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INTRODUCTION 
 
 

 Over the past century, classical animators have striven to endow their characters 

with "life."  All movements and actions had to be made to work in concert in order to 

suspend the disbelief of a character’s existence, allowing it to transcend from a set of 

sequential drawings to a personality that an audience could identify with.  Animators at 

groundbreaking studios like Disney and Warner Brothers learned early on that such a 

quality could be reliably attained by following a set of principles and guidelines [1].    

Many of these principles, including such things as proper staging, exaggeration, and 

appeal, are artistic metrics that are important for the unambiguous portrayal of the 

intended actions of a character.  There are others, however, like squash-and-stretch, 

follow-through, and overlapping action  which are really formalizations of phenomena 

that occur naturally as a result of gravity, inertia, and the deformations of viscous 

material.  Such physical behavior is well understood and capable of being calculated 

which is why it is tempting, in light of the relatively recent use of the computer as an 

animation medium, to let a dynamics simulation handle their incorporation into a 

character’s movements.  Animations to date that have employed physically-based models 

have produced incredibly realistic motion of both rigid and deformable objects [2][3]. 

 The dynamics of rigid bodies have been known for quite some time.  Classical 

Mechanics by H. Goldstein [4], was originally published in 1950 and is still considered a 

"bible" on the subject.  The use of dynamics in computer applications is not new either; 

robotics, mechanical and civil engineering have all used computer driven rigid body 

dynamics simulations in some form or another.  Computer graphics and animation 

applications of dynamic simulations have also been presented and produced.  Some of 

them, especially particle systems have enjoyed widespread use at both the research and 

professional levels [5].  While the use of dynamic simulations may not be new, the issue 
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of how to control them is still a concern for their practical applicability in a production 

environment.  Professional animation tends less to be an act of discovery and more the 

result of planning and execution.  Any use of simulations must therefore provide 

adequate control to be acceptable within this paradigm.  This is especially true when 

dealing with character animation since the actions and intentions of central characters 

receive the most scrutiny from both directors and audiences alike.  The goal of this thesis 

is to present a technique that makes the incorporation of dynamic motion practical in a 

production environment.  A new control strategy, one that uses a structure called a 

kinematic clone, is presented.  This strategy gives an animator detailed control over a 

dynamic simulation while still allowing the animation to benefit from the realism the 

dynamics provides. 

 In terms of rigid bodies, this paper focuses on articulated figures.   An articulated 

figure is a set rigid bodies connected by flexible joints, analogous to the limbs, joints and 

torso of a living creature.  The concept of an articulated figure is actually born out of 

robotics from which is also borrowed the specialized equations of motion for their use 

[6].  For the purposes of this thesis, the term "dynamics simulation" will be assumed to be 

a simulation involving articulated figures unless otherwise specified. 

 Articulated figures have appeared before in computer graphics in kinematic 

control systems.  Jointed characters are typically represented as hierarchical trees of links.  

An animator in a kinematic system has complete control over the positioning of each 

joint and link by manipulating joint parameters within a figure’s degrees of freedom.  The 

hierarchical structure allows an animator to specify the relative motion between a link 

and its parent (e.g. a hand in relation to a forearm).  Using a parent-child hierarchy also 

maintains link connectivity and allows an animator to move substructures (e.g. an arm) as 

a unit.  Of the kinematic systems, keyframe systems are the most widely used in 

production animation work. Their popularity undoubtedly stems form their similarities 

with the traditional 2D cel animation technique by the same name.  Most professional 
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animators are classically trained (.i.e. 2D) and must transition to 3D when they begin 

animating on a computer.  Using a keyframed system allows direct application of the 

principles learned in 2D.  This is good from a control standpoint but bad from a tedium 

standpoint, especially considering the large number of degrees of freedom in a typical 

character.  Adding the subtleties of dynamic motion to an animation typically requires the 

inclusion of a much larger number of keyframes and these "key positions" must be set for 

each degree of freedom.  This tedium, coupled with the ever increasing pressure to cut 

production times justifies the search for a technique which allows the control of 

kinematic systems with the automation benefits of a dynamic simulation. 

 To do this one must consider what makes realistic motion real and what makes 

expressive motion expressive?  The assumption here is that realism can be tied to 

physical equations which can be computed while expression deals with perceptions and 

qualitative measures that are best left to the animator.  The quality of "realism" 

presumably comes from our experienced expectations of how an object should move 

when subjected to the physical laws of motion.  Arms under muscular control still sway 

somewhat as a result of gravity.  A heavy person sags a little more on his/her joints than a 

thin person and shows a bit more jiggle in the fatty layers.  A dog, on landing after a big 

jump shows tremendous follow through as its muscles strain against inertial forces.  On 

the other hand, expressions and emotions defy such precise explanations.  Depicting 

personality in animation is basically "acting" where a sequence of images replaces 

movement about a stage.  A quote by Saint Exupéry pulled from Disney Animation: The 

Illusion of Life  [1] reads "It's not the eyes, but the glance—not the lips, but the smile…"  

Excitement bursts with outstretched arms and legs and wide open fingers.  Gloom recedes 

with slumped limbs and a slouched head.  Such things would be very difficult to code 

algorithmically in all but the most contrived cases. 

 For a dynamics simulation to work in character animation then, a system must 

allow an animator to move a character expressively while allowing the simulation to do 
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the work of adding physical realism.  The kinematic clone technique achieves this by 

giving an animator access to a clone of the articulated figure representing a character.  

This clone is moved kinematically through the keyframing process.  This clone then 

"directs" the movements of the dynamically controlled character through spring forces at 

each of the joints.  Each joint of the kinematic clone is connected to the corresponding 

joint of the dynamic figure by virtual springs whose tension can be controlled by the 

animator depending on how closely the dynamic figure must approximate the positions of 

the clone. 

 With this setup, the intention is for the dynamic simulation to enhance and refine 

the motions of the kinematic clone.  Thus when a figure lands after a jump, inertia causes 

the links to swing forward a little on impact.  When an animator waves an arm, the arm 

will move closely to the suggested path, but the dynamic solution will add tiny nuances to 

the motion, including gravitational sag and follow through.  The spring tensions can be 

adjusted to vary the degree to which the dynamics matches the kinematics.  The hope is 

that with the assistance of the dynamic simulation, an animator can greatly reduce the 

number of keyframes required.  In purely kinematic systems, follow-throughs and 

oscillations must be accounted for through the use of extra keyframes.  These extra 

keyframes would be unnecessary if the dynamics simulation could account for them. 

 Chapter One will present the background and related material that was researched 

in the development of this technique.  Chapter Two is devoted to the dynamics equations 

used for the simulation of articulated figures.  This paper uses a very efficient recursive 

dynamics formulation called the Articulated Body Method developed by Roy 

Featherstone [6].  After that, the implementation details of a current system that 

incorporates the kinematic clone concept will be given in Chapter Three, followed by the 

results of experiments conducted on the system designed to measure its potential in 

Chapter Four.  The final chapter will discuss areas for future development to improve the 

performance of the system. 
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CHAPTER 1 

PREVIOUS WORK 
 
 

 Controlling a dynamic simulation in order to produce a desired motion has been a 

concern of robotics research for quite some time [7].  In robotics, a motor control 

program must be able to calculate the torques and forces required to drive the servos at 

each joint.  Since an articulated figure in computer graphics is in one sense a virtual 

robot, a naive control technique would be to allow an animator to "play the role" of the 

motor at each link. For each frame of an animation, the animator could supply the set of 

torques and forces that drive them.  To make an arm lift and grab an object, for example, 

an animator would supply the appropriate time-varying torques to the shoulder, elbow, 

and wrist to make the arm perform the task.  Unfortunately, the work demanded of an 

animator in this case is far more difficult and less intuitive than the work required to 

specify a similar motion kinematically.  While the final result will probably look more 

realistic (once the correct forces are found), an animator will have to spend more time 

working and "tweaking" the torques and forces before the figure behaves as desired.  The 

added difficulty stems from the fact that people tend to think kinematically when 

planning motions.  The conscious mind tends to visualize goals like "move arm to point 

X to grab the apple." or simply "jump over there."  The subconscious mind has been 

trained through experience to respond with the appropriate muscular tugs and pulls.  In 

the less frequent occasions that forces are considered on a conscious level (e.g. "pull hard 

enough to open the door"), it tends to be an inexact, trial-and-error process requiring 

force testing and feedback.  It is very hard to guess the exact outcome of a command like 

"move the shoulder with a force of 10 Newtons for 10 seconds"  Such difficulties carry 

into animation control.  This need has driven the research described below. 
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 Work to date can be grouped into two categories based upon the nature of 

animator input.  Direct simulation control schemes seek to control a simulation by 

manipulating parameters of the simulation itself.  They attempt to mitigate the difficulty 

of force and torque inputs by either providing higher-level, abstract parameters to control, 

or lessening the number of forces and torques that must be dealt with.  Examples include 

techniques that allowing some of the links to be controlled kinematically with the rest 

remaining dynamic.  Also included are more advanced methods that attempt to replicate 

the motor control programs of real creatures in software.  Induced simulations, in 

contrast, are controlled through objective functions that describe the general 

characteristics of what a motion is supposed to do.  The system then employs dynamic 

simulation to find a motion that satisfies the objective functions.  The kinematic clone 

concept belongs to the first category, but work from both will be described here to 

provide a comparison for judging the concept’s utility. 

