
Applying Traditional Animation Techniques
to Computer Animation

by

Eric J. Wessels

B.S. January 1993, George Mason University, Fairfax,
V

A Thesis submitted to

The Faculty of

The School of Engineering and Applied Science
of The George Washington University in partial
satisfaction of the requirements for the degree of Master of
Science

June 1998

Thesis directed by

Dr. James K. Hahn
Associate Professor of Engineering and Applied
S i

© Copyright 1998 by Eric Wessels

Contents

ABSTRACT ...1

CHAPTER 1 ..2

INTRODUCTION..2
1.0 Background..4
1.1 Shortcomings of previous methods and proposed resolution ..9

CHAPTER 2 ..12

SYSTEM OVERVIEW...12

CHAPTER 3 ..19

THREE-DIMENSIONAL ROTOSCOPING ...19
3.0 Overview ..20
3.1 Rotations ..27
3.2 Position ..34

3.2.1 Bounding Volumes..35
3.2.2 Perspective ..35

CHAPTER 4 ..38

EXTRACTING MOTION FROM A SINGLE VIEW ..38
4.0 Overview ..38
4.1 The Foreshortening Problem...44
4.2 The Foreshortening Solution ...46
4.3 Deriving motion from the character itself..48
4.4 Path Generation...50

CHAPTER 5 ..53

MOTION EDITING...53
5.0 Overview ..53
5.1 Mimicking Spacing Charts with a Timing Curve...54
5.2 Fine Tuning Spatial Transitions ..59
5.3 Exaggerating Motion ...60

CHAPTER 6 ..62

CONCLUSION ...62

APPENDIX A ..67

FRAMES OF REFERENCE...67
A.0 Description ...67
A.1 The View Frame ..69

 i

A.1.1 The Window Frame..70
A.1.2 Constructing the View Frame...70

A.2 The World Frame ..71
A.3 The Object Frame..71
A.4 The Link Frames..71

A.4.1 Degrees of Freedom ...72
A.4.2 Transformation Matrix ...72

APPENDIX B...74

ROTATIONS..74
B.1 Schemes of Rotations...74
B.2 Spherical Coordinates...75
B.3 Euler Angles ..76
Appendix C...79
References..80

 ii

Abstract

This thesis presents an approach to character animation that employs computer-

based tools which build upon techniques used in traditional animation. Rotoscoping and

spacing charts are techniques familiar to the animator and, thus, provide a comfortable

working environment which he understands and which he knows has produced good

results in cell-animation for decades. Rotoscoping generates the initial motion the

animator wishes to express, and spacing charts allow the entire motion to be enhanced

and to be expressed more fluidly from beginning to end. A computer system capturing

these traditional animation techniques is presented which will reduce the labor intensive

activities of the animator, enhance the final product and not burden the animator with

unfriendly, or excessively technical tools to accomplish his task.

 1

Chapter 1

Introduction

The creation of life-like character animation has been one of the most challenging

tasks in computer animation. Humans are among the most important and interesting

objects simulated using computer graphics, but they are also the most difficult to

convincingly animate. Despite the difficulties in creating life-like character animation,

traditional animators have used techniques for decades which have proven successful.

While many approaches have been introduced in the computer animation field for the

purpose of character animation, none allow the computer animator to work in a fashion

closely resembling that of his traditional animation counterpart using the techniques that

have proven successful for so many years. As a step in this direction, this paper describes

an approach to character animation which allows the computer-based animator to use

techniques closely analogous to those of his traditional animation counterpart.

Furthermore, the tools presented in this thesis are designed to be intuitive enough that

even traditional animation artists who are not savvy with current computer-based

approaches can utilize this system.

 2

Despite the variety of tools that have been introduced in computer animation for

the purpose of character animation, few have been accepted by animators. The success of

any new tool introduced to assist in character animation will depend upon whether the

animator finds the tool helpful and less laborious to use than other tools that are currently

available. This approach focuses upon enhancing procedures that have proven successful

in producing expressive, believable animated characters by providing tools to the

animator that are easy to use and reduce the amount of labor needed to accomplish the

animator’s tasks. Computer-based animation has had great success, nonetheless the tools

would be of even greater benefit to the animator if they blended into the work

background he recognizes and assisted in accomplishing his tasks in a less laborious and

more intuitive manner than what is currently available. Thus, the motivation for the

approach presented here is to benefit animators by creating computer-based tools that are

designed to correlate to concepts in traditional animation that are known to produce good

results and are well-understood. The approach focuses on providing motion control

solutions which the animator can use in an intuitive manner to address various problems

presented in animation. It attempts to present a technological solution that the animator

can understand and a collection of tools for character animation that the animator will

find easy to use because they are designed to correlate to concepts familiar to him. In the

next section, existing methods for character animation are examined to help place into

context the techniques developed for this thesis.

 3

1.0 Background

Expressing human-like movement is one of the most difficult problems in

computer animation. The specification of movements requires complex articulations

involving up to 200 degrees of freedom. The difficulty is increased due to the fact that

humans are sensitive observers of each other’s motions and can easily detect erroneous

movements. Even for simple models of the human figure, there are approximately 70

parameters that have to be specified for every frame of animation. As a result, much

research has focused on ways to reduce the amount of specification necessary.

In this section, motion control techniques for articulated figure motion are

examined. The section will begin with a description of the traditional animation

techniques which are implemented in this system, namely rotoscoping and spacing charts.

This is followed by a description of the evolution of computer-based techniques from

low-level parametric keyframing to high-level procedural systems. Since spacing charts

are used to create variations of motion, the reusability of motion in existing approaches is

discussed. Finally, the drawbacks of current approaches are discussed and the proposed

benefits of this approach are discussed thereafter.

In the production system pioneered by Walt Disney, keyframing is a technique

where skilled animators design a particular sequence by first drawing “extreme”

positions in the action - called keyframes. These keyframes are carefully thought out in

regard to the action, dramatic presentation, interpretation of mood, reinforcement of story

 4

and scene composition. After the keyframes are drawn, the sequence is then passed on to

less-skilled artists to fill-in the in-between drawings. To guide the in-between artists, the

keyframe artists create spacing charts and motion arcs to plan timing and limb

trajectories for the completed sequence. The importance of spacing charts is their ability

to convey timing information which is essential for both the expressiveness and the

realism of the character. Timing “breathes life” into the character. While very tedious,

this process allows animators to convincingly animate the characters they have designed.

 To supplement the keyframing technique, the Fleischer brothers pioneered a tool

in the 1920’s which is still widely used in character animation today, called rotoscoping.

For human-like characters with arms and legs, it was an easy and relatively quick way to

generate motion. In its purest form, it entails ‘tracing over’ live action with pencil

sketches of the character. The real actor is simply copied over with the character. This

form of rotoscoping can still be seen today in the Tony The Tiger commercials as well

as the McGruff the Crime Dog public service announcements.

 Disney animators, however, found that this pure-rotoscoping approach didn’t

recreate the illusion of life and that characters created in this fashion often moved in an

unnatural and awkward manner. Animators chose instead to view rotoscoping as a guide

for complicated movement, used for generating new sketches rather than simply drawing

the character over the live actor. This technique, which could be dubbed half-

rotoscoping, continues to be used in Disney pictures today. A film heavily employing

 McGruff The Crime Dog is a registered trademark of the National Crime Prevention Council

 5

rotoscoping in recent years was Who Framed Roger Rabbit which combined animation

and live action.

 The most revolutionary change in the last 20 years is the advent of computer-

based animation. It has resulted in an explosion of new tools available to the animator. In

the early 1980’s, the computer became powerful enough to become an attractive option in

the creation of animation. Computer-based animation presented a new set of problems

with no direct analogy to traditional animation. Yet, it also presented some definite

advantages. Lasseter in his famous 1987 Siggraph paper [2] described some of these

advantages including how complex motion could be built in an additive manner using

animation layers. His paper also presented solid examples of how the Disney principles

could be followed in computer-based animation.

 The first tools introduced for character animation centered around a motion

control technique called parametric keyframing [3][4] which was a derivative form of

traditional pose-planning. In parametric keyframing, tools are designed to allow the user

to interactively manipulate low-level motion parameters such as joint angles and

coordinates. To create movement, the user configures the rigid body for the articulations

at “key” frames and relies on the system to generate intermediate frames. It is a

notoriously time consuming task. At the same time, high-level interactions, such as body

motion in its environment and interaction with other figures, must be explicitly

 Tony The Tiger is a registered trademark of the Kellogg Company
 Who Framed Roger Rabbit is copyright of Walt Disney Company and Amblin Pictures

 6

expressed. In the end, the realism of the movement relies solely on the experience and

talent of the animator.

 Other motion control techniques have been introduced to abstract away from low-

level joint angle manipulation and allow higher-level specification. They attempt to

achieve realistic motion while minimizing the workload of the animator. Two of interest,

because of their use for realistic character movement, are inverse kinematics and hybrid

kinematic-dynamic techniques. The former is often incorporated in the latter.

 In inverse kinematics, the user specifies an end-effector position, removing the

necessity of specifying intermediate angles. This eases limb positioning and allows

motion generation by encoding knowledge on how the joint angles change given the

position of the end effector. In practice, however, these redundant joint angles are often

specified to reduce solution space, thus better controlling the results. The strength of this

technique is the ability to position end-effectors at precise coordinates, e.g., specifying

exact footholds for a walking motion. Often inverse kinematics is used in conjunction

with locomotion control techniques where new movements are interactively generated

from a set of reference movements. These reference movements are based on walking

and running gait patterns where an algorithm generates a movement based on some high-

level specification of the animator. Believable legged locomotion has been achieved [18]

with these procedural systems.

 7

 Hybrid kinematic-dynamic models [5,6,7,8,9] are procedural systems which

combine kinematic constraints with physically-based modeling. In these systems, motion

is expressed as sets of constraints that, when used in simulation, yield solutions which

can be used to describe movement. The allure of these techniques is that they produce

natural looking motion. Unfortunately, they are highly technical and require significant

expertise on the part of the user to generate an intended movement. Additionally, while

physically realistic, the resulting motion is typically not expressive and thus unappealing

for character animation.

 An alternative to procedural systems for high-level specification are techniques

which capture motion from live actors. In performance animation, live subjects act out

the parts of the characters while special hardware captures information necessary to

describe motion. For humanoid characters, it can be an efficient means to capture

realistic motion. Its drawbacks are its cost and the necessity for technically

knowledgeable people to deal with the complexities of both hardware and software.

