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Abstract 
 
Interactive display of three-dimensional geometry has become increasingly 

popular over the past decade. This geometry is usually organized into a directed graph 

structure called a scene graph, with display of that geometry implemented by walking 

that graph. This is insufficient to properly display a wide variety of scenes, especially if 

there are transparent elements within the scene that require display in a specific order. In 

addition, to provide for the fastest display of scene-graph geometry, render state changes 

should be minimized, and reconciling the requirements for display of transparent 

geometry with the minimization of state changes can be difficult. 

This thesis presents a data structure built from the scene graph which is structured 

to make the rearrangement of the scene-graph data for correct and fast display simple. 

The render graph is designed to reorganize the scene-graph data in order to minimize the 

number of render state changes, take advantage of spatial and temporal coherency within 

the stream of graphics instructions, and also to provide for the correct display of elements 

with camera-space order dependencies (such as transparent elements). As a side effect it 

also provides an abstraction layer that simplifies porting the display system to new 

graphics hardware interfaces (e.g. OpenGL, Direct3D). 

 iii



Table of Contents 
Abstract ..................................................................................................................................................... iii 
Table of Contents.......................................................................................................................................iv 
Table of Figures .........................................................................................................................................v 

1. Introduction .................................................................................................................................................1 
1.1 Polygon Rasterization............................................................................................................................1 
1.2 Scene Graphs.........................................................................................................................................4 
1.3 Render Graphs.......................................................................................................................................8 

2. Polygon Display and the Graphics Pipeline ................................................................................................9 
2.1 Polygon Display ..................................................................................................................................10 
2.2 Immediate-mode Interfaces .................................................................................................................10 

2.2.1 Display Lists.................................................................................................................................12 
2.3 Retained-Mode Interfaces ...................................................................................................................12 
2.4 Procedural Graphics ............................................................................................................................13 

3. Graphics Instruction Set Design................................................................................................................16 
3.1 Issues in Graphics Instruction Set Design ...........................................................................................16 

3.1.1 How is OpenGL an ISA?..............................................................................................................17 
3.1.2 OpenGL as SIMD Machine..........................................................................................................18 
3.1.3 Abstract Programming Pipelines ..................................................................................................20 
3.1.4 Other Graphics Instruction Sets....................................................................................................22 

3.2 Per-Vertex and Per-Fragment Instruction Sets ....................................................................................23 
3.3 High-level Shading Languages............................................................................................................25 

4. The Render Graph .....................................................................................................................................27 
4.1 Related Work.......................................................................................................................................27 
4.2 Render Actions....................................................................................................................................29 

4.2.1 Scene Graph Traversal .................................................................................................................30 
4.2.2 Group Actions ..............................................................................................................................34 
4.2.3 Multipass Effects ..........................................................................................................................34 
4.2.4 Multiplatform Support..................................................................................................................35 

4.3 Render Graph Optimization ................................................................................................................36 
4.3.1 Coherency.....................................................................................................................................36 
4.3.2 Interpreter Design.........................................................................................................................36 
4.3.3 Hardware-Specific Optimization..................................................................................................37 
4.3.4 Analysis ........................................................................................................................................37 

5. Results .......................................................................................................................................................39 
5.1 Implementation Details .......................................................................................................................39 

5.1.1 Memory Management ..................................................................................................................39 
6. Conclusions and Future Directions ...........................................................................................................41 

6.1 Acknowledgements .............................................................................................................................42 
7. References .................................................................................................................................................43 

 

 iv



Table of Figures 
Figure 1. A rasterized polygon.. ......................................................................................................................2 
Figure 2. A sample scene and its scene graph. ................................................................................................5 
Figure 3. Geometric Primitives. ......................................................................................................................6 
Figure 4. The transformation and display pipeline........................................................................................10 
Figure 5. A procedurally generated water effect, from The Elder Scrolls 3: Morrowind..............................14 
Figure 6. Real-time shadow casting. .............................................................................................................15 
Figure 7. Computation Frequencies. .............................................................................................................20 
Figure 8. The abstract programmable pipeline. .............................................................................................22 
Figure 9. The vertex program model. ............................................................................................................24 
Figure 10. The OpenGL 2.0 Logical Diagram ..............................................................................................26 
Figure 11. Render Action structure and some sample actions.......................................................................30 
Figure 12a and Figure 12b. A simple scene graph and the render graph generated from that scene graph...32 

 

Table 1. The vertex program instruction set..................................................................................................25 
 

Algorithm 1. Computing a cross product using the vertex program instruction set. .....................................24 
Algorithm 2.  Render Graph Creation. ..........................................................................................................31 
Algorithm 3. The Render Graph Visitation function for a set of triangles. ...................................................32 

 v



1. Introduction 
Efficient, correct polygon display has been the focus of almost every graphics 

library since Ivan Sutherland’s seminal Sketchpad system [Suth63]. Polygon display is 

necessary in order to present graphical information in a wide variety of applications 

ranging from entertainment and the visual arts to scientific visualization to advertisement 

and electronic commerce. These polygons are defined by an artist, or generated by a 

computer program, as an ordered set of points (each point is defined as an ordered tuple 

of floating-point numbers). Each polygon also contains a number of attributes including 

(but not limited to) color, material properties like specular, diffuse, and emissive color, an 

image called a texture (multiple overlapping textures are not uncommon), and/or a short 

program (called a shader) that determines the visual properties of each polygon. In 

conjunction with the polygon’s intrinsic properties, its visual properties may be affected 

by external factors such as lights, diffuse or specular reflection, or fog and other 

atmospheric effects. 

Each polygon is originally defined in a coordinate system called local space. This 

is an arbitrarily defined, usually three-dimensional Euclidean space defined by an 

orthonormal set of axes. Each local space is defined relative to a parent coordinate 

system, which may be itself a subspace, until a root coordinate system called world space 

is defined. If a local space has no parent coordinate system, then it is equivalent to the 

world space (i.e. there is no local space, just world space).  

1.1 Polygon Rasterization 
These polygons are commonly displayed onto a raster-graphics monitor, which is 

a device capable of changing the image displayed on its surface rapidly (on the order of 
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milliseconds – the update rate of such a device is usually at least 30Hz, and can top 

100Hz).  

A raster-graphics monitor displays a rectangular grid of pixels, where each pixel 

can be displayed in a different color selected from a palette ranging from just two colors 

(black and white) to well over sixty-five thousand different colors, depending on the 

features of the graphics hardware being used. When a polygon is displayed, it is first 

projected onto an idealized mathematical model of that rectangular grid through an 

algorithm called rasterization (see Figure 1). Where the polygon intersects a grid line (the 

mathematical representation of a pixel on the monitor), a fragment of that polygon is 

created and assigned a color.  

