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Abstract of Thesis 

This thesis presents a system that can generate animated 3D faces in real time, based on 

the ideas of Active Shape Model (ASM) and POS with Iterations algorithm (POSIT). The 

3D face is controlled by human frontal face tracked in a video stream captured by 

commodity RGB camera, such as web cams and cameras on mobile phones. The pose of 

the human face is also estimated by analyzing the input video to create realistic shading 

on the generated face. 

Tracking faces in video streams is the estimation of the positions of a set of facial feature 

points in each frame. As human face is deformable, the relative distance between feature 

points varies significantly between facial expressions.  

The approach to tracking facial feature points is inspired by Active Shape Model (ASM) 

proposed by Tim Cootes. However, in the context of face tracking, their method lacks 

robustness for detecting feature points in motion and is not efficient enough to generate 

accurate estimations on-the-fly, an alternative method to fit face shapes to replace the 

original design in ASM. A series of experiments are conducted in this research and a 

critical analysis is provided.   

This thesis also discusses the impact of training data on tracking performance. The 

performance of generic shape models trained from a publicly available database are 

compared with its counterpart of person-specific models trained from the author’s self-

portrait photographs.  
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Chapter 1: Introduction 

1.1. Background 

Facial feature point detection is estimating the location of a set of facial landmarks in 

images. A variety of ideas from computer graphics, computer vision, machine learning 

and image processing has been implemented in this context. Although this was once a 

heated topic in the late 1990s, and vast amount of research has been conducted, due to the 

limitation of hardware performance, it is only until the last decade that the commercial 

applications involving detection in video streams is made possible. Feature point 

detection is the key part of a variety of applications that manipulate facial captures. For 

instance, the video chat application Google Hangout introduced a feature that let users 

add virtual masks, glasses, hats and beards to themselves to help users overcome their 

innate distaste for video conversation. In 2016, Facebook launched its video filter 

application, MSQRD, which let users retarget their faces in video stream with a wide 

variety of 3D avatars. Many video game and movie companies used MSQRD to promote 

their products on Facebook making face swapping AR (augmented reality) applications 

very trendy on social networks. Nowadays, multiple social network providers have 

developed their own face-tracking filter applications. Apple announced their new 

Animoji (animated emoji) feature in iOS 11 that comes with their new device in 

September 2017, which makes use of the front camera and depth sensor, to track the 

user’s expression then retarget it to an Animoji. It went viral on the media and became 

one of the major selling points of this device. 
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1.2. Objectives 

The first objective of this research is to develop a system that tracks the face from video 

streams captured by a webcam on-the-fly, with the assumption that the video streams 

contain only one frontal face. The second objective is to estimate the orientation of the 

face, so that the face can be rendered with realistic shading. The third objective is to 

explore ways to improve accuracy, robustness and efficiency of the system.  

1.3. Contributions 

Firstly, this thesis introduces a system that can generate animated 3D faces in real time, 

based on the ideas of Active Shape Model (ASM) and POS with Iterations algorithm 

(POSIT). The structure of this system is illustrated in Figure 1. The output 3D face is 

controlled by human frontal face tracked in a video stream captured by commodity RGB 

camera, such as web cams and cameras on mobile phones. The pose of the human face is 

also estimated by analyzing the input video to create realistic shading on the generated 

face. 

Secondly, this thesis introduces an alternative method for fitting face shapes for ASM to 

improve the robustness for detecting feature points in motion and the efficiency to 

generate accurate estimations on-the-fly, A series of experiments are conducted in this 

research and a critical analysis is provided.   

Thirdly, this thesis discusses the impact of training data on tracking performance. The 

performance of generic shape models trained from a publicly available database is 

compared with its counterpart of person-specific models trained from the author’s self-

portrait photographs.  
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Figure 1 The structure of the proposed system 

1.4. Summary of Thesis Organization 

Chapter 2 is the literature review of the relevant methods applied in the field of face 

tracking and research topics related to the face tracking problem. 

 Chapter 3 features concepts of active shape model (ASM), and a more efficient and 

accurate face tracking approach inspired by ASM is introduced. A comparison on 

performance between the classic ASM approach and the proposed approach is provided. 

In addition, the comparison between generic shape models and person-specified shaped 

models is illustrated.  

Chapter 4 is about estimating the head pose from a video stream, which leads to 

rendering the tracked face in 3D. In this chapter, POSIT is implemented on top of ASM 

to conclude the whole system. Details of implementation are revealed. 

In Chapter 5, conclusions are drawn from the results obtained from the experiment shown 

in the previous chapters. The limitations and future works are also discussed.  
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Chapter 2: Literature Review 

2.1. Landmark Locating 

Facial landmark locating and tracking have been a heated topic in the field of computer 

vision for decades, which are prerequisite for applications such as video editing, face 

recognition, facial expression analysis, 3D face modeling, etc. Landmark locating 

addresses the problem of matching a group of predefined landmarks to a given facial 

image. Landmark tracking is to continuously capture the predefined landmarks in a facial 

image sequence. All the applications require accurate landmark positions. However, 

accurate landmark locating remains challenging in practice due to lighting conditions, 

background and pose variations.  

The first step in most alignment algorithm [1][2][3] is to locate face region using face 

detectors [4]. The detected region is used as the initial positions, which are critical to the 

locating algorithm. For example, active appearance model (AAM) [5] is very sensitive to 

initialization because the complexity in appearance model affected by illumination may 

result in local minima. 

In [6] and [7], the authors proposed multi-view face shape models to solve the pose 

variation problem, however, they cannot deal with unlimited possibilities of view change. 

Therefore, some researchers proposed 3D shape model [8][9] to handle continuous view 

change. 

Traditional parametric methods such as active shape model (ASM) [10] and AAM [5] 

have been proved successful in terms of applicability. These models statistically 

parameterize a facial shape by applying principal component analysis (PCA). The major 
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difference between ASM and AAM is that, ASM maintains a linear system that only 

describes the shape of each face using a point distribution model (PDM), whereas the 

linear system of AAM describes both the shape and the appearance of face. However, 

they are both sensitive to initial shapes and there are many work focusing on mitigating 

the errors.  

To enhance the performance of ASM, a variety of approaches are proposed. A landmark 

selection scheme based on Gaussian mixture model is proposed in [11]. It selects 

landmarks that correspond to the most reliable features, whose locations are relatively 

invariant to external factors. The work in [12] shows that, if the initial positions of three 

particularly important landmark points can be assigned manually, the accuracy can be 

improved. The authors also claim that adding a reasonable weight factor for each 

landmark increases the performance of ASM. 

One conventional approach to locating landmarks in an image for ASM is using a 

collection of greyscale patches for face region around landmarks obtained from a training 

set of frontal face images by averaging the intensities of corresponding regions. Template 

matching is performed with the patches to find the areas of the input image that matches 

them. The work in [13] uses the same method of building the linear system of appearance 

model from AAM to build the profile of ASM to increase the accuracy of location. 

2.2. 3D Pose Estimation 

3D pose estimation is the problem of determining the rigid body transformation of an 

object given a 2D image of the object. It is possible to estimate the transformation if the 

3D model of the object is known. 
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A common technique to solve this problem is the POSIT algorithm, where each reference 

point’s scaled orthographic projection is firstly assumed, and helps to update the pose of 

object iteratively until a good estimation is found. A lot of research related to head pose 

tracking use this algorithm [14][15], because of its high accuracy given a small number 

of reference points and low time complexity. There exist other state-of-the-art techniques, 

where pose estimation is modeled as a perspective-n-points (PnP) problem, such as 

Efficient PnP (EPnP)[16], Procrustes PnP (PPnP)[17] and Robust PnP (RPnP) [18]. The 

aim of the PnP algorithms is to determine the position and orientation of a camera given 

its intrinsic parameters and a set of n correspondences between 3D points and their 2D 

projections. The main difference between PnP-based algorithms is the solver to the 

system of equations that describes the PnP problem.  