 

Direct Simulation Control 

 When designing a simulation, it seems natural to grant control by building ’hooks’ 

into the simulation that an animator can control.  A wide array of terms are readily 

available for this purpose, including the force of gravity, mass of the links, and the 

torques and forces themselves that drive an articulated structure.  In addition to 

manipulation of terms, an animator could add an additional layer to the simulation by 

building motor control programs that are patterned after the biomechanical processes of a 

real creature.   

 The defining quality for all of these modes of control is that the animator directly 

manipulates some part of the simulation itself.  To do this, the animator accepts the 

responsibility of understanding the fundamental principles of the dynamic simulation in 

order to supply appropriate values for the parts that are being controlled. 
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Kinematic Approaches 

 The use of kinematics to control dynamic simulations can be found in many early 

papers.  The techniques used keyframing to control important parts of a figure while 

other parts would rely on the simulation.  The kinematically controlled links move 

without regard to external forces or with sufficient additional forces applied to make it 

appear so.  The remaining links would be controlled by the dynamic simulation with the 

effects of motion of the kinematic links being included in their calculations. 

 

Total Kinematic Articulation 

 In his paper, Hahn [2] places all of the joints of an articulated figure under 

kinematic control, seeking only to determine the net effect of their motions on the motion 

of the body as a whole.  This is equivalent to the "floating base" systems in the robotics 

literature [6][7], as is used to find the net motion of a body in free-fall or in orbit like a 

robotic arm on a satellite.  The motion of internal links effects the rigid body motion of 

the figure by imparting forces and torques due to the conservation of linear and angular 

velocity. 

 Hahn’s technique proceeds by finding a single rigid body inertia tensor (see 

Chapter 2) from the sum of all the inertia tensors of the links transformed to the body 

fixed coordinate system.  Once a single instantaneous inertia tensor has been found, the 

forces imparted on the body by the kinematic motion are calculated such that the net 

change in linear and angular velocity is nullified.  The resultant angular velocity of the 

rigid body is given by: 
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The total linear velocity is found by comparing the displaced location of the new center 

of mass in comparison to its position from the previous frame.  For linear velocity to be 

conserved, these values must coincide.  The "conservation" force is then the force 

required to move the new center of mass to the location of the old one. 

 Hahn’s method works very well for situations where an articulated figure can be 

treated as a single rigid body.  These situations are generally limited, however, to figures 

in free-fall.  Figures in contact with the ground or a wall do not behave in this manner 

since they are conceptually part of a single rigid body composed of the union of 

themselves and the immovable surface with which they are in contact.  Since the ground 

is generally implemented as a mass of infinite size, conservation of momentum is not 

assured. 

 

Partial Kinematic Articulation 

 Another means of realizing kinematic control is to classify certain links as 

kinematic and others as dynamic.  This technique was proposed by several researchers 

[8][9][10].  Each implemented the technique in a slightly different way, however. 

 Wilhelms [8] and Armstrong et al. [9] both proposed a method whereby links 

could be assigned to certain states, each of which represents a different control method 

for the  animator to choose.  For example, in Wilhelms’ paper, a link could be assigned 
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one of four states: 1) direct dynamic control where an animator supplies a torque function 

by building a splinar curve; 2) relaxed control where no internal forces are given and the 

link hangs loosely governed only by gravity and collisions; 3) frozen control where the 

system supplies the forces to "freeze" the relative joint angle with a link’s parent; and 4) 

oriented control where forces are supplied by the system to hold a link in a fixed world 

coordinate position/orientation.  Importantly, these states can be changed over time, so an 

arm after moving under direct dynamic control to place an object on a shelf, for example, 

can revert to a relaxed state and fall limply at the actor’s side when it is done.  She also 

introduced a concept called positional control which is very similar to kinematic clones.  

Her technique did not allow an animator to vary the degree to which the dynamic motion 

would approximate the kinematic positions and did not allow links to be controlled 

completely through kinematics, the value of which is discussed in Chapter 4. 

 Armstrong et al. [6] proposed a similar system, but added the concept of local vs. 

global control.  Local control effects the links themselves; they can be positioned, 

oriented, or allowed to hang freely, just like Wilhelm’s version.  The paper also adds an 

additional local control mechanism called a simple move.  A simple move gives a new 

angular position between a link and its parent.  The system sets up a smooth transition 

function from rest at a link’s current position to rest at its new position by calculating the 

appropriate torque by: 
 

" # $ % & 
î

')( ( * + , ) - . %# /0)1 ( *+2 ) - . %# /43 5 $ ≥ 67 8 9 : ; < = > :# ? %
 

 

The parameter @  is the desired angle between a link and its parent while x is the current 

angle.  The other constants, A  and B , must be tweaked to prevent the link from moving or 

accelerating too quickly.  A smooth "ease-in" and "ease-out" are performed during this 

transition using the following formula: 
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Here, center_torque is the torque at the angular midpoint of the motion, x is the current 

angle at this time-step, θ is the final angle, and φ is the angular midpoint.  This process is 

also conceptually similar to the work accomplished by kinematic clones.  The two 

significant differences are that (3) requires that links be at rest at the start and end of a 

movement, and both (2) & (3) require a continuous rotation about a fixed axis from the 

start of the move to the end.  These limitations are not acceptable for general animation. 

 As mentioned earlier, Armstrong also introduced the concept of global control.  

Global control encompasses processes the effect the entire figure to achieve a certain 

goal.  Examples include a processes to introduce balance and another to introduce ground 

collisions.  Armstrong suggested several approaches for realizing these effects such as a 

force that keys off the relative angle with the body to the ground.  The ground-to-figure 

collision process is used in the current kinematic clone implementation. 

 While the previous two techniques allow the simultaneous control of both 

kinematic and dynamic links, both limit the animator to the set of control methods which 

were set a priori.  A more general approach is presented in [10].  Isaacs and Cohen’s  

DYNamic MOtion system (DYNAMO) incorporates kinematics indirectly through a 

"behavioral motion" layer1.  This layer is completely general and allows any procedure 

(including keyframing)  to supply the forces, torques, and accelerations to the 

dynamically controlled links.  Examples of a behavioral motion controller might be a 

keyframe system, or a system that applies a braking force when a speeding car passes too 

close to a cliff.  The behavioral motion layer then can pass both forces and accelerations 

into the dynamics system.  For each link, the data that is passed, be it a force or an 

                                                
1Not to be confused with "behavioral motion control" as defined in C. Reynolds, "Flocks, 
Herds, and Schools: A Distributed Behavioral Model," Computer Graphics (SIGGRAPH 
’87 Proceedings), 21, no. 4 (July 1987): 25-34. 
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acceleration, determines whether the link will act as a kinematic link or a dynamic one.  

Both the forces and the accelerations are combined in a set of linear equations.  Links for 

which the accelerations are known are subtracted out, removing them from the set of 

linear equations.  Gaussian elimination is then used to solve the system.  This process is 

an example of a Composite Body Method discussed in Chapter 2. 

 

Summary of Kinematic Control 

 Each of the papers presented above have desireable features that have actually 

been incorporated into the kinematic clone technique.  They all share the advantage of 

allowing an animator to control some or all of the links kinematically.  The kinematic 

clone technique distinguishes itself by formalizing the relationship between the kinematic 

process and the dynamic process and by letting the animator choose the degree to which 

the final motion is effected by either.  This point is crucial in allowing an animator to 

portray a "tense" character versus a "relaxed" one. 

 

Motor Control Schemes 

 If a higher level of control of a dynamic simulation is desired, a useful approach is 

to study biological systems to find how they handle the motion control process.  Real 

creatures locomote by stimulating muscles on command from a body’s nervous system.  

Researchers have been able to mimic natural motor control by writing programs that 

imitate these systems, either by direct application of biomechanical research, or indirectly 

through similar research that has already been performed in robotics. 