   

Figure 1. A rasterized polygon. The circles represent each polygon fragment. Whether the circles are 
located at the intersections of grid lines, or at the center of each square, is a matter of convention that 
varies from device to device. 

 

When each fragment is generated, it is assigned a color derived from the 

polygon’s attributes. This color is usually specified as red, green, and blue values, from 

which many colors can be derived [Fole90]. This may not be the color that was originally 
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assigned to the polygon! It is derived from all polygon attributes that contribute to the 

visual appearance of the generated fragment. One such component that may be associated 

with the color’s red/green/blue values is an alpha value, which is a measure of the 

fragment’s transparency, and therefore the color of the fragment will be derived from 

both the polygon’s color (if any) and the color of any other polygon behind the fragment 

being processed. The fragment’s color may also be affected by external factors such as 

lights, diffuse or specular reflection, or fog and other atmospheric effects. Where multiple 

polygons all intersect a single pixel, their respective fragments are combined together 

(usually through an antialiasing filter; see [Fole90] or [Watt92] for more details) to 

generate that pixel’s color. If one or more of the fragments include an alpha value, then 

an additional blending calculation is performed [Port84]. Note that when fragments are 

transparent, the order in which they are drawn is important – some blending mode 

equations are not commutative, so if the polygons that each fragment is generated from 

change order (e.g. the polygon in front is moved behind the polygon in back) then the 

output color will (erroneously) change. This polygon-order dependency is known as a 

camera-space dependency, since the most common way that the depth order is changed is 

to move the camera around a static scene. 

Given that each polygon fragment has a (potentially) unique combination of 

attributes, the rendering algorithm can be viewed as the execution of a state machine, 

where the attributes that define each state include the current color, current texture, 

current material, current local-to-world-space transformation, and so on. In fact, the 

OpenGL graphics library is built around the execution of such a state machine [Sega01]. 

When a scene is displayed, the graphics library must spend some time managing the state 
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machine, particularly when the state is changed due to the current fragment having a 

different state (i.e. set of attributes) from the previous fragment. Time spent managing the 

state machine is time not spent processing fragments, so minimizing the number of state 

changes is necessary to draw a set of polygons in the minimum time possible. 

This rasterization process has to be executed for every polygon in the display. 

Given that the average display has hundreds of thousands to millions of pixels (An NTSC 

television set has 640 x 480 = 307,200 pixels; a 1280 x 1024 computer display has 

1,310,720 pixels) this algorithm is usually implemented in hardware. Modern libraries 

such as OpenGL [Sega01] or Microsoft’s Direct3D [Micr00] provide low-level interfaces 

to the graphics hardware, or implement the polygon display process in software if 

hardware is not available. 

1.2 Scene Graphs 
Managing and organizing the thousands of polygons displayed in each frame is 

difficult, and much research has gone into the data structure known as a scene graph (see 

Figure 2), which manages the polygons and other items necessary to generate the display. 

A scene graph is a hierarchical set of nodes connected by edges usually in a directed 

fashion. Interior nodes are used to specify child-to-parent-space transformations, define 

polygon and scene properties, or group related nodes together. Leaf nodes specify 

geometric primitives (see Figure 3).  

The scene graph is used by many real-time graphics applications, including most 

scientific visualization programs, visual simulation programs, and computer games. 

Traversing this data structure and drawing each of these polygons in the correct order 
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while making use of the graphics library and/or hardware in the most efficient fashion is 

a difficult task, however. 

In Figure 2, the wireframe cube moves in a circle around the torus. The cube 

represents a point light source that illuminates the torus, so that the cube’s motion 

illustrates the motion of the light source. This is why the light’s scene graph node is 

attached to the cube’s scene graph node, so that when the cube is moved the light will 

also be moved as a side effect. Since the torus remains stationary, its node cannot be 

attached to the cube’s node, or it would also move along with the cube as well. Also note 

that the torus is actually implemented as a number of triangle strips, with each individual 

strip wrapped around the torus’ axis. 

 

Figure 2. A sample scene and its scene graph. 
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Figure 3. Geometric Primitives. 

 

The display is then generated through a traversal of this data structure. Given that 

the scene graph has a hierarchical structure, its traversal can be implemented through a 

stack-based algorithm such as an inorder traversal [Knut97]. The stack then encodes the 

current state of the graph traversal, including several attributes of the graphics state such 

as current local-to-world coordinate transform, current color, material, or current texture. 

This stack is also how child nodes inherit state from their parent nodes. 

Some graphics state cannot be expressed via the hierarchical nature of the scene 

graph, however, especially when polygons are moving relative to each other. It may be 

infeasible to locate every polygon illuminated by a light under a scene graph node 

representing that light as illustrated by Figure 2 above. The scene graph also does not 

support operations that have camera-space dependencies, such as the sorting of 

transparent polygons in back-to-front order, since that order changes as the camera moves 

around the polygons in question (or the polygons move around each other). 
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Scene-graph display libraries take one of two different approaches to solve these 

problems. They either attempt to solve everything within the scene graph, or they 

implement one or more auxiliary data structures to aid in the display process. 

If an auxiliary data structure is not used, complex traversal strategies are required 

to correctly display a scene graph’s contents. These libraries do not always visit the 

scene-graph nodes in a parent-to-child, child-to-parent, or sibling-to-sibling order, but 

they are visited (and frequently re-visited) in the order required to generate a correct 

display. These traversal strategies require large amounts of code to implement and are 

difficult to debug and maintain. 

The other approach is to develop auxiliary data structure(s) to manage the 

bookkeeping necessary to generate a correct display. Of the libraries implementing this 

approach, they can be sorted into libraries that use just one auxiliary data structure to aid 

in the scene-graph traversal, and libraries that use multiple auxiliary data structures. 

Several libraries introduce one data structure per problem (camera-space 

dependencies, effects that affect some arbitrary subset of the scene-graph nodes, and the 

use of the graphics hardware in the most efficient fashion). Coordinating the use of each 

data structure can be tricky, and the overlapping nature of some of these problems (e.g. 

transparent geometry illuminated by several lights) can make it difficult to use the 

graphics hardware efficiently. 

The render graph is in the category of libraries that implement one unified 

auxiliary data structure that solves all of the above problems. 
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1.3 Render Graphs 
This thesis introduces a data structure called a render graph. The render graph is a 

data structure designed to aid in the display of scene graph data at interactive frame rate. 

It address the problems of render state management, polygon sorting for blending 

operations, and configuration of per-vertex or per-fragment shader programs, and it 

decouples the order in which the polygons are rendered from the order in which the scene 

graph nodes are traversed, which eliminates the need for complex scene-graph traversal 

algorithms to accommodate the camera-space dependencies of effects like alpha-channel 

transparency. Its nature provides a mechanism by which the number of render state 

changes will be minimized, providing for efficient use of the graphics hardware. 

