

Using Kinematic Clones to Control the Dynamic Simulation
of Articulated Figures

By

William Charles Westenhofer

B.S.E.G. May 1990, Bucknell University

A Thesis submitted to

The Faculty of

The School of Engineering and Applied Science
of The George Washington University in partial satisfaction

of the requirements for the degree of Master of Science

May 14, 1995

Thesis directed by

James Kwangjune Hahn
Assistant Professor of Engineering and Applied Science

 ii

ACKNOWLEDGMENTS

 The author would like to thank Rhythm & Hues, Inc. for the generous use of their

rendering and editing resources. All of the material in the demonstration video was

created at their facility and with their proprietary rendering and compositing software.

Thanks especially to Steve Ziolkowski and Ian Hulbert for their modeling support.

 Additional thanks goes to Larry Gritz who helped with insight in choosing an

articulated figure dynamics algorithm and in proofreading this thesis.

 iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

INTRODUCTION . 1

Chapter

 1. PREVIOUS WORK . 5

 Direct Simulation Control
 Kinematic Approaches
 Total Kinematic Articulation
 Partial Kinematic Articulation
 Summary of Kinematic Control
 Motor Control Schemes
 Statically Stable Walking
 Statically Unstable Walking
 Summary of Motor Control Techniques
 Induced Simulations
 Optimal Path Searching
 Induced Response to Stimulus
 Neural Network Approach
 Parameter Approach
 Summary of Stimulus-Response Methods
 Space-Time Constraints
 Sequential Quadratic Programming
 Genetic Programming
 Summary of Space-Time Constraints

 2. THE DYNAMIC SIMULATION . 26

 Rigid Body Dynamics
 Articulated Body Dynamics
 Spatial Algebra
 The Articulated Body Method
 Step 1: Finding Articulated Body Inertias
 Step 2: Propagating Accelerations
 Implementation Details
 Numerical Integrations

 3. KINEMATIC CLONES . 37

 Kinematic Clones: Technical Description
 Spring Connections
 Damping Forces

 iv

 Animating Parameters
 Spring Force Release
 External Forces
 Kinematic Links
 Interface Design

 4. RESULTS . 46

 Chain Link Tests
 Ice Skater
 Mannequin Jump
 Walk Cycle
 System Performance

 5. FUTURE WORK . 50

 Alternative Spring Configurations
 Joint Constraints
 "Floating Bases"
 Collision Detection
 Advanced Kinematic Joint Control

 REFERENCES . 54

 1

INTRODUCTION

 Over the past century, classical animators have striven to endow their characters

with "life." All movements and actions had to be made to work in concert in order to

suspend the disbelief of a character’s existence, allowing it to transcend from a set of

sequential drawings to a personality that an audience could identify with. Animators at

groundbreaking studios like Disney and Warner Brothers learned early on that such a

quality could be reliably attained by following a set of principles and guidelines [1].

Many of these principles, including such things as proper staging, exaggeration, and

appeal, are artistic metrics that are important for the unambiguous portrayal of the

intended actions of a character. There are others, however, like squash-and-stretch,

follow-through, and overlapping action which are really formalizations of phenomena

that occur naturally as a result of gravity, inertia, and the deformations of viscous

material. Such physical behavior is well understood and capable of being calculated

which is why it is tempting, in light of the relatively recent use of the computer as an

animation medium, to let a dynamics simulation handle their incorporation into a

character’s movements. Animations to date that have employed physically-based models

have produced incredibly realistic motion of both rigid and deformable objects [2][3].

 The dynamics of rigid bodies have been known for quite some time. Classical

Mechanics by H. Goldstein [4], was originally published in 1950 and is still considered a

"bible" on the subject. The use of dynamics in computer applications is not new either;

robotics, mechanical and civil engineering have all used computer driven rigid body

dynamics simulations in some form or another. Computer graphics and animation

applications of dynamic simulations have also been presented and produced. Some of

them, especially particle systems have enjoyed widespread use at both the research and

professional levels [5]. While the use of dynamic simulations may not be new, the issue

 2

of how to control them is still a concern for their practical applicability in a production

environment. Professional animation tends less to be an act of discovery and more the

result of planning and execution. Any use of simulations must therefore provide

adequate control to be acceptable within this paradigm. This is especially true when

dealing with character animation since the actions and intentions of central characters

receive the most scrutiny from both directors and audiences alike. The goal of this thesis

is to present a technique that makes the incorporation of dynamic motion practical in a

production environment. A new control strategy, one that uses a structure called a

kinematic clone, is presented. This strategy gives an animator detailed control over a

dynamic simulation while still allowing the animation to benefit from the realism the

dynamics provides.

 In terms of rigid bodies, this paper focuses on articulated figures. An articulated

figure is a set rigid bodies connected by flexible joints, analogous to the limbs, joints and

torso of a living creature. The concept of an articulated figure is actually born out of

robotics from which is also borrowed the specialized equations of motion for their use

[6]. For the purposes of this thesis, the term "dynamics simulation" will be assumed to be

a simulation involving articulated figures unless otherwise specified.

 Articulated figures have appeared before in computer graphics in kinematic

control systems. Jointed characters are typically represented as hierarchical trees of links.

An animator in a kinematic system has complete control over the positioning of each

joint and link by manipulating joint parameters within a figure’s degrees of freedom. The

hierarchical structure allows an animator to specify the relative motion between a link

and its parent (e.g. a hand in relation to a forearm). Using a parent-child hierarchy also

maintains link connectivity and allows an animator to move substructures (e.g. an arm) as

a unit. Of the kinematic systems, keyframe systems are the most widely used in

production animation work. Their popularity undoubtedly stems form their similarities

with the traditional 2D cel animation technique by the same name. Most professional

 3

animators are classically trained (.i.e. 2D) and must transition to 3D when they begin

animating on a computer. Using a keyframed system allows direct application of the

principles learned in 2D. This is good from a control standpoint but bad from a tedium

standpoint, especially considering the large number of degrees of freedom in a typical

character. Adding the subtleties of dynamic motion to an animation typically requires the

inclusion of a much larger number of keyframes and these "key positions" must be set for

each degree of freedom. This tedium, coupled with the ever increasing pressure to cut

production times justifies the search for a technique which allows the control of

kinematic systems with the automation benefits of a dynamic simulation.

 To do this one must consider what makes realistic motion real and what makes

expressive motion expressive? The assumption here is that realism can be tied to

physical equations which can be computed while expression deals with perceptions and

qualitative measures that are best left to the animator. The quality of "realism"

presumably comes from our experienced expectations of how an object should move

when subjected to the physical laws of motion. Arms under muscular control still sway

somewhat as a result of gravity. A heavy person sags a little more on his/her joints than a

thin person and shows a bit more jiggle in the fatty layers. A dog, on landing after a big

jump shows tremendous follow through as its muscles strain against inertial forces. On

the other hand, expressions and emotions defy such precise explanations. Depicting

personality in animation is basically "acting" where a sequence of images replaces

movement about a stage. A quote by Saint Exupéry pulled from Disney Animation: The

Illusion of Life [1] reads "It's not the eyes, but the glance—not the lips, but the smile…"

Excitement bursts with outstretched arms and legs and wide open fingers. Gloom recedes

with slumped limbs and a slouched head. Such things would be very difficult to code

algorithmically in all but the most contrived cases.

 For a dynamics simulation to work in character animation then, a system must

allow an animator to move a character expressively while allowing the simulation to do

 4

the work of adding physical realism. The kinematic clone technique achieves this by

giving an animator access to a clone of the articulated figure representing a character.

This clone is moved kinematically through the keyframing process. This clone then

"directs" the movements of the dynamically controlled character through spring forces at

each of the joints. Each joint of the kinematic clone is connected to the corresponding

joint of the dynamic figure by virtual springs whose tension can be controlled by the

animator depending on how closely the dynamic figure must approximate the positions of

the clone.

 With this setup, the intention is for the dynamic simulation to enhance and refine

the motions of the kinematic clone. Thus when a figure lands after a jump, inertia causes

the links to swing forward a little on impact. When an animator waves an arm, the arm

will move closely to the suggested path, but the dynamic solution will add tiny nuances to

the motion, including gravitational sag and follow through. The spring tensions can be

adjusted to vary the degree to which the dynamics matches the kinematics. The hope is

that with the assistance of the dynamic simulation, an animator can greatly reduce the

number of keyframes required. In purely kinematic systems, follow-throughs and

oscillations must be accounted for through the use of extra keyframes. These extra

keyframes would be unnecessary if the dynamics simulation could account for them.

 Chapter One will present the background and related material that was researched

in the development of this technique. Chapter Two is devoted to the dynamics equations

used for the simulation of articulated figures. This paper uses a very efficient recursive

dynamics formulation called the Articulated Body Method developed by Roy

Featherstone [6]. After that, the implementation details of a current system that

incorporates the kinematic clone concept will be given in Chapter Three, followed by the

results of experiments conducted on the system designed to measure its potential in

Chapter Four. The final chapter will discuss areas for future development to improve the

performance of the system.

 5

CHAPTER 1

PREVIOUS WORK

 Controlling a dynamic simulation in order to produce a desired motion has been a

concern of robotics research for quite some time [7]. In robotics, a motor control

program must be able to calculate the torques and forces required to drive the servos at

each joint. Since an articulated figure in computer graphics is in one sense a virtual

robot, a naive control technique would be to allow an animator to "play the role" of the

motor at each link. For each frame of an animation, the animator could supply the set of

torques and forces that drive them. To make an arm lift and grab an object, for example,

an animator would supply the appropriate time-varying torques to the shoulder, elbow,

and wrist to make the arm perform the task. Unfortunately, the work demanded of an

animator in this case is far more difficult and less intuitive than the work required to

specify a similar motion kinematically. While the final result will probably look more

realistic (once the correct forces are found), an animator will have to spend more time

working and "tweaking" the torques and forces before the figure behaves as desired. The

added difficulty stems from the fact that people tend to think kinematically when

planning motions. The conscious mind tends to visualize goals like "move arm to point

X to grab the apple." or simply "jump over there." The subconscious mind has been

trained through experience to respond with the appropriate muscular tugs and pulls. In

the less frequent occasions that forces are considered on a conscious level (e.g. "pull hard

enough to open the door"), it tends to be an inexact, trial-and-error process requiring

force testing and feedback. It is very hard to guess the exact outcome of a command like

"move the shoulder with a force of 10 Newtons for 10 seconds" Such difficulties carry

into animation control. This need has driven the research described below.

