are a method of searching a parameter space in a target-oriented way. By providing an interactive 

selection mechanism, users can choose at each generation from a shortlist of possibilities, and the 

most preferred choice can then be further refined. Successive application through generations of 

mutated choices lead to a progressive search of the space as directed by the user. With sound 

effects, the target is the “most realistic,” or perhaps more pertinently, “most effective” sound for 

a given event. The criteria for what constitutes the most effective sound is purely perceptual by 
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the listener, although constraints can be placed to make sounds exhibit certain characteristics 

(such as specific envelope, frequency, bandwidth, etc). Slight mutations of classes of sounds can 

often add color to a soundtrack, seeming more natural than repetitions of a single sampled sound, 

for instance. This hyper-realism is often perceived in pure physical-modeling as well, where 

sounds seem too pure and cold for a natural environment. With musical composition, the current 

limitations of the emotional and scale constraints are obvious. The subtleties of musical 

composition between these simple labels are lost. By allowing a search over any number of 

musical constructs, such as pitch, instrumentation, harmony, etc. we can access the wider 

compositional space. Several concerns with this application exist however. Suitably encoding all 

the musical constructs desired may be difficult. An over-constraining of the musical output may 

make the use of input data negligible. We should at least maintain some control over tempo of 

music from the data to retain synchronization with visuals. The major advantage of this process 

is that animators may be able to create music more specific to their needs or desires, while being 

minimally involved in the creative process. A point-and-click interface, with a choice of perhaps 

five to ten genetically composed pieces would allow the animator to narrow down their 

selections quickly. Another advantage is that this refinement process may actually lead animators 

to compositions they had not considered, but which they may in fact prefer. 

 

Finally, as the use of the system continues, I foresee a library of filters becoming 

available, where custom filters would be designed and layered with existing ones, allowing 

filters to be reusable in developing applications. This would be similar to the repositories of 

shaders developed using the RenderMan™ Shading Language. 

 

 
7.2 Conclusions 
 

While the mkmusic system was primarily developed to compose musical 

accompaniments, it uses high-level design methodologies that are applicable to all soundtrack 
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production needs. The system is versatile enough to be used as a data sonifier, or an aural 

feedback generator with real-time performance. Its primary function however, is to create 

soundtracks for animations and virtual environments based on the motions of the objects within 

them. A correspondence between the motion and sound domains exists naturally in the real 

world. Sounds are physically generated due to motions of objects within an environment. This 

system exploits that relationship and allows flexible application ideally suited for the motion 

control paradigms used within computer animations and virtual environment simulations. The 

generality of the approach, and the use of motion data allows dynamic synchronization to visuals 

with little additional overhead. 

 

The mkmusic system has effectively created aesthetically pleasing musical soundtracks 

and appropriate sound effects, unique to the motions they reflect, with minimal user expense. It 

therefore has been shown to be a suitable tool for animators to produce soundtracks with. The 

system is flexible and customizable so as to allow more knowledgeable users to develop more 

complex control and composition modules. This provides a common tool from which experts and 

non-experts alike, can create soundtracks. This in turn should allow animators the opportunity to 

develop their audio-production skills using the extensions and techniques of more experienced 

sound professionals. The system does attempt to bridge the gap between sound and visual arts 

worlds in this way. 

 

In the future, with tools of this type, along with closer collaboration in the teaching and 

production of graphic arts and sound/music, animations and multimedia of the past may seem as 

antiquated as silent films appear to modern moviegoers now. 

 

 
7.3 Acknowledgements 
 
I would like to thank everyone who contributed to my research and writing of this thesis. 

In particular, my advisor, Professor James K. Hahn, for his guidance, support and perseverance 
 66



during my graduate studies. Special thanks also to Robert Lindeman, a fellow student at GW, for 

pushing me in so many ways, to make this thesis a reality. The existence of this thesis owes 

much to Rob’s work ethic and friendship. I would also like to thank the other members of the 

Institute for Computer Graphics, for their numerous contributions to my research efforts. In 

particular, the active audio researchers, Hesham Fouad, Joe Geigel, and Won Lee, without whom 

none of this would have been possible. I’d also like to thank Amit Shalev, another GW student, 

for his friendship, timely advice and support. Finally, I want to especially thank my family, in 

particular my mother Rama, my late father, Gangadhar, and my brother Subhash,  for providing 

me their support and love throughout the years, to allow me to research this field of study, and 

work in such an exciting field. 

 

 67



References 

 

[Altm85] R.Altman: “The Evolution of Sound Technology", 

in "Film Sound: Theory and Practice", E,Weis and J.Belton, [Eds]. 

Columbia University Press. NY. 1985. 
 

[Barg93]        R.Bargar, "Pattern and Reference in Auditory Display" 
 SIGGRAPH’93 Course Notes #23: Applied Virtual ReaIity, 1993. 