In [19], the authors tested POSIT against a publicly available video database [20] of head 

poses from Boston University, where head motions are recorded under varying 

illumination conditions at a frame rate of 30 fps. The result shows that for estimating 

tilting, shaking, nodding head motions using POSIT, the mean absolute errors of head 

orientation are 5.27, 6.00 and 6.23 degrees respectively. Work in [21] shows similar 

result in terms of rotational estimation of POSIT, but it pointed out that the translational 

estimation is not ideal because POSIT has the scaled orthographic projection (SOP) 

assumption, while the true images are generated by a perspective projection. Work in [22] 

shows that the time complexity of POSIT can be regarded as constant in practice. The 

running time of POSIT is at least three times faster than all the PnP-based algorithms, and 

it is the fastest amongst all the conventional pose estimation algorithms. However, the 

authors pointed out that POSIT can be trapped in local minima in some cases. 
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2.3. Active Shape Model 

Active shape models are statistic models of the shapes of one kind of objects that can 

iteratively fit to an instance of the objects that appears in arbitrary images. Hence, 

constructing an ASM consists of two parts: statistically training the shape model and 

defining the iterative approach to fit the shape model onto object in images. Normally, 

translation, rotation and scaling are not considered as part of shape models, so before 

training the shape model, the shapes from the data set should be aligned into a common 

coordinate system. The most popular approach for alignment is Procrustes Analysis [23].  

2.3.1. Statistic Models of Shape 

Suppose that in the training set, there are N shapes that are aligned into a common coordinate 

system. Each shape contains n landmarks, which implies that it is represented by a 2n-

dimensional vector. Hence, these vectors form a distribution in the 2n-dimensional space. If the 

distribution can be modeled, arbitrary shapes similar to those in the training set can be generated, 

however, the dimensionality makes it hard to model the distribution. Therefore, it is necessary to 

reduce the dimensionality. An effective approach is to apply Principal Component Analysis (PCA) 

[24] to the data. PCA computes the mutually perpendicular axes, the eigenvectors, of the 

distribution in the 2n-dimensional space, and takes the only axes that exhibit major variance as 

the axes for a new multi-dimensional space of lower dimensionality.  

For example, if a shape is originally represented as 

x = (𝑥1, … , 𝑥𝑛 , 𝑦1, … . , 𝑦𝑛)𝑇                                                      (eq. 2. 3. 1) 

It can also be represented using the eigenvectors as 

x ≈ x̅ + 𝑃𝑏, 𝑃 = (𝑝1, … , 𝑝𝑘)
𝑇                                                  (eq. 2. 3. 2) 
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where x̅  is the mean shape in the distribution;  𝑝1,… , 𝑝𝑘  are the eigenvectors. Therefore, the 

parameters b that represent x in the k-dimensional space are 

𝑏 = 𝑃𝑇(x − x̅)                                                                  (eq. 2. 3. 3) 

In conclusion, in the principal component space, an arbitrary shape from the common coordinate 

system can be approximately represented as a linear combination of the principal components 

added to the mean shape in the distribution.  

2.3.2. Image Interpretation with Models 

The iterative approach to improve the fit of a shape instance x, to an image is listed as 

follows. 

1. Examine a region of the image around each point xi to find the best nearby match  

2. Update the parameters for translation, rotation, scaling and the parameters of the 

principal components to best fit the newly found shape 

3. Apply constraints to the parameters of principal components, to ensure the newly 

fitted shape is valid, then store the result as x 

4. Repeat until convergence 

 

Figure 2 Profile normals to the boundary 
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To fit the points, we look along profiles perpendicular to the shape boundary through 

each points, as illustrated in Figure 2. If the diffence between the pixels on both side of 

the image object boundary is obvious, each point can be fitted by searching for the 

greatest differences along the corresponding profile normal. However, this assumption is 

not necessarily true in practice. In ASM, what to look for in the target image is firstly 

learned. This is done by sampling along the profile normal of each landmark on the 

boundary of object in each training image. Based on the result, a grey-level statistical 

model is built, which is refered to as the profile model. Each component of the profile 

model is determined by normalizing the sum of every sampled profile. 

When fitting the shape, the profile model is the baseline to compare with sampled 

profiles. ASM searches along each sampled profile to find the best fit, which has the 

smallest Mahalanobis distance [33] to the profile model. This process is illustraed in 

Figure 3, which shows that it is a sliding window alogrithm and the best fit occurs at the 

first position to the right of the middle position of the sampled profile.   

 

Figure 3 Search for best fit of profile model 
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One way to improve the robustness of the algorithm is to implement it in a multi-

resolution framework. This means searching is firstly done in a low resolution image to 

find the approximate location of feature points then repeat the search in images of higher 

resolutions. This approach is less likely to fit feature points onto wrong image structures. 

As shown in Figure 4, for each image, a Gaussian image pyramid is built by smoothing 

and subsampling. The lowest level of the pyramid is the original image, when it goes one 

level up, the size of the image in each dimension halves. Accordingly, the profile model 

should be duplicated and changed in width for each level of the Gaussian pyramid.   

 

Figure 4 A Gaussian Image Pyramid 

2.4. POSIT 

POSIT (Pose from Orthography and Scaling with ITerations, DeMenthon & Davis 1995) 

is an iterative algorithm that finds the pose of an object from a single image showing at 

least four non-coplanar feature points of the object if their relative geometry on the object 

is known [25]. The ideas of perspective projection as well as scaled orthographic 

projection, as illustrated in Figure 5, are exploited to solve this problem. The rest of this 

section is a detailed review of the development of POSIT presented in [25].  
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Figure 5 Perspective projection and scaled orthographic projection 

2.4.1. Pose from Orthography and Scaling (POS) 

A captured image is the perspective projection of the object from the 3D camera 

coordinate system onto the 2D image plane. As the image plane, G, is associated with the 

camera’s viewing frustum, the pose of object can be represented by the viewing 

transformation from the object coordinates to the camera coordinates. As shown in Figure 

5, O is the origin of camera coordinate system, which uses vectors i, j, k as axis directions; 

with a focal length f, the projection of O on image plane is C; M0 is the origin of the 

object coordinates; Mi is a visible vertex on the object; the vectors that define the object 

coordinate system are u, v and w; plane K is parallel to G and goes through M0. On plane 

K, H is the orthogonal projection of O; Pi is the orthogonal projection of Mi; Ni is the 

perspective projection of Mi; On image plane, m0 is the perspective projection of M0; mi 
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is the perspective projection of Mi and Ni; pi, is the perspective projection of Pi and is also 

known as the scaled orthogonal projection (SOP) of Mi.  

The viewing transformation from object coordinates to camera coordinates is a 

translation from M0 to O followed by a rotation to alight u, v, w with i, j, k. Hence the 

transformation can be presented with the homogeneous matrix shown in eq. 2. 4. 1.  

𝑇 = [

𝑖𝑢 𝑖𝑣 𝑖𝑤 −𝑋0

𝑗
𝑢

𝑗
𝑣

𝑗
𝑤

−𝑌0

𝑘𝑢 𝑘𝑣 𝑘𝑤 −𝑍0

0 0 0 1

]                                             (eq. 2. 4. 1) 

In the viewing frustum, the coordinates of M0 and Mi are (X0, Y0, Z0) and (Xi, Yi, Zi). On 

the image plane, the coordinates of m0, mi and pi are (x0, y0), (xi, yi) and (x’i, y’i). There 

exist similar triangles that produce the following relations: 

 𝑥𝑖
′ = 𝑥0 +

𝑓

𝑍0
(𝑋𝑖 − 𝑋0)   ,           𝑦𝑖

′ =  𝑦0 +
𝑓

𝑍0
(𝑌𝑖 − 𝑌0)               (eq. 2. 4. 2) 

The vector M0Mi is the sum of three vectors 

𝑀0𝑀𝑖 =  𝑀0𝑁𝑖 + 𝑁𝑖𝑃𝑖 + 𝑃𝑖𝑀𝑖                                            (eq. 2. 4. 3) 

Because triangles M0NiO and m0miO are similar, and MiNiPi and OmiC are similar, we 

have 

𝑀0𝑀𝑖 =  
𝑍0

𝑓
𝑚0𝑚𝑖 +  𝑘 ∙

𝑀0𝑀𝑖

𝑓
𝐶𝑚𝑖 + 𝑃𝑖𝑀𝑖 =  

𝑍0

𝑓
 (𝑚0𝑚𝑖 + 

𝑀0𝑀𝑖

𝑍0
𝐶𝑚𝑖)  + 𝑃𝑖𝑀𝑖        (eq. 

2. 4. 4) 

Because triangle MiNiPi is also similar to triangle ONiH and line segments HPi and Cpi 

are parallel, eq. 2.4.4 can be re-written as 
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𝑀0𝑀𝑖 =  
𝑍0

𝑓
 (𝑚0𝑚𝑖 + 𝑚𝑖𝑝𝑖) +  𝑃𝑖𝑀𝑖 = 

𝑍0

𝑓
𝑚0𝑝𝑖 + 𝑃𝑖𝑀𝑖                     (eq. 2. 4. 5) 

Because vector PiMi is perpendicular to the image plane, performing dot product on eq. 