 6

 Work to date can be grouped into two categories based upon the nature of

animator input. Direct simulation control schemes seek to control a simulation by

manipulating parameters of the simulation itself. They attempt to mitigate the difficulty

of force and torque inputs by either providing higher-level, abstract parameters to control,

or lessening the number of forces and torques that must be dealt with. Examples include

techniques that allowing some of the links to be controlled kinematically with the rest

remaining dynamic. Also included are more advanced methods that attempt to replicate

the motor control programs of real creatures in software. Induced simulations, in

contrast, are controlled through objective functions that describe the general

characteristics of what a motion is supposed to do. The system then employs dynamic

simulation to find a motion that satisfies the objective functions. The kinematic clone

concept belongs to the first category, but work from both will be described here to

provide a comparison for judging the concept’s utility.

Direct Simulation Control

 When designing a simulation, it seems natural to grant control by building ’hooks’

into the simulation that an animator can control. A wide array of terms are readily

available for this purpose, including the force of gravity, mass of the links, and the

torques and forces themselves that drive an articulated structure. In addition to

manipulation of terms, an animator could add an additional layer to the simulation by

building motor control programs that are patterned after the biomechanical processes of a

real creature.

 The defining quality for all of these modes of control is that the animator directly

manipulates some part of the simulation itself. To do this, the animator accepts the

responsibility of understanding the fundamental principles of the dynamic simulation in

order to supply appropriate values for the parts that are being controlled.

 7

Kinematic Approaches

 The use of kinematics to control dynamic simulations can be found in many early

papers. The techniques used keyframing to control important parts of a figure while

other parts would rely on the simulation. The kinematically controlled links move

without regard to external forces or with sufficient additional forces applied to make it

appear so. The remaining links would be controlled by the dynamic simulation with the

effects of motion of the kinematic links being included in their calculations.

Total Kinematic Articulation

 In his paper, Hahn [2] places all of the joints of an articulated figure under

kinematic control, seeking only to determine the net effect of their motions on the motion

of the body as a whole. This is equivalent to the "floating base" systems in the robotics

literature [6][7], as is used to find the net motion of a body in free-fall or in orbit like a

robotic arm on a satellite. The motion of internal links effects the rigid body motion of

the figure by imparting forces and torques due to the conservation of linear and angular

velocity.

 Hahn’s technique proceeds by finding a single rigid body inertia tensor (see

Chapter 2) from the sum of all the inertia tensors of the links transformed to the body

fixed coordinate system. Once a single instantaneous inertia tensor has been found, the

forces imparted on the body by the kinematic motion are calculated such that the net

change in linear and angular velocity is nullified. The resultant angular velocity of the

rigid body is given by:

 8

dW’ = -IT
t [()

� �
I
�

dW� � (R j × � dW� × � � � � � � � m � � �
dW 	
 � �
 � � � � � � � �
 � 	 �

 � � � � � � � � �
 � � � �’
IT

t � 	 � � � � � �
 � � � � � �
 � �
 	 � � � �
 � � � 	 � � � � � �
I
� � �
 	 � � � �
 � � � 	 � �
 � � � � � � � �
 � � � � � � � �
 � 	
 � � � � �

dW� � � � �
 � 	 �

 � � � � � � �
 � � � �
R j
 �
 � � � � 	 � �� �
 � � � � � � � � � �
 � �
 	 � � � � � � � � � � � � � �
 � � � � 	 � �
m
� � � � � �
 � � � �

� ! �

The total linear velocity is found by comparing the displaced location of the new center

of mass in comparison to its position from the previous frame. For linear velocity to be

conserved, these values must coincide. The "conservation" force is then the force

required to move the new center of mass to the location of the old one.

 Hahn’s method works very well for situations where an articulated figure can be

treated as a single rigid body. These situations are generally limited, however, to figures

in free-fall. Figures in contact with the ground or a wall do not behave in this manner

since they are conceptually part of a single rigid body composed of the union of

themselves and the immovable surface with which they are in contact. Since the ground

is generally implemented as a mass of infinite size, conservation of momentum is not

assured.

Partial Kinematic Articulation

 Another means of realizing kinematic control is to classify certain links as

kinematic and others as dynamic. This technique was proposed by several researchers

[8][9][10]. Each implemented the technique in a slightly different way, however.

 Wilhelms [8] and Armstrong et al. [9] both proposed a method whereby links

could be assigned to certain states, each of which represents a different control method

for the animator to choose. For example, in Wilhelms’ paper, a link could be assigned

 9

one of four states: 1) direct dynamic control where an animator supplies a torque function

by building a splinar curve; 2) relaxed control where no internal forces are given and the

link hangs loosely governed only by gravity and collisions; 3) frozen control where the

system supplies the forces to "freeze" the relative joint angle with a link’s parent; and 4)

oriented control where forces are supplied by the system to hold a link in a fixed world

coordinate position/orientation. Importantly, these states can be changed over time, so an

arm after moving under direct dynamic control to place an object on a shelf, for example,

can revert to a relaxed state and fall limply at the actor’s side when it is done. She also

introduced a concept called positional control which is very similar to kinematic clones.

Her technique did not allow an animator to vary the degree to which the dynamic motion

would approximate the kinematic positions and did not allow links to be controlled

completely through kinematics, the value of which is discussed in Chapter 4.

 Armstrong et al. [6] proposed a similar system, but added the concept of local vs.

global control. Local control effects the links themselves; they can be positioned,

oriented, or allowed to hang freely, just like Wilhelm’s version. The paper also adds an

additional local control mechanism called a simple move. A simple move gives a new

angular position between a link and its parent. The system sets up a smooth transition

function from rest at a link’s current position to rest at its new position by calculating the

appropriate torque by:

" # $ % & 
î

')((* + ,) - . %# /0)1 (*+2) - . %# /43 5 $ ≥ 67 8 9 : ; < = > :# ? %

The parameter @ is the desired angle between a link and its parent while x is the current

angle. The other constants, A and B , must be tweaked to prevent the link from moving or

accelerating too quickly. A smooth "ease-in" and "ease-out" are performed during this

transition using the following formula:

 10

C D EGF H I J F K F L M N O P K QSR T Q U M Q O L M N O P K Q √ C V W θ φ
E X C W E

θ

Here, center_torque is the torque at the angular midpoint of the motion, x is the current

angle at this time-step, θ is the final angle, and φ is the angular midpoint. This process is

also conceptually similar to the work accomplished by kinematic clones. The two

significant differences are that (3) requires that links be at rest at the start and end of a

movement, and both (2) & (3) require a continuous rotation about a fixed axis from the

start of the move to the end. These limitations are not acceptable for general animation.

 As mentioned earlier, Armstrong also introduced the concept of global control.

Global control encompasses processes the effect the entire figure to achieve a certain

goal. Examples include a processes to introduce balance and another to introduce ground

collisions. Armstrong suggested several approaches for realizing these effects such as a

force that keys off the relative angle with the body to the ground. The ground-to-figure

collision process is used in the current kinematic clone implementation.

 While the previous two techniques allow the simultaneous control of both

kinematic and dynamic links, both limit the animator to the set of control methods which

were set a priori. A more general approach is presented in [10]. Isaacs and Cohen’s

DYNamic MOtion system (DYNAMO) incorporates kinematics indirectly through a

"behavioral motion" layer1. This layer is completely general and allows any procedure

(including keyframing) to supply the forces, torques, and accelerations to the

dynamically controlled links. Examples of a behavioral motion controller might be a

keyframe system, or a system that applies a braking force when a speeding car passes too

close to a cliff. The behavioral motion layer then can pass both forces and accelerations

into the dynamics system. For each link, the data that is passed, be it a force or an

1Not to be confused with "behavioral motion control" as defined in C. Reynolds, "Flocks,
Herds, and Schools: A Distributed Behavioral Model," Computer Graphics (SIGGRAPH
’87 Proceedings), 21, no. 4 (July 1987): 25-34.

 11

acceleration, determines whether the link will act as a kinematic link or a dynamic one.

Both the forces and the accelerations are combined in a set of linear equations. Links for

which the accelerations are known are subtracted out, removing them from the set of

linear equations. Gaussian elimination is then used to solve the system. This process is

an example of a Composite Body Method discussed in Chapter 2.

Summary of Kinematic Control

 Each of the papers presented above have desireable features that have actually

been incorporated into the kinematic clone technique. They all share the advantage of

allowing an animator to control some or all of the links kinematically. The kinematic

clone technique distinguishes itself by formalizing the relationship between the kinematic

process and the dynamic process and by letting the animator choose the degree to which

the final motion is effected by either. This point is crucial in allowing an animator to

portray a "tense" character versus a "relaxed" one.

Motor Control Schemes

 If a higher level of control of a dynamic simulation is desired, a useful approach is

to study biological systems to find how they handle the motion control process. Real

creatures locomote by stimulating muscles on command from a body’s nervous system.

Researchers have been able to mimic natural motor control by writing programs that

imitate these systems, either by direct application of biomechanical research, or indirectly

through similar research that has already been performed in robotics.