 

[B1at89] M.Blattner, et al. "Earcons and Icons: Their Structure and Common 

Design Principles." 

 HCI, Vol, 4:1, pp11-44. 1989. 

 

[Blau83] S. Blauert, "Spatial Hearing" 

 MIT Press, Cambridge, Mass. 1983. 

 

[Bly85] S.A,Bly, "Presenting Information in Sound" 

 Proc, CHI’85. pp371-375. New York, 1985. 

 

[Bori85] J. Borish. "An Auditorium Simulator for Domestic Use."  

 Journal of the Acoustical Soc. of America 33(5), pp330-341, 1985 

 

[Burt94] G, Burt: “The Art of Film Music" 

 Northeastern University Press, Boston, 1994. 

 
[Calh87] G.L.Calhoun, et al. "3D Auditory Cue Simulation for Crew Station 

Design & Evaluation." 

Proc. Human Factors Soc. 31, pp1398-1402. 1987. 

 
[Came80] E. Cameron, W.F. Wilbert, and J. Evans-Cameron. 

 "Sound and the Cinema." 

Redgrave Publishing Co, New York, 1980. 

 68



[Cook84] R. Cook, "Shade Trees” 

 Proceedings of SIGGRAPH’84, 

 Computer Graphics Vol.18:3. pp195-206. 

 

[Dann91] R.B.Dannenberg, C,Fraley, and P.Velikonj, 

 "Fugue: A Functional Language for Sound Synthesis", 

 IEEE Computer, Vol.24, No.7, pp36-42. 1991. 

 

[Dann93] R.B.Dannenberg, 

 "Music Representation Issues, Techniques, and Systems." 
  Computer Music Journal 17(3):pp20-30. 1993. 
 
[Doll86] T. Doll, et al. “Development of Simulated Directional Audio for Cockpit 

Applications" 
 AAMRL-TR-86-014, WPAFB. Dayton, OH. 1986. 

 
[Evan89]         B-Evans. 

"Enhancing Scientific Animations with Sonic Maps" 

  Proc. 1989 lnternational Computer Music Conference. International 

Computer Music Association, 1989. 

 

[Fost88] S.Foster. "Convolvotron Users Manual" 

 Crystal River Engineering, Groveland, CA. 

 

[Fost91] S.Foster, et al. "Realtime Synthesis of Complex 

 Acoustic Environments [Summary]." 

 Proc. ASSP Workshop, New Paltz, NY. 1991. 

 
[Frat79] C. Frater: "Sound Recording for Motion Pictures" 

 A.S. Barnes, NY. 1979. 

 

 

 69



[Furn86] T.A. Furness. “The Super Cockpit and its Human Factors Challenges" 

 Proc. Human Factors Soc.. Vol.30: pp48-52. 1986. 

 
[Gave9I] W.Gaver, et al. 

 "Effective Sounds in Complex Systems: the ARKola Simulation" 

 Proc. CHI’91. pp85-90. 1991. 

 

[Gave93] W.Gaver. "S ynthesizing Auditory Icons”, 
 Proc. INTERCHI, 1993. 

 

[Gehr90] B.Gehring. "FocalPoint 3D Sound Users Manual" 

 Gehring Research Corp. Toronto, Canada. 1990. 

 

[Gorb87] C. Gorbman. “Unheard Melodies.” 

 Indiana University Press: Bloomington, Indiana. 1987. 

 

[Grit95] L. Gritz, and J. Hahn, 

 “Genetic Programming for Articulated Figure Motion” 

 Journal of Vis. and Comp. Animation, Vol. 6: pp129-142. 1995. 

 

[Hahn88] J. Hahn. “Realistic Animation of Rigid Bodies.” 

 Proc. SIGGRAPH’88, ACM Computer Graphics, 

 Vol. 22: No. 3, pp299-308. 1988. 

 

[Hahn95a] J. Hahn, J. Geigel, L. Gritz, J. Lee, and S. Mishra. 

 “An Integrated Approach to Motion and Sound.” 

 Journal of Visualization  and Computer Animation, 

 Vol. 6: No. 2, pp109-123. 1995. 

 

[Hahn95b] J. Hahn, H. Fouad, L. Gritz, and J. Lee. 

 “Integrating Sounds and Motions in Virtual Environments.” 

 Presence Journal, MIT Press. Vol. 7: No. 1, pp67-77. 

 70



 

[Horn91] A. Horner, and D. Goldberg. 

 “Genetic Algorithms and Computer-Assisted Music Composition.” 

 Proceedings of the 1991 International Computer Music Conference, 

 International Computer Music Association, pp479-482. 1991. 

 

[Karl94] F. Karlin and R. Wright. 