 Whether animation is attempted by a traditional technique or a computer-based

technique discussed above, reusing generated motion is an important issue. A drawback

of both traditional and computer-based animation is that the motion created is not easily

adaptable or reusable. If motion is slightly off, it often requires repeating the process

from scratch. Some of the most recent computer graphics research has been aimed at

addressing this problem. Researchers are working on techniques to adapt and blend

existing motions into new motions[10,11,12,13] borrowing from other fields such as

 8

signal processing [10]. Current techniques work best when used to blend similar motions

or to simply exaggerate motion.

1.1 Shortcomings of previous methods and proposed resolution

 While the background reflects the computer’s strong presence in the field of

animation, there are clearly drawbacks to existing computer techniques. The tradeoff

between high-level specifications and low-level parametric keyframing is primarily

flexibility and control. While alleviating much of the workload of the animator, solutions

utilizing motion control algorithms often require a programmer to implement new

motions and their input is so technical and non-intuitive that they are not likely to receive

acceptance by animators. In addition to these problems, the techniques are

computationally expensive and automated approaches lack the essential expression and

personality caught by the animator’s eye. Another drawback is that motion is not easily

adaptable which inevitably means more work for the animator. Often, the animator has to

repeat the process from scratch if a motion is incorrect. Finally, to make computer tools

more attractive to traditionally-trained animators, computer-based techniques should

build upon rather than replace concepts the animator is familiar with. For the computer to

continue to become an increasingly useful tool for the animator, it should build upon the

same techniques that the animator has relied upon in the past to bring life to characters.

Further, the usability of the tools should not be so technically complicated that they

frighten away the animator.

 9

The approach presented here attempts to remedy the problems mentioned above.

The system described in the following chapters demonstrates how traditional animation

techniques can be applied to computer animation to provide motion control solutions that

are effective and can be used by the animator in an intuitive fashion. The collection of

tools which compose the system illustrate the viability of this approach by giving solid

examples of how easy-to-use and effective computer tools can be created based on these

proven techniques. The system employs a rotoscoping technique familiar to the

traditional animator but presents a method for adapting this technique to the computer. A

method for employing spacing charts is presented to demonstrate how to bring animated

characters to life by endowing them with personality through expressive and believable

motion. The animator follows a well-defined process which begins by generating the

initial motion with rotoscoping followed by the use of spacing charts to tweak the motion

for desired results. Unlike many other tools, the system is relatively easy to understand so

that the animator will not encounter a technical barrier preventing him from using it.

To appeal to both traditional-based and computer-based animators, all motion

specification is done with graphical tools and requires minimal technical expertise on the

animator’s part. Also, because refinement of a motion is an integral part of the process,

the system presented offers editing features which allow the animator to revisit a motion

and tweak it to a desired result.

Traditional animation encompasses a large collection of techniques that have been

used for decades to bring cartoon characters to life. The traditional animation techniques

 10

employed here include rotoscoping, which offers a general solution to the motion control

problems pertaining to animating a character, and spacing charts, which are used to

describe the timing of the character for the purpose of enhancing the illusion of life.

When used in combination, these techniques are capable of producing convincing and

interesting character motion. Rotoscoping is used to generate the initial (rough) motion

and then spacing charts are employed to tweak and enhance the movement. Implementing

these techniques as computer-based tools is an important step in providing tools that are

more intuitive to the animator. An overview of the system employing these techniques is

given in the following chapter.

 11

Chapter 2

System Overview

This thesis demonstrates the viability of applying traditional animation techniques

to computer animation by employing two techniques from traditional animation, namely

rotoscoping and spacing charts. As discussed in the introduction, rotoscoping is a

technique for extracting motion from video footage and spacing charts are used to

describe the timing of the character over a sequence. These techniques are implemented

in this system with computer-based tools presented in the following chapters. These tools

fall into three categories. They are three-dimensional rotoscoping, two-dimensional

rotoscoping and motion editing. The tools are designed to be intuitive to use and to

correlate well to the cell-animation techniques already understood by animators. The

rotoscoping tools allow the animator to extract motion from video as well as other visual

sources. They are designed to provide a general solution to the motion control problems

associated with character animation. The motion editing tools are used to mimic spacing

charts. The editing tools can be used to add timing, create sharper movements, or

 12

exaggerate motion for effect. When used together these tools can be an effective means

for animating a character.

The pipeline of the system is illustrated in Figure 2.1. The system is specifically

designed to be an independent pipeline component which can be integrated into an

existing animation pipeline. Initially, a rigid body is created in a modeling program and

then imported into the system. The animator

generates a specific motion task by using the

rotoscoping software to extract motion from

recorded video footage of an actor. When he is

finished generating the initial motion, he can

then modify the character’s motion path by

mapping the character’s motion to a curve.

Next, he uses the system’s editing tools to

progressively tweak the motion until he is

satisfied that his intent has been met. When he

is satisfied with the motion, he then exports the

model along with the motion data to a general

purpose animation system.

 Rotoscoping has been around in

traditional animation since the 1920’s. The

motivation for using rotoscoping as a motion

 13

control technique is that it is widely used by traditional animators, simple to use,

inexpensive and greatly accelerates the keyframing process. The system is designed to

correlate closely to the cell-animation technique well understood by animators. In the

original traditional animation technique, the animator projected a frame of film onto a

transparent cell and then drew over the image of the actor with a character sketch. In this

system, the animator follows a similar technique. The animator is given two windows

each containing a video frame of the actor from a different vantage point. To indicate link

orientations, the user traces line segments over the limbs of the actor. This is repeated for

all limbs until complete stick figures appear in each window. Fortuitously, this is an

easier process than the traditional animation technique because there is no need to flesh-

out the character sketch. The stick figures are adequate for describing the necessary limb

orientations.

 Rotoscoping is an attractive alternative to other approaches. It provides the

animator with an inexpensive way to generate motion which is more believable and can

be specified much more quickly than with parametric keyframing. As described above, it

requires very non-technical input, thus making it more attractive than most high-level,

physically-based approaches. And unlike hardware-based motion capture, it is relatively

inexpensive and doesn’t require complicated calibration.

 The system presented here offers two rotoscoping tools. The three-dimensional

rotoscoping software provides a general solution to the motion control problems

associated with character animation. It is used to capture complex motions and requires

 14

multiple camera views of the recorded motion. Alternatively, the two-dimensional

rotoscoping software is provided to extract motion from a single view. Instead of being

limited to using video specifically recorded for rotoscoping purposes, the animator can

also extract aesthetically correct motion from drawings and cartoons. The special tools

developed to aid in this task increase the overall flexibility of the system.

 The three-dimensional rotoscoping software employs solutions which produce

good results even for complicated motion. As mentioned above, the animator traces over

images of the actor in two camera views to indicate link orientations. This information is

then triangulated and used to generate a true three-dimensional solution. This contrasts

this software from earlier rotoscoping systems which appeared to derive link orientations

directly from the camera view-planes and not in three-dimensional space.

Figure 2.2 shows a hardware/software pipeline for the three-dimensional

rotoscoping software. The first graphic in the pipeline illustrates two cameras pointing at

a common focal point. Each camera is perpendicular to a view-plane corresponding to the

coordinate system of the real actor. In practice, this relationship is established by placing

two strips of intersecting white tape on the floor to help position and orient the cameras.

Next, the video recorded by the camcorders is compiled on an analog VCR deck. This

analog video is then imported into the computer using a video capturing card. This card

converts the analog video into digital video streams readable by the software. The

animator then uses the video footage of the actor in the rotoscoping system to specify the

motion. After the motion is created, the motion data can be edited or exported

 15

Figure 2.2 Hardware/Software Pipeline for three-dimensional rotoscoping

immediately to an animation system or low-level rendering package. The package used to

render the images in this paper was the Persistence of Vision Ray Tracer, a freeware

raytracing package available over the Internet.

The two-dimensional rotoscoping software provides tools for extracting motion

from a single view. This allows the animator to extract motion from drawings or

previously created animated work. In the case of drawings, the animator can draw

keyframe sketches to plan the motion without detailing exact time-position information.

The software presented here can be used to derive velocity directly from the character

itself. Alternatively, the software can be used to derive motion from a video clip where

only a single view is available. In limited animation, different parts of the character are

animated separately and then put together for a composite for a particular sequence. This

 16

 software is Copyright 1991,1996 by the POV-Ray Team

way transparent film cells can often be reused. The composite creates the variation. To

maximize reusability, all the drawings correspond to a few simple camera angles. For this

reason, the motion is conducive for capturing by this system.

 Once the initial motion is captured, the animator has the option of mapping the

motion to a path. The path is created interactively and footprints are generated for the

animator to review. Mapping a character’s motion to a path works best for simple gait

motion, such as walking or running. The motion generated in the two-dimensional

rotoscoping software is usually ideal for this type of mapping. With two-dimensional

rotoscoping, the character tends to move in straight lines, so mapping the motion to a

path is straight forward. For complex motion generated in the three-dimensional

rotoscoping software, path mapping often doesn’t make sense and is skipped. For

example, mapping a complex motion, such as a martial arts routine, to a twisting path

would result in movement that would be difficult to predict.

 Finally, the animator can use the system’s motion editing tools to mimic spacing

charts. Spacing charts are used to add personality to the character or to enhance the

realism of the character’s movement. In this system, the motion editing tools allow the

animator to create variations of a generated motion. Traditional animation artists know

that the character’s timing is the essence of the art. They endow personality to the

character by making the character always walk or move with meaning - to never pause

unless there is a reason for it - when the character does pause, it should pause as long as it

can. Besides adding personality to the character, motion can be edited to enhance

 17

physical realism or to correct for errors resulting from the interpolation technique used to

generate intermediate frames. Spacing charts are often used to model the effect of weight.

Similarly with the motion editing tools, the motion can be adapted so that the character

appears to be affected by gravity, to possess super-human ability, or to appear sluggish as

he pulls a heavy weight.

The tools which constitute this system are discussed in detail in the following

chapters. Described are the strengths of these tools, a description of their functionality,

their usage by the animator, and how they were implemented. The final chapter discusses

what has been accomplished with this system as well as the direction of future work.

 18

Chapter 3

Three-dimensional rotoscoping

This chapter covers the three-dimensional rotoscoping software written for this

system. Its purpose is to capture the motion of an actor from recorded video. The goal of

the 3D rotoscoping software is to provide a general solution to the motion control

problem associated with character animation. Described below are the strengths of three-

dimensional rotoscoping, a comparison to earlier attempts to implement these systems,

and a description of this system.