2.4.5 with vector i and j respectively will provide 

 𝑖 ∙  
𝑓

𝑍0
𝑀0𝑀𝑖 =  𝑥𝑖

′ − 𝑥0               𝑗 ∙  
𝑓

𝑍0
𝑀0𝑀𝑖 = 𝑦𝑖

′ − 𝑦0                                  (eq. 2. 4. 6) 

Because pi is an imaginary point on the image plane, and line Cpi goes through point mi, 

and C is the origin of the image coordinates, there exist i such that 

𝑥𝑖
′ = 𝑥𝑖 ( 1 + 𝜀𝑖)          𝑦𝑖

′ = 𝑦𝑖 ( 1 + 𝜀𝑖)                                         (eq. 2. 4. 7) 

All the parameters in the matrix shown in eq. 2.4.1 are unknown. To reduce the number 

of unknowns, define vectors I and J as the scaled i and j vectors. 

𝐼 =  𝑓

𝑍0
 𝑖            𝐽 =  𝑓

𝑍0
 𝑗                                                       (eq. 2. 4. 8) 

Based on eq. 2.4.6, eq. 2.4.7 and eq. 2.4.8, the linear system representing the pose 

estimation problem is determined as 

𝑀0𝑀𝑖 ⋅ 𝐼 =  𝑥𝑖(1 + 𝜀𝑖) − 𝑥0         𝑀0𝑀𝑖 ⋅ 𝐽 =  𝑦𝑖(1 + 𝜀𝑖) − 𝑦0                      (eq. 2. 4. 9) 

Note that if i can be found, the matrix in eq. 2.4.1 can be determined, because i and j are 

normalized I and J; k is the cross product of i and j, Z0 can be solved by calculating the 

magnitude of I and J. X0 and Y0 can be calculated using similar triangles OCm0 and 

OHM0.  

An algorithm, known as Pose from Orthography and Scaling (POS), to solve eq. 2.4.9 

was proposed in [26]. However, it only provides approximation if the value given to i 

are not exact which is hard to predict.  
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2.4.2.  Iterative solution of POS problems 

The exact values of i can be found iteratively as proved in [25]. The algorithm is referred 

to as POSIT (POS with iterations). POSIT starts with an initial guessed value of i and 

iteratively adjust it to finally arrive at the exact solution. Based on a variety of similar 

triangles that appear in Figure 5, one way to present i is 

𝜀𝑖 =  
1

𝑍0
𝑀0𝑀𝑖 ∙ 𝑘                                                             (eq. 2. 4. 10) 

Eq. 2.4.10 suggests that if the object is infinitely far away from the camera in the z-

direction, i is equal to 0, because the SOP of Mi and the perspective projection of Mi 

coincide. Compared with Z0, the dimensions of the object being tracked is relatively 

small. Hence, it is fair to let i start as 0. It should be also noticed that when tracking an 

object in a video stream, the initial guess for i in one frame should be similar to the 

results from the previous frame due to temporal coherence supposing the object does not 

move too fast. 

Suppose there are n visible object points in the image, eq. 2.4.9 can be written in matrix 

format 

𝐴𝐼 = 𝑋′  ,     𝐴𝐽 = 𝑌′                                                         (eq. 2. 4. 11) 

with 

𝐴 = [

𝑈0 𝑉0 𝑊0

⋮ ⋮ ⋮
𝑈𝑖 𝑉𝑖 𝑊𝑖

⋮ ⋮ ⋮

] , 𝐼 = [𝐼𝑢 𝐼𝑣 𝐼𝑤]𝑇 , 𝐽 =  [𝐽𝑢 𝐽𝑣 𝐽𝑤]𝑇 
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𝑋′ = [

𝑥1(1 + 𝜀1) − 𝑥0

⋮
𝑥𝑖(1 + 𝜀𝑖) − 𝑥0

⋮

] ,    𝑌′ = [

𝑦1(1 +  𝜀1) − 𝑦0

⋮
𝑦𝑖(1 +  𝜀𝑖) − 𝑦0

⋮

]                        (eq. 2. 4. 12) 

where the i terms have the calculated value from the previous iteration. If the rank of 

matrix A is 3, it suggests there exist at least three object points other than M0, so that 

there are at least four non-coplanar points in total. Then matrix A can be pseudo-inversed 

and the unknown vectors can be calculated with the least square method as 

𝐼 = 𝐵𝑋′    ,    𝐽 = 𝐵𝑌′                                                      (eq. 2. 4. 13)  

where the pseudo-inverse matrix B can be calculated as [ATA]-1AT or by decomposing 

matrix A by singular value decomposition (SVD). 

The requirement that matrix A has a rank of at least 3 can also be interpreted 

geometrically. If the tail of vector I is at M0, eq. 2.4.9 suggests that I lies in the plane that 

is perpendicular to M0Mi. If there are three visible point M1, M2 and M3 that contributes 

to matrix A, this means vector I’s head is at the intersection point of plane M0M1, M0M2 

and M0M3. If the four points are coplanar, there exists no intersection point. Similarly, 

this statement holds true for vector J. It is possible that the lengths of I and J are different 

in some iterations, which suggest two calculated values of the scale factor f/Z0. The 

average scale factor is chosen to calculate Z0, which is used to update the estimation of i, 

as shown in eq. 2.4.10. 

The iterative update mechanism of POSIT can be summarized as the following steps. 

1. Create the matrix A of dimension (N - 1) × 3, where each row is a vector M0Mi 

connecting the reference feature point M0, which is also the origin of the object 
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coordinate system, with another feature point Mi; then compute the 3 × (N - 1) 

matrix B, the pseudoinverse matrix of A. 

2. n = 0; for i = 1, 2, … N – 1, i(n) = 0. 

3. n = n + 1; Create vector X’ and Y’, then calculate vector I and J using eq. 2.4.13. 

Normalize I and J to get i and j. Note the scale factor as the average length of I 

and J, and calculate Z0 with s and focal length f.  𝑠 =
|𝐼|+|𝐽|

2
 ,    𝑍0 =

𝑓

𝑠
  

4. Compute unit vector k as the cross product of i and j; compute new i(n) values 

using eq. 2.4.10. 

5. Check convergence. If |i(n) - i(n - 1) | is not greater than the threshold, go to Step 6; 

otherwise, go to Step 3 

6. Generate the homogeneous matrix in eq. 2.4.1 with parameters from the last 

iteration, to indicate the pose of the object. The translation vector OM0 can be 

calculated as Om0 / s; the rotation matrix is made up with unit vectors i, j, k. 

2.5. Summary 

In this chapter, a variety of relevant researches are reviewed. ASM and POSIT are 

discussed in detail, as they are the key concepts of the proposed approach to generating 

3D faces. Their implementation in the proposed approach will be presented in the 

following chapters. 
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Chapter 3: Face Tracking Using the Active Shape Model 

This chapter describes a system that transforms a video stream filmed by RGB camera 

featuring a human frontal face to a polygon mesh of face in real-time. Procrustes analysis 

and PCA is implemented to train a linear shape model that represents both rigid and non-

rigid transformations in the 2D image plane. In addition, a greyscale patch model is 

trained based on correlation, to detect the location of feature points in the video. Both 

models are trained from a data set of annotated faces. 

3.1. Training Set 

The algorithm for detecting the locations of facial feature points in a frame of video relies 

on geometrical dependencies between these points and their counterparts from a 

structured model trained offline. Thus, firstly, geometric data of a collection of faces is 

required as a training set. The data can be obtained by manually annotating images of 

faces to get the coordinates of facial feature points, which are on the contours of face and 

facial features. The collection should include images featuring adequate facial 

expressions taken in different directions, where all face features are visible. Examples of 

annotated images are illustrated shown in Figure 6, where symmetric points are annotated 

with the same color and points on the same contour are connected. The annotation of 

symmetric points is necessary for generating mirrored images to provide more training 

samples. The connections are essential for calculating profile normals for shape fitting 

using classic ASM. In this thesis, fitting 1D profile models is used as a baseline to 

compare with the proposed fitting approach. The performances of feature points fitting 

using the shape model trained with a generic data set and its counterpart trained with a 

person-specific data set are also compared. The MUCT database [27], which contains 
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3755 faces of more than 300 individuals, is selected as the generic data set. The person-

specific data set is 91 self-portraits of the author with a variety of facial expressions, 

taken under the same lighting condition. 