The render graph also provides an abstraction layer that implements a measure of 

platform independence, simplifying the support of a wide variety of graphics-acceleration 

hardware. 

 8



2. Polygon Display and the Graphics Pipeline 
There have been many libraries, academic, personal, and commercial, developed 

to address the problem of displaying as many polygons as possible in as little time as 

possible given the limits of the hardware used. The first widely known library developed 

for interactive computer graphics was Ivan Sutherland’s Sketchpad system developed in 

1963 [Suth63]. This library introduced the use of data structures to store graphical 

primitives (i.e. polygons with specific shapes like triangles, squares, and so on), and 

several other features which appear in modern graphics libraries [vanD88, ISO88, SGI91, 

HP91, ARB93, Micr00]. 

These libraries can be sorted into two categories: low-level immediate-mode 

libraries which retain only minimal state between polygon specifications, and high-level 

retained-mode libraries built around the scene graph and the encapsulation of polygon 

meshes into higher-level objects (e.g. the definition of a car-shaped collection of 

polygons as a car). Most retained-mode libraries use an immediate-mode library to 

interface with the graphics hardware; they treat the immediate-mode library as a 

sophisticated device driver controlling the graphics pipeline. 

Every graphics library is concerned with the query and display of the scene 

database, which is the collection of polygons, their attributes (e.g. color, texture, and 

other per-vertex or per-polygon features), and anything else required to implement the 

desired display (lights, cameras, fog, and other items). Data structures such as the scene 

graph is then derived from the contents of the scene database.  
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2.1 Polygon Display 
Every graphics library implements the display (called the rendering) of polygons 

into a framebuffer, that is, a region of memory which contains the pixel array displayed 

on a computer monitor (in certain rare cases, there is no frame buffer and the pixels are 

written directly to the display device). The process of rendering a polygon to the 

framebuffer consists of passing the vertices of the polygon through a pipeline which 

consists of transforming the vertex coordinates of each polygon to camera space, 

projecting those transformed vertices to the screen, clipping the polygons to the view 

frustum, and then performing hidden-surface elimination, rasterization, and shading (see 

Figure 4). 

 

Figure 4. The transformation and display pipeline. 

Much research has been done into the process of efficiently processing polygons 

for display, and this pipeline is frequently implemented in hardware. The graphics library 

(e.g. OpenGL [Sega01] or Direct3D [Micr00]) then acts as a device driver mediating the 

application’s use of the graphics hardware. 

2.2 Immediate-mode Interfaces 
The simplest form of graphics library renders each polygon as the application 

completes its definition. Only a minimal amount of state is retained between library 
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function calls; this state is typically limited to current color, current transformation 

matrix, and similar attributes. Because each polygon is drawn as soon as it has been 

defined, these libraries are called “immediate mode”. Due to their relative simplicity, 

most of the earliest graphics libraries were immediate-mode systems, and a lot of modern 

systems include an immediate-mode interface to better support applications which don’t 

need scene-database management or other sophisticated support in the graphics library. 

Some of the more advanced immediate-mode libraries are Starbase [HP91], Iris GL 

[SGI91] and its derivative OpenGL [Sega01], and Direct3D’s immediate mode interface 

[Micr00]. 

The function calls implemented by these libraries execute quickly because they 

are small, simple, and rarely need to allocate memory or other permanent or semi-

permanent resources. Due to this lack of resource management, they necessarily foist off 

scene-database management and render-state management responsibility onto the user, so 

system performance is almost entirely based upon the quality of the application’s design 

and data structures.  

Immediate-mode libraries include no to minimal support for interaction, as the 

library contains no information about the scene being rendered. Another weakness of the 

immediate-mode library is that it typically is coupled very tightly to a specific piece of 

hardware- IRIS GL does not exist outside of the Silicon Graphics hardware, Starbase 

does not exist off of the HP hardware, and Direct3D is limited to the Intel hardware 

supported by Microsoft. This weakness is not an attribute of all immediate-mode 

libraries, as OpenGL has been ported to more platforms than any other graphics library in 

existence. 
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2.2.1 Display Lists 
The next generation of graphics libraries included rudimentary support for 

retaining geometry through a data structure called a “display list”. A display list is a static 

list of graphics commands that have been organized in the most efficient fashion possible. 

This is why the list is static – any changes may result in the list being sub-optimal, so the 

library does not allow the user to change the list in situ, if a change is desired the old list 

must be destroyed and a new list created. 

Two of the earliest toolkits that included display list support were GKS [ISO88] 

and PHIGS+ [vanD88]. Many modern libraries include support for display lists, most 

notably OpenGL. 

Use of display lists can improve frame rates, as the graphics library is able to 

bundle rendering commands together and transmit them to the rendering pipeline in 

bursts, therefore getting better use of the system bus and other graphics hardware. For 

example, on PC hardware supporting the Accelerated Graphics Bus (AGP) feature 

[Inte98], the NVIDIA OpenGL driver allocates AGP memory for display list storage. 

AGP memory is a part of the machine’s main memory which has a separate high-

bandwidth connection to the video card. 

Display lists are still merely an optimization of an immediate-mode library, and 

contain no support for scene database management, or interaction with the rendered 

scene. 

2.3 Retained-Mode Interfaces 
The most sophisticated libraries that have been created to date are those libraries 

that include scene database management facilities, typically through a data structure 
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known as the scene graph. A scene graph is a graph structure (usually a directed acyclic 

graph) of objects called nodes that are connected by edges. The node objects contain the 

scene-database information, including geometry, materials, textures, lights, cameras, and 

anything else necessary to implement the display. 

The scene graph was first popularized in Silicon Graphics’ IRIS Inventor system 

[Stra92] (later known as OpenInventor [Wern94]), and then refined in their IRIS 

Performer product [Rohl94]. Many other systems implement the scene graph data 

structure in some form, including VRML97 by the VRML Consortium [ISO97], 

NetImmerse from Numerical Design Labs [Bish98], and WildMagic from Magic 

Software [Eber00]. 

Scene-graph libraries provide detailed support for scene-database management 

and operations upon that database, such as interaction, culling, and rendering. The 

performance of the graph traversal algorithm becomes paramount in producing a system 

that can provide a real-time frame rate, and traversal strategies are many and varied, from 

a simple tree walk (VRML, NetImmerse) to an “action” framework (OpenInventor, IRIS 

Performer). 

2.4 Procedural Graphics 
Not all polygons are artist-defined. In many cases, the polygons are algorithmically 

produced. For example, the water effect employed by Bethesda Softworks’ recent title 

The Elder Scrolls 3: Morrowind [Beth02] uses a cellular automaton to generate a normal 

map (i.e. a texture whose texels are normal vectors, not colors, that are then used in the 

lighting equations) to produce ripples in a simple polygon simulating the water’s surface. 
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This allows a minimum number of polygons to be used, with the fine details produced by 

a bumpmapping effect, rather than the use of large numbers of polygons (Figure 5). 