 The overall system described in this thesis actually employs both three-

dimensional and two-dimensional rotoscoping software. In this chapter, the features of

three-dimensional rotoscoping software are discussed, and the features of the two-

dimensional rotoscoping software are discussed in the following chapter. The two-

dimensional software is similar to other early rotoscoping systems in that it doesn’t

 19

provide a general solution. Nonetheless, it is included because it has special tools to

extract motion from a single view.

3.0 Overview

 As described in the introduction, motion control for character animation is a

difficult problem. Many computer scientists have developed solutions to address the

problem. The drawback of most of these techniques is that they offer a technical barrier

for the potential user, namely the animator. Many require very mathematical input or

require a programmer to hard-code new motion tasks.

 The strengths of the system described here are that it is intuitive to use, it

accelerates the keyframing process and it correlates to a cell-animation technique well

understood by animators. And unlike hardware-based motion capture, it is relatively

inexpensive and calibration isn’t very technical. For these reasons, this computer-based

rotoscoping technique should provide an attractive motion control solution to character

animation.

The ability of this software to produce a general solution to the motion control

problem contrasts this system to earlier computer-based rotoscoping systems. In earlier

systems, used in commercial animation in the 1980’s, the motion captured appeared to be

planar. Instead of providing a three-dimensional solution, they seemed to capture two-

dimensional motion and apply it to a three-dimensional character.

 20

The reason the motion in

earlier systems was planar appears

to be the manner in which link

rotations were solved. Simply

solving rotations based on how the

actor’s limbs appear on the camera

view-planes will not produce

accurate results. For this reason,

only specific types of motion could

be captured. Usually, figures moved

in straight lines and rotations only

appeared to be specified for a single

axis. In contrast, to correctly solve

for link rotations, the information that is extracted from the camera views must be

triangulated and then solved in three-dimensional space.

Figure 3.1 Motion from a martial arts routine
captured with the three-dimensional
rotoscoping software.

 The methodology used in this software takes the two-dimensional information

extracted from the camera views and combines it into three-dimensional information

before solving link rotations. This yields a true three-dimensional solution. There are

difficulties in constructing three-dimensional data in this way. Most importantly, the

information is distorted by perspective. Also, certain limbs may be obscured during the

 21

recording. Therefore, some guess work is required on the part of the animator entering

information.

 The technical description of how link orientations and object positions were

derived is detailed in the following sections. In general, the process is as follows. Link

orientations are solved by transversing the link structure of the articulated figure and

solving for the rotations that describe one link frame relative to the next, based on the

information extracted from the camera views. An analytical solution is initially

calculated, however an iterative search for a solution must be used for complex

orientations. To extract position, bounding volumes must be calculated for both the

configured articulated figure and the actor as he appears in the camera frame. This will

help by relating the coordinates; but, due to the effects of perspective, the relation is not

exact.

Before the animator can begin working with the motion in the software, the

motion must be performed by an actor and recorded. In the recording session, two

cameras are used. The position and orientation of the two cameras must follow certain

criteria. The cameras must be at right angles, aimed at a common focal point and

equidistant to the focal point. If these conditions are violated, then the data triangulated

by the software can be adversely affected. Fortunately, there is a simple means to

calibrate the cameras. Tape can be placed on the floor to calibrate the orientations of the

cameras. Two intersecting lines of tape are placed on the floor perpendicular to each

other. From the view of the camera, the two lines of tape should appear horizontal and

 22

vertical. The intersection of the lines of tape should be centered in the cross-hairs of the

cameras since it is the focal point. Finally, the position of the cameras should be

measured to ensure that they are equidistant to the focal point. Once the analog video is

recorded, it must be converted to a digital format and imported to the computer.

Fortunately, low cost video capturing cards are readily available and software, called

codecs, can be used to digitize and compress analog video into digital video streams.

After the performance is recorded, the animator can begin working with the three-

dimensional rotoscoping software. As mentioned in the introduction, rotoscoping in

traditional animation has been around a long time. The goal of the end user view for the

interface in this software is to allow the animator to enter information in a fashion similar

to cell-based rotoscoping as well as provide the functionality expected by computer

animators using parametric keyframing systems. The following things must be done to

generate motion data for one keyframe:

• The animator enters stick figures over the captured video to approximate the

pose of the actor.

• The software triangulates the inputted data and solves for rotations.

• The animator tweaks the results as needed.

• The software calculates the character’s position based on the apparent position

of the actor.

• The animator ensures the character’s footholds are correct.

 23

In its purest form, cell-based rotoscoping involves tracing over the actor in the

film cell with a cartoon drawing. Similarly, the animator using this three-dimensional

rotoscoping software traces over the actor with a stick figure. Instead of projecting a

frame of film onto a cell (the classic procedure in traditional rotoscoping), the animator is

given two windows each containing a video frame of the actor from a different vantage

point. To indicate link orientations, the user simply enters line segments into the

windows which trace over the limbs of the actor. This is repeated for all limbs until

complete stick figures appear in each window.

Of course the animator will want immediate feedback after entering data. This is

because it is useful to monitor the results throughout the process to catch small problems

before they become large problems. Unfortunately, it is often difficult to give the

animator real-time results when problems require a large number of computations to

solve. To minimize the amount of time the user has to wait for an answer, the software

offers a compromise. Because some solutions are easier to generate than others, when

configuring the articulated figure, this system doesn’t always use the complex solution.

For example, it is much simpler to solve rotations for a man walking in a straight line

than for a complex martial arts routine. In fact, the motion of the walking man is nearly

planar and doesn’t require a full three-dimensional solution. In this system, the user is

given a quick analytical solution based on his input. If the results are satisfactory, then he

can move on to the next keyframe. Otherwise, the application can iteratively search for a

solution.

 24

After the software has solved for the link rotations, the animator examines the

results in the rendering window, see Figure 3.2. Typically, the result will match the stick

figures, however, slight manual adjustments may be needed. Many things can affect the

results including camera setup, perspective and how well the stick figures approximated

the actor’s pose. The animator will usually want to examine the articulated figure from

different vantage points to determine what corrections should be made. The animator can

tweak the results by selecting limbs on the articulated figure and then manually rotating

them with the mouse.

In addition to tweaking the figure’s pose, there are times when manual input is

required. While entering stick figures is a simple means of data entry, some angles can’t

be described in this manner. For parts of the articulated figure which are centered about

the vertical axis, i.e., the chest, head, and pelvis, vertical line segments give no clue as to

the rotations about the vertical axis. In this situation, the animator must manually orient

these parts before drawing the stick figures. Also, the exact position of the actor is

difficult to derive from the video footage. The view volume in which the actor performs

is greatly distorted by perspective. A scale must be established between the actor in the

image and the articulated figure. This can be accomplished by calculating bounding

volumes for the configured articulated figure and the actor. This must be done at each

keyframe after the articulated figure has been configured. Since the real actor will move

back and forth in his volume throughout the sequence his size will continually change

relative to the articulated

 25

Figure 3.2 The interface for the three-dimensional rotoscoping software. On the left, the
animator can review the results and make manual adjustments in the rendering window. On the
right, the user enters stick figures to approximate the pose of the actor.

figure. A special edit mode is provided to help the animator fine tune position. The

articulated figure is shown in a multiple exposure fashion so the animator can inspect the

footholds from one keyframe to the next. In traditional animation, it is well known that

for gait motion each leg goes through a support phase and a transition phase. For the

support phase, the foot of the support leg should remain fixed in place. Otherwise, the

character will appear to slide. By examining the foot of the support leg for a multiple

exposure, the animator can detect sliding. Sliding of the support leg can be fixed by

simply re-positioning the character so that the foot remains in place until the leg enters its

transition phase. Once the articulated motion has been configured for one keyframe

with respect to link orientations and position, and the animator is satisfied with the

 26

results, then the process is continued for the other keyframes in the sequence. The

rendering window offers a playback mode enabling the animator to review his work at

any time.

The utility of traditional rotoscoping has been known for years. Nonetheless,

there are some advantages to computer-based rotoscoping compared to its traditional

cell-animation counterpart. First, there is no need to “flesh-out” the character in detail.

The animator only needs to extract information about the character’s pose which can be

accomplished by drawing simple stick figures over the character. There is no need to

create complicated drawings. Properly placed lines suffice for the required data entry.

Also, the traditional animator using cell-based rotoscoping techniques has to be

concerned with issues of shading, perspective, and depth perception. Fortunately, these

can be ignored in the computer-based technique. For these reasons, the computer-based

rotoscoping could potentially be a faster process than its traditional animation

counterpart. The current drawback is the time involved in finding solutions for difficult

orientations using an iterative technique. Extracting three-dimensional information from

two-dimensional images is an active area of research and is not trivial. The details of how

position and rotations were extracted for this software are discussed in the following

sections.

3.1 Rotations

 In the introduction, a distinction was made between pure-rotoscoping and half-

rotoscoping. In pure-rotoscoping, the live actor, as seen in the film cell, is traced over

 27

with the artist’s character. While in half-rotoscoping, the actor was used as a reference

for creating new sketches. In this system, the input is analogous to pure-rotoscoping. The

animator extracts link orientation by tracing over the actor in the window frames. For

each keyframe, the animator must enter a series of line segments. Each line segment

corresponds to a link in the articulated figure. When all line segments are entered, we

have a ‘stick’ figure in each camera window which mimics the pose of the real actor.

 The next step is for the software to solve for the correct configuration of the

articulated figure. This is the configuration which matches the apparent orientations of

the line segments entered by the animator. The general technique for configuring the link

structure requires constructing line segments in the view frame and then solving for the

angles of rotation which relate a particular link frame to the frame of it’s predecessor.

View frame coordinates are constructed by relating the coordinates of a vertex from one

camera window to the coordinates of a vertex in the other, see Appendix A.

Solving for orientations in this way seems simple enough. Surprisingly, it often

requires an iterative technique. There are well known analytical solutions for finding the

angles of rotation necessary to describe the orientation of a line segment. However, a

complication arises because these solutions typically use a scheme of rotations less

general than those used in articulated figures. As seen in Appendix B, a two angle

rotation scheme gives a unique two angle combination for any orientation and therefore

is used as a general recipe. However, rotations are lost around the third axis. While a

three angle rotation scheme provides a more general description of orientation, it can’t be

 28

Figure 3.3 Angles between a Link Frame and the View Frame. In (a) is the line segment representing a
link orientation. In (b), the segment is translated to the origin of the View Frame, then find φ and θ. In
(c) the line segment is checked. It should be coincident with the View Frame axis if φ and θ are correct.

solved for a unique solution analytically. For one orientation, there are hundreds of

possible three-angle combinations. Consequently, a two angle rotation scheme must be

used to solve for the orientation and the result is later stored in a three angle structure.