 One of the interesting results of recent biomechanical studies has shown that

certain periodic motion is controlled through distributed neural processes, as opposed to a

completely centralized system as was once thought [11]. For the purposes of control, this

implies that complex motion can emerge from the coordinated workings of simple

mechanisms. This discovery has been exploited in the field of robotics [12]. Brooks

 12

developed the robot Ghengis which walks about with the simulated intelligence of an

insect. The motor controls are distributed; there is no master processor controlling each

of the legs. Each leg has its own agenda and must solve problems on its own when trying

to reach a goal. For example, a leg has a preprogramed goal of lifting, then swinging

forward, then planting, the levering backwards. If an obstacle prevents this, it is up to the

leg to lift itself higher to overcome it. For such meager intelligence, it is amazing that

Ghengis was one of the first robots to be able to adeptly navigate a room filled with

moving objects and debris.

Statically Stable Walking

 McKenna and Zeltzer developed a motor control scheme patterned after the work

done in biomechanics and robotics for statically stable walking motions [13]. Statically

stable motion refers to motion that can be halted and maintained at any point in time

without causing a creature to fall over. Insects with their six-legged stance fall into this

category (rather appropriate since the distributed control technique they used is very

similar to Brooks’ robots that are said to have the intelligence of insects).

 Their simulation of a cockroach uses a distributed oscillator network that accepts

input from reflex sensors. The authors cite five observables that have been compiled

from the studies of the walking gaits of real insects:

1. A wave of steps runs from rear to head (and no leg steps until the one behind is

placed in a supporting position).

2. Adjacent legs across the body alternate in phase.

3. Stepping time is constant.

4. Leg step frequency varies.

5. The interval between steps of adjacent legs on the same side of the body is

constant, and the interval between the stepping of the foreleg and hindleg varies
inversely with the stepping frequency.

 13

 Experimental data of insect nervous response has confirmed that each leg has its

own "pacemaker" termed an oscillator in the literature, that fires every time the leg is

supposed to step under normal conditions. These oscillators are coupled to cause the

"wave of steps" to occur and to synchronize the motion on each side of the body.

Interestingly, the method used by the oscillator motor control to move the legs is identical

to the kinematic clone concept of linking a kinematic potential to the dynamic link via

spring forces. The oscillator moves the "rest angle" of the spring in order to induce

movement of the legs. The key distinction between the kinematic to dynamic link in

McKenna and Zeltzer’s paper and the kinematic clone concept is the control that is

afforded the animator. With the motor control system, the animator is not directing the

kinematics; the "animator" is actually writing control programs which do so. In actuality,

these motor control programs need not incorporate kinematics at all. The kinematic

interface just happened to be a means of directing the legs in this particular instance. All

of this is not unexpected; it was not McKenna and Zeltzer’s intent to provide a kinematic

interface to the animator, but rather to create virtual autonomous creatures that could

locomote on their own.

 As far as autonomous locomotion is concerned, the oscillators alone are not

robust enough for uneven terrain. Feedback support is essential and is supplied through a

set of triggers attached to each leg. A step trigger causes a leg to step automatically when

it reaches some maximum rearward extension. A support trigger sends an inhibitor signal

to a leg’s step reflex whenever that leg is supporting some minimum weight of the

creature. Finally, an elevator reflex causes a leg to lift higher when its forward swing is

obstructed. Amazingly, these three simple responses are enough to allow a virtual

cockroach to maneuver on rough terrain and to surmount obstacles.

 In a companion paper [14], McKenna, Pieper, and Zeltzer discuss higher levels of

control processes that rely on the roach’s walking ability to carry out their tasks. The

 14

animated roach is placed in a virtual environment that an animator has access to through

typical virtual reality interfaces (e.g. Spaceball or DataGlove). The animator issues

simple commands like follow the cursor, and run and hide. The roach responds by

running towards the cursor, or running rapidly until it runs into a "safety zone,"

respectively. These commands are interpreted by the highest level and converted into

commands that influence the walking level. The walking level follows these commands

when possible, but feedback can readily override them to force the roach to first

accomplish an intermediate task. Thus, "follow the cursor" is sometimes interrupted by

"step over the brick." The result resembles the "virtual actor" described by Zeltzer [15],

albeit a very simple one.

Statically Unstable Walking

 Statically unstable walking differs from its stable counterpart in that a creature

exhibiting this type of walk is in a constant state of imbalance. It literally "falls" from

one step to the next, catching itself every time a leg hits the ground. Bipedal and

quadrupedal motion are examples of statically unstable walking. Raibert and Hodgins

[16] proposed some motor control schemes for this type of motion in an analogous

fashion to McKenna’s and Zeltzer’s static models.

 A complete dynamic solution is much more important for hopping and running

creatures than it is for slower moving ones. Raibert and Hodgins point out that for

running creatures, a much smaller percentage of the energy required for motion is

contributed by the muscles themselves. This is readily apparent when one observes the

effort required for a running creature to stop. A large amount of energy is actually stored

as potential and kinetic energy in the elastic tendons of a leg and the inertial forces of the

body and limbs. To account for the elastic energy, the authors added compliant legs, that

can telescope and have longitudinal springs able to store potential energy. These

 15

structural changes were needed before any consideration was made for the motor

controllers themselves.

 Similar to McKenna and Zeltzer, Raibert and Hodgins fashioned models from

analytic analyses of robots and real creatures. They were successful in generating

balanced and cyclic gaits for monopedal, bipedal, quadrupedal, and kangaroo-like

creatures. They even compared experimental measurements of the simulated creatures to

actual data of robots and kangaroos. The comparisons showed a very close correlation

between simulated walking and the real creatures it was imitating.

Summary of Motor Control Techniques

 Fashioning motor control programs after real world counterparts is a very

interesting pursuit from an intellectual standpoint. The results of McKenna & Zeltzer and

Raibert & Hodgins studies produced some very lifelike and experimentally validated

motion. Motor control techniques can be very useful for simulating robot designs before

they are actually implemented. For animation, however, some difficulties persist. First

of all, the process of building motor controllers by hand involves a great deal of trial and

error. Raibert and Hodgins admitted that their running creatures repeatedly fell over

before the leg and torso controllers had been tweaked correctly. Cyclic motion is also

difficult because the animation relies entirely on initial data to manage the timing of

events.

 A larger issue makes the motor control paradigm even less suited for general

animation. The motion produced to date has been limited to relatively simple creatures

performing a very small number of tasks. While this is acceptable for insects, the

interplay between controlling programs and sensory input in more intelligent animals is

vastly more complex. Automated control at that level ventures into artificial intelligence

in areas for which the field has not yet advanced. As discussed in the introduction, the

creation of expressive motion is still best served by the hand of an animator.

 16

Induced Simulations

 The category of induced simulations presents an entirely different approach for

controlling dynamic motion. With direct simulation control, an "animator" is

commanding the forces and accelerations either directly or through a motor control

program. The final resultant motion is the product of the iterations of a forward

simulation. Induced simulations reverse this relationship. An animator gives the

computer a set of goals and the simulations seeks out a solution of forces and

accelerations that best satisfy these goals. For example, an animator can command a

character "to move to point X without tripping over this obstacle." With induced

simulation techniques, the goals are expressed as a set of objective functions that have to

be satisfied. The computer then finds a motion that simultaneously satisfies all of the

objective functions while adhering to all of the physical laws of the dynamic simulation.

 Several researchers have implemented methods of realizing induced simulations.

The primary difference between the different types is the way in which a solution is

found.

Optimal Path Searching

 A unique approach for generating induced simulations was presented by van de

Panne, Fiume, and Vranesic [16]. They noticed that the act of finding torques which

move a joint from an arbitrary point in space to a destination using only an optimal path

is similar to solving an all-pairs shortest path problem. This type of problem is readily

solved using dynamic programming. One could conceivably build a table indexed by

object state (i.e. position and velocity of all of the degrees of freedom) where the table

entry holds a vector of torques that must be applied to the joints to move the object along

the optimal path to the destination. Such a table could drive a simple motor controller for

each joint. This is exactly what the authors present in their paper and they called the

construction a state-space controller.

 17

 A state-space controller for a given object is built through dynamic programming.

In an optimal path problem, if, for example, AD is an optimal path, then an optimal path

from another point B that lies along AD is the portion of AD between B and D. Thus if all

of the optimal paths within a region X (which also contains the destination) are known,

the optimal path from a location S outside of X is found by choosing the shortest path that

uses any optimal path from S to the boundary of X. The real algorithm first quantizes

state-space into regions. For each region, it finds optimal paths to the boundaries of the

region by sampling from the set of all possible torque vectors. This is possible because

both state space and the torques are assumed to be bounded. The dynamic simulation is

used at this point to evaluate the effects of applying a certain set of torques on an object

in a given state. This determines the point on the boundary of a region that the object

will hit if a certain torque vector is applied. The algorithm continues until optimal paths

from all the sample points are known. When the controller is used, the sample points are

used as interpolants to find the values from an arbitrary position.

 In order to use dynamic programming, the function to be optimized must be

monotonically increasing. The authors chose to hard-code an optimization of the time

and energy expended. This is one of the biggest limitations of the state-space controller

method. The subsequent induced simulation techniques allow more general objective

functions. Another disadvantage is that the time and space complexity of a state-space

controller increases with the cube of the total degrees of freedom of an object. Thus for

highly complex objects, this technique is no longer practical. For simpler objects,

however, this technique does have a distinct advantage in that the controllers can be

calculated ahead of time. During the animation process, a state-space controller exhibits

real-time performance. One can also link several state-space controllers in a sequence to

cause an object to move through various destination states along an optimal path.

 18

Induced Response to Stimulus

 McKenna and Zeltzer [12] showed the benefits of allowing stimulus feedback to

play a part in the motor control of an object. One of the difficulties with theirs and all

motor control techniques is that the animator is forced to program and hand-adjust the

motor controllers themselves. An animator might have a better idea of where to put

things like sensors and muscles, but might be unable to specify how they should relate.

Two recent works [18][19] have demonstrated techniques of connecting networks of

sensors and responses and automatically establishing the relationships between them such

that a creature can meet a set of objective functions.