 

Figure 5. A procedurally generated water effect, from The Elder Scrolls 3: Morrowind. Image 
copyright 2002 Bethesda Softworks, Inc., a ZeniMax Media company. 

In this case, both the water’s polygons (a flat plane consisting of tiled triangles) and the 

texture applied to the water’s surface are algorithmically generated. If the ripples were 

implemented using large numbers of polygons instead of the normalmap, the 

performance of the game would be unacceptable, as the frame rate would drop below 

30Hz as the computer spent its time processing the extra polygons. One thing to note is 

that the above water mesh is only a few polygons (on the order of a couple of hundred 

polygons), with the polygons being far larger than the ripples displayed. 
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Another important use of procedural graphics is the addition of shadows to a scene. 

Shadows are an important cue to emphasize that meshes are located on the surface 

they’re resting on, and not hovering slightly above that surface. They also provide more 

information on the shape and location of the shadow-casting object relative to the other 

objects in the scene (see Figure 6).  

 

Figure 6. Real-time shadow casting.

 15



3. Graphics Instruction Set Design 
Graphics hardware was originally merely an application-specific integrated circuit 

(ASIC) that aided the CPU in the display of graphical information. Over the years, and 

especially with the growth in proceduralism in computer graphics, the graphics hardware 

has become a general-purpose computer in its own right. NVIDIA has even begun to call 

its GeForce line of graphics hardware a “GPU”, short for Graphics Processing Unit, to 

emphasize its similarity with the computer’s CPU chip. 

The computer graphics pipeline is essentially a single-instruction multiple-data (SIMD) 

process, where the frame buffer is the data path and the host application is the control 

path. Since every pixel in the frame buffer is conceptually written at the same time, it is 

effectively a parallel process. Modern chips (e.g. NVIDIA’s GeForce3 [Lind01], ATI’s 

Radeon 8500 [ATI02]) have many attributes of vector processors with a vector size of 4, 

since the geometry transformation pipeline works on a stream of homogenous points or 

RGBA color values. 

3.1 Issues in Graphics Instruction Set Design 
The design of the instruction set supported by the graphics hardware reflects the 

challenges of polygon display. Those challenges include, but are not limited to: 

coordinate transformation, polygon rasterization, interpolation of per-vertex attributes 

across a polygon face, evaluation of the Phong lighting equation, texture sampling, 

antialiasing, and the execution of application-defined shader programs. 

The graphics instruction set is not an instruction set in the traditional sense, that is, it is 

usually not a traditional assembly language or microcode. The graphics instruction set is 
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usually a library of functions (also known as an application-programmer interface, or 

API) expressed in a medium- or high-level language such as C or C++. Some modern 

examples of these APIs are OpenGL [Sega01], which is a C language API, and 

Microsoft’s Direct3D [Micr00], which is a C++ language API. Other groups have 

produced wrappers for the OpenGL API in other languages such as Java, Ada, Python, 

and FORTRAN. 

These libraries then interface with a system-level device driver to control the hardware. 

This interface is usually an implementation detail of the graphics library, and invisible to 

the application using the library. 

This thesis will focus on the use of OpenGL as an ISA, even though almost everything 

OpenGL does has been duplicated in whole or in part by Microsoft’s Direct3D and other 

more obscure libraries. Researchers have focused on OpenGL due to its open and well-

documented nature – Microsoft considers much of Direct3D’s internal structure and 

implementation details proprietary trade secrets, and does not disclose them to 

researchers. Some other research projects have proposed APIs that attempt to address 

OpenGL 1.3’s deficiencies [McCo00, Rost02] but none of these projects have published 

any results yet. 

3.1.1 How is OpenGL an ISA? 
The key observation to why OpenGL (and related or similar APIs such as Direct3D) is an 

ISA is that same operation(s) are performed for every pixel in the frame buffer. One 

control path (the execution of the program using the OpenGL API) acts on the elements 

(i.e. pixels) of the frame buffer in a conceptually parallel fashion, much as a SIMD 

computer operates. The frame buffer acts as an accumulator, texture memory acts as per-
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texel memory, the blending functions implement basic arithmetic operations, lookup 

tables support function evaluation, and the conjunction of alpha testing and the stencil 

buffer provide conditional execution. 

An alternative approach to programmable hardware places the programmability within 

each pass. Rather than executing a large number of passes each performing one complex 

operation, each pass executes a number of simple instructions. This is the approach taken 

by Proudfoot’s Real-Time Shading Language [Prou01].  

Over the past couple of years, a couple of shading-language compilers have been written 

that target the OpenGL API [Peer00, Prou01]. All of these compilers support languages 

similar to the RenderMan shading language [Upst90] – one [Peer00] makes RenderMan 

support explicit. Each language differs in how it abstracts the graphics hardware. 

More recent work adds high-level shading language support to the OpenGL specification 

itself. NVIDIA’s Cg language compiler [NVID02] is a conventional compiler that emits 

vertex and fragment program code, while 3DLabs’ OpenGL 2.0 Shading Language 

[Bald02] works directly with the graphics hardware device driver, compiling straight to 

the hardware with no intermediate instruction set. 

3.1.2 OpenGL as SIMD Machine 
Peercy et al’s OpenGL compiler [Peer00] makes the SIMD model of computation 

explicit. Each element of the OpenGL framebuffer is a 4-byte quantity usually organized 

into four numbers, one each for the red, green, blue, and alpha (i.e. opacity) values. The 

interpretation of those numbers as color and opacity values is merely convention, 

however, so they can be redefined to correspond to whatever the application requires – a 

four-element homogenous point, a triple such as a point or normal and a single number, 
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two two-element tuples, or four independent values. Values stored in the framebuffer can 

vary on a per-pixel basis, since each element of the framebuffer is independent of the 

other framebuffer values. In addition, the program can set a write mask controlling which 

framebuffer element(s) are written to, through the glColorMask() function. 

Variable storage and manipulation is managed by copying portions of the framebuffer to 

a texture image, via the glCopyTexSubImage2D() function. These images need not 

contain all four floating-point values per texel; texture images may contain just one 

channel of information (i.e. a heightmap or greyscale image), three channels (an RGB 

image), or all four channels (an RGBA image). To use a variable a textured polygon is 

drawn, using a projective texture so that texel (i.e. variable) interpolation can be strictly 

controlled. 

Arithmetic operations are performed using framebuffer blending operations. All blending 

operations have two arguments: a source (i.e. a fragment) and a destination (i.e. the 

framebuffer). The fragment can either be produced by drawing some geometry, or by 

copying from a texture or framebuffer with glCopyPixels(). The functions 

glBlendEquation(), glBlendFunc(), and glLogicOp() support copying, addition, 

multiplication, alpha blending, and logical operations. Subtraction is done by addition of 

negative values, and division is done through multiplication by the reciprocal. 