 

Figure 6 Examples of annotated images 

Data obtained from each image should be of the same size, and store the coordinates of 

feature points in the same order. When training the models, it is necessary to use the 

original images as well as data from their mirrored counterparts, because it not only 

doubles the size of the training set, but also evens out the bias of head poses in the 

collection, otherwise the result reference shape may lean slightly to one side. The 

comparison is illustrated in Figure 7.  

 

Figure 7 Reference shapes trained with and without mirrored images 
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The definition of feature points is illustrated in the Appendix. One way to triangulate the 

collection of feature points is also illustrated in the Appendix, which is used for rendering 

the face as to be described in the next chapter.  

3.2. Procrustes Analysis 

To build a shape model of faces from the annotated training set, transformations 

pertaining to global rigid motions should be removed first. When modelling geometry in 

2D, a rigid motion is represented as a similarity transform; this includes the scale, 2D 

rotation and translation. Figure 8 illustrates the set of permissible motion types under a 

similarity transform.  

 

Figure 8 Rigid transformations 

Procrustes is the name of a notrious bandit in Greek mythology, who torture people by 

stretching them or cutting off their legs, so as to force them to fit the size of an iron bed. 

The process of removing global rigid motion from a collection of points is called 

Procrustes analysis. It is a conventional approach to pre-processing the data set to train 

the ASM. The coordiantes of facial feature points in Figure 9 are color coded, where 

symetric points are in the same color. The left image illustrates directly putting the 

coordinates on the same image plane; the middle image shows the plotting with only 
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traslating to align the centers of faces, where the  center of each face is calculated as the 

average of all feature points on the face; the right image shows the Procrustes aligned 

plot by translating firstly, then rotating and scaling with respect to the same reference. 

Note that the three images are deliberatly drawn to the same scale. It can be observed that 

in the raw images, the same landmark from different faces rarely algin; aligning  the 

centers of faces by translating limits feature points of the same kind to a certain area, but 

the areas are relatively large and overlapping; and Procrustes aligned faces let the training 

set of feature points of the same kind distribute in a relatively small range and generally 

distinguished from points of other kinds. 

 

Figure 9 Illustration of Procrustes alignment 

The training set of faces is a collection of N shapes, each of which is presented as a set of 

n points in the 2D plane. Rigid transformation is applied to each shape by translating its 

center of mass (𝑥̅,  𝑦̅) to the origin of image plane to get its translation aligned shape 𝑃𝑖 , 

where 

 𝑥̅ = 
1

𝑛
∑ 𝑥𝑖𝑖 , 𝑦̅ = 

1

𝑛
∑ 𝑦𝑖𝑖                                                      (eq. 3. 1) 
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 The Procrustes aligned shapes and their canonical reference C can be iteratively obtained 

in the following steps:  

1. Set the reference shape C as the unit vector of the average of aligned faces,  

𝐶 =
𝐹

|𝐹|
   ,     𝐹 =  |

1

𝑁
∑ 𝑃𝑖|𝑖                                            (eq. 3. 2) 

2. For each 𝑃𝑖, update it by using least square method to find the scale and rotation 

to best align it to C. 

3. Update C with eq. 3.2, after taking a record of old C. 

4. Yield the Procrustes aligned shapes P1, P2... PN, and reference shape C, if the 

deviation from C to old C is not greater than the convergence threshold; otherwise 

go to step 1.  

Intuitively the alignment in Step 2 consists of rotation and scaling, which provides two 

variables 𝜃 and s and the transformation matrix is 

𝑇 = [
𝑠 ∙ 𝑐𝑜𝑠𝜃 −𝑠 ∙ 𝑠𝑖𝑛𝜃
𝑠 ∙ 𝑠𝑖𝑛𝜃 𝑠 ∙ 𝑐𝑜𝑠𝜃

]                                                (eq. 3. 3) 

However, sine and cosine add to the complexity of calculation. Without increase the 

number of degrees of freedom, a and b can be defined as 

𝑎 = 𝑠 ∙ 𝑠𝑖𝑛𝜃,       𝑏 = 𝑠 ∙ 𝑐𝑜𝑠𝜃                                               (eq. 3. 4) 

The optimization problem in Step 2 is minimizing the residual R defined as  

𝑅 =  min
𝑎,𝑏

∑ |[
𝑎 −𝑏
𝑏 𝑎

] [
𝑥𝑖

𝑦𝑖
] − [

𝑥𝑐,𝑖

𝑦𝑐,𝑖
]|

2
𝑛
𝑖=1                                       (eq. 3. 5) 

and re-formatted as  



 22 

 𝑅 =  min
𝑎,𝑏

∑ |[
𝑥𝑖 −𝑦𝑖

𝑦𝑖 𝑥𝑖
] [

𝑎
𝑏
] − [

𝑥𝑐,𝑖

𝑦𝑐,𝑖
]|

2
𝑛
𝑖=1                                     (eq. 3. 6) 

The values of a and b that minimize R can be found by making the partial derivative of R 

on a and b, equal to zero. In matrix format, it is  

  

[
 
 
 
 
 
𝑥1 −𝑦1

𝑦1 𝑥1

⋮ ⋮
𝑥𝑖 −𝑦𝑖

𝑦𝑖 𝑥𝑖

⋮ ⋮ ]
 
 
 
 
 

[
𝑎
𝑏
] − 

[
 
 
 
 
 
 
𝑥𝑐,1

𝑦𝑐,1

⋮
𝑥𝑐,𝑖

𝑦𝑐,𝑖

⋮
⋮ ]

 
 
 
 
 
 

=

[
 
 
 
 
0
⋮
⋮
0
⋮ ]
 
 
 
 

                                            (eq. 3. 7) 

The result is 

 [
𝑎
𝑏
] =  

1

∑ (𝑥𝑖
2+ 𝑦𝑖

2)𝑛
𝑖=1

∑ [
𝑥𝑖𝑥𝑐,𝑖 + 𝑦𝑖𝑦𝑐,𝑖

𝑥𝑖𝑦𝑐,𝑖 − 𝑦𝑖𝑥𝑐,𝑖
]𝑛

𝑖=1                                         (eq. 3. 8) 

Note that the shapes in the data set are required to separate the training of the rigid and 

non-rigid transformation basis. The reference shape C is essential because all face shapes 

are considered as a warp of C in a multi-dimensional space. The Procrustes aligned 

shapes P1, P2... PN are then used to statistically train the shape model.  

3.3. Shape Model 

If each face has n feature points, it implies that each face is represented by a 2n-

dimensional vector. It is vital to generate a new multi-dimensional space to describe the 

face model, because the 2n-dimensional space only provides the coordinates of each 

selected feature in the x-y plane. It is not efficient to manipulate a face shape point by 

point to recognize its rigid transformation and deformation. Hence, we need another 

representation that reflects the two kinds of transformations for a face shape. In addition, 

the smaller the number of dimensions is, the less computing expenses are required. This 
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is especially critical in the tracking phase, where all selected features should be 

recognized one-the-fly from a video stream. Hence, we need a representation that is of 

significantly smaller degrees of freedom. In Tim Cootes’ original work of ASM, how to 

represent the scaling and rigid transformation of arbitrary shapes is not discussed. This 

can be parameterized with respect to a set of ortho-normal vectors in a format that is 

similar to the eigenvectors for deforming face shapes. In the rest of this section, the 

former set of vectors are referred to as the rigid basis and the latter set of vectors are 

referred to as the non-rigid basis. 

3.3.1. Rigid Basis 

The rigid basis of face shapes is a 4-dimensional space associated with rigid 

transformations and scaling. The normalized vectors representing the 4 dimensions are 

obtained from the reference shape C, which is introduced in Section 3.2.  

The rigid transformation to get an arbitrary face shape X that is similar to C can be 

written in the following format, where X represents the result of first rotate and scale one 

face shape then translate it; columns of matrix B are components of X; and p is the 

corresponding coefficients. 