Neural Network Approach

 van de Panne and Fiume [18] solved the relational problem using neural

networks. Neural networks, patterned after our biological nervous system, relate a set of

inputs to a set of outputs through neurons that are interconnected by a series of weighted

connections. A signal from an input to an output is triggered when the weights along a

path meet some minimum threshold. The massive inter-connectivity allows for the

formation of complex relationships which is desired in this case. The difficulty with

neural networks lies in the task of setting the weights for the connections. It has proven

more practical to "teach" a neural network how to relate the inputs to outputs through

repeated trial and error and constant readjustment. To use neural networks for motor

control, the authors had to find an effective way of doing this.

 The neural nodes in a system consist of sensor nodes (touch, angle limit, sight,

length extension), internal nodes, and actuator nodes (implemented PD controllers in

robotics parlance). Every node has some parameters associated with it, based on the type

of node, e.g. sensing range for a sensor. All nodes also have a delay and hysteresis value

that corresponds to the delay of propagation of a signal, and an amount of time that a

node continues to propagate a signal the initial stimulus is gone, respectively. The

 19

authors found that these values are essential for cyclic motion as they allow for the

oscillation patterns found in real creatures [10].

 The set of nodes are joined together by a connection network with each node of a

given type being connected to all nodes of the other two types. As stated previously, the

settings of the connection weights is an important problem. The authors found that a

randomized generation and objective evaluation function worked best for this purpose.

The evaluation function can be user defined; they chose a simple function of distance

traveled and time expended. The random search effectively creates a generation of basic

locomotion schemes for a sensor-actuator network. The top 5% of these are refined

through a stochastic ascent algorithm that works on the node parameters only. The

authors found that modification of the weights at this stage was not productive since it

tended to create unwieldy fluctuations in the class of motion within an individual family.

Rather, the parameters like sense thresholds, delays, etc. are tweaked for a set number of

iterations to produce a final motion.

Parameter Approach

 Another way of handling a stimulus-response technique is to link stimuli and

responses together as pairs and to redefine stimuli as some function of the combined

sensory input. Ngo and Marks [19] proposed this solution and came up with a technique

that works analogously to sensor-actuator networks. In this case, a stimulus function

weights all of the inputs using the following function:

Y Z\[] W ^ _ V` a bν c C λ ` C ν ` W ν `d E e f g Y R h` a b
ν i j k λ `

λ ` l ` m
npoC q E

r
ν ν νb f sg gg … tvu w x y w x u z _ { | _ } i x w
ν `d�~ _ { _ ^ x � x { w w x � } � w x _ { � �� � � λ `

λ ` l ` m ~ { x � x � x { ^ | y x � ^ | y | ^ � ^ { _ y k x

 20

Likewise, a response function is a "prescription" for motion in that is provides a critically

damped transition from one location to another:

� � θ� � � � � � θ� � � � θ � θ �� � � � �
��� � � � � � � � � � � � ¡ � ¢ £ � � ¤ � ¥

θ θ θ¦ �¨§© © … ª ¢ � � � � � « £ � � ¤ � ¬ ­ � �¥
θ θ θ¦ �¨§© © … ª� �¨� ¤ � ¬ � « £ � � ¤ � ¬ ­ � �

� ® �

 Ngo and Mark employed a parallel genetic algorithm to find the parameter

weights for the stimulus functions. Like van de Panne and Fiume, their evaluation

function was concerned primarily with distance traveled and time elapsed.

Summary of Stimulus-Response Methods

 The advantage of these techniques is that they can come up with modes of

locomotion that an animator neither anticipated nor considered. They come up with these

with minimal operator input as well. Just like the motor control programs, however, the

complexity of the motion that they seem to be capable of is limited. Their search spaces

are bounded which places some unknown maximum complexity on their actions. These

methods are less constrained in time and space complexity than the state-space

controllers (see below), however, because the random searches do not increase in

complexity as more joints are added to a figure.

Space-Time Constraints

 The induced simulation paradigm allows an animator to control the basic

objectives of a motion that behaves under the rules of a dynamic simulation. If, in

mechanical terms, a direct simulation is an initial-value problem, then an induced

simulation is a boundary-value problem where the values of various parameters are given

 21

for the beginning, end, and perhaps, in-between points of a motion. These points can be

viewed as constraints in both space and time, and have been thus aptly named spacetime

constraints. These constraints express both the components and their limits that need to

be optimized. To express the goal of a generalized induced simulation in a canonical

form, it is to "find the minimum R(S) where C(S)=0, where S are the parameters of the

simulation, R is the set of objective functions, and C is the set of constraints." [20]. The

group of control philosophies that follow are placed here because of the generality with

which they approach this goal. I have subdivided them by the way in which they try to

find an optimal solution.

Sequential Quadratic Programming

 It was Witkin and Kass [20] who first introduced this control philosophy to

computer graphics in their landmark paper by the same name. The stated mission of their

technique was to build a system that would automatically produce a motion the exhibited

as many of the principles of traditional animation as possible. In practice their system did

indeed demonstrate many of these including anticipation, squash-and-stretch, and follow-

through. The difficulty with their system, however, was that it was very cumbersome.

Its internal engine used a variant of Sequential Quadratic Programming (SQP) to perform

a constrained optimization of the user’s objective functions. In order for SQP to work,

the objective functions must be supplied as program functions that can be evaluated

repeatedly. The authors admitted that the algebraic equations being programmed could,

in general, become prohibitively complex. In fact, they had to develop a set of

precompiled functions and add a graphical interface which linked them together to make

the problem tractable. To their credit, however, their system was able to produce some

incredibly convincing animations of a lamp hopping and skiing over a jump and is one of

the few systems that automatically introduces anticipation into a characters movements.

 22

 The initial space-time constraint method was enhanced to a more workable and

complete form by Cohen [21]. From a procedural standpoint, Witkin’s and Kass’s

implementation was limited by the fact that objective functions had to be optimized over

the entire span of an animation. Symbolically, it is as if the object being animated had

complete fore-knowledge of where it had to go. Cohen used the analogy of a cat chasing

a mouse to illustrate his point. If a cat had complete fore-knowledge of the motion of the

mouse, in an attempt to minimize its time and energy, it would simply walk over to where

it knew the mouse would end up and wait. More realistically, however, a cat optimizes

its motion over discrete steps, or "windows" in time, projecting the motion of the mouse

forward in its mind and setting a target for it at each step. Cohen enhanced spacetime

constraints with a concept called spacetime windows, which are literally windows in both

space (degrees of freedom) and time (segments of an animation). Different objective

functions can be specified for each window, allowing for the setting of interim goals.

Windows can overlap to help smooth the transition between them as well. The degrees of

freedom and the degree functions themselves are interpolated with a cubic B-spline

function to ensure continuity between adjoining windows. Spacetime windows are also

critical for the realization of complex motion without a related increase in the requisite

complexity of the objective functions.

 In addition to the concept of a spacetime window, Cohen introduced several

features in his system that were created to help overcome the difficulty of specifying the

objective functions, a problem inherent in Witkin’s and Kass’ version. A symbolic

manipulation process allowed an animator to supply mathematical functions in symbolic

form as opposed to program code. A graphical display also displayed the results of the

objective functions and allowed an animator to interactively edit them. Cohen found that

the ability to see a graphical representation of the functions gave important insight into

which functions were causing a particular unwanted motion. Keyframing was also

 23

available to add additional constraints where necessary in order to "nudge" the system

towards a desired motion.

Genetic Programming

 One limit of the Sequential Quadratic Programming method is that the complexity

of the solution is limited to the complexity derived from the objective functions. Gritz

and Hahn [21] propose a Genetic Programming approach to overcome this. Genetic

programming uses the concepts commonly used in genetic algorithms to write programs

(LISP S-expressions in this case). Gritz and Hahn developed a system that uses this

technique to write programs that act as the motor controllers of the joints of an articulated

figure. Since the programs are generated randomly from a set of functions and variables,

the potential complexity is bounded only by the theoretical bound of all programs

derivable from the particular alphabet of components.

 Their method proceeds by creating an initial generation where each individual

contains a random program for each link. The terminals used in their system contained

only simple arithmetic operators, constants, a conditional function, and system variables

such as position, velocity, etc. The system is not limited to these, but the authors found

these to be sufficient for all of the examples that they tried. Their choices allowed for

sufficiently complex motion and allowed implicit coordination caused by the possibility

of randomly incorporating system variables in a program.

 The "fitness" of an individual is tested by running a dynamic simulation using the

generated motor programs to drive the links, and comparing the results to the set of

supplied objective functions. One drawback with this and the SQP method is that the

functions must still be supplied as program subroutines. Fortunately, the authors stated

that most of their examples only required a few lines of code.

 Following the process of genetic programming, the most fit individuals are

combined and mutated (optionally) to spawn a new generation of individuals. The act of

 24

evaluating fitness and mating only the best, drives the system towards a solution that

satisfies all of the constraints and optimizes appropriate objective functions, just like

natural selection selects for the most "fit" individuals. The authors were able to get a

physical model of a lamp to hop and then move under a "limbo" bar using this technique.

The system was able to find and generate motor programs that allowed the lamp to drop

and crawl under the bar when it got too low to hop under. The system showed

anticipation, squash-and-stretch, and follow-through as well, all generated automatically.

Summary of Space-Time Constraints

 Space-time constraint techniques have shown the ability to automatically create

pleasing and realistic motion. They have shown to be capable of generating motion that

satisfies several of the basic principles of animation. They still seem to have a long way

to go, however. The motions created are limited by an animator’s ability to

write/program mathematical objective functions that meet the goals of an animation.

Writing a mathematical function for a "melancholy walk" would be very difficult, for

example.

Summary and Conclusions

 This chapter has presented the two distinct paradigms for controlling dynamic

simulations of articulated figures that has shown up in literature to date: direct simulation

control, and induced simulations. Direct simulation control gives control of various

parameters of a simulation to the animator. The animator is in effect directly

manipulating the simulation itself. This can be done by kinematically controlling various

links, or by building motor programs that drive the joints of an articulated linkage.