To implement monadic mathematical functions (such as many trigonometric functions), a 

texture is created whose texels (i.e. texture elements) contain a lookup table. A pixel copy 

from one texture to another, or from the framebuffer to a texture, then evaluates the 

function. 
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Flow control is done through the stencil buffer and the glStencilFunc() and glStencilOp() 

functions. Various bits of the stencil buffer are then used to identify the object being 

operated upon, and the conditions that are satisfied. Only one bit is required per 

condition; adjacent bits represent nested conditions. If the condition varies across the 

frame buffer, the alpha test function is used to select the frame buffer pixels that satisfy 

the condition. Because a SIMD computation is being implemented, both branches of the 

if-then-else conditional are being evaluated; complementing the stencil operation 

provides the other execution path. 

3.1.3 Abstract Programming Pipelines 
The SIMD model is not the only theoretical model that a shading language compiler can 

support. Proudfoot et al’s real-time shading language compiler [Prou01] separates shader 

execution into several categories of pass: constant, per-primitive, per-vertex, and per-

fragment (see Figure 7). 

 

Figure 7. Computation Frequencies. Different colors denote independent elements within each 
frequency. 

The fundamental difference between Peercy’s approach and Proudfoot’s system is that 

while Peercy treats each pass as a single complex SIMD instruction, Proudfoot treats 

each pass as a sequence of many simple instructions. Proudfoot then points out several 

fundamental differences between the two theoretical models: 
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• Vertex programmability (as opposed to fragment programmability) provides a 

more natural interface to properties that vary slowly across a polygon (such as 

lighting). 

• Vertex programmability provides a more natural map to the programmer’s 

conceptual model of the graphics pipeline. 

• There are bandwidth bottlenecks between the graphics chip and framebuffer, 

and between the host computer and graphics chip. Each rendering pass crosses 

both of these bottlenecks, so the number of passes should be minimized to 

improve performance. Proudfoot also notes how VLSI technology trends 

indicate that the ratio of graphics chip performance to external memory 

bandwidth will continue to increase, favoring an approach that minimizes the 

number of passes. 

• The SIMD model breaks down as each pass grows more complex. Higher-

level, more complex instructions could be developed, but such instructions 

would be so application-specific as to be practically unused by all other 

programs that require a different combination of operations. 

Proudfoot defines an abstract programmable pipeline (Figure 8) that his compiler then 

targets. This pipeline is designed to be easily mapped to OpenGL 1.3 (using the  NVIDIA 

OpenGL extensions [NVID00]) or DirectX 8.0’s Direct3D library. The stages are ordered 

in increasing frequency of computation, that is, there are more vertices than primitives in 

the geometry being rendered, and far more fragments than primitives or vertices. 

Between each stage of the programmable pipeline are fixed-function pipeline stages (i.e. 
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the conventional OpenGL pipeline) that implement the non-programmable parts of the 

graphics display pipeline. In particular, the polygon rasterization step that produces the 

fragment set and the interpolation of color and coordinate information across a polygon 

occurs between programmable pipeline stages. 

 

Figure 8. The abstract programmable pipeline. 

Conceptually, the abstract programmable pipeline executes all shaders in a single pass. In 

practice, many large shaders are executed using more than one pass, although the 

multipass nature of the shaders is considered an implementation detail. 

3.1.4 Other Graphics Instruction Sets 
OpenGL is not the only graphics API that has been developed to support programmable 

hardware. Michael McCool at the University of Waterloo has developed the Simple 

Modeling and Shading API, also known as SMASH [McCo00]. SMASH makes the 

observation that there is a continuum of ways to implement programmable shading: 

• Pure multipass 

• Multipass with multitexturing 

• Multipass with per-fragment shaders 

• Multipass with per-vertex and per-fragment shaders 
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• Single pass with fallback to multipass 

For example, Peercy’s OpenGL Shading Language uses a multipass with multitexturing 

model, while Proudfoot’s Real-Time Shading Language uses a single-pass model. 

McCool notes that the single-pass approach offers several advantages over the multipass 

model: it keeps all relevant information in one place, the shaders can be unrolled to a 

multipass implementation if performance is an issue, and trying to combine an already 

multipass shader into a single-pass shader can be very difficult. More importantly, single-

pass shaders cross the bottlenecks of host computer – graphics chip and graphics chip – 

frame buffer only once, while a multipass shader crosses these bottlenecks once per pass. 

3.2 Per-Vertex and Per-Fragment Instruction Sets 
A recent development in graphics hardware architecture has been the introduction of per-

vertex and per-fragment programmability [Micr00, Lind01]. These capabilities have been 

exploited to support real-time shading languages [Peer00, Prou01, NVID02, Micr02, 

Bald02, McCo00]. 

Hardware support for per-vertex and per-fragment programmability has been introduced 

into the market by NVIDIA with their GeForce3 series of graphics acceleration chips 

[Lind01] and ATI with their Radeon 8500 series of graphics accelerators [ATI02]. The 

vertex program model is displayed in Figure9. Vertex attributes are stored in the input 

registers, and the processed vertex is stored in the result registers. The parameter banks 

contains lighting and shading parameters, and the variable banks provides temporary 

storage. A function unit implements the 17 instructions in the vertex program instruction 

set. Each instruction’s parameters can either be negated, or swizzled (i.e. permuted), to 
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simplify the implementation of common operations such as the cross product R1 = R0 x 

R2, as displayed in: 

MUL R1, R0.zxyw, R2.yzxw; 
MAD R1, R0.yzxw, R2.zxyw, -R1; 

Algorithm 1. Computing a cross product using the vertex program instruction set. 

MUL performs a component-wise multiplication of the second and third arguments and 

stores the result in the first argument. MAD implements a component-wise multiplication 

of the second and third arguments, adds the fourth argument to the product, and stores the 

sum in the first argument (hence the name “MAD”, short for multiply and add). Note the 

use of swizzling and negation to perform the source vector rotations. 

 

Figure 9. The vertex program model. 

Table 1 displays the instruction set. Note the absence of branching instructions. The 

fixed-function pipeline, that is, the nonprogrammable portions of the graphics library, is 

controlled by a global state that does not depend on each vertex’s data. Driver-level 
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optimizations of this pipeline preclude branching within vertex programs, as branches 

may affect the global state and therefore violate assumptions made by the drivers. 

Instruction Description 

MOV Move 

MUL Multiply 

ADD Add 

MAD Multiply and Add 

DST Euclidean Distance 

MIN Minimum 

MAX Maximum 

SLT Set on Less-Than 

SGE Set on Greater-Than or Equal 

RCP Reciprocal 

RSQ Reciprocal Square Root 

DP3 3 element dot product 

DP4 4 element dot product 

LOG Logarithm (base 2) 

EXP Exponentiation (base 2) 

LIT Phong Lighting 

ARL Address Register Load 

Table 1. The vertex program instruction set. 