𝑋 =

[
 
 
 
 [

𝑎 −𝑏
𝑏 𝑎

] [
𝑥𝑐,1

𝑦𝑐,1
] + [

𝑡𝑥
𝑡𝑦

]

⋮ ⋮ ⋮

[
𝑎 −𝑏
𝑏 𝑎

] [
𝑥𝑐,𝑛

𝑦𝑐,𝑛
] + [

𝑡𝑥
𝑡𝑦

]
]
 
 
 
 

=  

[
 
 
 
 
𝑥𝑐,1 −𝑦𝑐,1 1 0

𝑦𝑐,1 𝑥𝑐,1 0 1

⋮ ⋮ ⋮ ⋮
𝑥𝑐,𝑛 −𝑦𝑐,𝑛 1 0

𝑦𝑐,𝑛 𝑥𝑐,𝑛 0 1]
 
 
 
 

[

𝑎
𝑏
𝑡𝑥
𝑡𝑦

] = 𝐵𝑝            (eq. 3. 9) 

C = [𝑥𝑐,1, 𝑦𝑐,1, …, 𝑥𝑐,𝑛, 𝑦𝑐,𝑛]𝑇, is the first column of B. This equation shows that a linear 

combination (with rotation and scale constraint on a and b) produces a shape that is 
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similar to C.  Hence, the rigid basis can be obtained by applying Gram-Schmidt ortho-

normalization to B to get the rigid basis R. 

The rigid base consists of 4 orthonormal column vectors of 2n dimensions. Hence, a face 

shape’s parameter associated with the first vector is its scale with respect to the 

normalized reference shape.  

3.3.2. Non-rigid basis 

This section describes the implementation of the statistical shape model proposed by Tim 

Cootes. Similar to the rigid basis, the non-rigid basis of a face shape is a k-dimensional 

space associated with non-rigid transformations. Applying the principal component 

analysis (PCA) to the Procrustes aligned shapes (𝑃1, 𝑃2... 𝑃𝑁), can identify the non-rigid 

components in the shapes as well as their weights, each of which represent the portion of 

the corresponding non-rigid component observed in the data set. The least significant 

components should be removed from the shape model to reduce the dimensionality of the 

shape model. An example of applying PCA to a 2D data set is shown in Figure 10. The 

vectors suggest the major directions of variation for the data set. The lengths of vectors 

illustrate the importance of the directions. Figure 10 suggests that if it is safe to conclude 

that the 2D data is mainly distributed in one direction, the dimensionality of the data set 

can be reduced to 1D. 
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Figure 10 An example of PCA 

Based on PCA, the non-rigid basis can be obtained in the following steps: 

1. Subtract the rigid components from the Procrustes aligned shapes (𝑃1, 𝑃2... 𝑃𝑁), to 

get their non-rigid components Y = (𝑃′1, 𝑃′2 ... 𝑃′𝑁) using the following equation, 

where 𝑅𝑇𝑃𝑖 is the rigid component’s projection of shape 𝑃𝑖 in the 4 directions for 

rigid transformations. 

                                              𝑃′𝑖 = 𝑃𝑖 − 𝑅𝑅𝑇𝑃𝑖                                                   (eq. 3. 10) 

2. Apply principal component analysis (PCA) on Y. First apply the singular value 

decomposition on Y. The column vectors in its left-singular vector matrix U 

contains the principal components sorted in descending order. The 𝛴  matrix 

contains singular values, which are the importance of each column vectors in U.  
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𝑌2𝑛×𝑁 = 𝑈 𝑉𝑇 =   [𝑢1 𝑢2 … 𝑢𝑚] [

𝜎1 0 … … … … 0

0 𝜎2 0 … … … 0

⋮ ⋱ ⋱ ⋱ … … ⋮

0 0 0 𝜎𝑚 0 … 0

]

[
 
 
 
𝑣1

𝑇

𝑣2
𝑇

⋮

𝑣𝑙
𝑇]
 
 
 
       (eq. 3. 

11) 

3. Yield the first k column vectors 𝑢1, 𝑢2 ... 𝑢𝑘 in U, whose 𝜎 values add up to a 

predefined threshold.  

 

Figure 11 Examples of composite shapes 

As U is orthonormal, these k vectors representing the subspace of deformations is also the 

non-rigid basis of the shape model. Note that now there is a collection of k + 4 

orthonormal vectors in the original 2n-dimensional space that represents the rigid and 

principal deformation components of a shape, and these vectors are mutually linearly 

independent. It implies that a (k + 4)-dimensional space can be constructed to describe 

face shapes. Each face can be described as a linear combination of the k+4 orthonormal 

vectors. Figure 11 illustrates a few shapes that are not rotated and translated, which 

means the last 3 of the 4 orthonormal vectors representing the rigid basis weight 0 in 

these shapes. 

Figure 12 shows the eigenspectra of principal components trained from the generic data 

set and the person-specific data set that make up 95% of the non-rigid components in the 
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corresponding data set. It can be observed that the person-specific data set has 9 

eigenvectors within its spectrum and the generic data set has 13 eigenvectors within it 

spectrum. Given that the images in the person-specific data set contains abundant facial 

expressions, it can be concluded that individual differences of face shape dominate the 

size of the eigenspectrum. 

 

Figure 12 Eigenspectra of the non-rigid components 

3.4. Shape Fitting 

To improve the accuracy and efficiency of fitting the shapes in video frames, the patch 

model is introduced, which is inspired by the one-dimensional profile model of original 

ASM that fits shapes by shifting itself along the profile normal to find the point that 

provides maximum correlation to it. Analogously, the patch model is a two-dimensional 

profile model that fits shapes by doing template matching [28] to find the best fit. This 

collection of patches is also trained from the data set.  
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3.4.1. Patch Model 

This section describes a conventional way to build the patch model. The images in the 

training set need to be converted to grayscale and natural logarithm need to be applied to 

the image pixel intensities, because log-scale images are more robust against differences 

in appearance and changes in illumination conditions. This also holds true when tracking 

feature points in video stream. Figure 13 shows a comparison between ordinary grayscale 

images and logarithm grayscale images. The contrast between the logarithm grayscale 

images are significantly smaller. 

 

Figure 13 Grayscale images and logarithm grayscale images 

When training the patch model, it should be guaranteed that each facial feature is aligned 

with its counterpart in a face shape C’ that is created by providing the width of it in pixels 

to scale the canonical reference. In addition, the feature point is assumed to be at the 

center of the window on the image where correlation is calculated, as illustrated in Figure 

14. However, the face can appear at any scale and rotation within the image plane. Hence, 

each feature point has a search window defined with respect to C’, where the patch slides 

to find best fit. The center of the area that provides highest response is then annotated as a 

detected feature point. 
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Figure 14 A patch and its search window 

As illustrated in Figure 15, an arbitrary image can be warped so that the feature patch is 

normalized and centered at the window. If the patch being trained is for the jth feature in 

the model using image X and its raw shape 𝐼𝑋 , and the window’s width and height are W 

and H respectively, the warp can be obtained from the inverse of the following steps: 

1.    𝑇1 = (−
𝑊

2
, −

𝐻

2
)   The feature is translated to the origin. 

2. RS ←calc_simil(X) RS is the rotation and scale from the scaled reference shape C’, 

which is created by scaling C from Section 3.2, to raw shape 𝐼𝑋  for training 

current feature patch. 

3. 𝑇2 = (𝑥𝑗 ,   𝑦𝑗) Translate the feature to align it with its original copy in image X. 
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Figure 15 Transformation from raw input to search window 

This transformation is similar to Procrustes alignment because the annotated feature 

points are rotated and scaled with respect to a reference shape, but all points are 

translated to the same area to train their corresponding patches. The same method is also 

used in the tracking phase.  

Cross-relating a patch with an image region containing the corresponding facial feature 

yields a strong response and yields weaker responses everywhere else. The constraint can 

be expressed as minimizing a sum of squares: 

min
𝑃

∑ ∑ [𝑟(𝑥, 𝑦) −  𝐿 ∙ 𝐼𝑖(𝑥 − 
𝑤

2
: 𝑥 + 

𝑤

2
, 𝑦 − 

ℎ

2
∶ 𝑦 + 

ℎ

2
)]2𝑥,𝑦

𝑁
𝑖=1              (eq. 3. 12) 

• Vector L denotes the patch for one facial feature 

• Vector 𝑰𝑖 denotes the ith training image  

• (a:b, c:d) denotes the rectangular region whose top-left and bottom-right corners 

are located at (a, c) and (b, d) in image coordinates, respectively.   

• r is a 2D-Gaussian distribution. 