As mentioned in the previous paragraph, the link orientation will be solved using

two angles. The two angles will be referred to as φ and θ in the following discussion.

Since the link structure uses a three angle scheme, φ and θ may refer to different axes

when moving from one link to the next. To find the rotation angles φ and θ which relate

one frame of reference to another, (See Figure 3.3) start by constructing a line segment in

the view frame from the animator’s input. Then treat the line segment as a direction

vector representing a particular axis in the frame associated with the link. The axis

depends on what the Euler angles φ and θ represent, see Appendix B. Assume the y-axis

is a yaw-roll rotation in this software. Translate it to the origin of the view frame, and

then rotate the line until the link frame coincides with the view frame. When the angle

 29

between y-axislinkframe and y-axisviewframe is close to zero, then the rotation angles don’t

need to be computed anymore. This gives the link-to-view transform. The equations to

solve the rotation angles are given below.

d1 = √((z1-z0)2 + (x1-x0)2) dph =√((z1-z0)2 + (x1-x0)2+ (y1-y0)2)

φ = tan-1((y0-y1),d1/dph) θ = tan-1((z0-y1)/d1, (z0-z1)/d1)

For this particular application, two additional considerations must be taken into

account. First, the rotations needed actually relate the current link frame to the frame of

the previous link. As mentioned in appendix A, the orientation of a particular link is

actually the result of multiplying all the control matrices from the root of the link

structure to the link. Second, while a two angle rotation scheme is used to solve for the

orientation of a particular link, the link structure as a whole uses a three angle rotation

scheme. This requires an iterative solution, as opposed to the analytical one described

above. This leaves two remaining problems that must be solved. First, the technique that

uses a line segment (described in view frame coordinates) to give rotations relative to the

frame of the parent link, must be adapted. Second, an analytical solution may not always

suffice. If it doesn’t, what can be done?

To adapt the first technique, find the rotations necessary for the base vectors of

the current link to become coincident with those of the frame of the previous link. This is

done by taking the technique above and making it even more general. In Figure 3.4, the

direction vectors Q0 and Q1 are seen in relation to themselves and the y-axis. Q1 is the y-

axis for the link frame whose orientation must be to solved, and Q0 is the y-axis for the

 30

Figure 3.4 Relating one Link Frame to Another. The angle α relates an axis from the
link’s frame to that of the parent link. The angle β is the total rotations for that axis
from the root of the link structure to the parent link.

Q0.x Q1.x

Q0.y

Q1.y

link frame which immediately proceeds it in the tree. As mentioned in Appendix A,

rotations accumulate as the link tree is transversed in a top-down fashion. Consequently,

the angle β is actually the combined y-axis rotations from the root of the link tree to the

link frame immediately proceeding the frame of the link that must be solved. And since

Q1 represents the y-axis of the current link frame, the angle α is the y-axis rotation angle

which relates the current link frame to the previous one in the tree, i.e. Q1-Q0. To find the

relative angle α use the addition theorem given below.

cos(φ-θ) = cos(φ) ⋅cos(θ) + sin(φ) ⋅ s in(θ)

sin(φ-θ) = sin(φ) ⋅ cos(θ) - cos(φ) ⋅ s in(θ)

Essentially, this is the same technique as before but the equations solve for

relative angles versus absolute angles about the axes of the global system (the view frame

 31

in this case). In each link frame, these equations solve for two intermediary angles which

would make the current frame of reference coincident to that of it’s parent.

Since the link structure as a whole uses a three angle rotation scheme, the above

analytical solution only works if all preceding link frames were solved, where φ and θ

related to the same axes. For example, one link may be solved for a yaw-roll

combination, while another is solved for a yaw-pitch orientation, while yet another is

solved for a roll-pitch combination. For completeness, all two angle rotations are allowed

with a hard-coded preference for each link, i.e. default settings. However, the analytical

solution will only work when angles can be incrementally increased, so they must be

summed up to a grand total. Remember, this was the merit of the two angle scheme. For

this to work with the link structure, the path from the top of the tree to the link in

question must use identical combinations. Such as, a series of yaw-roll combinations.

Once a different combination is found, e.g. a yaw-roll preceded by a yaw-pitch, the

analytical solution doesn’t work. This is intuitive, because now the rotations about three

axes are known and as mentioned before three angle (Euler) combinations aren’t unique

recipes for orientations.

There are a couple of ways to check and see if an analytical solution will work.

As described above, an algorithm can be written which traces a path from the root of the

tree to every link frame analyzing the combinations. Or, simply try the analytical solution

and check the answer. To check the correctness of the solution found, construct a

coordinate transform and see if the calculated answer matches the actual line segment

entered by the animator. Figure 3.5 illustrates what shall be accomplished. The D

 32

Figure 3.5 Rotation of Base Vectors using Direction Cosines

D.y

D.x

S.z S.y

D.z

S.x

(destination) is the line segment originally entered by the animator, in view frame

coordinates. While S (source) is a new non-initialized line segment pointing down the y-

axis in the view frame. S is of equal magnitude to D, where S=<0, |D|, 0>. Multiply S by

a transform based on the calculated angles, φ and θ, and check to see if the result is

coincident with D, or within a certain tolerance. The necessary transform is described

below.

If the coordinates of the vertices of an object are known in one reference frame

and need to be known in another, all that is needed is a simple coordinate transform.

Since, as far as rotations are concerned, there is always a linear relation between two sets

of coordinates, a matrix of general terms can be constructed. The elements n11, n12, etc.

are specific to the relative orientation of the two reference frames. The elements are

 33

simply the cosines of the angles between the axes of the reference frames, commonly

called direction cosines. The element n11 is the cosine of the angle between xlink and

xview, n12 is the cosine of the angle between ylink and yview, etc. After multiplying S by

the coordinate transform check to see if the result is coincident with D. If it is, then no

iterative solution is needed and the angles in the link’s data structure can be stored. If the

line segment is not coincident after the transformation, then the angles must be found

with an iterative technique. This is typically the case when there is a mixture of rotations,

e.g. yaw-roll followed by yaw-pitch. The iterative solution is simple but time consuming.

It involves gradually incrementing the direction cosines for φ and θ until a coordinate

transform is found which properly rotates S into D. It is a search algorithm. On an Intel

Pentium processor running at 133mhz, it can take a minute to configure an articulated

figure consisting of seventeen links.

3.2 Position

After configuring the link structure, the final step is to use the apparent position

of the real actor, in the view frame, to place the virtual actor in the world frame, see

Appendix A. As simple as the required information is (a single point!), two things

complicate the definition of the transform. First, as mentioned before, there is no

predefined relationship between the coordinates of a vertex in the view frame (the real

world) to the coordinates of a vertex in the world frame. The correspondence that will be

established needs to be adjusted at each keyframe. Second, the effects of perspective

when extracting motion must now be taken into account. In deriving link orientation the

 34

effects weren’t severe enough to require a correction. However, the effects of perspective

are more noticeable when attempting to extract an exact position.

3.2.1 Bounding Volumes

Ignoring perspective for a moment, assume that both window frames are at right

angles. This reduces the view-to-world transform to a simple problem of magnitude. If

the ratio between the length of the base vectors in the view frame and the length of the

base vectors in the world frame can be estimated, then the solution is a simple scaling

transform. To do so, compare the area of the real actor in the view frame to that of the

fully configured virtual actor in the world frame. This will require calculating a bounding

volume for the link structure and estimating a bounding volume for the real actor in view

frame coordinates. When calculating the bounding volumes, the articulated figure must

already be configured. This is necessary so that the analogous volumes are compared

between the real actor and the virtual actor.

3.2.2 Perspective

When link rotations were found, it was assumed that the base vectors in the view

frame were perpendicular to each other. However, since the window coordinate systems

used to construct the view frame are based on camera footage, vertices in these

coordinate systems are actually based on perspective projections, versus orthographic.

Thus, the view frame is actually distorted by the combined perspective of both window

frames, i.e. camera views. In a typical diagram of a viewing frustum, the near and far

clipping planes would relate to the observable range of the real actor. Unlike a typical

 35

Figure 3.6 Rotoscoping System Frustum. In (a) is the combined field of view of the
cameras. In (b) is the shape of the frustum in the xz plane.

frustum, the geometry of the space which is constructed from multiple cameras appears

sheared when drawn using ray projectors. In Figure 3.6, the shape of the frustum as

captured by this system is illustrated (in the zx plane only) based on the combined

projections. The angles of the ray can be derived by comparing the observable field to the

distance of the cameras.

There are at least two ways to help counteract the effects of perspective with

minimal effort. The first solution is to construct bounding volumes for each keyframe,

this relates the scale of the real actor to the figure, it also helps to minimize the

accumulation of errors. Since the real actor will appear smaller when close to the far

plane and larger when close to the near plane, the bounding volume will grow and shrink

as the actor moves back and forth within the camera view. Unlike the real actor, the

bounding volume for the link structure retains a fixed size for a given configuration

regardless of placement in the world frame. Therefore, the view frame should be

normalized to the object frame, i.e. real actor to virtual actor. As mentioned above, this

 36

only requires scaling. Once the view frame coordinates are scaled properly, the world

frame coordinates can be used for positioning the object’s frame. This yields a good

approximation for position. The second solution is to attempt to construct an inverse

perspective transform based on the relationship between camera distance and field of

view. This involves finding the ratio between the distance of the camera (to the focal

point) and the length of the observable field. Unlike the other solution, this requires that

measurements be entered into the system for each run. Unlike the other technique this

method corrects vertices immediately as they are entered by the animator. Consequently,

line segments used to specify link orientations can be corrected along with position.

 37

Figure 4.1 Sketches of keyframe drawings

Chapter 4

Extracting motion from a single view

 The two-dimensional rotoscoping software extracts planar motion from images.

Such a system can be used to capture simple motion, but does not provide a general

solution to three-dimensional motion capture. The strengths of the software presented

here relate to the novel ways that it can extract motion. It assumes that motion will be

captured for a single view. As a result, it provides tools that aid in this process. Unlike

the general purpose rotoscoping system described in the last chapter, this software

provides solutions for specific problems.