3.3 High-level Shading Languages 
 
The Cg language announced by NVIDIA Corporation [NVID02], and its sister D3DX 

High-Level Shading Language (HLSL) announced by Microsoft [Micr02], do not target a 

graphics API like OpenGL (targeted by Cg) or Direct3D (targeted by both Cg and 

HLSL), but rather they are part of their respective libraries. When a shader program is 

compiled, it results in a stream of vertex program or texture shader instructions that are 

exactly analogous to the compilation of ANSI C code to (for example) Intel Pentium 4 

assembly-language instructions. These instruction streams are then downloaded into the 
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graphics hardware for execution in the same manner as if the shading language was not 

employed. 

The OpenGL 2.0 Shading Language recently proposed by 3D Labs [Bald02] also does 

not target OpenGL in the traditional sense, but rather it is part of OpenGL itself. 

Compilation of shader programs results in platform-specific object code that directly 

interfaces with the system-level graphics device drivers, not a set of functions in a high-

level language such as C that use the OpenGL library to interface with the graphics 

hardware. 

The OpenGL shading language does not abstract the graphics hardware in terms of the 

OpenGL library; it uses the abstraction already defined as part of the OpenGL 2.0 

Proposal [Rost02], which models the graphics hardware as a state machine (Figure 0). 

 

Figure 10. The OpenGL 2.0 Logical Diagram (Figure 2 in [Rost02]). The white boxes are components 
that are unchanged from OpenGL 1.3. 
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4. The Render Graph 
The render graph is a data structure designed to aid in the display of scene-graph 

data. It is a graph structure whose nodes, called render actions, each represent one 

operation executed by the underlying graphics library. These actions are then reorganized 

to implement the optimal execution of their effects and executed by traversing the graph, 

producing the contents of the frame buffer that is then displayed to the user. 

There are many similarities between the render graph’s stream of render actions 

and the stream of instructions emitted by a compiler such as a conventional C language 

compiler or a shading language compiler such as Cg. One important advantage of the 

render graph is that over the years since the initial implementation of the render graph in 

1999 it has been simple to incorporate technologies such as vertex and fragment 

programs, and shading language support for languages like Cg. 

4.1 Related Work 
This data structure was developed after making the critical insight that the display 

of scene-graph data depends on the execution of a stream of graphics-library function 

calls in a specific order, and the order of these function calls is critical both for the 

correctness of the frame-buffer contents at display time, and to make the most efficient 

use of the graphics hardware. This graphics instruction stream is generated through 

traversal(s) of a scene graph. Simple traversal of the scene graph, where each node is 

visited exactly once, is insufficient to correctly display the scene graph contents if the 

graph contains sophisticated information such as transparency. Existing scene-graph 

libraries, such as NetImmerse [NDL99], OpenInventor [Wern97], or Wild Magic 

[Eber00], address this problem through complex traversals of the graph nodes, where 
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nodes are usually visited multiple times and the traversal order is not linear (i.e. traversal 

may not proceed from the parent node to its child nodes or vice versa, but rather may 

jump to non-adjacent nodes). Recent work at SGI has produced a sequence of libraries 

that further develop and expand the idea of scene-graph transformation as a fundamental 

operation to provide support for advanced features [Birc97, SGI98]. 

This stream of instructions is similar to the stream of assembly language 

instructions generated by a compiler parsing a program written in a high-level language. 

A similar observation was made by [Peer00], where they develop the insight that the 

functions of the OpenGL library [ARB93] can be considered as an “assembly language” 

for the SIMD computer the OpenGL state machine implements. We can use this 

similarity to apply algorithms developed in the compiler and interpreter literature to 

optimize this stream of graphics-library instructions for targets like fastest execution, 

minimal use of resources such as texture or frame buffer memory, or elimination of 

repeated operations through common subexpression evaluation passes. 

The RenderWare library produced by Criterion Software [Crit00] also 

disassociates the traversal of the scene graph from the execution of graphics library 

instructions, through their PowerPipe data structure. Criterion’s PowerPipe is similar to 

the render graph in that iterating over the elements of the PowerPipe generates the 

display, but the PowerPipe exists at a higher level than the render graph, where each 

element of the PowerPipe represents more than one graphics-library call. Because of this, 

it is possible to perform optimizations upon the render graph that aren’t possible with 

PowerPipe. 
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The real-time procedural shading system developed by Proudfoot et al [Prou01] 

decomposes the display commands into a directed acyclic graph (DAG) that is then 

transformed into graphics library function calls in a manner similar to [Peer00]. The 

DAG nodes are operators that are interpreted by an abstract programmable pipeline 

representing the shading language’s computational model. While Proudfoot’s system is 

concerned specifically with procedural shading of geometry, the render graph abstracts 

the entire display process, including any procedural shaders that may be necessary. Many 

optimization techniques employed by both [Peer00] and [Prou01] can be implemented 

within the render graph structure. 

4.2 Render Actions 
The fundamental component of the render graph is the render action structure (see 

Figure 71). The render action is an atomic (i.e. indivisible) operation which implements 

one operation of the display process. This operation may be the execution of one 

function, a sequence of functions, or the setup of an argument to a function to be 

executed later. The implementation of each action is dependent upon both the graphics 

library the render graph is built upon and the hardware it’s executing on; for example, a 

render action that draws a polygon would have different implementations if OpenGL 

were used versus Direct3D, or if it were executing on Nintendo’s GameCube versus a 

Sony PlayStation 2. 
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Figure 71. Render Action structure and some sample actions. 

 A stream of render actions is emitted during the traversal(s) of a scene graph 

structure. This stream is then parsed to implement the display. The stream is implemented 

as a directed graph that is the render graph itself, which is frequently acyclic although the 

compilation of procedural shaders may introduce cycles into the graph structure. It is at 

this point that several optimizations may be performed, and these optimizations will be 

discussed below. 

4.2.1 Scene Graph Traversal 
Render actions are created and attached to the render graph during the traversal of 

the scene graph. This traversal need only be a simple traversal of the scene graph, such as 

an infix traversal [Knut97], where each scene-graph node is visited exactly once. This is 

an important practical advantage of the render graph, in that the scene graph structure is 

traversed exactly once (per rendering pass) without the need for complex and difficult-to-

maintain traversal mechanisms. 

function CreateRenderGraph (SceneGraph scene_graph) 
{ 
    RenderGraph render_graph; 
 
    BuildRenderGraph (GetRootNode (scene_graph), render_graph); 
 
    return render_graph; 
} 
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function BuildRenderGraph ( 
    SceneGraphNode node, RenderGraph render_graph) 
{ 
    Previsit (node, render_graph); 
    Visit (node, render_graph); 
    VisitChildren (node, render_graph); 
    Postvisit (node, render_graph); 
} 

Algorithm 2.  Render Graph Creation. Render Actions can be created in each visitation function. 