 One of the interesting results of recent biomechanical studies has shown that 

certain periodic motion is controlled through distributed neural processes, as opposed to a 

completely centralized system as was once thought [11].  For the purposes of control, this 

implies that complex motion can emerge from the coordinated workings of simple 

mechanisms.  This discovery has been exploited in the field of robotics [12].  Brooks 
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developed the robot Ghengis which walks about with the simulated intelligence of an 

insect.  The motor controls are distributed; there is no master processor controlling each 

of the legs.  Each leg has its own agenda and must solve problems on its own when trying 

to reach a goal.  For example, a leg has a preprogramed goal of lifting, then swinging 

forward, then planting, the levering backwards.  If an obstacle prevents this, it is up to the 

leg to lift itself higher to overcome it.  For such meager intelligence, it is amazing that 

Ghengis was one of the first robots to be able to adeptly navigate a room filled with 

moving objects and debris. 

 

Statically Stable Walking 

 McKenna and Zeltzer developed a motor control scheme patterned after the work 

done in biomechanics and robotics for statically stable walking motions [13].  Statically 

stable motion refers to motion that can be halted and maintained at any point in time 

without causing a creature to fall over.  Insects with their six-legged stance fall into this 

category (rather appropriate since the distributed control technique they used is very 

similar to Brooks’ robots that are said to have the intelligence of  insects). 

 Their simulation of a cockroach uses a distributed oscillator network that accepts 

input from reflex sensors.  The authors cite five observables that have been compiled 

from the studies of the walking gaits of real insects: 

 
1. A wave of steps runs from rear to head (and no leg steps until the one behind is 

placed in a supporting position). 
 
2. Adjacent legs across the body alternate in phase. 
 
3. Stepping time is constant. 
 
4. Leg step frequency varies. 
 
5. The interval between steps of adjacent legs on the same side of the body is 

constant, and the interval between the stepping of the foreleg and hindleg varies 
inversely with the stepping frequency. 
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 Experimental data of insect nervous response has confirmed that each leg has its 

own "pacemaker" termed an oscillator in the literature, that fires every time the leg is 

supposed to step under normal conditions.  These oscillators are coupled to cause the 

"wave of steps" to occur and to synchronize the motion on each side of the body.  

Interestingly, the method used by the oscillator motor control to move the legs is identical 

to the kinematic clone concept of linking a kinematic potential to the dynamic link via 

spring forces.  The oscillator moves the "rest angle" of the spring in order to induce 

movement of the legs.  The key distinction between the kinematic to dynamic link in 

McKenna and Zeltzer’s paper and the kinematic clone concept is the control that is 

afforded the animator.  With the motor control system, the animator is not directing the 

kinematics; the "animator" is actually writing control programs which do so.  In actuality, 

these motor control programs need not incorporate kinematics at all.  The kinematic 

interface just happened to be a means of directing the legs in this particular instance.  All 

of this is not unexpected; it was not McKenna and Zeltzer’s intent to provide a kinematic 

interface to the animator, but rather to create virtual autonomous creatures that could 

locomote on their own. 

 As far as autonomous locomotion is concerned, the oscillators alone are not 

robust enough for uneven terrain.  Feedback support is essential and is supplied through a 

set of triggers attached to each leg.  A step trigger causes a leg to step automatically when 

it reaches some maximum rearward extension.  A support trigger sends an inhibitor signal 

to a leg’s step reflex whenever that leg is supporting some minimum weight of the 

creature.  Finally, an elevator reflex causes a leg to lift higher when its forward swing is 

obstructed.  Amazingly, these three simple responses are enough to allow a virtual 

cockroach to maneuver on rough terrain and to surmount obstacles. 

 In a companion paper [14], McKenna, Pieper, and Zeltzer discuss higher levels of 

control processes that rely on the roach’s walking ability to carry out their tasks.  The 
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animated roach is placed in a virtual environment that an animator has access to through 

typical virtual reality interfaces (e.g. Spaceball or DataGlove).  The animator issues 

simple commands like follow the cursor, and run and hide.  The roach responds by 

running towards the cursor, or running rapidly until it runs into a "safety zone," 

respectively.  These commands are interpreted by the highest level and converted into 

commands that influence the walking level.  The walking level follows these commands 

when possible, but feedback can readily override them to force the roach to first 

accomplish an intermediate task.  Thus, "follow the cursor" is sometimes interrupted by 

"step over the brick."  The result resembles the "virtual actor" described by Zeltzer [15], 

albeit a very simple one.  

 

Statically Unstable Walking 

 Statically unstable walking differs from its stable counterpart in that a creature 

exhibiting this type of walk is in a constant state of imbalance.  It literally "falls" from 

one step to the next, catching itself every time a leg hits the ground.  Bipedal and 

quadrupedal motion are examples of statically unstable walking.  Raibert and Hodgins 

[16] proposed some motor control schemes for this type of motion in an analogous 

fashion to McKenna’s and Zeltzer’s static models. 

 A complete dynamic solution is much more important for hopping and running 

creatures than it is for slower moving ones.  Raibert and Hodgins point out that for 

running creatures, a much smaller percentage of the energy required for motion is 

contributed by the muscles themselves.  This is readily apparent when one observes the 

effort required for a running creature to stop.  A large amount of energy is actually stored 

as potential and kinetic energy in the elastic tendons of a leg and the inertial forces of the 

body and limbs.  To account for the elastic energy, the authors added compliant legs, that 

can telescope and have longitudinal springs able to store potential energy.  These 
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structural changes were needed before any consideration was made for the motor 

controllers themselves. 

 Similar to McKenna and Zeltzer, Raibert and Hodgins fashioned models from 

analytic analyses of robots and real creatures.  They were successful in generating 

balanced and cyclic gaits for monopedal, bipedal, quadrupedal, and kangaroo-like 

creatures.  They even compared experimental measurements of the simulated creatures to 

actual data of robots and kangaroos.  The comparisons showed a very close correlation 

between simulated walking and the real creatures it was imitating. 

 

Summary of Motor Control Techniques 

 Fashioning motor control programs after real world counterparts is a very 

interesting pursuit from an intellectual standpoint.  The results of McKenna & Zeltzer and 

Raibert & Hodgins studies produced some very lifelike and experimentally validated 

motion.  Motor control techniques can be very useful for simulating robot designs before 

they are actually implemented.  For animation, however, some difficulties persist.  First 

of all, the process of building motor controllers by hand involves a great deal of trial and 

error.  Raibert and Hodgins admitted that their running creatures repeatedly fell over 

before the leg and torso controllers had been tweaked correctly.  Cyclic motion is also 

difficult because the animation relies entirely on initial data to manage the timing of 

events. 

 A larger issue makes the motor control paradigm even less suited for general 

animation.  The motion produced to date has been limited to relatively simple creatures 

performing a very small number of tasks.  While this is acceptable for insects, the 

interplay between controlling programs and sensory input in more intelligent animals is 

vastly more complex.  Automated control at that level ventures into artificial intelligence 

in areas for which the field has not yet advanced.  As discussed in the introduction, the 

creation of expressive motion is still best served by the hand of an animator. 
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Induced Simulations 

 The category of induced simulations presents an entirely different approach for 

controlling dynamic motion.  With direct simulation control, an "animator" is 

commanding the forces and accelerations either directly or through a motor control 

program.  The final resultant motion is the product of the iterations of a forward 

simulation.  Induced simulations reverse this relationship.  An animator gives the 

computer a set of goals and the simulations seeks out a solution of forces and 

accelerations that best satisfy these goals.  For example, an animator can command a 

character "to move to point X without tripping over this obstacle."  With induced 

simulation techniques, the goals are expressed as a set of objective functions that have to 

be satisfied.  The computer then finds a motion that simultaneously satisfies all of the 

objective functions while adhering to all of the physical laws of the dynamic simulation. 

 Several researchers have implemented methods of realizing induced simulations.  

The primary difference between the different types is the way in which a solution is 

found. 

 

Optimal Path Searching 

 A unique approach for generating induced simulations was presented by van de 

Panne, Fiume, and Vranesic [16].  They noticed that the act of finding torques which 

move a joint from an arbitrary point in space to a destination using only an optimal path 

is similar to solving an all-pairs shortest path problem.  This type of problem is readily 

solved using dynamic programming.  One could conceivably build a table indexed by 

object state (i.e. position and velocity of all of the degrees of freedom) where the table 

entry holds a vector of torques that must be applied to the joints to move the object along 

the optimal path to the destination.  Such a table could drive a simple motor controller for 

each joint.  This is exactly what the authors present in their paper and they called the 

construction a state-space controller. 
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 A state-space controller for a given object is built through dynamic programming.  