Induced simulations give an animator the ability to create objective functions that the

system uses to find a path that best satisfies these functions within the confines of a

dynamic simulation.

 25

 In terms of satisfying the goal of granting an animator the control to portray

expressive motion over a dynamic simulation, none of them completely satisfy this task

within the context of commercial animation production. Interestingly, in comparison, the

relatively more complex induced simulations which are very successful in producing

motions that demonstrate self-actuating characters, seem less suitable as a result of their

complexity; their complexity currently limits them to simple cases and hampers the

ability of an animator to guide the simulations to a desired result. The kinematic clone

technique would be said to use direct simulation control if one considers the literal

interpretation of a kinematic armature from which the dynamic figure is suspended by

springs. As described above, several components of the direct simulation techniques are

used in the kinematic clone method. The uniqueness of the method presented in the

following chapters is in the interface that it provides an animator.

 26

CHAPTER 2

THE DYNAMIC SIMULATION

 This chapter will present information required to understand and implement a

dynamic simulation of an articulated figure. Since an articulated figure is really a

collection of interconnected rigid bodies, the discussion will start with an overview of

rigid body dynamics. From there, it will progress to the details of the formulations

required to simulate an articulated figure and will describe in detail the formulation by

Roy Featherstone [6] used for the current implementation of the kinematic clone system.

Rigid Body Dynamics

 H. Goldstein defines a rigid body as "a system of mass points subject to the

holonomic constraints that the distances between all pairs of points remain constant

throughout the motion." [4]. He also demonstrates that these distance constraints reduce

the number of degrees of freedom for a rigid body to six. The following overview of

rigid body dynamics comes from [23]. These six degrees of freedom include three for

position and three for orientation. These degrees of freedom are generally assumed to

represent three Cartesian coordinates and three Euler angles, respectively.

 For a calculation of rigid body dynamics, we must be able to find the rates of

change of the position and orientation. Classical treatment (in contrast to Featherstone’s

spatial algebra below) considers the linear and angular velocity about a bodies center of

mass. Assuming contact free motion, the axis of rotation about which an object rotates

will always pass through the center of mass [4]. Thus, the center of mass is always

unaffected by the change in orientation. This allows the rate of change of the position

 27

and orientation to be considered separately which is not true of other parts of a body.

Given this, the linear velocity of a rigid body is expressed as a function of the position:

 ¯ ° ± ² ³ ´° µ ²·¶ ° ± ²

The angular velocity is expressed as a vector whose direction is the axis of rotation of the

rigid body and whose magnitude is its rate of change. Unfortunately, the parameters used

to express orientation cannot generally be differentiated directly to get the angular

velocity. In fact, the number of parameters used to define orientation is not necessarily

three. Quaternions and rotation matrices require four and nine parameters respectively.

Quaternions are attractive for a number of reasons which are beyond the scope of this

thesis, and have in fact been used in the implementation of the kinematic clone system. If

ω represents the current angular velocity, the corresponding rate of change of the

quaternion representing a body’s orientation is:

 ¸ ¹ º » ¼ ½¾¿ ω¹ º » ¸ ¹ º »
À¹ Á »

where ω(t)q(t) is shorthand for the multiplication between two quaternions [0,ω(t)] and

q(t). The multiplication between two quaternions [s1,v1] and [s2,v2] is:

 (8) [s1s2 - v⊇ v2, s1v2, + s2,v1, + v1 ∞ v2]

 Changes in velocity (both linear and angular) are caused by forces. Forces such

as gravity, spring connections, and contacts all cause the body to accelerate as illustrated

in Newton’s famous formula F=ma. When dealing with rigid bodies, the nature of the

reaction depends upon the location of the force’s application on the body. Forces actually

impart torques on a body where the value of the torque is:

 28

τ Â Ã ×→ ÄÅ Æ Ç
Ã→ È É Ê Ë Ì Í Ì Î Ê Ï Ã Ð Ã Ï Ñ Ê Ë Ì Ï Ã È Ò È Ó Ê Ï Ê Ë ÌÔ Ï È Ó Ê Õ Ê Ö Ë È Î Ë Ä È É Õ Ô Ô × È Ì Ø

 The final component required to build the rigid body equations of motion is

momentum. Linear momentum is a simple function of mass and velocity:

 Ù Ú Û Ü Ý Þ Ü Ú ÙÛ
ß à á â

It can also be shown that:

 ã ä åæç è è é

where F is the total force acting on a body. Angular momentum does not share the same

self-explanatory construction as does linear velocity. In order to map angular velocity to

angular momentum, a structure called an inertia tensor is used. An inertia tensor is a

symmetric tensor of the third rank [2] and has the form:

� ê � �Gë � ∫ ρ � ì íGì)→ → →� � ì→ � î
ρ � � ï � � � � � � ð £ � ï � � � ¬ � � ñ £ � ðì→ î � ¢ £ � � � £ ¡ £ � � ¬ � � £ î £ ­ � ¡ � � ­ � ¡ � � � îí→ � � � � ð ¤ � � ¢ì→ ì→ � ð ¤ � ò � £ � � ¢

which expressed in 3x3 matrix form is:

 29

¹ ó ô õ » ö ÷¾S¾ρ∫

¹ ø ô õ » ö ÷¾S¾ρ∫

¹ ø ô ó » ö ÷¾S¾ρ∫

ø ó ö ÷ρ∫ ù ø õ ö ÷ρ∫ ù
ø ó ö ÷ρ∫ ù ó õ ö ÷ρ∫ ù
ø õ ö ÷ρ∫ ù ó õ ö ÷ρ∫ ù

ú ¼

Fortunately, the rate of change of the angular momentum is much simpler:

 û ä τæç è ü é

where L is the angular momentum and τ is the total torque being applied to the body.

 Now that all of the components have been defined, the complete set of rigid body

equations of motion can be presented. Given a state vector Y(t) whose components are:

ý þ ÿ �� þ ÿ �
ρ þ ÿ �� þ ÿ �

� þ ÿ � �
þ � � �

compute the following by:

� � 	
 � ρ � 	
�
�
 �
 ω� 	
 � � � 	
 � � 	
� �
�
 �

 30

and finally find the derivative of Y(t):

ý þ ÿ �� þ ÿ �
ρ þ ÿ �� þ ÿ �

� þ ÿ � �
þ � � � �� � �� � �

� þ ÿ �
� þ ÿ �ωþ ÿ � � þ ÿ ���
τ þ ÿ �

Articulated Body Dynamics

 As mentioned previously, there are optimizations that can be made when dealing

with articulated figures over general rigid bodies. With the goals of a fast and

numerically stable dynamic simulation, the optimization method used must be chosen

carefully. The kinematic clone implementation employs Roy Featherstone’s Articulated

Body Method (ABM) [8] which is an iterative method that utilizes spatial algebra to

lower the number of equations required to specify motion. Featherstone’s method has

been cited in other works [13] for its efficiency. Dynamics algorithms fall into two

categories: 1) ones that solve a set of simultaneous equations, and 2) ones that use

recursive formulas. The simultaneous equation solvers (of which the Walker-Orin is the

most efficient [23]) typically have O(n3) time complexity or worse, but can actually be

efficient for small values of n where n is the number of links in a figure. Featherstone

states that the Walker-Orin method is actually more efficient than his ABM for values of

n<9. This efficiency for small systems explains why the simultaneous equation

algorithms are so popular for robotics systems. For the purposes of an articulated figure

in animation, however, one often desires figures with arbitrarily large numbers of links

which justifies the use of a recursive algorithm like the ABM.

 31

Spatial Algebra

 In his work, Featherstone developed specialized mathematics called spatial

algebra which is based on screw calculus. The sole purpose of spatial algebra is to allow

for the simultaneous handling of the linear and angular components of the rigid body

equations (see previous section). This simplifies both the number of equations required

and the amount of code required to implement it. The foundation of spatial algebra is the

spatial vector which is a six element vector that encodes the linear and angular

components of such quantities as rigid body velocity and acceleration. The advantages

gained are primarily of an algebraic nature, but such gains follow through into

simplicities in the coded implementations of the formulas.

 Spatial algebra makes use of the fact that a rigid body, in a mathematical sense,

need not have any physically defined boundaries. The motion of a rigid body can

actually be described about any arbitrary point in space. That point need not be fixed to

nor even be a part of the body itself. Traditional schemes describe rigid body motion the

combined effect of a linear and an angular velocity component about a body’s center of

mass. This practice is used for the very purpose of simplifying the separation of the two

components. Featherstone’s spatial algebra shows that such measures are unnecessary

and actual lead to more overhead. Spatial vectors reformat the linear and angular

components that would have been expressed about the center of mass to the

corresponding representation about the origin which is fixed in space. Angular velocity

is constant for all points about a body, so is untouched by this change in basis. The linear

component is transformed by the following relation:

C] � E { R { � {

× ω
� �

The symbol "^" is used to denote spatial quantities. Using this methodology, spatial

velocity and spatial acceleration are defined as:

 32

� ! "$# % ω
× ω
&' (')

� * + "-, % ω' (' × ω (' × ω
& & && &)

Spatial rigid body inertia is defined as:

. ' ×→ .
/ 0 (' × .� 1 ' →→ "

× '× .→
/ %)� * "

/ 0 2 3 ' 4 5 6 7 , ' ' 2 5 2 8 9 : 8 ; 2 < 4 ' = 2 , , 9 : 6 = > 4 < = 4 ' : ? @ , 3 3
→' 2 3 # 4 > = : ' ? ' : @ : ' 2 5 2 < = : > 4 < = 4 ' : ? @ , 3 3
A × 2 3 > ' : 3 3 : B 4 ' , = : ' 8 4 ? 2 < 4 8 , 3 CDEF

+
F
G E
G F +
D
E
+G D×

%

 Another important construction used in the following sections is a vector sub-

space. This represents a mapping from a sub-space with less or equal dimensions to

another with more or equal dimensions. In Featherstone’s equations, sub-space matrices

are used to map joint parameters to spatial vectors. The generality of a sub-space matrix

allows any type of joint to be used without a need to reformulate the equations.