Algorithm 2 displays the algorithm used to create the render graph. When a scene 

graph node is visited, one or more render actions may be instantiated and attached to the 

render graph. For example, Algorithm 3 displays the function used to draw a textured 

triangle. In that function, the following actions would be generated: translate, rotate, 

scale, enable texturing, set texture modulation function (these five actions are only 

emitted if necessary), bind texture (if it was not already bound during the traversal of a 

previously visited scene-graph node), draw triangles (see Figure 2). The reason the first 

five actions may not be emitted is to optimize performance- if an action is not necessary 

it is not emitted, so that no time is spent executing an action that would result in an 

identity transform of the graphics state (especially when emitting such actions would only 

complicate the optimization algorithms). 

function VisitTriangles (SceneGraphNode node, RenderGraph graph) 
{ 
    // Precondition: node is a scene graph leaf node containing 
    // a set of triangles to be displayed 
 
    if (node has a translation applied to it) 
    { 
        graph.AddRenderAction (TRANSLATE); 
    } 
 
    if (node has a translation applied to it) 
    { 
        graph.AddRenderAction (ROTATE); 
    } 
 
    if (node has a translation applied to it) 
    { 
        graph.AddRenderAction (SCALE); 
    } 
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    for (each property attached to node) 
    { 
        // Properties are attributes that affect the render state 
        // like polygon mode (e.g. solid or wireframe), blend function, 
        // cull mode, depth buffering, and texture modulation function. 
        graph.AddActionsForProperty (property); 
    } 
 
    for (each shader attached to node) 
    { 
        // Shaders are attributes that affect the appearance 
        // of the triangles like materials, textures, vertex or 
        // fragment programs, or high-level shader language programs. 
        graph.AddActionsForShader (shader); 
    } 
 
    graph.AddRenderAction (DRAW_TRIANGLES); 
} 

Algorithm 3. The Render Graph Visitation function for a set of triangles. 

 

 
Figure 12a and Figure 12b. A simple scene graph (not shown is that the triangles have a texture 

applied to them) and the render graph generated from that scene graph. 

As Algorithm 2 displays, node visitation is split into three phases: previsitation, 

visitation, and postvisitation. This is done to accommodate the order dependency inherent 

in many of the rendering operations, and also to simplify the allocation and deallocation 

of limited resources such as textures and lights. Phase order is fixed: previsitation is 

guaranteed to occur before visitation, and postvisitation is also guaranteed to occur after 

visitation. The children of the node being visited will be visited after the current node’s 
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Visit() function has executed, and before its Postvisit() function is executed. These 

functions need not be member functions of the scene graph library, but adding such 

support to the scene graph greatly simplifies render graph generation. 

During previsitation, graphics hardware resources such as lights are allocated and 

enabled, the matrix stack is pushed if necessary to allow the local coordinate system to be 

modified without affecting the parent coordinate system, vertex, fragment, and/or shader 

programs are allocated, loaded, and enabled, and the alpha blending function is 

configured and enabled.  

Visitation is where the bulk of the rendering process happens. During the 

execution of the Visit() function, lighting and material parameters are assigned, textures 

are bound, the local coordinate system is set up if necessary, and the geometry is 

downloaded to the graphics hardware. The traversal process then proceeds to the children 

of the node being visited (if it has any children) through the execution of the 

VisitChildren() function, which calls the BuildRenderGraph() function of Algorithm 2 on 

each child node. 

Postvisitation is used to deallocate all resources no longer needed and to disable 

features no longer needed such as lighting and texturing so that the graphics pipeline is 

only performing the minimal number of calculations necessary to generate the display. 

An important feature of postvisitation is that it is done after the subgraph rooted at the 

node being visited has been traversed, so that inherited attributes such as the local 

coordinate system behave correctly. 
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4.2.2 Group Actions 
Subgraphs within the render graph can be organized into group actions, which 

have several uses. Group actions are useful for implementing multipass effects (see 

section 4.2.3 below), performing optimizations such as common action elimination 

(similar to the common subexpression elimination performed by compilers), and as the 

integration point of the output of an interactive shading language compiler (such as the 

OpenGL shading language described in [Peer00] or the Interactive Shading Language 

described by [Prou01]). The shading language compiler could either be architected to 

directly emit a stream of render actions, i.e. a back-end would be added to that compiler 

that targets the render graph as opposed to another graphics library, or a post-processor 

can be written to transform the calls to a graphics library the shader compiler emits into 

render actions. 

4.2.3 Multipass Effects 
Computer games such as id Software’s Quake 3 [Jaqu99] and Bethesda 

Softworks’ The Elder Scrolls 3: Morrowind [Beth02] make extensive use of visual effects 

built through the composition of multiple passes over the scene’s geometry, with 

different colors, lights, and/or textures applied to that geometry. Use of these techniques 

are now quite common in the game development industry, and are instrumental in the 

implementation of effects such as more complex lighting and shadow effects, the 

simulation of natural phenomena like water ripples or clouds and other gaseous effects, or 

the use reflection and refraction effects to better simulate transparent and/or translucent 

surfaces. 
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These effects can be implemented in one of two ways given the architecture of the 

render graph: Either the scene-graph nodes can be visited several times, once per render 

pass, and the necessary render actions will be generated upon each visitation, or they can 

be visited only once, with each pass represented by a separate group action containing the 

render actions necessary to implement that pass. Note that the render graph is not 

recreated upon each traversal! Since each pass is usually substantially similar to the 

previous pass, many render actions need not be recreated, only referenced avoiding 

expensive memory allocation operations. 

Given that each pass of a multipass effect is encapsulated within a render group, 

this implies that each frame of the display is then composed of a set of at least one render 

group containing the necessary actions to generate the frame buffer contents. 

4.2.4 Multiplatform Support 
Each render action’s semantic meaning is implemented through its render() 

function. The implementation of this function can be varied to provide support for 

different graphics libraries (e.g. OpenGL or Direct3D) or different hardware (e.g. 

Microsoft’s Xbox or Nintendo’s GameCube). This is a result of the render action being 

an instance of the Facade pattern [Gamm94]. Indeed, the hardware supported can be 

varied independently of the software (i.e. graphics library) supported, with the caveat that 

if you want to support m hardware platforms and n graphics libraries there must be m * n 

implementations of the render() function. 

Further platform independence is achieved through the use of standard 

technologies such as ANSI/ISO C++ to implement the algorithms described within this 

thesis. 
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4.3 Render Graph Optimization 
A key benefit of the render graph is the ease of which the graph actions can be 

reorganized to improve display speed, take advantage of machine-specific hardware 

and/or software features, and provide for the most efficient implementation of 

sophisticated features such as transparency or programmable shading in the context of a 

retained-mode polygon display library. 