4.0 Overview

 There are two primary uses of this software. It can capture motion from artists'

drawings and it can capture motion from previously recorded video, e.g., movies,

cartoons, etc. In traditional animation, the master animator typically draws the extreme

poses of the character performing a task and allows another animator to draw the in-

 38

between poses. As seen in Figure 4.1, these extreme poses are often spaced apart for

clarity. As a result, they give no direct indication of the character's relative position from

one keyframe to the next. Typically, this information is conveyed with spacing charts and

motion arcs. Fortunately, even without this additional information, this software is still

useful. Using only the drawings seen in Figure 4.1 as a guide, this software can derive the

locomotion parameters by examining the character itself. Alternatively, the software can

be used to derive motion from a video clip where only a single view is available. This is

the case with previously recorded video. For the best results, the actor or character should

be moving across the field in a direction nearly parallel to the screen. Occasionally in

movies, we will see actors move across the field in this manner. More often this type of

motion can be found in cell-animation cartoons where limited animation is used.

In limited animation, different parts of the character are animated separately and

then put together into a composite for a particular sequence. This way transparent film

cells can be reused. The composite creates the variation. To maximize reusability, all the

drawings correspond to a few simple camera angles. Typically, characters in limited

animation move parallel, perpendicular or at a 45-degree angle relative to the screen

plane. For this reason, the motion is conducive for capturing by this system. When the

character moves parallel to the screen, the motion can be derived directly. However,

 39

when the character's motion path is not parallel to the screen, then more work needs to be

done, as described below.

One of the main tools of the system is to correct for foreshortening.

Foreshortening occurs when a character's path of motion is not parallel to the screen.

Foreshortening affects angles in the capture process. Later in this chapter, the technique

used to counter the effects of foreshortening is discussed in detail.

Like all the ideas presented in the thesis, the end user view is important. It is

preferable to allow the animator to enter all data using the mouse. If information is

simple to specify, then the process as a whole seems less intimidating. As always, it is

important that procedures are well defined and follow a simple step-by-step process.

To begin, the animator must create a new project in the software. To simplify the

process the animator should set certain parameters which best suit the motion trying to be

captured. The animator will follow the steps listed below in creating the project.

• The animator selects a static bitmap or a bitmap stream.

• The animator chooses the form of interpolation he wishes to use.

• The animator chooses whether a velocity curve or a trajectory curve should be

created.

In the case where an artist's sketch is used, the keyframes may all appear on the

same page. If a single bitmap with keyframe drawings will suffice, then a static bitmap

 40

should be used. However, if a video clip is necessary, then a bitmap stream must be

selected. Sometimes the artist will compile his drawings on a flip-book. In this case, he

can create a bitmap stream from previously scanned drawings.

When setting parameters for the new project, the animator must choose which

form of interpolation he wishes to use. The acceptable forms for interpolation are linear,

B-spline, or Catmull-Rom. Linear interpolation does not produce smooth transitions, so it

is rarely used. Catmull-Rom can be useful for motions involving sharp movements.

However, the B-spline form is typically the best. The cubic B-spline form provides the

smoothest transitions and is usually the best choice for animation. In the three-

dimensional rotoscoping system, all motion data is interpolated with this form.

 The animator has a choice between two techniques for extracting the character’s

position. He can specify a trajectory curve or a velocity curve. If a video clip of a cartoon

or a movie is being used, then a trajectory curve is the best way to describe position over

time. In the editor, the animator can simply create points that mark the position of the

character on the image. These marks must be added at uniform intervals, however they

don't need to be specified for each keyframe. With this method, we know the character’s

precise location relative to time. The velocity curve is useful when tracking the position

of characters that aren't positioned on the image relative to time. A velocity curve

measures distance traveled over time. Instead of storing position, the change in position

between keyframes is stored. The keyframe drawings in Figure 4.1 illustrate a character

walking. However, the character is spaced for clarity and not for position. In this

 41

Figure 4.2 Deriving velocity by examining the character’s gait over several keyframes

example, the relationship between position and time is not obvious. Fortunately, there is a

technique which can be used to extract velocity my examining the character drawings.

The following paragraph describes how an animator uses this technique. Later in the

chapter, the mechanics behind this technique will be described in detail.

The animator can enter data for the velocity curve, by simply placing a tracking

arrow underneath the character's support-leg at each keyframe. In Figure 4.2, we see

multiple frames of the character. Each keyframe is displayed in it's own rendering

window. The characters are centered in the windows giving no hint to the actual position.

In each window we see a tracking arrow pointing to the character's support-leg. By

comparing the tracking arrows from one frame the to the next, we can approximate how

much distance the character has traveled. This technique works best for gait-like

movement where the character has at least one leg in contact with the ground. Finding the

 42

character's vertical position relative to the floor is simple. The animator drags a line

representing the floor to the character's lower foot by using the mouse.

 To capture link orientations for a particular frame, the animator draws a series of

line segments over the current image. Each line corresponds to a different link in the

articulated figure. When all the line segments are entered, a completed stick figure will

appear over the image. The rendered figure, in the rendering window, will be completely

configured to match the pose in that view.

Figure 4.3 Data Entry. In (a) the artist’s
sketches are shown. In (b) the animator
enters stick figures to mimic the poses of
the actor. In (c) the motion data is applied
to the articulated figure.

 Another useful tool allows the

animator to create new windows to

import images. This gives the animator

the option of entering rotations for

different axes. In practice, rotations can

only be specified around the x and z

axes. There is no means to enter pitch

(see Appendix B) rotations. The three-

dimensional rotoscoping software should

be used for this. Since only a two-angle

rotation scheme is used, all angles are

incremental along the link structure.

Every combination is unique, so no

iterative solution is needed and all

 43

editing is real-time.

The final step for the animator, after he/she has configured the articulated figure

for each keyframe and is satisfied with the results, is to map the motion to a path.

Mapping a character to a path works best for simple gait motion, such as walking or

running. The planar motion generated in this two-dimensional rotoscoping system is ideal

for this type of mapping. With this technique, the character tends to move in straight

lines, so mapping the motion to a path is straightforward. Using the character’s velocity

for each keyframe interval, the distance traveled along the path can be found for each

time step. From the animator's point of view, he must create a two-dimensional curve and

specify a scaling factor. The creation of the curve can be done interactively with the

mouse. Setting a value to relate scale is a heuristic means to specify the length of the

figure's stride relative to the total arclength of the curve.

The remaining sections in this chapter will discuss in detail how velocity is

extracted from character drawings, a method for correcting foreshortening, and how a

character’s motion is mapped to a path.

4.1 The Foreshortening Problem

The two-dimensional rotoscoping scheme works best when no pitch rotations are

necessary. This is the case when the actor is moving in a straight line, e.g. jumping or

walking. This technique produces motion similar to that seen in the commercials in the

 44

 Figure 4.4 Foreshortening Problem

80’s which first used rotoscoping as a means of motion capture for 3D animation. The

movement tended to be planar, with the characters moving in straight lines. A potential

use of this technique is for extracting motion from previously recorded video.

Unfortunately, there exists a major obstacle when using video that has not been

specifically recorded for rotoscoping. Usually the camera angle is not exactly parallel to

the path of motion, even for a simple motion. This is important to the no pitch

requirement described above. What will typically be seen is the actor moving in a line at

an arbitrary angle until he is foreshortened to our line of sight as seen in Figure 4.4. To

help visualize the problem, attach a frame to the character in the illustration. This allows

better visualization of the character’s orientation relative to the camera’s projection

plane. The

system of the synthetic camera is given as u, v and n. Screen coordinates are given as u

and v. And the unknown depth coordinate is n. In Fig. 4.4.a the character’s frame is

coincident with that of the synthetic camera. In Fig. 4.4. b the character is seen as it

appears from the view plane of the camera. Since the character’s frame is coincident with

 45

that of the camera, no foreshortening occurs. In this situation, the joint angles extracted

will be correct. In Fig. 4.4.c the character’s orientation indicates a 45° pitch rotation

relative to the frame of the synthetic camera. Here the character’s system is not

coincident with that of the camera. In Fig. 4.4.d the character is seen as it appears from

the view plane of the camera. In this situation, foreshortening does occur because the

systems are not coincident. The image needs to be projected back into the view plane of

the synthetic camera, i.e. the uv plane, otherwise the extracted joint angles will be

incorrect. In other words, convert Fig. 4.4.d to Fig. 4.4.b.

4.2 The Foreshortening Solution

Fortunately, the problem can be corrected and the image can be projected into

our camera view. To fix this problem, project the line segments, the ‘stick’ figure, back

into the desired view plane. Once this is accomplished, then the correct angles can be

derived for link orientations.

 Initially, the user enters an estimation of the figure’s orientation. This can be

accomplished by rotating a cube to indicate the character’s apparent orientation, see

Figure 4.5. All adjustments must be stored in order on a stack, so that a transform matrix

can later be constructed.

 The angles of rotation that relate the character’s frame to that of the synthetic

camera are given here as λ, β and α. Where λ is the u-axis rotation, β is the v-axis

rotation and α is the n axis rotation. First estimate λ, β and α in order to project the

 46

Figure 4.5 Correcting Foreshortening. User orients cube with slider controls (a) to match the
character orientation in the original sketch in (b). In (c) is the fully configured character.

image of the character into the camera view plane in a way that makes the character’s

path of motion appear to be parallel to the camera plane. In other words, the character is

rotated into the uv plane.

 There are two cases to consider in solving the problem. In the first case, either γ

or β equals zero. This is the trivial case since the unknown n coordinate is not needed, u

and v are derived from the image. In this simple case, the screen point <u, v> is re-

projected with the transform below, where either λ or β is zero. Because the cosine of

zero equals one, the following transform stretches the character’s image along a single

axis.

 Rot2D(-α, < u, v >) /* where α is the n axis rotation */

 u′ = u ⋅ (1/cos(β)) /* screen u, where β is the v axis rotation */

v′ = v ⋅ (1/cos(γ)) /* screen v, where γ is the u axis rotation */

 47

 In the second case when both γ and β are nonzero, solve for n. Start by creating

transform matrix M consisting of negative user rotations. As mentioned above, these

rotations are placed on a stack as the user orients the cube. Then, iteratively solve for n.

At each iteration, construct a vector made up of the screen u and v and a next guess for n.

Then, multiply the vector by M and check if the n component of the vector equals zero. If

it does, then the segment has been successfully rotated back into the uv plane. [The

algorithm is given in pseudo-code in Appendix C.] Once the stick figure is re-projected,

the extracted angles can be checked for correctness by comparing the articulated figure

against the image.

4.3 Deriving motion from the character itself

In gait motion, an articulated figure doesn’t move forward at a constant velocity.