• w and h are the width and height of the patch.  
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As shown in eq. 3.12, the number of degrees of freedom of this problem is equal to the 

number of pixels contained in one patch, thus the computational cost to solve it is 

prohibitive. Stochastic gradient descent (SGD) is an alternative way to solving the 

learning problem. By regarding the learning objective as an error terrain over the degrees 

of freedom of the patch model, SGD iteratively makes an approximation of the gradient 

direction of the terrain and takes a small step in the opposite direction. The 

approximation to gradient can be computed by considering only the gradient of the 

learning objective for a single, randomly chosen image from the training set: 

𝐷 = −∑ (𝑟(𝑥, 𝑦) − 𝐿 ∙ 𝑊)𝑊,         𝑊 = 𝐼(𝑥 − 
𝑤

2
∶ 𝑥 + 

𝑤

2
, 𝑦 −

ℎ

2
: 𝑦 +

ℎ

2
)𝑥,𝑦         (eq. 3. 13) 

The patch is updated using the following equation:   

𝐿 ← 𝐿 +  𝜂(𝐷 −  𝜆𝐿)                                              (eq. 3. 14) 

where 𝜂  is step size, 𝜆  is the regularization parameter to prevent overfitting. The 

subtraction of 𝜆𝐿  from the update direction effectively regularizes the solution from 

growing too large. This is a procedure that is often applied in machine-learning 

algorithms to promote generalization.  

Figure 16 is a collection of screenshots captured when the patch for an eye corner is 

being trained. In each screenshot, the top left subplot illustrates the area of interest in a 

Procrustes aligned training image; the top right subplot shows the contrast between ideal 

and real response map; the bottom right subplot shows the current appearance of the 

patch; the bottom left subplot is the appearance of the residual used to update the patch. 

The intensities of the residual and patch are scaled in the drawings only to show their 

appearances. 
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Figure 16 Training the patch model 

Figure 17 illustrates the patch models by placing the patches at their corresponding points 

on the reference shape, which resembles the appearance of the averaged face in the 

training set. Patch models in the top row are trained from a collection of the author’s self-

portraits. Patch models in the bottom row are trained from the MUCT database, which 

contains 3755 faces of more than 300 individuals. The masculine look of the aligned 

patches indicates the male subjects dominate the data set.  

The width of reference face and the size of each patch is needed for training the patch 

model. Both parameters should be specified in pixels. Width of face is essential for the 

transformation performed before template matching as illustrated previously in Figure 16. 

The size of patch added with the size of searching window is equal to the size of region 

of interest. 
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Figure 17 Patch models of person-specific data set and generic data set 

3.4.2. Shape Initialization 

The original ASM was proposed for shape fitting in an image, where the shape’s initial 

position is normally the center of the image. Whereas, tracking the face in a video stream 

have strict requirement on efficiency. Hence, Haar cascades [29] or linear binary patterns 

(LBP) cascades [30] are required to detect the rectangular area that contains facial 

features and set the initial position of the face shape within this area. However, as Haar 

cascades or LBP cascades are not designated for feature points detection, there is an 

offset between the face shape and the detected rectangular area. It is necessary to 

calculate the averaged face offset against the rectangular area, which is used to generally 

predict the area where the feature points are located.  
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For fitting in one frame, when the initial guesses of the location of feature points are 

determined, the search window for each patch can be determined. Then, each patch slides 

through its corresponding search window to find the landmarks to let the 2D linear shape 

models fit onto for a refined estimation of feature point positions. However, applying 

Haar cascades or LBP cascades to every frame of the video stream is costly. It is assumed 

that the transformation of face shape from one frame to the next is relatively insignificant, 

so the cascades are only need once at the beginning of the video. For frames other than 

the first one, the location of feature points in the result shape from last frame is used as 

the initial guess. 

3.4.3. Iterative Fitting 

In the proposed approach, shape components are clamped during fitting to help the result 

converge and at the same time guarantee the detected points form a valid face shape. 

Each component is clamped within a range of 6 times the standard deviation observed in 

the training data. The ranges of shape components trained from the person-specific data 

set are illustrated in Figure 18.  
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Figure 18 The ranges of non-rigid components of person-specific data set 
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In classic ASM, there is a convergence-based multi-resolution search method for point 

fitting. In this research, however, as the motion in video stream is coherent, the multi-

resolution search method has obvious redundancy, because the initial guess for one frame 

is the result from the last frame making search in lower resolution inefficient. The fitting 

method for each frame of video is listed as the following steps. 

1. For each feature point, set its location in the previous frame as the old fitting 

result. 

2. Declare three searching levels, where the sizes of search window are in 

descending order. 

3. For each feature point, do template matching in the current search level  

4. Project the shape obtained in Step 3 to the principal component space, then 

project the result back to the shape space. 

5. If the current level is the last level, yield the result as the fitting result for current 

frame; if not, set the result as the old fitting result, then go to Step 3 to search in 

the next level.  

The clamping of non-rigid component is necessary to eliminate invalid face shapes that 

may lead to completely missing the face shape. In classic ASM, clamping reduces the 

number of iteration before the result converges. Figure 19 illustrates the result of 

clamping invalid face shapes. 
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Figure 19 Clamping invalid face shapes 

 

Figure 20 Fitting the shape in real time 

Figure 20 shows the fitting of one feature point in the tracking phase. The detected point 

is very close to the ground truth.  
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3.5. Experiment Results 

Experiments described in this section compare two aspects of the proposed scheme to the 

original ASM scheme: 1) whether the convergence criterion is necessary for the tracking 

problem and 2) how much superior template matching of patch model is to calculating 

correlation of 1D profile model. Lastly, the accuracy of fitting with ASMs trained from 

generic data set and person-specific data set is compared.  

3.5.1. Experiment Setup 

For all experiments presented in this section, non-rigid components of face shapes are the 

eigenvectors whose eigenvalues sums up to 95% of the total sum of eigenvalues. The 

reference face shape’s width is 100 pixels. 

For the proposed approach, the size of patch model is 20 by 20 pixels; the size of search 

window for patch model training is 20 by 20 pixels; the three levels of search window for 

fitting is 20 by 20 pixels, 10 by 10 pixels and 5 by 5 pixels.  

For the baseline approach using 1D profile model, the length of each profile is 20 pixels; 

the range to shift the profile is 20 pixels for training and 20, 10, 5 pixels for fitting in 

three levels. This approach uses the same method as other approaches with patch model 

to calculate the correlation between samples and profile/patch model. The correlation for 

a point (x,y) in the search window/ range is as follows. 

𝑅(𝑥, 𝑦) =  
∑ [𝑇(𝑥′, 𝑦′) ∙ 𝐼(𝑥 +  𝑥′, 𝑦 +  𝑦′)]𝑥′,𝑦′

√∑ 𝑇(𝑥′, 𝑦′)2 ∙ ∑ 𝐼(𝑥 + 𝑥′, 𝑦 +  𝑦′)2 ∙𝑥′,𝑦′𝑥′,𝑦′
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where T is the result of subtracting the average intensity of the patch/profile from each of 

its pixels and I is the result of subtracting the average intensity of the sample (region of 

interest or sampled profile) from each of its pixels. 

For convergence-based approach, the ending criterion is the residual sum of squares (RSS) 

of the shape is smaller than or equal to 0.001. The search also ends if there have been 20 

iterations. 

The video input is captured at 30 frames per second with a resolution of 404 by 720. 

3.5.2. Frame Rate 

 

Figure 21 The frame rates of output using different approaches 

Figure 21 compares the frame rate of output using four approaches. The frame rate is 

calculated at intervals that are equivalent to 30 frames in the input video, which is 1 

second’s worth of input video. The baseline approach is convergence-based and uses the 
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1D profile model, as implemented in the original ASM. Higher frame rate suggests less 

computation expenses.  

On each curve, the starting point also exhibits the lowest frame rate, because Haar filter is 

implemented to detect the face region in the first frame, which is compute-intensive. 

Frame rate here is sampled in intervals of 30 frames, hence, it implies that detecting face 

region using Haar filter is drastically more intensive than the computation spent on the 

rest of the video. 

It is noticeable that under the same condition, approaches using the 1D profile model 

have lower frame rates than approaches using the patch model. The expense of 

calculating covariance for patches is significantly greater than its counterpart for 1D 

profiles. However, the result suggests that to determine the profile normal directions 

frame by frame is time consuming, because profile normals are sensitive to shape 

changes and they should be updated over time. Whereas, the search window of the patch 

model is an axis-aligned square, which is independent of face shapes. 

It can be observed that in convergence-based approaches, the approach using patch model 

runs much faster than that using profile model. This implies that the result of shape fitting 

using the patch model converges faster than using the profile model. Fitting using patch 

model is more efficient because its resultant points moves in a 2D region in each iteration, 

while those of the profile model approach can only move in a 1D range, which requires 

constantly changing of direction that result in more iterations. 
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3.5.3. Fitting Accuracy 

The proposed approach uses person-specific data set to train the shape model and 2D 

patch model. It uses three levels of search windows for fitting in each frame of video, but 

does not require convergence. The fitting accuracy is analyzed by comparing it to 

alternative approaches.  