In an optimal path problem, if, for example, AD is an optimal path, then an optimal path 

from another point B that lies along AD is the portion of AD between B and D.  Thus if all 

of the optimal paths within a region X (which also contains the destination) are known, 

the optimal path from a location S outside of X is found by choosing the shortest path that 

uses any optimal path from S to the boundary of X.  The real algorithm first quantizes 

state-space into regions.  For each region, it finds optimal paths to the boundaries of the 

region by sampling from the set of all possible torque vectors.  This is possible because 

both state space and the torques are assumed to be bounded.  The dynamic simulation is 

used at this point to evaluate the effects of applying a certain set of torques on an object 

in a given state.  This determines the point on the boundary of a region that the object 

will hit if a certain torque vector is applied.  The algorithm continues until optimal paths 

from all the sample points are known.  When the controller is used, the sample points are 

used as interpolants to find the values from an arbitrary position. 

 In order to use dynamic programming, the function to be optimized must be 

monotonically increasing.  The authors chose to hard-code an optimization of the time 

and energy expended.  This is one of the biggest limitations of the state-space controller 

method.  The subsequent induced simulation techniques allow more general objective 

functions.  Another disadvantage is that the time and space complexity of a state-space 

controller increases with the cube of the total degrees of freedom of an object.  Thus for 

highly complex objects, this technique is no longer practical.  For simpler objects, 

however, this technique does have a distinct advantage in that the controllers can be 

calculated ahead of time.  During the animation process, a state-space controller exhibits 

real-time performance.  One can also link several state-space controllers in a sequence to 

cause an object to move through various destination states along an optimal path. 
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Induced Response to Stimulus 

 McKenna and Zeltzer [12] showed the benefits of allowing stimulus feedback to 

play a part in the motor control of an object.  One of the difficulties with theirs and all 

motor control techniques is that the animator is forced to program and hand-adjust the 

motor controllers themselves.  An animator might have a better idea of where to put 

things like sensors and muscles, but might be unable to specify how they should relate.  

Two recent works [18][19] have demonstrated techniques of connecting networks of 

sensors and responses and automatically establishing the relationships between them such 

that a creature can meet a set of objective functions. 

 

Neural Network Approach 

 van de Panne and Fiume [18] solved the relational problem using neural 

networks.  Neural networks, patterned after our biological nervous system, relate a set of 

inputs to a set of outputs through neurons that are interconnected by a series of weighted 

connections.  A signal from an input to an output is triggered when the weights along a 

path meet some minimum threshold.  The massive inter-connectivity allows for the 

formation of complex relationships which is desired in this case.  The difficulty with 

neural networks lies in the task of setting the weights for the connections.  It has proven 

more practical to "teach" a neural network how to relate the inputs to outputs through 

repeated trial and error and constant readjustment.  To use neural networks for motor 

control, the authors had to find an effective way of doing this. 

 The neural nodes in a system consist of sensor nodes (touch, angle limit, sight, 

length extension), internal nodes, and actuator nodes (implemented PD controllers in 

robotics parlance).  Every node has some parameters associated with it, based on the type 

of node, e.g. sensing range for a sensor.  All nodes also have a delay and hysteresis value 

that corresponds to the delay of propagation of a signal, and an amount of time that a 

node continues to propagate a signal the initial stimulus is gone, respectively.  The 
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authors found that these values are essential for cyclic motion as they allow for the 

oscillation patterns found in real creatures [10].  

 The set of nodes are joined together by a connection network with each node of a 

given type being connected to all nodes of the other two types.  As stated previously, the 

settings of the connection weights is an important problem.  The authors found that a 

randomized generation and objective evaluation function worked best for this purpose.  

The evaluation function can be user defined; they chose a simple function of distance 

traveled and time expended.  The random search effectively creates a generation of basic 

locomotion schemes for a sensor-actuator network.  The top 5% of these are refined 

through a stochastic ascent algorithm that works on the node parameters only.  The 

authors found that modification of the weights at this stage was not productive since it 

tended to create unwieldy fluctuations in the class of motion within an individual family.  

Rather, the parameters like sense thresholds, delays, etc. are tweaked for a set number of 

iterations to produce a final motion. 

 

Parameter Approach 

 Another way of handling a stimulus-response technique is to link stimuli and 

responses together as pairs and to redefine stimuli as some function of the combined 

sensory input.  Ngo and Marks [19] proposed this solution and came up with a technique 

that works analogously to sensor-actuator networks.  In this case, a stimulus function 

weights all of the inputs using the following function: 
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Likewise, a response function is a "prescription" for motion in that is provides a critically 

damped transition from one location to another: 
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 Ngo and Mark employed a parallel genetic algorithm to find the parameter 

weights for the stimulus functions.  Like van de Panne and Fiume, their evaluation 

function was concerned primarily with distance traveled and time elapsed. 

 

Summary of  Stimulus-Response Methods 

 The advantage of these techniques is that they can come up with modes of 

locomotion that an animator neither anticipated nor considered.  They come up with these 

with minimal operator input as well.  Just like the motor control programs, however, the 

complexity of the motion that they seem to be capable of is limited.  Their search spaces 

are bounded which places some unknown maximum complexity on their actions.  These 

methods are less constrained in time and space complexity than the state-space 

controllers (see below), however, because the random searches do not increase in 

complexity as more joints are added to a figure. 

 

Space-Time Constraints 

 The induced simulation paradigm allows an animator to control the basic 

objectives of a motion that behaves under the rules of a dynamic simulation.  If, in 

mechanical terms, a direct simulation is an initial-value problem, then an induced 

simulation is a boundary-value problem where the values of various parameters are given 
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for the beginning, end, and perhaps, in-between points of a motion.  These points can be 

viewed as constraints in both space and time, and have been thus aptly named spacetime 

constraints.  These constraints express both the components and their limits that need to 

be optimized.  To express the goal of a generalized induced simulation in a canonical 

form, it is to "find the minimum R(S) where C(S)=0, where S are the parameters of the 

simulation, R is the set of objective functions, and C is the set of constraints." [20].  The 

group of control philosophies that follow are placed here because of the generality with 

which they approach this goal.  I have subdivided them by the way in which they try to 

find an optimal solution. 

 

Sequential Quadratic Programming 

 It was Witkin and Kass [20] who first introduced this control philosophy to 

computer graphics in their landmark paper by the same name.  The stated mission of their 

technique was to build a system that would automatically produce a motion the exhibited 

as many of the principles of traditional animation as possible.  In practice their system did 

indeed demonstrate many of these including anticipation, squash-and-stretch, and follow-

through.  The difficulty with their system, however, was that it was very cumbersome.  

Its internal engine used a variant of Sequential Quadratic Programming (SQP) to perform 

a constrained optimization of the user’s objective functions.  In order for SQP to work, 

the objective functions must be supplied as program functions that can be evaluated 

repeatedly.  The authors admitted that the algebraic equations being programmed could, 

in general, become prohibitively complex.  In fact, they had to develop a set of 

precompiled functions and add a graphical interface which linked them together to make 

the problem tractable.  To their credit, however, their system was able to produce some 

incredibly convincing animations of a lamp hopping and skiing over a jump and is one of 

the few systems that automatically introduces anticipation into a characters movements. 
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 The initial space-time constraint method was enhanced to a more workable and 

complete form by Cohen [21].  From a procedural standpoint, Witkin’s and Kass’s 

implementation was limited by the fact that objective functions had to be optimized over 

the entire span of an animation.  Symbolically, it is as if the object being animated had 

complete fore-knowledge of where it had to go.  Cohen used the analogy of a cat chasing 

a mouse to illustrate his point.  If a cat had complete fore-knowledge of the motion of the 

mouse, in an attempt to minimize its time and energy, it would simply walk over to where 

it knew the mouse would end up and wait.  More realistically, however, a cat optimizes 

its motion over discrete steps, or "windows" in time, projecting the motion of the mouse 

forward in its mind and setting a target for it at each step.  Cohen enhanced spacetime 

constraints with a concept called spacetime windows, which are literally windows in both 

space (degrees of freedom) and time (segments of an animation).  Different objective 

functions can be specified for each window, allowing for the setting of interim goals.  

Windows can overlap to help smooth the transition between them as well.  The degrees of 

freedom and the degree functions themselves are interpolated with a cubic B-spline 

function to ensure continuity between adjoining windows.  Spacetime windows are also 

critical for the realization of complex motion without a related increase in the requisite 

complexity of the objective functions. 