To do so, will typically result in unconvincing motion, most noticeably an undesirable

sliding of the support leg. To illustrate a correct behavior, Figure 4.6 shows a character

taking a step. The various diagrams in the Figure 4.6 illustrate how to recreate gait

movement by examining the character itself. Our figure begins with his feet a stride-

length apart, right leg forward and left leg behind. The right leg is supporting the weight

and is fixed in position. This leaves the left leg free to swing forward. As the left leg

crosses over the right, the stance straightens, but the character covers very little distance.

Then, as the left leg steps down, the character falls forward. The results from the shift in

weight of the right leg to the left. At this moment, the forward velocity reaches its peak

during this step sequence.

 48

After the link structure has been configured for orientation, gait movement can be

recreated by extracting motion parameters from the character itself, as seen in Figure 4.6.

In Fig. 4.6.a a character is taking a step. In Fig. 4.6.b a diagram which describes the

motion path of the character’s foot during a walk is seen. In the support phase, the foot

drags along the ground as the character moves forward. In the transfer phase, the leg

follows an arc path as it crosses over the support leg. In Fig. 4.6.c the motion parameters

that can be derived from the character’s poses are seen. The yi values represent the

displacement from the object’s origin to the floor at each keyframe. The character’s

forward progress is measured as displacements between keyframes. For example, the

variable ∆s1-2 is the displacement between keyframe one and two. ∆si versus si is used

because the accumulated distance versus a position measurement is desired. Note that

∆s2-3 is larger than ∆s1-2 demonstrating that velocity is not constant and therefore a curve

is needed to represent it. Now, a velocity curve should be created to capture the behavior

by measuring the displacement of the character’s support leg between keyframes along a

principle axis.

 49

Figure 4.6 Recreating Gait Movement From Character Sketches

4.4 Path Generation

 This section describes how to correctly map a character’s motion to a trajectory

path specified by the animator. The technique described here works best when the

character’s initial motion is simple. A mapping must be created between the character’s

velocity V(t) and a path given as Q(u), for as many cycles as needed to transverse the

path. The velocity curve simply measures the change in a character’s position from one

keyframe to the next. Since V(t) represents distance traveled over time, it directly

corresponds to the arclength s(u) of the trajectory curve Q(u); s(u) is given below.

 u

s(u) = ∫ [(dx/du)2 + (dy/du)2 + (dz/du)2]1/2 du

 u0

The way to solve s(u) is with the forward differencing method given in the

equation below. The forward differencing method finds the length of Q(u) by moving

along the curve in small increments which are added up. The total of these increments for

time u is given by the arclength function s(u).

 50

Figure 4.7 Motion Path

i
s(u) = ∑ dj = | Q(uj)-Q(uj-1) |

 j=1

 Iteration along Q(u) accumulates arclength s(u). The arclength s(u) relates to V(t)

because V(t) is also an accumulator, namely it is the distance traveled by the character. If

the total length of s(u) is greater than the total length of V(t), then the character’s motion

will map multiple times onto Q(u) and thus the motion must be cyclical.

 Based on how many cycles the character has already completed and the current

value of V(t), the world frame position of the character, called x(t), can be found rather

easily. To find the new character position, given the trajectory curve Q(u) and the

original character position x(t), solve for the curve parameter u. This equation takes on

 51

the form of u = A-1(x(t)) , which unfortunately is not an analytical function. Thus, a

numerical integration routine is needed. The routine is simple enough to implement using

the forward differencing method, however it is potentially costly for real-time solutions.

An alternative to an integration solution would be to use a mapping. In

chordlength reparameterization [16], a mapping is created so that the knot spacing is

proportional to the distance between points. In other words, Q(u) is reparameterized so

that the knot values are evenly spaced. This requires creating a curve which maps u to

x(t). For this technique to work well, knots and control points are proliferated so that the

velocity is roughly constant along the portions of the curve between knots. Fortunately,

this can be implemented with a B-spline and yields good results.

As a final step, footprint generation should be provided to allow the user to

evaluate the result. The location of each footprint can easily be calculated from the data

by looking for ground plane contact with the foot at the keyframes. The clock values and

positions where penetration occurs should be saved. To find unwanted foot penetration

from interpolation, the same technique is used but iteration along the clock is in smaller

time-steps. The mapping of V(t) to Q(u) can then be used to determine the location of

footprints along Q(u). The orientation of the footprints can be derived by computing the

tangent curve of Q(u).

 52

Chapter 5

Motion Editing

As mentioned in the introduction, the reuse of previously generated motion is one

of the leading areas in computer graphics research. Due to the complexity of computer

animation, considerable time and expense is invested in creating quality motion. Ideally,

this motion could be adapted to generate similar motions without repeating the entire

process. This chapter covers various motion-editing tools written for the purpose of

adapting and enhancing previously generated motion. The tools relate to time editing,

fine-tuning transitions and operations on motion curve data. They don't attempt to

redefine the motion task. Instead, their primary purpose is for motion enhancement. They

modify the 'look' of how a task is performed rather than modify the task itself. Their

primary focus is to provide an equivalent to a traditional animation technique called

spacing charts, described in the next section.

5.0 Overview

 53

The animator can use the software described here to create variations from a

previously generated motion. The desired effects may be to add personality, model the

effects of weight, create sharper movements, or simply exaggerate motion. For example,

imagine that the animator wishes to create an animation of a female lounge singer who

sways as she walks across the stage. He can improve the caricature by exaggerating hip

movement and modifying timing so that she appears to bounce each time she swings her

hips.

5.1 Mimicking Spacing Charts with a Timing Curve

With regard to acting, timing has been referred to as the essence of the art. By

specifying timing information the animator can enhance a motion for dramatic effect.

There are times when a character should freeze in his tracks or jump out of a pose.

Timing gives life to the character by giving it personality. Traditional animators rely on

instinct to know how the character should act. They have their own technique to describe

exact speed over the dozens of film cells that they must create. They use spacing charts.

Spacing charts are simply time-position patterns for actions. Typically, the

traditional animator has a specific action in mind along with the number of frames the

action should take. He not only encompasses speed but also acceleration. Additionally,

charts may be required for individual limbs to model secondary and overlapping actions.

 54

Figure 5.1 Spacing Charts

Besides personality and dramatic effect, spacing charts can be used to model the

effects of weight. In actions such as walking, running and jumping, time can be

accentuated at key points in the motion to model weight. When time is accentuated at the

recoil phase, it will appear that the character is heavy and cannot seem to get off the

ground. If the transition phase is accentuated, the opposite effect is created. The character

seems to float.

Clearly, a level of control similar to spacing charts would be invaluable to the

computer animator. A timing curve can be created to help model spacing charts. This

curve is used to reparameterize the motion curves that collectively describe the overall

motion. Timing curves can be modeled with various forms from S-curves to cubic B-

splines. In early work, S-curves were commonly used for simple transitions such as slow-

in/slow-out. The more flexible Cubic B-spline form allows for more complicated

 55

mappings. Badler et al [14] describe a reparametrization technique using B-splines for

scripting. In their approach keyframes are mapped to specific time values.

There are two requirements for the timing curve in this system. First, the input

needs to be simple enough so that the animator can enter timing information through a

simple interface. Since the animator's input is interactive and heuristic, Badler's method

is not appropriate. Exact time values are not known. The second requirement is that the

timing information entered for one keyframe will not greatly affect the overall shape of

the curve beyond the neighboring keyframes. In other words, localized editing should

truly be local. In Badler's method, one large interval will greatly distort the shape of the

curve.

In this system, the following method is used to create the timing curve. For each

interval between two keyframes, a control point is initialized to a slope of one. This gives

an initial identity mapping where the output clock (the spline value) is nearly identical to

the input clock (the parameter). To increase the speed at a particular interval the slope is

increased and the curve is re-normalized. In contrast, the slope is decreased to slow down

the clock. Because each interval has a limited effect on the overall length of the curve, no

one interval can dominate the sequence clock. The strength of this method is the input is

simple and well behaved. As will be seen below, this simplifies the interface used by the

animator.

 56

The layout of the interface for creating a timing curve can be fairly simple. The

user can adjust one control to select the desired keyframe. Then, another control can be

adjusted to increase or decrease the slope of the timing curve at the keyframe. Decreasing

the slope of the timing curve achieves the effect of making the sequence appear to

decelerate at the current keyframe. Alternatively, increasing the slope of the timing curve

achieves the effect of making the sequence appear to accelerate at the current keyframe.

The cubic B-spline form was used to model this curve. One problem that

remained was ensuring that acceleration and deceleration occurred at the precise moment

that the animator intended. The cubic B-spline form was used to reparameterize the

motion curves, but it became apparent that a second curve was needed to reparameterize

the timing curve. These forms are often used to represent motion curves because of their

C2 continuity that results in smoother curves. A drawback of this form is that the spline

doesn't actually pass through control point values. As a result, the time at which

acceleration and deceleration occurs is only approximate. To improve the precision of the

timing curve a second curve must be employed to control the knot spacing on the timing

curve. While this improves the precision of the timing curve, this type of information is

difficult to specify in an intuitive manner.

 A technique for graphically defining knot spacing using a plotted graph is

discussed next. While this technique may be intuitive for a computer scientist, it is

unlikely to be appealing to computer animators. One of the goals of future work will be

to improve the user-friendliness of the interface with respect to specifying knot spacing.

 57

In the graph, see Figure 5.2, boxes are plotted along the timing curve to represent the

knot values at the keyframes. These boxes are labeled with the number of the keyframe

which they represent. The animator can look at the placement of the knots relative to the

shape of the curve and determine if the object is accelerating at the correct time. If it is

not, then he can adjust the knot placement up and down along the curve to indicate the

desired position of the keyframe knot. The input is simple and can be done interactively

with a mouse. However, the visualization is mathematical and needs to be improved for

the animator. For example, assume the animator wants the motion to decelerate as it

enters keyframe two, then accelerate as it leaves keyframe two and enters keyframe three.

First, the user will select the keyframe and reduce the slope using a graphical control.

Then he will examine the plotted curve. To accomplish what he wanted to do, he will

position the box (knot) for keyframe two into the portion of the curve with the lowest

slope between keyframe two and keyframe three. The effect will be that the motion

decelerates as it enters keyframe two and accelerates as it leaves it.

 58

Figure 5.2 The Timing Curve. In (a) a default timing curve is seen. In (b) the
knot spacing curve for the timing curve is shown. In (d) is the timing curve after
the user has decreased speed at keyframe two. In (c) the knot spacing curve for
(d) is seen where the user has moved the knot into the slowest portion of the
curve.