Each of the alternative approaches is only different from the proposed approach in one 

aspect. A collection of frames captured from the experiment is shown in Figure 22. The 

first column of images is the output of the approach that replaces the patch model with 

profile model. The second column is from the approach that uses shape model and patch 

model trained with a generic training set. The third column is captured using the 

proposed approach. The fourth column is captured using the approach that has the 

convergence criteria. 

It can be observed that the fourth column has the best output, which is slightly more 

accurate than the result from the proposed approach in terms of the shape of face outline, 

and the alignment of eye shapes to the input. However, the result from the previous 

section suggests that its frame rate is only about 65% of the proposed approach. 

The alternative approach using models trained from generic data set provides quite good 

result, except for the mismatch for the looking-up pose, which is presumably absent from 

the generic data set. In addition, the fitting of eyes, eyebrows, and face outline is not so 

good as in the proposed approach for the same reason. 



 42 

  

Figure 22 Illustration of accuracy of different approaches 

The approach exploiting 1D profile model provides the worst result, which implies that 

quite a few feature points are not properly fitted. In some frames, right eye, right eyebrow 

and right half of face outline are severely mismatched. The result suggests that 1D profile 
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model approach needs convergence criteria to produce robust results, however, as 

discussed in the previous section, it would be too expensive. Hence, the profile model is 

not a sensible choice in this context.  

3.6. Summary 

In this chapter, the proposed approach is introduced, validated and compared with 

alternative approaches. Concepts from classic ASM are amended and supplemented in 

the context of created animated face from video stream to contribute to the proposed 

approach. Experiment results suggest that it is a good tradeoff between efficiency and 

accuracy. It provides a robust result of face feature points tracking that can be converted 

to a polygon mesh to be rendered as a 3D face.  
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Chapter 4: Rendering 3D faces 

2D Polygon meshes can be abstracted from video stream using ASM as discussed in 

Chapter 3. Given the texture information, a face can be rendered. Although the 3D mesh 

of a face cannot be reconstructed from video stream, approximate vertex normals can 

provide correct shading on the rendered face and make it look like 3D. The key 

information to calculate shading is the normal direction of every vertex on the polygon 

mesh. An approach is presented in this chapter to estimation the vertex normals given the 

shape fitting result as discussed in Chapter 3 and a reference 3D head model. 

4.1.  Problem Description 

Conventionally, rendering a 3D model requires all its geometric information, including 

the 3D coordinates of all vertices, the normal vectors of vertices, a list that indicates the 

vertices of each facet and the texture of each vertex. From the implementation in Chapter 

3, we can only get vertex coordinates of a face in 2D and the list of facets. However, as 

the objective of this project is to render a frontal face, it is still practical to draw the 3D 

face by estimating vertex normals. 

 

Figure 23 Viewing frustum and image plane 
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The perspective view frustum of the virtual camera for 3D computer graphics is 

illustrated in Figure 23. After all phases in the model-view-projection transformation, as 

illustrated in Figure 24, the image finally drawn to the viewport is the projection of the 

visible portion of the 3D object on a 2D plane, normally referred to as the image plane. 

Drawing to the image plane is analog to how an RGB camera works. 

 

Figure 24 3D transformations in rendering pipeline 

If the virtual camera’s setup is identical to the RGB camera’s setup, drawing the 

triangulation of face feature points tracked from video stream is equivalent to sending the 

geometric model of the face through the rendering pipeline to display in an image. 

Mapping texture to vertices can be manually done, so different texture images can be 

applied to the same tracked face. However, we need to estimate vertex normals in 3D to 

provide realistic shading on the face under all lighting conditions in the 3D scene. 

It is impossible to calculate vertex normals of feature points from the input video stream, 

and the normal for a vertex varies from frame to frame in its local coordinate system, 

because face is a non-rigid body. To simplify the problem, the face is assumed as a rigid 

body, and its vertex normals in the local coordinate system are measured from a reference 

3D head model, then its vertex normals in the scene can be calculated if the pose of head 
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can be estimated from the input video stream. In the rest of this chapter, an approach to 

head pose estimation is proposed based on the POSIT algorithm, and the rendering results 

are presented. 

4.2. Validation of POSIT 

 As discussed in Chapter 2, the focal length of the RGB camera is a required constant for 

head pose estimation, and it should be measured in pixels. As this parameter is not 

advertised for consumer cameras, one way to measure the camera’s intrinsic matrix is by 

performing calibration with a series of images of a checkerboard taken with the camera, 

as shown in Figure 25.  

 

Figure 25 Images for camera calibration 

A validation of POSIT in shown in Figure 26, the dimensions of the box in the top-left 

image is known and four of its visible vertices are annotated as feature points; the 

bottom-left image shows the estimated pose of the box in 3D, where the feature points are 

marked with crosses. The right image is overlaying the estimation over the original image 

which suggests the pose estimation is accurate enough.  
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Hence, POSIT can be used for head pose estimation if four non-coplanar feature points 

are provided. The estimated rotation is applied to transform vertex normals from the 

model coordinate system to the camera coordinate system, to create proper shading on the 

3D face. 

 

Figure 26 Validation of POSIT 

4.3. Implementation 

As pointed out in Section 4.1, the first step is to borrow a collection of unit vectors to 

represent the vertex normals of the tracked feature points in the face model’s local 

coordinate system. Because people’s faces vary significantly but their vertex normals of 

the same vertex are generally in the same direction, a typical 3D head model1 is selected 

to provide the vertex normals in the local coordinate system. Although the tracked face is 

deformable, from the vertex normal’s perspective, the face is rigid, and the vertex 

normals does not change with respect to the local coordinate system. The front view of 

                                                      
1 Samuel, the 3D head model (Credit: Leah Apanowicz / CGPhoenix). Available under a 

permissive license. 
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the reference 3D head model is illustrated Figure 27. The normal vectors are measured in 

Maya®, a CAD modeling software.    

As there are no rigid areas on a human face, the four non-coplanar feature points should 

be selected carefully. Based on observation, nose tip point, nose bottom point, and 

another two feature points denoting the width of the bridge of nose, as annotated with red 

dots in Figure 27, can safely maintain their relative distance from each other in most 

facial expressions. They are chosen as the input for POSIT, and their local coordinates 

are also measured in Maya®. 

 

Figure 27 The reference 3D head model 

The triangulation of feature points is illustrated in the Appendix. It is obtained by 

performing Delaunay Triangulation [31] on a typical tracked face shape, then recording 

the list of connections. This can be regarded as a polygon mesh, hence a PNG file of 

frontal face is provided as the texture to render the face, where the mapping from the 

coordinates in the PNG image to feature points is marked manually. A composite face is 

chosen as the texture to be mapped to the tracked polygon mesh in the experiment. 
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4.4. Experiment Results

  
Figure 28 Result of real time rendering 
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Figure 28 shows the screen capture of the input frames, output frames and the input 

overlaid on the output. In the 3D scene where the output is generated, the virtual lighting 

conditions for all the output captures are identical. Phong’s Illumination model and 

Gouraud shading method are implemented to generate the shading on the generated face.  

As expected, the output does not resemble the input texture, because of the mismatch 

between the composite face’s shape and the captured polygon mesh as well as the limited 

texture information in the composite face, which is captured in only one direction. As the 

Gouraud shading method merely interpolates vertex intensities for the triangular facets 

and the tracked polygon mesh is sparse, the low intensities of vertices in shades 

propagate to their neighbor, which is not ideal. However, this phenomenon confirms that 

the vertex normals obtained from the 3D head model are reasonably close to the ground 

truth, because the intensities of the most and least lit vertices are exaggerated and 

coincide human intuition. It can also be observed from Figure 28 that the head motions in 

the input stream cause correct change of shading on the generated face, which suggests 

that the POSIT algorithm provides accurate estimation that result in appropriate rotation 

of vertex normals. 

By overlaying the generated face on the input face, it can be concluded that the eye 

expressions are generally correct but not accurate enough, which is caused by the limited 

number of subjects for eye expressions in the training set, because in most of the training 

images, the subject keeps his eyes open and looks at the camera, which leads to limited 

coverage of eye expressions in ASM. This artifact may be mitigated by introducing more 

images of the subject with his eyes closed and eyes not focused on the camera.  
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In addition, the interior of the rendered mouth is only realistic when the input face is 

showing the teeth, because the composite face in the texture image is showing the teeth. 