 In addition to the concept of a spacetime window, Cohen introduced several 

features in his system that were created to help overcome the difficulty of specifying the 

objective functions, a problem inherent in Witkin’s and Kass’ version.  A symbolic 

manipulation process allowed an animator to supply mathematical functions in symbolic 

form as opposed to program code.  A graphical display also displayed the results of the 

objective functions and allowed an animator to interactively edit them.  Cohen found that 

the ability to see a graphical representation of the functions gave important insight into 

which functions were causing a particular unwanted motion.  Keyframing was also 
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available to add additional constraints where necessary in order to "nudge" the system 

towards a desired motion. 

 

Genetic Programming 

 One limit of the Sequential Quadratic Programming method is that the complexity 

of the solution is limited to the complexity derived from the objective functions.  Gritz 

and Hahn [21] propose a Genetic Programming approach to overcome this.  Genetic 

programming uses the concepts commonly used in genetic algorithms to write programs 

(LISP S-expressions in this case).  Gritz and Hahn developed a system that uses this 

technique to write programs that act as the motor controllers of the joints of an articulated 

figure.  Since the programs are generated randomly from a set of functions and variables, 

the potential complexity is bounded only by the theoretical bound of all programs 

derivable from the particular alphabet of components. 

 Their method proceeds by creating an initial generation where each individual 

contains a random program for each link.  The terminals used in their system contained 

only simple arithmetic operators, constants, a conditional function, and system variables 

such as position, velocity, etc.  The system is not limited to these, but the authors found 

these to be sufficient for all of the examples that they tried.  Their choices allowed for 

sufficiently complex motion and allowed implicit coordination caused by the possibility 

of randomly incorporating system variables in a program. 

 The "fitness" of an individual is tested by running a dynamic simulation using the 

generated motor programs to drive the links, and comparing the results to the set of 

supplied objective functions.  One drawback with this and the SQP method is that the 

functions must still be supplied as program subroutines.  Fortunately, the authors stated 

that most of their examples only required a few lines of code. 

 Following the process of genetic programming, the most fit individuals are 

combined and mutated (optionally) to spawn a new generation of individuals.  The act of 
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evaluating fitness and mating only the best, drives the system towards a solution that 

satisfies all of the constraints and optimizes appropriate objective functions, just like 

natural selection selects for the most "fit" individuals.  The authors were able to get a 

physical model of a lamp to hop and then move under a "limbo" bar using this technique.  

The system was able to find and generate motor programs that allowed the lamp to drop 

and crawl under the bar when it got too low to hop under.  The system showed 

anticipation, squash-and-stretch, and follow-through as well, all generated automatically. 

 

Summary of Space-Time Constraints 

 Space-time constraint techniques have shown the ability to automatically create 

pleasing and realistic motion.  They have shown to be capable of generating motion that 

satisfies several of the basic principles of animation.  They still seem to have a long way 

to go, however.  The motions created are limited by an animator’s ability to 

write/program mathematical objective functions that meet the goals of an animation.  

Writing a mathematical function for a "melancholy walk" would be very difficult, for 

example.   

 

Summary and Conclusions 

 This chapter has presented the two distinct paradigms for controlling dynamic 

simulations of articulated figures that has shown up in literature to date: direct simulation 

control, and induced simulations.  Direct simulation control gives control of various 

parameters of a simulation to the animator.  The animator is in effect directly 

manipulating the simulation itself.  This can be done by kinematically controlling various 

links, or by building motor programs that drive the joints of an articulated linkage.  

Induced simulations give an animator the ability to create objective functions that the 

system uses to find a path that best satisfies these functions within the confines of a 

dynamic simulation. 
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 In terms of satisfying the goal of granting an animator the control to portray 

expressive motion over a dynamic simulation, none of them completely satisfy this task 

within the context of commercial animation production.  Interestingly, in comparison, the 

relatively more complex induced simulations which are very successful in producing 

motions that demonstrate self-actuating characters, seem less suitable as a result of their 

complexity; their complexity currently limits them to simple cases and hampers the 

ability of an animator to guide the simulations to a desired result.  The kinematic clone 

technique would be said to use direct simulation control if one considers the literal 

interpretation of a kinematic armature from which the dynamic figure is suspended by 

springs.  As described above, several components of the direct simulation techniques are 

used in the kinematic clone method.  The uniqueness of the method presented in the 

following chapters is in the interface that it provides an animator.   
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CHAPTER 2 

THE DYNAMIC SIMULATION 

 

 This chapter will present information required to understand and implement a 

dynamic simulation of an articulated figure.  Since an articulated figure is really a 

collection of interconnected rigid bodies, the discussion will start with an overview of 

rigid body dynamics.  From there, it will progress to the details of the formulations 

required to simulate an articulated figure and will describe in detail the formulation by 

Roy Featherstone [6] used for the current implementation of the kinematic clone system. 

 

Rigid Body Dynamics 

 H. Goldstein defines a rigid body as "a system of mass points subject to the 

holonomic constraints that the distances between all pairs of points remain constant 

throughout the motion." [4].  He also demonstrates that these distance constraints reduce 

the number of degrees of freedom for a rigid body to six.  The following overview of 

rigid body dynamics comes from [23].  These six degrees of freedom include three for 

position and three for orientation.  These degrees of freedom are generally assumed to 

represent three Cartesian coordinates and three Euler angles, respectively. 

 For a calculation of rigid body dynamics, we must be able to find the rates of 

change of the position and orientation.  Classical treatment (in contrast to Featherstone’s 

spatial algebra below) considers the linear and angular velocity about a bodies center of 

mass.  Assuming contact free motion, the axis of rotation about which an object rotates 

will always pass through the center of mass [4].  Thus, the center of mass is always 

unaffected by the change in orientation.  This allows the rate of change of the position 
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and orientation to be considered separately which is not true of other parts of a body.  

Given this, the linear velocity of a rigid body is expressed as a function of the position: 

 

   ¯ ° ± ² ³ ´° µ ²·¶ ° ± ²  

 

The angular velocity is expressed as a vector whose direction is the axis of rotation of the 

rigid body and whose magnitude is its rate of change.  Unfortunately, the parameters used 

to express orientation cannot generally be differentiated directly to get the angular 

velocity.  In fact, the number of parameters used to define orientation is not necessarily 

three.  Quaternions and rotation matrices require four and nine parameters respectively.  

Quaternions are attractive for a number of reasons which are beyond the scope of this 

thesis, and have in fact been used in the implementation of the kinematic clone system.  If 

ω represents the current angular velocity, the corresponding rate of change of the 

quaternion representing a body’s orientation is: 
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where ω(t)q(t) is shorthand for the multiplication between two quaternions [0,ω(t)] and 

q(t).  The multiplication between two quaternions [s1,v1] and [s2,v2] is: 

 

      (8)   [s1s2 - v⊇ v2, s1v2, + s2,v1, + v1 ∞ v2] 

 

 Changes in velocity (both linear and angular) are caused by forces.  Forces such 

as gravity, spring connections, and contacts all cause the body to accelerate as illustrated 

in Newton’s famous formula F=ma.  When dealing with rigid bodies, the nature of the 

reaction depends upon the location of the force’s application on the body.  Forces actually 

impart torques on a body where the value of the torque is: 
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 The final component required to build the rigid body equations of motion is 

momentum.  Linear momentum is a simple function of mass and velocity: 
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It can also be shown that: 
 

         ã ä åæç è è é
 

 

where F is the total force acting on a body.  Angular momentum does not share the same 

self-explanatory construction as does linear velocity.  In order to map angular velocity to 

angular momentum, a structure called an inertia tensor is used.  An inertia tensor is a 

symmetric tensor of the third rank [2] and has the form: 
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which expressed in 3x3 matrix form is: 
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Fortunately, the rate of change of the angular momentum is much simpler: 
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where L is the angular momentum and τ is the total torque being applied to the body. 