 Finally, there are two important spatial functions that must be defined. A spatial

transpose, denoted aS is defined as:

H IJ K LM I K M LN NOQP H R S T
U IJ K V W XY I K

Y W XV
NN NN

Z [[\

 33

The other is the spatial cross operator:

×] ^_`a_`cb`×× ×

d e f g

The Articulated Body Method

 To establish a recurrence relation, Featherstone develops a quantity known as an

Articulated Body Inertia (ABI). ABI is the apparent instantaneous inertia of a body

comprised of a set of flexible joints. Once the ABI of an articulated figure is known, the

entire figure can be treated as a single rigid body with a rigid body inertia equal to the

ABI and with a fixed point rotation about the first joint of the figure. Assuming that an

articulated figure has the hierarchical structure of a tree (i.e. no loops), we can recursively

define any branch or sub-branch as a single rigid body with an ABI built from all of its

constituent links. Put simply, the Articulated Body Method finds the ABI of each branch

and sub-branch of an articulated figure and uses these to propagate accelerations from the

base out to all links in the figure.

Step 1: Finding Articulated Body Inertias

 The process of finding all of the ABIs for the various sections and subsections

requires a recursive step starting from the root node a propagating out the leaves. The

purpose of this step is to propagate the velocity of the base along with the cumulative

velocities of each of the joints outwards in order to calculate the momentum of the links.

Momentum will be propagated back from the leaves so it is efficient to calculate it at the

same time as the ABIs. This equation for the velocity of a link i (expressed in spatial

coordinates) is:

 34

z ` R� z ` h b� � w ` i `C j q E �
w | w � � x w � } w ~ _ � x ^ _ � { | V j k l j | y � Jm `

 The ABIs are propagated back up the tree of an articulated figure starting from the

leaf nodes. The ABI of a leaf node is simply the rigid body inertia of that link. From

there, the following equations are employed for the ABI and for the momenta:

n o pq n pq&sr n o p t uqwv p t uqn o p t uq v p t uq x n o p t uq
v p t uq x n o p t uq v p t uqy# ? z %

{ | } ~ �� � } ~ ��
� } ~ �� �

� }� � � ��
×
� { }� �� � � } ~ ��~���� } ~ ��{ | } ~ ��

×
� � } ~ ���� } ~ �� �

{ | } ~ �� � } ~ ���� � } ~ � � � � } ~ ��{ | } ~ ��
×
� � } ~ ���� } ~ �� � � } ~ ��c� �

� } ~ �� �

� � � �

where Qi+1 is the active joint forces of the next link.

Step 2: Propagating Accelerations

 Once the ABIs and momenta are known, the spatial accelerations and resultant

joint accelerations can be found. This last step propagates back out from the base to the

leaves. These equations are respectively:

� �� � � � � ���� � �� ×� � �� �� � � �� �� �� � ¡ ¢ £

ß ¤ ¥ â§¦ ¨© ©cª ¨
Ú
«
¬ ¨­ ®
¬ ¨­ ® ß ¯ ¨°­ ß ± ¨ ² ³­ ´ Ü
¨­
×
­ ¬ ¦¨ ¨­ â ´ Ù
¨­ â

¯ ¨°­ ¬ ¨­

 35

Implementation Details

 The current implementation uses all spherical joints. Spherical joints were

desired in this case to allow for maximum experimentation with the effects of spring

forces on the dynamic simulation. The use of sub-matrices and Featherstone’s ABM

makes the coding of spherical joints more efficient than others algorithms that require

them to be modeled as a collection of single degree of freedom joints. Numerical

singularity problems typically associated with spherical joints are resolved by using

quaternions to represent joint positions while using joint angular velocities directly in the

dynamics equations. This yields a sub-space matrix of:

µ ¶
· ¸ ¸¸ · ¸¸ ¸ ·¸ ¸ ¸¸ ¸ ¸¸ ¸ ¸

¹
º » ¼ ½

which is clearly simple to code for. The relationship between angular velocity and the

change in the positional quaternion is determined using (7). Fortunately, the animation

system within which the dynamics simulation already stores angular positions with

quaternions which minimizes representation conversions. Also, since these values are

already stored in link coordinates, Featherstone’s equations are also carried out there.

Featherstone claims that calculations using a link by link coordinate system (as opposed

to representing everything in world coordinates) can yield a 10% improvement in

performance.

 36

Numerical Integrations

 Finally, to numerically integrate the dynamics equations, a fifth order Runge-

Kutta method is used with adaptive step-size. For the sake of completeness, a Euler-step

method was attempted but proved to be very unstable. The particular Runge-Kutta

method used is an embedded Runge-Kutta formula originally invented by Fehlberg [24],

which has error estimation built into the function evaluation. The formulation is fifth-

order with error estimation that bounds the fourth order calculations. The extra accuracy

makes up for its cost by allowing larger step sizes. Its stability has also held up

throughout the testing of the simulations; no simulations had to be rerun on account of

numerical inaccuracies.

 37

CHAPTER 3

KINEMATIC CLONES

 This chapter presents the detailed workings of the kinematic clone technique. The

goal of this thesis as described in the introduction is to provide animators adequate

control over a dynamic simulation to reap the realism of a simulation while retaining the

ability to create expressive motion. It was argued in chapter 1 that such control should be

kinematic in nature since the alternatives thus far proposed, while successful in several

specific areas, do not yet suitable for the purpose of portraying personality and emotion.

A kinematic clone, as the name implies is an identical copy, link for link, of an articulated

figure that is accessible to an animator for the purposes of kinematic control. It is

controlled using traditional keyframe methods which accommodates time-saving

enhancements such as inverse kinematics. The following sections will describe the

connection between the kinematic clone and the articulated figure and will also discuss

the important elements as they have been implemented in the first version of the system.

Kinematic Clones: Technical Description

 From a high level, a kinematic clone is a wire frame skeletal clone of the

articulated figure that imparts control over a dynamically simulated articulated figure by

forces generated from virtual springs connecting the two (see figure 1). There is a one-

to-one correspondence between the links and joints of the kinematic clone and the links

and joints of the articulated figure. This correspondence, and the formalization of the two

structures distinguishes this method from other kinematic-spring systems that have

appeared in other works (e.g. [9][13]).

 38

¾

¿

À

Á Â Ã Ä Å Æ Ç Â È È É Ê Ã Ä

Ë Æ Ì Ä Æ Í Ç Â È Î É Æ Ç Ä Ï Ð Â Ñ Î Í Ä

link 1

joint 1
link 2

joint 2

figure 1

The structural correspondence makes the relationship between control and reaction very

intuitive. The general behavior of an object suspended by a spring from another is well

understood and should be a part of a person’s typical world experience, especially for

someone who’s vocation is animation. This alone is important from a usability standpoint

since it would enable an animator to predict the outcome, to some degree, of moving the

kinematic clone through a series of keyframes.

 In addition to the setup of keyframes for the kinematic clone, an animator has the

ability to adjust several other parameters that effect the degree to which the articulated

figure is effected by the kinematic control. The most important of these are the spring

constants which determine the relative freedom that a dynamic joint has to move in

relation to its kinematic counterpart. The following sections will describe each of these

parameters in turn.

 39

Spring Connections

 The connection between the kinematic clone and the articulated figure is through

spring connections that connect the corresponding joints of the two structures. For

control purposes, the components of the spring force between a pair of corresponding

joints are broken out along the coordinate axes of the dynamically controlled link on the

posterior side of the joint. This allows an animator to optionally select different spring

coefficients along certain axes, to impart directional favoritism for example. Such a

setup can be used to simulate a more realistic "one degree of freedom" joint that still has

some give in the restricted directions. The rest lengths of all of the springs is zero which

follows the notion that link and joint displacements should only exist when there exists a

physical force to move them so.

 The springs in the simulation can be either simple linear springs (Hooke’s Law) or

can be made exponential to achieve certain effects. The general force equation is:

 (30) ∂ = β (kdα)m

 k is the Hooke’s law spring constant
 d is the linear joint offsets
 m is the mass of the link

The two constants α and β determine the exponential behavior of the springs. α is the

spring’s exponent and determines how steeply the force rises with respect to distance.

Exponential springs also exhibit reduced strength (i.e. looseness) when the distance

approaches zero. β determines the relative width of this "valley." The use of exponential

springs can be desirable over stiff linear springs from a numerical stability standpoint.

 There were two options of how to apply the forces to the articulated figure; (1)

apply an external linear force to the joint in question, or (2) apply a torque to the interior

joint. For reasons of convenience of implementation, the second option was chosen. The

torque resulting from a linear spring acting on the link between a parent and its child is:

 40

 (31) τ = r ∞ β (kdα)mp

 r is the vector to child link in parent coords.
 mp mass of parent link

At the time of implementation, applying a torque to a link’s parent seemed to be efficient

because it reduced the number of joint space transformations slightly. One limitation of

this method is that the base joint of the figure cannot move with respect to the kinematic

location of the base. This modification is recommended for future enhancements in

Chapter 5.

 Some special consideration must be given to the end-effectors of a figure. The

orientation of a joint is actually a by-product of the position matching forces of the joint-

to-joint connection springs. Since there is no joint to connect at the end of an end

effector, it falls limply unless extra forces are introduced. To combat this, an additional

virtual spring connects the geometric centers of each end-effector. It has been found

desirable to treat this spring separately from the spring connecting the anterior joints.

From an animation standpoint, it is often the case that the "wrist" of a character must be

more carefully controlled than the exact orientation of the hand. Slightly freer hand

movements seem to accentuate a gesture and add extra believability to a motion.