4.3.1 Coherency 
The organization of the render graph into an ordered set of render actions allows 

the implementation to take advantage of the temporal coherency of the scene graph. 

Between any two frames of the displayed content, there frequently has not been a lot of 

change in the structure of the scene graph, or in the related parameters used to generate 

the display. We can take advantage of this similarity to reduce the number of render 

actions that need to be created, deleted, or changed. This is especially important because 

memory allocation and deallocation can be time-expensive operations, so any memory 

management that can be avoided should be avoided to reduce the amount of time 

necessary to generate the frame buffer’s contents. 

4.3.2 Interpreter Design 
Due to the similarity between the render graph’s stream of render actions and the 

stream of instructions executed by a bytecode interpreter, we can take advantage of some 

optimization techniques developed by the interpreter-implementation community. For 

example, the core routine used to implement each render action is a switch statement 

whose predicate is the render action type. This is no different from the core routine of a 

bytecode interpreter, where it switches based upon the opcode type. We can take 
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advantage of implementation techniques such as threaded code to improve the 

performance of the core routine. 

4.3.3 Hardware-Specific Optimization 
Each render action is implemented via its display() function. The implementation 

of this function is affected both by the target graphics library (e.g. OpenGL or Direct3D) 

and by the target hardware (e.g. NVIDIA’s GeForce3 or ATI’s Radeon 2). The current 

implementation of the render graph in the NeoTech content presentation engine [Zeni00] 

uses several OpenGL extensions as defined and implemented by NVIDIA [NVID00] to 

use NVIDIA’s GeForce 3-class hardware [Lind01] in the most efficient way possible. If 

these extensions are not available (for example, if the machine has a graphics card not 

manufactured by NVIDIA) then the NeoTech engine uses slower routines that the 

OpenGL 1.3 specification guarantees will be available in every standard-compliant 

implementation of OpenGL. 

Note that the render action’s display() function is an instance of the Facade design 

pattern [Gamm94]. The use of the Facade pattern provides both a uniform interface 

between the low-level graphics library and the render graph management functions and a 

path to provide for graceful degradation of graphics features if the underlying hardware 

does not support a necessary function through software implementation of that function. 

4.3.4 Analysis 
Do these optimization algorithms offer a benefit over existing scene graph 

libraries? No other library takes the “graphics library as instruction set” paradigm to its 

logical conclusion and applies that abstraction to the entire display system. This allows 

 37



the render graph to use algorithms from the interpreter design literature to execute the 

action stream efficiently. 

No other library fully decouples the execution of graphics library instructions 

from the traversal of the scene graph, which allows the render graph to reorganize the 

execution sequence of the graphics library instructions to solve all of the problems 

detailed above. 

More importantly, these two attributes of the render graph allows optimizations 

that take advantage of spatial and temporal coherency. Since the scene graph is a 

relatively static structure (it only changes if the scene changes) other approaches find it 

more difficult to take advantage of these kinds of coherency, involving manipulation of 

the scene graph itself or increasingly complicated traversal algorithms. Since the render 

graph is in effect the sequence of graphics-library instructions that must be executed to 

generate the display, it provides everything necessary to do analysis of the run-time 

complexity of the scene-graph display. To perform this analysis in another scene-graph 

display package a data structure remarkably similar to the render graph would be 

required. 

The decoupling of the execution from the traversal also allows the render graph to 

be applied to any scene-graph library (although, as discussed above, a little support from 

the scene graph greatly simplifies the implementation of the render graph). Clearly 

defining the execution interface simplifies the support of multiple hardware platforms 

though the implementation of hardware-specific back ends via the Facade pattern. 
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5. Results 
The render graph structure was implemented as part of the NeoTech content 

presentation engine developed for ZeniMax Technology, Inc. [Zeni00], and used in 

several technology demonstration projects there. 

5.1 Implementation Details 
The render graph was implemented in ANSI/ISO C++ for the NeoTech project at 

ZeniMax Technology, Inc. Graphics library interfaces were implemented for OpenGL 1.2 

(requiring the extensions GL_ARB_multitexture , GL_ARB_texture_compression , 

GL_NV_vertex_array_range , and GL_NV_fence for basic support and 

GL_NV_vertex_program , GL_NV_texture_shader , GL_NV_register_combiners, and 

GL_NV_register_combiners2 for NVIDIA GeForce3 support [NVID00]) and the DirectX 

8.0 version of Direct3D [Micr00]. 

5.1.1 Memory Management 
Memory management is crucial to the practical viability of the render graph. 

Since so many render actions are generated each frame, their allocation and deallocation 

overhead can have a huge impact upon the performance of the rendering loop. 

Each render action is allocated from a memory pool, which is a specialized 

allocator tuned to provide constant-time allocation and deallocation of identically sized 

elements with no resulting fragmentation of the pool memory. 

The memory pool can be easily be replaced by a garbage collector, such as the 

mostly-copying conservative collector implemented by Boehm and Weiser for the C 

language [Boeh88]. Use of a C language garbage collection library has the advantage of 
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being able to be used for all of NeoTech’s memory management, not just the allocation 

and deallocation of render actions. 
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6. Conclusions and Future Directions 
In this thesis, I have described in detail a new method of implementing the display 

of scene graph data. This method consists of a data structure called the render graph, 

which is built during a traversal of the scene graph. The render graph is a single data 

structure that addresses all of the problems encountered during the display of scene-graph 

data.  

The easily rearrangeable nature of the render actions address the problems of 

camera-space dependencies, as actions can be reorganized as necessary so that a simple 

linear traversal of the render graph visits each action in the correct order. Aggregate 

actions such as the group action simplify the organization of the render actions, and 

simplify the implementation of multipass effects where a set of actions need to be 

evaluated several times in sequence. 

The render graph addresses the problem of using the graphics hardware in the 

most efficient fashion through analysis and modification of the stream of render actions. 

By carefully tracking the render state during traversal of the scene graph, the emission of 

redundant render actions can be suppressed, and the render action stream can be 

reorganized to expose further redundancies and otherwise minimize the number of 

render-state changes. 

The render graph has an important side effect of providing an abstraction layer 

that offers a measure of platform independence. This has been demonstrated through 

support of both the OpenGL and Direct3D graphics libraries in the NeoTech content 

presentation engine. 
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Future development of the render graph will concentrate on support for new 

rendering technologies, such as the programmable geometry hardware now being sold by 

companies such as NVIDIA and ATI in their GeForce 4 and Radeon 2 products 

respectively, and support for real-time shading languages like the ones being developed 

at SGI [Peer00], NVIDIA [NVID02], and Stanford [Prou01]. 

Reorganization of the render actions offers many more possibilities for further 

optimization of the display process, and for support of technologies like the 

programmable hardware mentioned above.  
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