 Now that all of the components have been defined, the complete set of rigid body 

equations of motion can be presented.  Given a state vector Y(t) whose components are: 
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and finally find the derivative of Y(t): 
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Articulated Body Dynamics 

 As mentioned previously, there are optimizations that can be made when dealing 

with articulated figures over general rigid bodies.  With the goals of a fast and 

numerically stable dynamic simulation, the optimization method used must be chosen 

carefully.  The kinematic clone implementation employs Roy Featherstone’s Articulated 

Body Method (ABM) [8] which is an iterative method that utilizes spatial algebra to 

lower the number of equations required to specify motion.  Featherstone’s method has 

been cited in other works [13] for its efficiency.  Dynamics algorithms fall into two 

categories: 1) ones that solve a set of simultaneous equations, and 2) ones that use 

recursive formulas.  The simultaneous equation solvers (of which the Walker-Orin is the 

most efficient [23]) typically have O(n3) time complexity or worse, but can actually be 

efficient for small values of n where n is the number of links in a figure.  Featherstone 

states that the Walker-Orin method is actually more efficient than his ABM for values of 

n<9.  This efficiency for small systems explains why the simultaneous equation 

algorithms are so popular for robotics systems.  For the purposes of an articulated figure 

in animation, however, one often desires figures with arbitrarily large numbers of links 

which justifies the use of a recursive algorithm like the ABM. 
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Spatial Algebra 

 In his work, Featherstone developed specialized mathematics called spatial 

algebra which is based on screw calculus.  The sole purpose of spatial algebra is to allow 

for the simultaneous handling of the linear and angular components of the rigid body 

equations (see previous section).  This simplifies both the number of equations required 

and the amount of code required to implement it.  The foundation of spatial algebra is the 

spatial vector which is a six element vector that encodes the linear and angular 

components of such quantities as rigid body velocity and acceleration.  The advantages 

gained are primarily of an algebraic nature, but such gains follow through into 

simplicities in the coded implementations of the formulas. 

 Spatial algebra makes use of the fact that a rigid body, in a mathematical sense, 

need not have any physically defined boundaries.  The motion of a rigid body can 

actually be described about any arbitrary point in space.  That point need not be fixed to 

nor even be a part of the body itself.  Traditional schemes describe rigid body motion the 

combined effect of a linear and an angular velocity component about a body’s center of 

mass.  This practice is used for the very purpose of simplifying the separation of the two 

components.   Featherstone’s spatial algebra shows that such measures are unnecessary 

and actual lead to more overhead.  Spatial vectors reformat the linear and angular 

components that would have been expressed about the center of mass to the 

corresponding representation about the origin which is fixed in space.  Angular velocity 

is constant for all points about a body, so is untouched by this change in basis.  The linear 

component is transformed by the following relation: 
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The symbol "^" is used to denote spatial quantities.  Using this methodology, spatial 

velocity and spatial acceleration are defined as: 
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Spatial rigid body inertia is defined as: 
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 Another important construction used in the following sections is a vector sub-

space.  This represents a mapping from a sub-space with less or equal dimensions to 

another with more or equal dimensions.  In Featherstone’s equations, sub-space matrices 

are used to map joint parameters to spatial vectors.  The generality of a sub-space matrix 

allows any type of joint to be used without a need to reformulate the equations. 

 Finally, there are two important spatial functions that must be defined.  A spatial 

transpose, denoted aS is defined as: 
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The other is the spatial cross operator: 
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The Articulated Body Method 

 To establish a recurrence relation, Featherstone develops a quantity known as an 

Articulated Body Inertia (ABI).  ABI is the apparent instantaneous inertia of a body 

comprised of a set of flexible joints.  Once the ABI of an articulated figure is known, the 

entire figure can be treated as a single rigid body with a rigid body inertia equal to the 

ABI and with a fixed point rotation about the first joint of the figure.  Assuming that an 

articulated figure has the hierarchical structure of a tree (i.e. no loops), we can recursively 

define any branch or sub-branch as a single rigid body with an ABI built from all of its 

constituent links.  Put simply, the Articulated Body Method finds the ABI of each branch 

and sub-branch of an articulated figure and uses these to propagate accelerations from the 

base out to all links in the figure. 

 

Step 1: Finding Articulated Body Inertias 

 The process of finding all of the ABIs for the various sections and subsections 

requires a recursive step starting from the root node a propagating out the leaves.  The 

purpose of this step is to propagate the velocity of the base along with the cumulative 

velocities of each of the joints outwards in order to calculate the momentum of the links.  

Momentum will be propagated back from the leaves so it is efficient to calculate it at the 

same time as the ABIs.  This equation for the velocity of a link i (expressed in spatial 

coordinates) is: 
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 The ABIs are propagated back up the tree of an articulated figure starting from the 

leaf nodes.  The ABI of a leaf node is simply the rigid body inertia of that link.  From 

there, the following equations are employed for the ABI and for the momenta: 
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where Qi+1 is the active joint forces of the next link. 

 

Step 2: Propagating Accelerations 

 Once the ABIs and momenta are known, the spatial accelerations and resultant 

joint accelerations can be found.  This last step propagates back out from the base to the 

leaves.  These equations are respectively: 
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Implementation Details 

 The current implementation uses all spherical joints.  Spherical joints were 

desired in this case to allow for maximum experimentation with the effects of spring 

forces on the dynamic simulation.  The use of sub-matrices and Featherstone’s ABM 

makes the coding of spherical joints more efficient than others algorithms that require 

them to be modeled as a collection of single degree of freedom joints.  Numerical 

singularity problems typically associated with spherical joints are resolved by using 

quaternions to represent joint positions while using joint angular velocities directly in the 

dynamics equations.  This yields a sub-space matrix of: 
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which is clearly simple to code for.  The relationship between angular velocity and the 

change in the positional quaternion is determined using (7).  Fortunately, the animation 

system within which the dynamics simulation already stores angular positions with 

quaternions which minimizes representation conversions.  Also, since these values are 

already stored in link coordinates, Featherstone’s equations are also carried out there.  

Featherstone claims that calculations using a link by link coordinate system (as opposed 

to representing everything in world coordinates) can yield a 10% improvement in 

performance. 
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Numerical Integrations 

 Finally, to numerically integrate the dynamics equations, a fifth order Runge-

Kutta method is used with adaptive step-size.  For the sake of completeness, a Euler-step 

method was attempted but proved to be very unstable.  The particular Runge-Kutta 

method used is an embedded Runge-Kutta formula originally invented by Fehlberg [24], 

which has error estimation built into the function evaluation.  The formulation is fifth-

order with error estimation that bounds the fourth order calculations.  The extra accuracy 

makes up for its cost by allowing larger step sizes.  Its stability has also held up 

throughout the testing of the simulations; no simulations had to be rerun on account of 

numerical inaccuracies. 
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CHAPTER 3 

KINEMATIC CLONES 

 

 This chapter presents the detailed workings of the kinematic clone technique.  The 

goal of this thesis as described in the introduction is to provide animators adequate 

control over a dynamic simulation to reap the realism of a simulation while retaining the 

ability to create expressive motion.  It was argued in chapter 1 that such control should be 

kinematic in nature since the alternatives thus far proposed, while successful in several 

specific areas, do not yet suitable for the purpose of portraying personality and emotion.  

A kinematic clone, as the name implies is an identical copy, link for link, of an articulated 

figure that is accessible to an animator for the purposes of kinematic control.  It is 

controlled using traditional keyframe methods which accommodates time-saving 

enhancements such as inverse kinematics.  The following sections will describe the 

connection between the kinematic clone and the articulated figure and will also discuss 

the important elements as they have been implemented in the first version of the system. 

 

Kinematic Clones: Technical Description 

 From a high level, a kinematic clone is a wire frame skeletal clone of the 

articulated figure that imparts control over a dynamically simulated articulated figure by 

forces generated from virtual springs connecting the two (see figure 1).  There is a one-

to-one correspondence between the links and joints of the kinematic clone and the links 

and joints of the articulated figure.  This correspondence, and the formalization of the two 

structures distinguishes this method from other kinematic-spring systems that have 

appeared in other works (e.g. [9][13]). 
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The structural correspondence makes the relationship between control and reaction very 

intuitive.  The general behavior of an object suspended by a spring from another is well 

understood and should be a part of a person’s typical world experience, especially for 

someone who’s vocation is animation.  This alone is important from a usability standpoint 

since it would enable an animator to predict the outcome, to some degree, of moving the 

kinematic clone through a series of keyframes. 

 In addition to the setup of keyframes for the kinematic clone, an animator has the 

ability to adjust several other parameters that effect the degree to which the articulated 

figure is effected by the kinematic control.  The most important of these are the spring 

constants which determine the relative freedom that a dynamic joint has to move in 

relation to its kinematic counterpart.  The following sections will describe each of these 

parameters in turn. 



 39

Spring Connections 

 The connection between the kinematic clone and the articulated figure is through 

spring connections that connect the corresponding joints of the two structures.  For 

control purposes, the components of the spring force between a pair of corresponding 

joints are broken out along the coordinate axes of the dynamically controlled link on the 

posterior side of the joint.  This allows an animator to optionally select different spring 

coefficients along certain axes, to impart directional favoritism for example.  Such a 

setup can be used to simulate a more realistic "one degree of freedom" joint that still has 

some give in the restricted directions.  The rest lengths of all of the springs is zero which 

follows the notion that link and joint displacements should only exist when there exists a 

physical force to move them so. 