5.2 Fine Tuning Spatial Transitions

 Serendipitously, the technique described above can be used for a purpose other

than manipulating sequence timing. It can also be used to fine tune limb velocity

throughout a sequence. While Cubic B-splines yield smooth transitions, they do have a

very visible effect on the motion as a whole. Since knot values don't exactly match the

original control point values, the peak amplitudes of the motion curves are noticeably

reduced. The results in animation are mostly noticeable in quick movements where

characters seem to move in a sluggish manner. For example, the character may appear to

casually swing his arm when he is supposed to throw a punch. To some extent, this effect

can be counteracted by re-normalizing the motion curves until the knot values are closer

 59

to the original control point values. However, it doesn't completely counter the effects.

Additionally, re-normalizing all control points may adversely effect in-between frames.

 An alternate, more localized solution can be used. Instead or re-normalizing the

whole curve, the curve can be re-normalized only for critical control points. From there

velocity can be modified for the in-betweens. The modification of velocity is done at

strategic points where we wish to move from one knot value to a next very quickly. The

difference between this and a timing curve is that we do not wish to speed up the

character's clock, only specific spatial transitions.

This type of precise fine tuning is most beneficial for motion correction.

However, this technique does not directly correlate to any existing idea in traditional

animation. Thus, it will be difficult to implement this tool in such a way that the animator

would be encouraged to use it. The best implementation of this technique would be in an

algorithm designed to look for problems in the interpolated motion.

5.3 Exaggerating Motion

The final editing feature implemented by this system simply multiplies the spline

value by a scalar at each time-step. This operation provides a simple way to exaggerate or

reduce movement around a particular axis. This can be useful for decreasing stride or

increasing hip swing. This simple means of editing can be surprisingly useful when

globally applied to all angles around a particular axis. When walking or running in gait

 60

motion, the movement of the hips triggers a chain balance reaction which tilts the chest,

shoulders and head. As a result, this simple form of multiple-link editing produces good

results. For the same reasons, the overall stride of the gait can be modified in a similar

fashion. Eventually, all motion editing will be grouped into a single application

specifically designed to visualize motion data. The challenge will be to visualize data in

such a way that it is understandable by the animator.

 61

Chapter 6

Conclusion

Creating computer-based tools usable by the animator is challenging. The

approach presented in this thesis demonstrated that believable character motion can be

accomplished by building off traditional animation techniques already familiar to the

animator, namely rotoscoping and spacing charts. In addition, these computer equivalents

offer advantages to pre-existing computer-based techniques. Some of the advantages of

computer-based rotoscoping are that it offers an improvement to low-level parametric

keyframing in that humanoid motion can be described more quickly and with more

accuracy. It is more attractive than hybrid kinematics-dynamics systems because the

required input for the software is easy to understand and relates to an established

traditional animation technique. And finally, the tools needed for rotoscoping are

generally available and could potentially be used by anyone with a video camera and a

computer. The advantage of working with spacing charts is that a precise description of

timing can greatly enhance a motion. Editing tools which mimic spacing charts are

provided to allow the user to attain the level of refinement desired in a finished product.

 62

The implementation of spacing charts is unique because it focuses on the precise re-

parameterization of motion for purely heuristic purposes. An example of such a purpose

would be to endow the character with personality.

Television viewers can frequently watch programs which are dedicated to

presenting the labor-intensive, tedious work involved in producing a traditional or

computer-based animated film. These programs cause one to wonder why so much time

and the efforts of so many are necessary to accomplish such a task. Hopefully, the

approach presented here is a viable shortcut to some of this activity. Nevertheless,

developing the system and performing the mechanics necessary to operate and test it

demonstrate the need for future improvement. Primarily, these improvements should

focus on diminishing labor intensive activities.

 The approach described in this thesis can greatly reduce the time needed to create

believable character motion. However, the implemented system can benefit from

improvements in some critical areas. The process of bringing live video into the

computer could be better streamlined. Computing solutions for link configurations should

be sped up so the animator does not have to wait. And the amount of data entry could be

reduced by taking advantage of spatial locality.

 The process of capturing, importing and converting video data into a suitable

format is laborious. To begin, cameras need to be positioned and oriented properly to

ensure good results. After recording the motion, the camcorders’ footage must transferred

 63

to a conventional VCR recording deck. Then, the video is imported into the computer

with a video capturing device. Unfortunately, low-end video capturing devices record the

videostreams in an uncompressed format, making the files large. Thus, it is necessary to

convert each stream to an 8-bit compressed format with a commercial codec to save

space. Next, the streams need to be synchronized before exporting the frames as

individual images readable by the system. Because codecs typically average frames for

improved compression, the camera flash used during the recording session for the

purpose of synchronization can be lost. If this occurs, finding the correct starting points

in the streams is needed so that the video can be exported as sequences of images.

Clearly, simplifying this to a one or two-step process would be helpful.

 Another aspect subject to improvement is the process of extracting the motion

from the images in the three-dimensional rotoscoping system. As described in chapter 3,

the user must enter stick figures to approximate the actor’s pose and then wait while the

software calculates a solution. The attractiveness of the system would be greatly

improved if the time associated with both these actions could be reduced. For example, a

ten-second sequence of a complex motion, e.g., a martial arts one-step, can take up to two

hours of user time. If we assume a sample rate of five keyframes per second, the

configuration for the entire sequence will require an hour of computation time due to the

iterative solution. Users typically want real-time results.

With regard to extracting motion from the images in the three-dimensional

rotoscoping system, there may still be an analytical solution that has been overlooked. As

 64

mentioned in chapter 3, the analytical solution doesn’t work because the technique mixes

combinations of rotations along the link structure. When solving for rotations, the line

segment is always rotated into a particular axis based on the angles being sought. The

problem appears to arise because the link segment doesn’t represent the same axis from

one link to the next. But perhaps, an intermediary coordinate transform may fix the

analytical solution. This could make the solution real-time.

Finally, drawing stick figures with a mouse can easily consume one hour, given

fifty keyframes. Drawing the stick figure in each view results in one hundred stick figures

total. Because the actor’s body changes little from one keyframe to the next, it may be

advantageous to allow the user to enter a stick figure for every five or so keyframes and

then let the software interpolate the in-betweens. The user could then adjust the in-

betweens, so they will be correctly posed. For the parts of the actor which are moving

slowly, this could dramatically reduce the amount of input required by the animator. If

the animator’s work for fifty keyframes could be reduced from two hours to 20-30

minutes, the attractiveness of this rotoscoping approach would significantly improve.

 Motion capture using specialized equipment, i.e., electromagnetic trackers, will

always be more accurate than the rotoscoping techniques described here. However, the

low-cost nature of this system makes it an attractive alternative for animators working for

smaller companies with modest budgets. Other techniques presented here for editing

motion proved workable but require more development to further ease usage. For

example, the most useful editing tool, to imitate spacing charts, offers a high-level of

 65

precision but needs a less intimidating interface for non-technical users. Perhaps the best

argument for the overall utility of this system is that it produces good results. And while

some tools in the system still need to be refined for usage, the principles behind most of

the tools and the input they accept is straight forward.

 66

Appendix A

Frames of Reference

A.0 Description

The terms coordinate system and frame are fairly interchangeable. Imagine a set

of axes permanently attached to an object so that when the object moves the axes move

with it. In a Cartesian coordinate system, positions are specified along the x, y & z axes

with the point <0,0,0> referring to the origin of the system. The whole constitutes a frame

of reference to track the motion of various objects. Often when an object moves it is

easiest to keep track of what is going on by following the motion of the frame of

reference attached to the object.

 Probably the most common use of this construct is for coordinate transforms.

Coordinate transforms are used to relate the coordinates of vertices from one frame of

reference to another. For example, in a flight simulator it is necessary to constantly

transform objects into the world coordinate system to coincide with the view of the

 67

Figure A.1 Frames of Reference

cockpit. This would require a coordinate transform between the observer’s frame and the

world frame. By contrast, the other type of transform, called a geometric transform,

usually describes what happens when the object itself is moved inside a single reference

frame, e.g. a cube spinning around it’s center.

 In the rotoscoping system described in this paper, there are two top-level frames

of reference. First observe the actor perform in a space called the view frame. This

coordinate system is the real world it is actually constructed from the viewpoints of two

cameras at right angles.

 The other frame is the world frame. This the top-level frame of reference for all

the objects in the world. In this hiearchial construct, each object has it’s own frame called

 68

an object frame. Since our objects are link structures, the hierarchy proliferates with

individual link frames.

 These two top-level frames are treated independently. There is no predefined

transform which shall correlate coordinates of vertices from one frame to the other.

Fortunately, the only time when there is a need to correlate coordinates between the two

frames is when the position of an object in the world frame must be determined from the

camera footage. In this case, the coordinate from the view frame will have to be

normalized into the world frame.

A.1 The View Frame

 Typically in 3D

graphics, objects are brought

to the screen through a

series of coordinate

transforms. Objects are

placed in the world

coordinate system (world

frame) and transformed to

the view of the world as

seen by the user. This

reference frame of the

observer is typically called the view frame. To get from the view frame to the screen,

Figure A.2 The View System. The View Frame is
constructed by combining coordinates from the camera
view planes, called Window Frames.

 69

make a projection onto a plane, called the view-plane, of the object which is to be

displayed.

 In a rotoscoping system the opposite process must be followed, the view-planes

go to the view frame. Begin with two cameras set up at right angles to each other and

aimed at a common focal point. This allows two fixed views of the real world. The

contents of these views may change as a function of time, but the position and direction

of each camera is constant. Now track movement in each view relative to a fixed

coordinate system.

A.1.1 The Window Frame

 Since the animator works with these views in a raster display, these fixed 2D

coordinate systems are referred to as window frames. Designate one as ‘side’ and the

other as ‘front’. A window frame relates to the fourth quadrant in a Cartesian plane

system where all coordinates are positive.

A.1.2 Constructing the View Frame

In order to construct a view frame, a method of combining window frame

coordinates to create view frame coordinates must be used. In other words, combine the

coordinates of a vertex in one window frame with those of the other in such a way as to

yield a correct view frame coordinate. Fortunately, the right angle relationship between

the two window frames makes this easy. For every vertex the user enters in the ‘front’

 70

window frame, a corresponding point is specified in the ‘side’ window frame. The view

frame coordinate is simply (Xfront, (Yfront+Yside) / 2 , Xside). The view frame is clearly an

imaginary construct but it plays an important role as a frame of reference. In Figure A.2,

the relationships between the window frames and the view frame is illustrated.