Lastly, there is a slight mismatch between the outlines of the input face and the generated 

face. This is not ideal for face-swapping applications and should be considered as part of 

the future work. 

It is worth pointing out that the frame rate of the output 3D face animation matches the 

camera input in real time. If video clips are the input of this system, the frame rate can be 

even faster than the input frame rate, because of the system’s high computing efficiency. 

4.5. Summary 

In this chapter, the proposed approach to render the tracked face shape in introduced. 

This approach is based on POSIT, an iterative method to estimate the pose of a rigid body. 

The estimated head pose is used to transform the vertex normal vectors to the camera 

coordinate system, which leads to proper shading on the 3D face. Experiment results 

suggest that this approach generates correct shading on the face, and is responsive to head 

motions and facial expressions.  
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Chapter 5: Conclusion and Future Work 

5.1. Conclusion 

This thesis introduces an efficient solution to reconstruct 3D frontal faces using video 

stream captured with RGB cameras, e.g. a web cam. The method is based ASM and 

POSIT algorithm. ASM requires learning from a training set of face images to get the 

major non-rigid components of a 2D face as well as a collection of image patches to 

detect face feature points from each frame to fit the shape models. The proposed 

approach that makes ASM suitable for fitting face shapes in video stream allows face 

tracking and rendering to be very efficient and can be conducted on-the-fly while the 

video is being captured.  

One factor of tracking accuracy is the probability of composing a face shape that 

resemble the face in the input video. The experiment comparing the efficiency of using 

generic shape models and person-specific shape models in the face tracking system, 

proves that resemblance of the shape models to the input face have influence on both 

learning and tracking efficiency and tracking accuracy. 

Built on top of reliable tracking result, POSIT is implemented to estimate head post of the 

input face and provide realistic shading on the rendered face. Experiment results suggest 

that this combination is responsive and accurate for shading.    

However, the proposed approach has constraint on the lighting condition in the video 

stream. The implementation is robust only under lighting condition similar to the training 

set. In addition, due to the limited amount of facial expressions presented in the training 

set, some tracked feature points cannot be projected to the shape of the real expression 
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captured in the video. Due to these reasons, the rendered face may not align to the real 

face precisely. 

In conclusion, the approach introduced in this thesis provides fair tracking and rendering 

result, given it only requires a collection of annotated images to train shape and patch 

models, and a RGB camera to capture video streams. 

5.2. Future Work 

For now, Gauroud shading is implemented to render the 3D face, the shades on it look 

discontinuous, because the tracked face shape can only provide a sparse polygon mesh. 

To mitigate this artifact, Phong shading may be implemented instead, because it 

interpolates vertex normals rather than vertex intensities, which should result in smoother 

result. The other solution is to replace the RGB camera with a RGBD camera. The depth 

sensor of RGBD camera generates a point cloud on the surface of the face. The point 

cloud makes it possible to generate not only dense polygon mesh, but also the accurate 

vertex normals, both of which will significantly improve the shading result [32].  

To increase the accuracy of fitting, it may be effective to do PCA in training phase on a 

multidimensional space that represents both face shapes and face texture as in the active 

appearance model (AAM) method. Hence, in tracking phase the correlation between both 

shapes and textures are checked, which may increase the probability of accurate matches. 

In the current approach, it is possible that template matching provides accurate result for 

a subset of feature points, but after projecting the shape to the principal component space 

then projecting it back to shape space, the fitting result of the subset became less accurate 

despite the improvement of fitting overall. Hence, it may also be sensible to train the 
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shape model or appearance model of each facial features separately and use a hybrid of 

local shape models and the overall shape model for better fitting results. 

Currently, only the face region appears in the output. It is possible to estimate the 

dynamics in the input and add the effect to the output animation, so that the rendered face 

can have some detailed features which are sensitive to motions, to make the animation 

more realistic.     
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Appendix 

A. Face Annotation 

 

Figure 29 Face annotation 
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Vertex ID Description Vertex ID Description 

0 

left outline starting from 
top of face to bottom 

41 * columella of nose 

1 42 

right nose outline starting 
from bottom of face to top 

2 43 

3 44 * 

4 45 

5 46 left nostril 

6 47 right nostril 

7 chin-middle 48 

outline of mouth starting from 
left rear point in clockwise 

direction 

8 

right outline starting 
from bottom of face to 

top 

49 

9 50 

10 51 

11 52 

12 53 

13 54 

14 55 

15 

right eyebrow starting 
from rear point in 
counter-clockwise 

direction 

56 

16 57 

17 58 

18 59 

19 60 

the interior of mouth starting 
from the bottom-left point in 
counter-clockwise direction 

20 61 

21 

left eyebrow from 
starting rear point in 
clockwise direction 

62 

22 63 

23 64 

24 65 

25 66 center of mouth 

26 67 * nose tip 

27 
left eye four corners 

starting from rear point 
in clockwise direction 

68 
left eye mid points starting 

from the top-left one in 
clockwise direction 

28 69 

29 70 

30 71 

31 left pupil 72 
right eye mid points starting 

from the top-right one in 
counter-clockwise direction 

32 right eye four corners 
starting from rear point 
in counter-clockwise 

direction 

73 

33 74 

34 75 

35 

vertices marked with asterisks are used for 
head pose estimation. 

36 right pupil 

37 
left nose outline starting 

from top of face to 
bottom 

38 * 

39 

40 

Table 1 Definition of annotated feature points 
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B. Face Triangulation 

 

Figure 30 Face triangulation 

 

 



 61 

Face  V1 V2 V3 Face V1 V2 V3 Face V1 V2 V3 Face V1 V2 V3 

0 20 17 16 35 14 32 15 70 31 28 69 105 48 49 65 

1 17 20 19 36 16 14 15 71 70 31 69 106 65 66 60 

2 2 0 1 37 13 75 32 72 19 33 73 107 66 65 64 

3 6 58 57 38 75 13 43 73 33 20 72 108 49 50 65 

4 58 6 5 39 16 15 20 74 36 72 75 109 51 41 52 

5 1 0 27 40 27 0 21 75 72 36 33 110 56 62 55 

6 2 48 3 41 25 23 24 76 18 34 45 111 50 51 64 

7 48 2 39 42 23 25 26 77 34 18 73 112 54 62 63 

8 2 1 39 43 24 29 69 78 37 38 29 113 62 54 55 

9 38 70 29 44 29 24 37 79 38 37 44 114 51 52 64 

10 70 38 39 45 17 18 23 80 44 67 38 115 52 42 53 

11 63 64 52 46 72 15 32 81 67 44 47 116 52 53 63 

12 64 63 66 47 15 72 20 82 74 43 34 117 10 55 54 

13 4 3 48 48 18 19 73 83 43 74 35 118 53 54 63 

14 4 48 59 49 19 20 33 84 75 43 35 119 66 63 62 

15 5 4 59 50 27 26 68 85 43 12 54 120 58 61 57 

16 71 31 30 51 26 27 21 86 36 75 35 121 61 58 60 

17 31 71 68 52 21 0 22 87 36 35 74 122 60 59 48 

18 47 43 42 53 23 18 24 88 44 45 34 123 59 60 58 

19 43 47 44 54 21 22 26 89 45 44 37 124 58 5 59 

20 7 6 57 55 22 23 26 90 50 41 51 125 60 48 65 

21 10 8 9 56 30 39 71 91 41 50 40 126 64 65 50 

22 8 7 56 57 39 30 70 92 48 39 40 127 61 60 66 

23 9 8 56 58 25 24 69 93 61 56 57 128 62 61 66 

24 9 56 55 59 26 25 28 94 56 61 62 129 27 68 71 

25 10 9 55 60 1 27 39 95 56 7 57 130 69 29 70 

26 24 45 37 61 26 28 68 96 41 40 46 131 72 32 75 

27 45 24 18 62 39 27 71 97 42 54 53 132 34 73 74 

28 11 10 54 63 31 68 28 98 54 42 43 
    29 36 73 33 64 28 25 69 99 41 42 52 
    30 73 36 74 65 67 41 46 100 42 41 47 
    31 12 11 54 66 41 67 47 101 34 43 44 
    32 17 19 18 67 46 39 38 102 46 38 67 
    33 13 12 43 68 39 46 40 103 48 40 49 
    34 32 14 13 69 70 30 31 104 49 40 50 
    Table 2 The triangulation of a tracked face 
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