 The springs in the simulation can be either simple linear springs (Hooke’s Law) or 

can be made exponential to achieve certain effects.  The general force equation is: 
 
 (30)       ∂ = β (kdα)m 
 
  k is the Hooke’s law spring constant 
  d is the linear joint offsets 
  m is the mass of the link 
 

The two constants α and β determine the exponential behavior of the springs.  α is the 

spring’s exponent and determines how steeply the force rises with respect to distance.  

Exponential springs also exhibit reduced strength (i.e. looseness) when the distance 

approaches zero.  β determines the relative width of this "valley."  The use of exponential 

springs can be desirable over stiff linear springs from a numerical stability standpoint. 

 There were two options of how to apply the forces to the articulated figure; (1) 

apply an external linear force to the joint in question, or (2) apply a torque to the interior 

joint.  For reasons of convenience of implementation, the second option was chosen.  The 

torque resulting from a linear spring acting on the link between a parent and its child is: 
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 (31)        τ = r ∞ β (kdα)mp  
     
  r    is the vector to child link in parent coords. 
  mp mass of parent link 
 

At the time of implementation, applying a torque to a link’s parent seemed to be efficient 

because it reduced the number of joint space transformations slightly.  One limitation of 

this method is that the base joint of the figure cannot move with respect to the kinematic 

location of the base.  This modification is recommended for future enhancements in 

Chapter 5. 

 Some special consideration must be given to the end-effectors of a figure.  The 

orientation of a joint is actually a by-product of the position matching forces of the joint-

to-joint connection springs.  Since there is no joint to connect at the end of an end 

effector, it falls limply unless extra forces are introduced.  To combat this, an additional 

virtual spring connects the geometric centers of each end-effector.  It has been found 

desirable to treat this spring separately from the spring connecting the anterior joints.  

From an animation standpoint, it is often the case that the "wrist" of a character must be 

more carefully controlled than the exact orientation of the hand.  Slightly freer hand 

movements seem to accentuate a gesture and add extra believability to a motion. 

 There are other choices for joint connections beyond those that have been 

implemented.  Experiments have suggested that torsion springs whose force would be 

dependent on the angular differences between a kinematic clone and its articulated figure 

would be beneficial.  During periods of extreme rotation, the dynamic simulation must 

rely on positional restoring forces to rotate a body.  When these rotations are coupled 

with linear accelerations of the body as a whole, equilibriums can occur that prevent the 

figure from rotating into position.  While physically correct, this behavior can sometimes 

result in awkward looking movements and postures.  This is another topic that is 

discussed in chapter 5. 
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Damping Forces 

 Given spring forces alone, an articulated figure in this system will exhibit 

oscillations and vibrations that are not characteristic of a creature under autonomous 

power.  Equally as important to the simulation is motion damping.  Sufficient damping is 

required to prevent excessive oscillations and to eliminate the "marionette effect."  One 

of the concerns during the research and planning of this thesis was that characters under 

this kind of control would move like marionettes suspended by springs, which given the 

nature of the setup is very close to what is really happening.  Marionette motion is 

characterized by excessive follow-through in the links and a limp feel which denies self 

motivated actions.  Fortunately, as chapter 4 will discuss, applying the correct amount of 

damping force to the movement of the articulated figures prevents this from happening.  

Sufficient damping makes the resultant movements seem more deliberate.  Even under 

periods of extreme force, the damping effect of resisting joint angle changes makes a 

character feel more in control of its actions.  This was a very welcome discovery. 

  As with the spring constants, an animator can supply varying degrees of damping 

to the various degrees of freedom.  They can also be made to be linear or exponential.  It 

was found that global viscous damping was all that was required to achieve the desired 

effect.  The formula for the damping force of a link is: 
 
 
  (32)  τ = - ωpm 
 
   p  is the damping coefficient 
   ω  is the angular velocity of the link 
   m is the mass of the link 
 
 

The mass factor in the equation, while not physically correct (it should be dependent on 

surface area), seems to work for the purposes here.  Damping is also important from a 
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numerical standpoint to guard against numerical instability.  Damping forces act in direct 

opposition to joint velocities which helps to curtail their blowing up due to numerical 

errors. 

 

Animating Parameters 

 One very important feature is that both the spring constants and damping 

coefficients can be animated, i.e. changed as a function of time.  Overall muscular 

exertion varies depending on the attitude of a character.  At one time during an 

animation, a character may be lethargic which is generally depicted with limp, slumped-

over movements.  During this stage, both the spring and the damping coefficients would 

be drastically lowered, approaching the unchallenged swing of an unpowered limb.  

However, if that same character became suddenly exited, the spring and damping forces 

would be set to a much higher value to produce the quick and snappy movements 

produced by a character in that frame of mind.  One of the examples in chapter 4 displays 

this use of animated values. 

 Another important use of animating spring constants is to allow an animation to 

be tweaked and adjusted to modify the resulting motion.  Such action would be an 

alternative to modifying keyframes when an animator desires to add some extra follow-

through to a turn, for example. 

 

Spring Force Release 

 During testing, it was often found desirable to lower spring coefficients at the end 

of a rapid movement to exaggerate the reaction.  In an attempt to automate this process, a 

threshold was introduced which is used to compare with the magnitude of the spring 

forces and reduce the spring coefficients when its value was surpassed.  The spring 

coefficients are reduced by the following formula: 
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       k normal coefficient value 
       ∂ current spring force 
       α force threshold 
       β maximum force allowed (k=0) 
       γ exponent of decay 
 

Exponential decays have been found to behave more naturally since they "ease-in" to the 

fall-off function making the discontinuity less obvious. 

 

External Forces 

 Very few external forces have been implemented in the current system.  Gravity, 

is implemented by introducing a fictitious acceleration in the opposite direction of the 

true gravitational force to the base of the articulated figure.  The only other external force 

is a ground reaction force that helps keep legs from passing through the ground.  This is 

implemented through an exponential spring force that is based on the amount of 

penetration into the ground.  Interesting results could come from the addition of wind 

forces, force-fields, etc. 

 

Kinematic Links 

 In practice, there are generally situations where an animator would like to limit 

the effects of the dynamics simulation to a certain subset of the entire figure.  An 

animator may require precise control of a limb for some action, or he or she may be 

animating a creature with a huge number of articulations.  Even though Featherstone’s 

Articulated Body Method is O(n) [6], the computational costs can become quite large for 

a figure with many joints.  For these reasons, an animator has the option to make certain 

links, or certain subsets of links completely kinematic.  The effect of this action on the 

position of the link of the articulated figure depends on where that link is in the structure 
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and whether there are any dynamic links in the path from it to the base.  For links with no 

dynamically controlled links interior to it, the position of the link will exactly match the 

position of the corresponding link in the kinematic clone.  If dynamic links exist on the 

path, however, the positions of the links will not, in general, coincide.  This is because 

the parameters under kinematic control relate the position of a link with respect to its 

parent.  Controlling these parameters kinematically does insure, however, that the 

relationship between a joint and its parent are exactly positioned. 

 Kinematic links require significantly less calculation in the context of the 

dynamics equations (see chapter 2).  Their accelerations and Articulated Body Inertias 

are still calculated passed into the simulation so that the effects of their motions are 

reflected in the dynamic links.  Actually, in the case where no dynamic link exists 

between a link and the base, even the ABI can be ignored.  ABI’s are passed "up" the tree 

structure of an articulated figure during the dynamics calculations.  If all of the ancestors 

of a link are kinematically controlled, the ABI is not required. 

 Kinematic control can be very useful if an animator wishes to enhance motion-

capture data.  Motion-capture is a process in which a real figure is fitted with sensors that 

detect and record the motion of key parts of the body.  This data is used to control an 

articulated figure representing some 3D character.  If an animator wishes to add 

additional limbs or a tail, these must be animated by hand.  An alternative would be to 

use the kinematic clone technique on the additional limbs while keeping the joints 

controlled by motion capture under kinematic control. 

 

Interface Design 

 To enable positioning of the kinematic clone, it must be displayed in some fashion 

along with the dynamic figure.  In the current implementation it is displayed as a linear 

skeleton connecting the joints.  To aid visualization prior to the execution of the dynamic 

simulation, rotations and translations of links within the kinematic skeleton are also 
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applied to the dynamic figure interactively.  Prior to the execution of the simulation, the 

kinematic and dynamic figures are coincident, so like rotations will maintain this 

coincident positioning.  After a simulation is run and joints are offset, as the animator 

repositions a keyframe, the dynamic link also moves.  By applying identical 

transformations, a crude estimate of the effects on the dynamic simulation as a result of 

moving the keyframe are visualized. 
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CHAPTER 4 

RESULTS 
 
 

 The kinematic clone system has proven to be very successful at generating 

realistic motion that approximates the kinematic motion designed by an animator.  