 There are other choices for joint connections beyond those that have been

implemented. Experiments have suggested that torsion springs whose force would be

dependent on the angular differences between a kinematic clone and its articulated figure

would be beneficial. During periods of extreme rotation, the dynamic simulation must

rely on positional restoring forces to rotate a body. When these rotations are coupled

with linear accelerations of the body as a whole, equilibriums can occur that prevent the

figure from rotating into position. While physically correct, this behavior can sometimes

result in awkward looking movements and postures. This is another topic that is

discussed in chapter 5.

 41

Damping Forces

 Given spring forces alone, an articulated figure in this system will exhibit

oscillations and vibrations that are not characteristic of a creature under autonomous

power. Equally as important to the simulation is motion damping. Sufficient damping is

required to prevent excessive oscillations and to eliminate the "marionette effect." One

of the concerns during the research and planning of this thesis was that characters under

this kind of control would move like marionettes suspended by springs, which given the

nature of the setup is very close to what is really happening. Marionette motion is

characterized by excessive follow-through in the links and a limp feel which denies self

motivated actions. Fortunately, as chapter 4 will discuss, applying the correct amount of

damping force to the movement of the articulated figures prevents this from happening.

Sufficient damping makes the resultant movements seem more deliberate. Even under

periods of extreme force, the damping effect of resisting joint angle changes makes a

character feel more in control of its actions. This was a very welcome discovery.

 As with the spring constants, an animator can supply varying degrees of damping

to the various degrees of freedom. They can also be made to be linear or exponential. It

was found that global viscous damping was all that was required to achieve the desired

effect. The formula for the damping force of a link is:

 (32) τ = - ωpm

 p is the damping coefficient
 ω is the angular velocity of the link
 m is the mass of the link

The mass factor in the equation, while not physically correct (it should be dependent on

surface area), seems to work for the purposes here. Damping is also important from a

 42

numerical standpoint to guard against numerical instability. Damping forces act in direct

opposition to joint velocities which helps to curtail their blowing up due to numerical

errors.

Animating Parameters

 One very important feature is that both the spring constants and damping

coefficients can be animated, i.e. changed as a function of time. Overall muscular

exertion varies depending on the attitude of a character. At one time during an

animation, a character may be lethargic which is generally depicted with limp, slumped-

over movements. During this stage, both the spring and the damping coefficients would

be drastically lowered, approaching the unchallenged swing of an unpowered limb.

However, if that same character became suddenly exited, the spring and damping forces

would be set to a much higher value to produce the quick and snappy movements

produced by a character in that frame of mind. One of the examples in chapter 4 displays

this use of animated values.

 Another important use of animating spring constants is to allow an animation to

be tweaked and adjusted to modify the resulting motion. Such action would be an

alternative to modifying keyframes when an animator desires to add some extra follow-

through to a turn, for example.

Spring Force Release

 During testing, it was often found desirable to lower spring coefficients at the end

of a rapid movement to exaggerate the reaction. In an attempt to automate this process, a

threshold was introduced which is used to compare with the magnitude of the spring

forces and reduce the spring coefficients when its value was surpassed. The spring

coefficients are reduced by the following formula:

 43

Ò Ó Ô Ò ƒ − α
β − α

Õ�Ö γ× Ø Ø Ù

 k normal coefficient value
 ∂ current spring force
 α force threshold
 β maximum force allowed (k=0)
 γ exponent of decay

Exponential decays have been found to behave more naturally since they "ease-in" to the

fall-off function making the discontinuity less obvious.

External Forces

 Very few external forces have been implemented in the current system. Gravity,

is implemented by introducing a fictitious acceleration in the opposite direction of the

true gravitational force to the base of the articulated figure. The only other external force

is a ground reaction force that helps keep legs from passing through the ground. This is

implemented through an exponential spring force that is based on the amount of

penetration into the ground. Interesting results could come from the addition of wind

forces, force-fields, etc.

Kinematic Links

 In practice, there are generally situations where an animator would like to limit

the effects of the dynamics simulation to a certain subset of the entire figure. An

animator may require precise control of a limb for some action, or he or she may be

animating a creature with a huge number of articulations. Even though Featherstone’s

Articulated Body Method is O(n) [6], the computational costs can become quite large for

a figure with many joints. For these reasons, an animator has the option to make certain

links, or certain subsets of links completely kinematic. The effect of this action on the

position of the link of the articulated figure depends on where that link is in the structure

 44

and whether there are any dynamic links in the path from it to the base. For links with no

dynamically controlled links interior to it, the position of the link will exactly match the

position of the corresponding link in the kinematic clone. If dynamic links exist on the

path, however, the positions of the links will not, in general, coincide. This is because

the parameters under kinematic control relate the position of a link with respect to its

parent. Controlling these parameters kinematically does insure, however, that the

relationship between a joint and its parent are exactly positioned.

 Kinematic links require significantly less calculation in the context of the

dynamics equations (see chapter 2). Their accelerations and Articulated Body Inertias

are still calculated passed into the simulation so that the effects of their motions are

reflected in the dynamic links. Actually, in the case where no dynamic link exists

between a link and the base, even the ABI can be ignored. ABI’s are passed "up" the tree

structure of an articulated figure during the dynamics calculations. If all of the ancestors

of a link are kinematically controlled, the ABI is not required.

 Kinematic control can be very useful if an animator wishes to enhance motion-

capture data. Motion-capture is a process in which a real figure is fitted with sensors that

detect and record the motion of key parts of the body. This data is used to control an

articulated figure representing some 3D character. If an animator wishes to add

additional limbs or a tail, these must be animated by hand. An alternative would be to

use the kinematic clone technique on the additional limbs while keeping the joints

controlled by motion capture under kinematic control.

Interface Design

 To enable positioning of the kinematic clone, it must be displayed in some fashion

along with the dynamic figure. In the current implementation it is displayed as a linear

skeleton connecting the joints. To aid visualization prior to the execution of the dynamic

simulation, rotations and translations of links within the kinematic skeleton are also

 45

applied to the dynamic figure interactively. Prior to the execution of the simulation, the

kinematic and dynamic figures are coincident, so like rotations will maintain this

coincident positioning. After a simulation is run and joints are offset, as the animator

repositions a keyframe, the dynamic link also moves. By applying identical

transformations, a crude estimate of the effects on the dynamic simulation as a result of

moving the keyframe are visualized.

 46

CHAPTER 4

RESULTS

 The kinematic clone system has proven to be very successful at generating

realistic motion that approximates the kinematic motion designed by an animator.

Movements automatically exhibit mass and momentum, especially around rapid

movements and quick changes in velocity. The motion also exhibits subtle reactionary

motions that are difficult to animate directly and that help create the realistic feel, by

eliminating "frozen poses" and creating what Disney animators call a "moving hold" [1].

This chapter describes the results of a set of animation examples that were conducted

with the kinematic clone system. The last section describes the system that it was

implemented upon and the resulting calculation times.

Chain Link Tests

 The first experiments were done with a simple object comprised of a set of three

links connected in a chain. Tests included drooping the chain from a stationary kinematic

clone with varying spring strengths. Another test included varying the spring strength

over time to simulate a relaxation of a character. Two final tests included animated

articulation of the kinematic clone and animated motion of the base of the clone to

inspect how the clone interpolates an animator’s motion.

 The tests showed expected performance. With the articulating chain, it was found

that a very low number of keyframes were able to guide very natural and organic sweep

of the chains. One important find was noted in that the motions of the articulated figure

 47

can have a different timing feel. This must be addressed in situations where precise

choreography of the figure is required. This topic is discussed in Chapter 5.

Ice Skater

 This example demonstrates the effect of rapid body movements on the dynamic

simulation. It also demonstrates the need for joint constraints that is discussed in chapter

5. In this example, the legs and hips are actually controlled kinematically. This was

done to avoid problems with ground collisions as the legs move rapidly back and forth.

The animation depicts an ice skate making the final few steps of a "speed skate" and then

coming towards camera. His arms are rocking back an forth speed-skater style. The

arms tend to lag behind the kinematic model considerably. If this were a problem in the

animation, the animator could increase the spring coefficients or start the kinematic arm

swings earlier. The other more major problem occurs when the arms swing backwards.

The spring forces alone are not enough to prevent the elbow from bending backwards

somewhat. It seems that some degree of joint constraint checking will have to be added

to prevent this type of occurrence. Fortunately, the violation is not that extreme

suggesting that the computational cost of joint constraints is probably not worth the

expense for slow moving animations.

Mannequin Jump

 This proved to be a deceptively simple yet remarkably complex animation of a

mannequin jumping into the air and landing a few feet forward. With only seven

keyframes, a complex motion is generated that clearly demonstrates follow-through and

momentum. The initial crouch is accentuated with a slight bob of the head and drop of

the arms. As the mannequin leaps, the legs of the kinematic clone crouch causing the

dynamic legs to snap up. Upon landing, ground reaction forces cause the legs to bend

and the arms head and torso lean forward. The additional work required to animate the

 48

follow throughs using traditional keyframe would more than double the number required

here.

Walk Cycle

 This test demonstrated the need for joint limits even more so than the skater

example. When the arms swing backwards, the spring forces cause the elbow to bend

backwards. What is worse, is that it stays in this position as the arm hangs momentarily

before the return swing. The walk cycle also proved the advantage of exponential

springs. With the rapid leg and foot swings, linear springs lagged so far behind that they

had not yet caught up when the leg or arm swung back to meet them. This killed the feel

of a walking character. Simply by setting the spring exponent to two eliminated this

problem and produced the cycle displayed in the demonstration video.

 49

System Performance

 The kinematic clone system was implemented on a Commodore Amiga 3000 with

a 16MHz 68030 microprocessor. This system includes a 68881 math co-processor for

doing double-precision floating point operations.

 Calculation times on this system were longer than expected.