 “On the Track: A Guide to Contemporary Film Scoring.” 

 Collier MacMillan, London. 1990. 

 

[Kram91] G. Kramer and S. Ellison. 

 “Audification: The Use of Sound to Display Multivariate Data.” 

 Proceedings of the 1991 International Computer Music Conference, 

 International Computer Music Association, pp214-221. 1991. 

 

[Kram94] G. Kramer [Editor], “Auditory Display: Sonification, Audification, and 

Auditory Interfaces.” 

 Santa Fe Proceedings Vol. XVIII, pp185-221, 1994. 

 

[Lust80] M. Lustig, “Music Editing for Motion Pictures”. 

 Hastings House, NY. 1980. 

 

[Lytl91] W. Lytle. “More Bells & Whistles.” 

 [Video] in SIGGRAPH’90 film show. 

 Also described in Computer, Vol. 24: No. 7, p4. 1991. 

 

[Matt69] M. Matthews, “The Technology of Computer Music.” 

 MIT Press, Cambridge. Mass. 1969.  

 

[Maye92] G. Mayer-Kress, R. Bargar, and I. Choi, 

 “Musical Structures in Data from Chaotic Attractors.” 

 Proc. ICAD’92.  Santa Fe, NM. 1992. 

 71



 

[Mint85] P. Mintz: “Orson Welles’s Use of Sound.” 

 In “Film Sound: Theory and Practice.”, E. Weiss and J. Belton [Eds.] 

 Columbia University Press, NY. 1985. 

 

[Mish95] S. Mishra, and J. Hahn, 

 “Mapping Motion to Sound and Music in Comp. Animation & VEs.” 

 Proceedings of the Pacific Graphics Conference’95. S. Korea, 1995. 

 
[Naka93] J. Nakamura et al. 

 “Automatic Background Music Generation based on Actors’ Emotions 

and Motions” 

 Proceedings of the Pacific Graphics Conference’93. S. Korea, 1993. 

 
[Orr93] J. Orr, 

 “Cinema and Modernity” 

 Polity, Cambridge, UK. 1993. 

 
[Patt82] R. R. Patterson, 

 “Guidelines for Auditory Warning Systems on Civil Aircraft.” 

 Paper No. 82017, Civil Aviation Authority, London. UK. 1982. 

 
[Pope93] S. T. Pope & L. Fehlen, 

 “The Use of 3D Audio in a Synthetic Environment.” 

 Proc. IEEE VRAIS’93, pp176-182. 

 

[Roma87] J. Romano, 

 “Computer Simulation of the Acoustics of Large Halls.” 

 Journal of Acoustical Engineering, 11(2): pp121-129. 1987. 

 

[Roth92] J. Rothstein, 

 “MIDI – A Comprehensive Introduction.” 

 A-R Editions, Madison. WI. 1992. 

 72



 
[Scal89] C. Scaletti, 

 “The Kyma/Platypus Computer Music Workstation.” 

 Computer Music Journal 13(2): pp23-38. 1989. 

 
[Scal92] C. Scaletti, 

 “Sound Synthesis Algorithms for Auditory Data Representations.” 

 Proc. ICAD’92. Santa Fe, NM. Oct, 1992. 

 
[Scal93] C. Scaletti, 

 “Using Sound to Extract Meaning from Complex Data.” 

 SIGGRAPH’93 Course Notes #81:Intro to Sonification. 1993. 

 
[Senj87] M. Senju & K. Ohgushi, 

 “How are the Player’s Ideas Conveyed to the Audience?” 

 Music Perception 4(4): pp311-324. 1987. 

 

[Smit90] S. Smith, et al. 

 “Stereophonic and Surface Sound Generation for Exploratory Data 

Analysis.” 

 Proc. CHI’90: pp125-132. 1990. 

 

[Taka92] T. Takala, J. Hahn, L. Gritz, J. Geigel, & J.W. Lee, 

 “Using Physically Based Models and Genetic Algorithms for Functional 

Composition of Sound Signals, Synchronized Animation to Motion.” 

 Proceedings of the 1993 International Computer Music Conference. 

 International Computer Music Association. 

 

[Verc86] B. Vercoe, 

 “CSound: A Manual for the Audio Processing System and Supporting 

Programs.” 

 M.I.T. Media Lab, M.I.T, Cambridge, MA. 1986. 

 
 

 73



[Walk79] A. Walker, 

 “The Shattered Silents: How Talkies Came to Stay.” 

 W. Morton. NY, 1979. 

 

[Wenz88] E. Wenzel, 

 “Development of a 3D Auditory Display System.” 

 SIGCHI Bulletin, 20: pp52-57. 1988. 

 

[Wenz90] E. Wenzel, 

 “A System for 3D Acoustic Visualization in a VE Workstation.” 