A.2 The World Frame

 As mentioned before, it is convenient to track the motion of objects by comparing

their frames of reference to a global system. This common space, inhabited by all the

objects, is called the world frame. It is important that all objects are transformed into this

common space in order that their spatial relationships may be defined.

A.3 The Object Frame

 Each object in the world frame has it’s own local coordinate system called an

object frame. The process of transforming coordinates of vertices from an object frame to

the world frame is known as the object-to-world transform. Since the motion of human-

like characters must be described, a hiearchial structure which consists of many smaller

objects is needed.

A.4 The Link Frames

An articulated figure is a structure which consists of a series of rigid links

connected by joints. The link structure is represented as a whole with an object frame.

 71

The smaller component objects are link-joint instances, referred to here as links. Each

link has it’s own coordinate system, typically centered at the joint, called the link frame.

A.4.1 Degrees of Freedom

An articulated figure greatly differs from a simple rigid body in the amount of

information required to describe the object, as well as how this information is specified.

An unconstrained rigid body has six degrees of freedom, three translational and three

rotational. In an articulated figure where the rigid links are fixed, or ‘glued’, at the joints

(translational constraints), only the three rotational degrees of freedom are considered.

The number of degrees of freedom of the entire link structure is the number of

independent variables necessary to specify the state, also called the configuration, of the

figure. For example, to represent one keyframe of a man running may require 51 different

angles of rotation to be specified in the link structure. The configuration of the articulated

figure could be represented in state space with a 54 element state space vector, 51

elements for rotation plus an additional 3 elements to translate the object in the world

frame.

A.4.2 Transformation Matrix

Constructing a transformation matrix for each link is also more involved than that for a

simple rigid body. The transformation matrix for a particular link is the concatenation of

all matrices along the path from the top of the link structure to that link. Because

transformations are cumulative, the structure must be transformed in a top-down fashion

 72

using transforms which relate the frame of reference of the current link to that of the one

immediately proceeding it in the tree. Thus, the transformation of a particular link is in

fact a series of coordinate transforms starting at the top of the link structure and ending at

the link. It is important to remember that the order of matrix multiplication is critical

since the rotational components of the transforms are non-commutative. This

representation is both intuitive and conducive for ‘gluing’ of geometric data to the link

skeleton which must be done later.

 73

Appendix B

Rotations

B.1 Schemes of Rotations

In discussing the configuration of the articulated figure, two schemes of rotations

should be mentioned. One is used when solving for the angles of rotations which relate

one frame of reference to the other. The other is used in the link structure as a general

description of orientation. Both ways can be used to describe the orientation of a 3D

object. And both use rotations relative to the base vectors of an object’s frame. The major

difference between the two schemes is that one uses two angles to represent orientation

and the other three.

 74

Figure B.1 Spherical Coordinates. Incremental rotation from φ0 to φ1. The total rotation is
represented with a single angle φ0+1. Thus, the angles of rotation, φ and θ, provide a
general recipe of orientation.

B.2 Spherical Coordinates

 One scheme to implement rotations is similar to that involving lines of longitude

and latitude, where rotations about two axes are added up separately and finally put

together at the end. In this scheme, several incremental rotations can be made both left to

right (latitude) and up and down (longitude) in any order, but only the separate totals are

recorded.

 75

 As an example, suppose the total rotation about the y-axis is 40° and the total x-

axis rotations is 83°. Then, the overall rotation is taken to be a single rotation about the y-

axis of 40° followed by a single rotations about the x-axis of 83°. Note that this isn’t the

same as rotating about the x-axis first and then the y-axis second which gives a different

result.

 Doing a rotation about the first axis, followed by a rotation about the second axis,

does provide a recipe for always getting to the same orientation each time. This is just

like finding a position on the globe uniquely with circles of longitude and latitude. The

rotation abut the first axis gives the angle of latitude, and the rotation about the second

axis gives the angle of longitude. This results in a simple scheme to uniquely orient an

object, but is restrictive for a link structure as a whole because it ignores rotations about a

third axis.

B.3 Euler Angles

 Euler angles are a way of specifying the orientation of one reference frame to

another using three angles. An important aspect of rotations is they must be specified

about different axes in a fixed order. There are many combinations possible. The

sequence commonly used by aeronautical engineers is called the 321 sequence because it

describes rotations about the x, y and z axes. These rotations are called yaw, pitch and

roll. See Figures B.2 and B.3.

 76

Figure B.2 Aeronautical Terms

 A typical sequence of rotations which carry one reference frame into another is

given below.

1. rotate by θ about the x-axis (yaw) .

2. rotate by φ about the y-axis (pitch).

3. rotate by γ about the z-axis (roll).

The sequence actually used by this system is 312. Because the user enters line

segments to describe orientation, it is hard to derive pitch for some body parts. For

example, the animator is likely to enter a vertical line segment to represent the chest in

both views, thus giving no clue to the pitch orientation. For this reason, the pitch

 77

orientation is often specified in the window in the three-dimensional rotoscoping

software. So make pitch the first rotation in any control matrix .

 Euler angles are different from the other scheme in that one orientation is not

uniquely described by three angles. There are many possible combinations. When

describing link orientation it is more flexible, but when solving for rotations the other

scheme must be used .

Figure B.3 Rotation Sequence for Euler Angles

 78

Appendix C

/* Pseudo-code algorithm for returning angle from line segment */
/* camera system is u, v, and n, figure orientation is given by */
/* angular displacements of γ, β, and α. */

/* project point (dir vector) into orthographic plane */
Get_Angle(u, v, n, γ, β, α)
Begin

 if α=0 and β=0 then /* trivial case */

 Rot2D(-α, <u,v>)
 u = u * (1 / cos(β)) /* screen x */
 v = v * (1 / cos(γ)) /* screen y */

 else /* have to solve for unknown n */

 vector P=<0,v,u> /* vector space is x,y,z */
 matrix M /* inverse transform matrix */
 mag=sqrt(u*u + v*v) /* length of line segment */

 while (stack not empty)
 Rot(γ, β, α)=Pop(user_orientation_stack)
 M = M * Rot(γ, β, α)
 end while

 /* in (x,y,z) x is the lost coordinate */
 for x = 0.0 to 1.0 step tolerance /* tolerance≅.001 */
 P′ = < x, P.y, P.z>
 P′ = P′ ⋅ M
 if P′.x = ± tolerance /* aligned with zy plane? */
 P = P′ * mag
 u = P.z
 v = P.y
 break; /* break from for..loop */
 end if
 end for

 return Line_To_Angle(u, v) /* use atan2(y,x) in C */
End

 79

References.

[1] Thomas & Johnston, “Disney Animation: The Illusion of Life”, Abbeville Press, New York, ’84.

[2] Lasseter, John, “Principles of Traditional Animation Applied to 3D Computer Animation”, Computer

Graphics, Vol. 21, No. 4, ’87.

[3] Gomez, Julian, “Twixt: a 3-D Animation System”, Proceedings of Eurographics 84, ’84.

[4] Sturman, David, “Interactive Keyframe Animation of 3-D Articulated Models”, Proc. Graph. Interface,

’84.

[5] Bruderlin, A. and Calvert, T. “Goal-Directed, Dynamic Animation of Human Walking,” Computer

Graphics, Vol. 23, No. 3, pp. 233-242, 1989.

[6] Cohen, M., “Interactive Spacetime Control for Animation,” ACM SIGGRAPH ’92, pp. 293-303, 1992.

[7] Phillips, C., Zhao, J. and Badler, N. “Interactive Real-time Articulated Figure Manipulation Using

Multiple Kinematic Constaints,”,ACM SIGGRAPH ’90, pp. 245-250, 1990.

[8] Witkin, A. and Kass, M., “Spacetime Constraints,” ACM SIGGRAPH ’88, pp. 159-168, 1988.

[9] Zeltzer, D. “Motor Control Techniques of Figure Animation,” IEEE Computer Graphics and

Applications, Vol. 2, No. 9, pp. 53-59, 1982.

[10] Bruderlin, A. and Williams, L., “Motion Signal Processing,” ACM SIGGRAPH ’95, pp. 97-104,

1995.

[11] Guo, S. An Approach to Computer Keyframe Animation Incorporating Motion Control: Parametric

Keyframe Space Interpolation, Ph. D. Thesis, Illinois Institute of technology, 1992.

[12] Guo, S., Roberge, J., and Grace, T. “Controlling Movement Using Parametric Frame Space

Interpolation,” Models and Techniques in Computer Animation, Magnenat-Thalmann N., Thalmann

D.(eds.), Springer-Verlag, pp. 216-227, 1993.

[13] Witkin, A. and Popovic, Z., “Motion Warping,” ACM SIGGRAPH ‘95, pp. 105-108, 1995.

[14] Steketee, S.N. and Badler, N.I., “Parametric Keyframe Interpolation Incorporating Kinematic

Adjustment and Phrasing Control, SIGGRAPH ’85.

 [15] Barsky, B. and Beatty, J.C., “Local Control of Bias and

Tension in beta-Splines,” ACM Trans. on Graphics, 109-134.

 80

 81

[16] Guenter, B. and Parent, R., “Computing the Arclength of Parametric Curves,” IEEE Computer

Graphics and Applications, May 1990.

[17] Watt, A. and Watt, M., “Advanced Animation and Rendering Techniques Theory and Practice,” ACM

Press, New York, ’92

[18] Girard, M. and Maciejewski, A.A., “Computational Modelling for the Computer Animation of Legged

Figures, “ SIGGRAPH ‘85, 263-270, 1985.

	1.0 Background
	1.1 Shortcomings of previous methods and proposed resolution
	3.0 Overview
	3.1Rotations
	3.2 Position
	3.2.1 Bounding Volumes
	3.2.2Perspective

	4.0Overview
	4.1The Foreshortening Problem
	4.2The Foreshortening Solution
	4.3Deriving motion from the character itself
	4.4 Path Generation
	5.0 Overview
	5.1 Mimicking Spacing Charts with a Timing Curve
	5.2 Fine Tuning Spatial Transitions
	5.3 Exaggerating Motion
	A.0 Description
	A.1The View Frame
	A.1.1The Window Frame
	A.1.2Constructing the View Frame

	A.2The World Frame
	A.3The Object Frame
	A.4The Link Frames
	A.4.1Degrees of Freedom
	A.4.2Transformation Matrix

	B.1Schemes of Rotations
	B.2 Spherical Coordinates
	B.3 Euler Angles
	Appendix C
	References.