Animation Avg. Frame CPU Sec Avg. # Steps

drop: stiffness 1 3.44 8.28

drop: stiffness 90 19.32 45.97

chain swing 9.79 31.83

skater 110.79 65.08

jumper 120.94 66.75

walker 149.04 65.31

Table 1

The dynamics algorithm is similar to those that have been used to produce near real-time

dynamic simulations [9]. In light of this fact, an implementation is planned for a Silicon

Graphics Indigo II Extreme with a 150MHz R4400 Risc processor to gauge the

technique’s performance at the workstation level. Ideally, simulations should take no

more than a few minutes to be practical. This would allow it to be used along side of

linear and splinar keyframe interpolation methods in an animation system.

 50

CHAPTER 5

FUTURE WORK

 The kinematic clone system presented herein successfully met the objectives as

described in the introduction. During the course of its implementation, however, and

during the execution and analysis of the results from the examples presented in chapter 4,

several areas were identified that merited future research but that could not be

incorporated at this time. This final chapter presents each topic in turn, presenting the

issue and gives consideration to possible solutions/implementations.

Alternative Spring Configurations

 As was suggested in chapter 4, there may be alternative and/or additional spring

configurations that could produce desirable effects. The first configuration to consider

are torsion springs. The spring forces included in the current implementation are

proportional to the distances between the joints of the kinematic clone and the articulated

figure. Given sufficient spring coefficients at each of the joints, this configuration will

drive an articulated figure to match the kinematic clone. Any torques that are required to

rotate sections of the figure are the result of these linear spring forces acting on a parent

link. Unfortunately, the path taken as a result of these forces can twist a figure

abnormally. One solution might be to supplement the positional springs with torsion

springs that directly impart torques that cause a link to match the orientation of its

kinematic counterpart. Such springs would have the additional benefit of eliminating the

need for extra positional springs at the end-effectors.

 In addition to torsion springs, the concept of a body rest position might be useful.

Additional springs would be added which relate the joints of the dynamic model to

 51

themselves. Currently, as the joint-to-joint spring forces are relaxed, the dynamic figure

starts to droop like an unpowered rigid body. Worth investigating is whether intra-joint

forces which cause links to favor a certain orientation would benefit the simulation in this

case. One would have to investigate whether such forces would help or hamper an

animator’s intuitive ability to judge the effects of changing spring coefficients.

Joint Constraints

 A few of the examples in chapter 4 demonstrated the need for joint constraints in

the dynamic simulation. Roy Featherstone’s Articulated Body Method [6] accommodates

the limiting of degrees of freedom in a joint. The current implementation of the

kinematic clone method uses spherical joints exclusively, primarily for the purposes of

testing the kinematic control techniques. It would not be too difficult to impart more of

the ABM’s generality into the dynamics simulation allowing for varying degrees of

freedom at the joints.

 Joint constraints, however, includes more than just limits on the number of

degrees of freedom. Within a degree of freedom, the range of angles attainable by a joint

may be restricted. Featherstone talks briefly about some techniques for incorporating this

type of constraint into his algorithms. It would be interesting to see what effects torsion

springs have on the need for such constraints. Another option to investigate would be the

use of resistant forces to handle constraints in the fashion described in [8] and [9]. Such

approaches have traditionally suffered from numerical problems, but might be worth

considering here since the violations in the current system were not that bad.

"Floating Bases"

 "Floating Bases" refer to the base of an articulated figure when it is not fastened

to the ground or some other object. In the kinematic clone system, the base is locked in

that the dynamics equations have no effect on its position (it may be moved kinematically

 52

by the animator, however). There are times when it might be desirable to have this base

move as a result of the forces generated by the articulated figure, such as when it is in

freefall. Both Featherstone [6] and Hahn [2] present methods for doing this.

Collision Detection

 Currently, there is no joint-to-joint or figure-to-object collision detection.

Collision with the ground is cheaply implemented with a height compare. Such tests are

very expensive but might be worth considering especially when very low spring constants

are used to connect the joint pairs since this can increase the probability of joints falling

through one-another.

Advanced Kinematic Joint Control

 Considerable work is needed to enhance the ability of mixing kinematic joints

into the simulation. Currently kinematically controlled joints are controlled in link space

as opposed to being positioned in world space. Disregarding the practical advantages of

limiting calculations with kinematic links, the primary advantage of using them are for

precise placement of certain links in world space. An animator should have the option of

making a joint kinematic and have that joint exactly coincide with the corresponding joint

in the kinematic clone, whether or not there are dynamic links between that link and the

base. Doing so would require that the dynamic links receive forces that connect them to

the position of an exterior link. The difficulty is that such forces could easily become

very stiff and produce numerical instability. One option might be to use forces to get the

dynamic links close to the correct position and then use inverse kinematics to place them

exactly.

 Another feature of kinematic link control should enable an animator to toggle

between kinematic and dynamic control during the course of an animation. Such

transitions are easy when going from kinematics to dynamics, but some consideration

 53

must be given about how to handle the transition back from dynamics to kinematics.

There should be some sort of blending function that would prevent links from "popping"

from their positions under the dynamic simulation to the position of the link in the

kinematic clone. The two positions would not generally coincide.

 Finally, the issue of timing must be addressed. Animations are often

choreographed first to get the timing of motions correct. Timing is very important in

animation and lends a lot to the interpretation of the intentions and emotions of a

character. Several of the examples exhibited relative large changes in the timings set

down in the kinematic animation. Perhaps a blending function is needed in areas where

timing is critical that interpolates between the kinematic and dynamic positions is needed.

Such a function would smoothly blend from the dynamic motion to the kinematic such

that the articulated figure arrives at a key frame at the time prescribed.

 54

WORKS CITED

(In order of reference)

1. F. Thomas, and Ollie Johnston. 1981. Disney animation: the illusion of life. New York:

Abbeville Press Publishers.

2. J. K. Hahn. 1988. Realistic animation of rigid bodies. Computer Graphics

(SIGGRAPH '88 Proceedings). 22, no. 4 (August): 299-308.

3. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. 1987. Elastically deformable

models. Computer Graphics (SIGGRAPH '87 Proceedings). 21, no. 4 (July): 205-214.

4. H. Goldstein. 1980. Classical Mechanics. Reading, MA: Addison-Wesley Publishing

Co.

5. W. Reeves. 1983. Particle systems-A technique for modeling a class of fuzzy objects.

ACM Transactions On Graphics. 2, no. 2 (April): 359-376.

6. R. Featherstone. 1987. Robot Dynamics Algorithms. Boston: Kluwer Academic

Publishers.

7. J. J. Craig. 1989. Introduction to Robotics Mechanics and Control. Reading, MA:

Addison-Wesley Publishing Co.

8. J. Wilhelms. 1987. Using dynamic analysis for realistic animation of articulated

bodies. IEEE Computer Graphics and Applications. 7, no. 6 (June): 12-27.

9. W. Armstrong, M. Green, and R. Lake. 1987. Near real-time control of human figure

models. IEEE Computer Graphics and Applications. 7, no. 6 (June): 52-61.

10. P. Isaacs, and M. Cohen. 1987. Controlling dynamic simulations with kinematic

constraints, behavior functions and inverse dynamics. Computer Graphics (SIGGRAPH

'87 Proceedings). 21, no. 4 (July): 215-224.

11. K. Pearson. 1991. Sensory elements in pattern-generating networks. Making Them

Move: Mechanics, Control and Animation of Articulated Figures. San Mateo, CA:

Morgan Kaufmann Publishers. 111-127.

 55

12. R. Brooks. 1991. A robot that walks: emergent behaviors from a carefully evolved

network. Making Them Move: Mechanics, Control and Animation of Articulated

Figures. San Mateo, CA: Morgan Kaufmann Publishers. 99-108.

13. M. McKenna and D. Zeltzer. 1990. Dynamic simulation of automonous legged

locomotion. Computer Graphics (SIGGRAPH '90 Proceedings). 24, no. 4 (August):

29-38.

14. M. McKenna, S. Pieper, and D. Zeltzer. 1990. "Control of a virtual actor: the Roach."

from the Proceedings of the 1990 Symposium on Interactive 3D Graphics (Snowbird,

Utah). Computer Graphics. 24, no. 2 (****): 165-174.

15. D. Zeltzer. 1991. Task-level graphical simulation: abstraction, representation, and

control. Making Them Move: Mechanics, Control, and Animation of Articulated Figures.

San Mateo, CA: Morgan Kaufmann Publishers. 3-33.

16. M. Raibert, and J. Hodgins. 1991. Animation of dynamic legged locomotion.

Computer Graphics (SIGGRAPH '91 Proceedings). 25, no. 4 (July): 349-358.

17. M. van de Panne, E. Fiume, and Z. Vranesic. 1990. Reusable motion synthesis using

state-space controllers. Computer Graphics (SIGGRAPH '90 Proceedings). 24, no. 4

(August): 225-234.

18. M. van de Panne, and E. Fiume. 1993. Sensor actuator networks. Computer Graphics

(SIGGRAPH '93 Proceedings) Annual Conference Series. (August): 335-342.

19. J. Ngo, and J. Marks. 1993. Spacetime constraints revisited. Computer Graphics

(SIGGRAPH '93 Proceedings) Annual Conference Series. (August): 343-350.

20. A. Witkin, and M. Kass. 1988. Spacetime constraints. Computer Graphics

(SIGGRAPH '88 Proceedings). 22, no. 4 (August): 159- 168.

21. M. Cohen. 1992. Interactive spacetime control for animation. Computer Graphics

(SIGGRAPH '92 Proceedings). 26, no. 2 (July): 293-302.

22. L. Gritz and J. K. Hahn. 1995. Genetic programming for articulated figure motion.

Journal of Visualization and Computer Animation. (to appear in 1995).

 56

23. D. Baraff. 1994. Rigid body simulation. in SIGGRAPH ’94 Course Notes #32 (An

Introduction to Physically Based Modeling). G1-G68.

24. W. Press, S. Teukolsky, W. Vetterling, B. Flannery. 1992. Numerical Recipies in C.

New York: Cambridge University Press. 710-721.