 Proc. IEEE Viz’90: pp329-337. 1990. 

 

[Wenz91] E. Wenzel, 

 “Localization of Non-Individualized Virtual Acoustic Display Cues.” 

 Proc. CHI’91: pp351-359. 1991. 

 

[Wenz92] E. Wenzel, 

 “Localization in Virtual Acoustic Displays.” 

 Presence: Vol. 1:1, pp80-107. 1992. 

 

[Wigg93] G. Wiggins, E. Miranda, A. Smaill, & M. Harris. 

 “A Framework for the Evaluation of Music Representation Systems.” 

 Computer Music Journal, 17 (3) pp31-42. 1993. 

 

[Zaza91] T. Zaza, 

 “Audio Design: Sound Recording Techniques for Film and Video.” 

 Prentice-Hall, Englewood Cliffs, NJ. 1991. 

 
 
 
 
 
 

 

 74



Appendix A: mkmusic Command-Line Options 

 
 

Usage: mkmusic [-flags] 
 
Legal flags are:- 

-h Displays this help message. 

-i<filename> Data-input filename. 

-o<filename> Score-output filename. 

-D Use default values for: –e –s –I –d –p. 

-N<filtermode> Set data filter mode. 
 (Options: custom, cutoff, kick, bound, none.) 
 

-R<renderer>  Set output renderer mode. 
 (Options: song, score, csound, scube, vas, afg, midi.) 
 

-p<pts>[+i1+...] Number of parts in CSOUND score. 

 (Optional: Use +<i1>+... to specify part indices.) 

-f<framerate> Set sync rate (default = 30.0). 

-S<sr>[+sr2+...] Set data sampling rate (default = 10). 
 (Optional: Use +<sr2>+... to specify part sampling rates.) 

-e<emotion> Emotional emphasis. 
 (Options: happy, sad, bright, evil, peaceful, any, none.) 

-s<scale> Musical scale. 
 (Options: major, minor, blues, dom, dim, hdim, any, none.) 

-I<instrument> (Recommend) instrumentation. 
 (Options: solo, band, orch, csound, any, none.) 

-d<frames> Duration of score in frames. 
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-v<level>  Set volume level (1-9). 

-b<bound>  Limit of listener world. 

-c  Output in CSound score format. 

-t  Throughput data from stdin. 

-C  Same as setting -t and -C (i.e. Pipe stdin to CSound.) 

-P  Set if piping output directly to CSound. 

-T  Same as setting –t, -c and -P (i.e. Pipe in-> and out->). 

-A  Same as setting -c and –P. 
 

 76



Appendix B: Custom Data-Map Examples 

int ChimeMap(float dir, float dis, float st, float length, float longest) 
{ 
 return ( (int) (dir * dis * st * (length/longest))); 
} 
 
 
int GenMap(float n, int d) 
{ 
 int val = (int) (1000 * n); 
 
 return (val % d); 
} 
 
 
int TexMap(float val) 
{ 
 int i; 
 
 val = val / 10; 
 
 for (i = 0; i < 2; i++) 
  val = (val * val) + i; 
 
 return((int) val); 
} 
 
 
int LuxMap(int dir, float dis, float base) 
{ 
 int val; 
 float scale = 3.5; 
 
 if (dir = = 1) 
  val = (int) (dir * dis * base); 
 else 
  val = (int) (st + dir * dis * base * (scale * drand48( ))); 
 
 return(val); 
} 
 
 
int MboxPosMap(float indist, float scale) 
{ 
 return((int) (indist * scale)); 
} 
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int MboxOrientMap(float rot_angle, float modval) 
{ 
 return((int) (rot_angle % modval)); 
} 
 
 
int DefaultMap(float inval) 
{ 
 float tmp; 
 int t; 
 
 tmp = (inval + 1) * 10000; 
 
 t = (int) tmp; 
 
 return(t % 12); 
} 
 
 
int ScrapeMap(float inval) 
{ 
 return(DefaultMap(inval)); 
} 
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Appendix C: Musical Score Examples 

 
 

Windchimes 1994 
 

Automatically generated from animation motion-control data.
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Windchimes 1995 Windchimes 1995 

Composition from modified Windchimes animation, from 1995. Composition from modified Windchimes animation, from 1995. 
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The Musicbox: Bound Filtering Composition 

 
Based on the animation: “The Musicbox,” © 1995,  Robert W. Lindeman. 
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The Musicbox: Normal Filtering 
 

Default data filtering and composition for Musicbox data. 
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The Musicbox: Kick Filtering 
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The Musicbox: Kicked and Slowed Filtering 
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The Musicbox: Custom Data Filtering Applied 
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Morphing Animation: Sonification (Partial) 

 

Direct sonification of data-points in a 3D-morphing animation. 
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