Movements automatically exhibit mass and momentum, especially around rapid 

movements and quick changes in velocity.  The motion also exhibits subtle reactionary 

motions that are difficult to animate directly and that help create the realistic feel, by 

eliminating "frozen poses" and creating what Disney animators call a "moving hold" [1].  

This chapter describes the results of a set of animation examples that were conducted 

with the kinematic clone system.  The last section describes the system that it was 

implemented upon and the resulting calculation times. 

 

Chain Link Tests 

 The first experiments were done with a simple object comprised of a set of three 

links connected in a chain.  Tests included drooping the chain from a stationary kinematic 

clone with varying spring strengths.  Another test included varying the spring strength 

over time to simulate a relaxation of a character.  Two final tests included animated 

articulation of the kinematic clone and animated motion of the base of the clone to 

inspect how the clone interpolates an animator’s motion. 

 The tests showed expected performance.  With the articulating chain, it was found 

that a very low number of keyframes were able to guide very natural and organic sweep 

of the chains.  One important find was noted in that the motions of the articulated figure 
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can have a different timing feel.  This must be addressed in situations where precise 

choreography of the figure is required.  This topic is discussed in Chapter 5. 

 

Ice Skater 

 This example demonstrates the effect of rapid body movements on the dynamic 

simulation.  It also demonstrates the need for joint constraints that is discussed in chapter 

5.  In this example, the legs and hips are actually controlled kinematically.  This was 

done to avoid problems with ground collisions as the legs move rapidly back and forth.  

The animation depicts an ice skate making the final few steps of a "speed skate" and then 

coming towards camera.  His arms are rocking back an forth speed-skater style.  The 

arms tend to lag behind the kinematic model considerably.  If this were a problem in the 

animation, the animator could increase the spring coefficients or start the kinematic arm 

swings earlier.  The other more major problem occurs when the arms swing backwards.  

The spring forces alone are not enough to prevent the elbow from bending backwards 

somewhat.  It seems that some degree of joint constraint checking will have to be added 

to prevent this type of occurrence.  Fortunately, the violation is not that extreme 

suggesting that the computational cost of joint constraints is probably not worth the 

expense for slow moving animations. 

 

Mannequin Jump 

 This proved to be a deceptively simple yet remarkably complex animation of a 

mannequin jumping into the air and landing a few feet forward.  With only seven 

keyframes, a complex motion is generated that clearly demonstrates follow-through and 

momentum.  The initial crouch is accentuated with a slight bob of the head and drop of 

the arms.  As the mannequin leaps, the legs of the kinematic clone crouch causing the 

dynamic legs to snap up.  Upon landing, ground reaction forces cause the legs to bend 

and the arms head and torso lean forward.  The additional work required to animate the 
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follow throughs using traditional keyframe would more than double the number required 

here. 

 

Walk Cycle 

 This test demonstrated the need for joint limits even more so than the skater 

example.  When the arms swing backwards, the spring forces cause the elbow to bend 

backwards.  What is worse, is that it stays in this position as the arm hangs momentarily 

before the return swing.  The walk cycle also proved the advantage of exponential 

springs.  With the rapid leg and foot swings, linear springs lagged so far behind that they 

had not yet caught up when the leg or arm swung back to meet them.  This killed the feel 

of a walking character.  Simply by setting the spring exponent to two eliminated this 

problem and produced the cycle displayed in the demonstration video. 
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System Performance 

 The kinematic clone system was implemented on a Commodore Amiga 3000 with 

a 16MHz 68030 microprocessor.  This system includes a 68881 math co-processor for 

doing double-precision floating point operations. 

 Calculation times on this system were longer than expected. 

 

Animation Avg. Frame CPU Sec     Avg. # Steps 

drop: stiffness 1 3.44 8.28 

drop: stiffness 90 19.32 45.97 

chain swing 9.79 31.83 

skater 110.79 65.08 

jumper 120.94 66.75 

walker 149.04 65.31 
 

Table 1 
 

The dynamics algorithm is similar to those that have been used to produce near real-time 

dynamic simulations [9].  In light of this fact, an implementation is planned for a Silicon 

Graphics Indigo II Extreme with a 150MHz R4400 Risc processor to gauge the 

technique’s performance at the workstation level.  Ideally, simulations should take no 

more than a few minutes to be practical. This would allow it to be used along side of 

linear and splinar keyframe interpolation methods in an animation system. 
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CHAPTER 5 

FUTURE WORK 

 

 The kinematic clone system presented herein successfully met the objectives as 

described in the introduction.  During the course of its implementation, however, and 

during the execution and analysis of the results from the examples presented in chapter 4, 

several areas were identified that merited future research but that could not be 

incorporated at this time.  This final chapter presents each topic in turn, presenting the 

issue and gives consideration to possible solutions/implementations. 

 

Alternative Spring Configurations 

 As was suggested in chapter 4, there may be alternative and/or additional spring 

configurations that could produce desirable effects.  The first configuration to consider 

are torsion springs.  The spring forces included in the current implementation are 

proportional to the distances between the joints of the kinematic clone and the articulated 

figure.  Given sufficient spring coefficients at each of the joints, this configuration will 

drive an articulated figure to match the kinematic clone.  Any torques that are required to 

rotate sections of the figure are the result of these linear spring forces acting on a parent 

link.  Unfortunately, the path taken as a result of these forces can twist a figure 

abnormally.  One solution might be to supplement the positional springs with torsion 

springs that directly impart torques that cause a link to match the orientation  of its 

kinematic counterpart.  Such springs would have the additional benefit of eliminating the 

need for extra positional springs at the end-effectors. 

 In addition to torsion springs, the concept of a body rest position might be useful.  

Additional springs would be added which relate the joints of the dynamic model to 
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themselves.  Currently, as the joint-to-joint spring forces are relaxed, the dynamic figure 

starts to droop like an unpowered rigid body.  Worth investigating is whether intra-joint 

forces which cause links to favor a certain orientation would benefit the simulation in this 

case.  One would have to investigate whether such forces would help or hamper an 

animator’s intuitive ability to judge the effects of changing spring coefficients. 

 

Joint Constraints 

 A few of the examples in chapter 4 demonstrated the need for joint constraints in 

the dynamic simulation.  Roy Featherstone’s Articulated Body Method [6] accommodates 

the limiting of degrees of freedom in a joint.  The current implementation of the 

kinematic clone method uses spherical joints exclusively, primarily for the purposes of 

testing the kinematic control techniques.  It would not be too difficult to impart more of 

the ABM’s generality into the dynamics simulation allowing for varying degrees of 

freedom at the joints. 

 Joint constraints, however, includes more than just limits on the number of 

degrees of freedom.  Within a degree of freedom, the range of angles attainable by a joint 

may be restricted.  Featherstone talks briefly about some techniques for incorporating this 

type of constraint into his algorithms.  It would be interesting to see what effects torsion 

springs have on the need for such constraints.  Another option to investigate would be the 

use of resistant forces to handle constraints in the fashion described in [8] and [9].  Such 

approaches have traditionally suffered from numerical problems, but might be worth 

considering here since the violations in the current system were not that bad. 

 

"Floating Bases" 

 "Floating Bases" refer to the base of an articulated figure when it is not fastened 

to the ground or some other object.  In the kinematic clone system, the base is locked in 

that the dynamics equations have no effect on its position (it may be moved kinematically 
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by the animator, however).  There are times when it might be desirable to have this base 

move as a result of the forces generated by the articulated figure, such as when it is in 

freefall.  Both Featherstone [6] and Hahn [2] present methods for doing this. 

 

Collision Detection 

 Currently, there is no joint-to-joint or figure-to-object collision detection.  

Collision with the ground is cheaply implemented with a height compare.  Such tests are 

very expensive but might be worth considering especially when very low spring constants 

are used to connect the joint pairs since this can increase the probability of joints falling 

through one-another. 

 

Advanced Kinematic Joint Control 

 Considerable work is needed to enhance the ability of mixing kinematic joints 

into the simulation.  Currently kinematically controlled joints are controlled in link space 

as opposed to being positioned in world space.  Disregarding the practical advantages of 

limiting calculations with kinematic links, the primary advantage of using them are for 

precise placement of certain links in world space.  An animator should have the option of 

making a joint kinematic and have that joint exactly coincide with the corresponding joint 

in the kinematic clone, whether or not there are dynamic links between that link and the 

base.  Doing so would require that the dynamic links receive forces that connect them to 

the position of an exterior link.  The difficulty is that such forces could easily become 

very stiff and produce numerical instability.  One option might be to use forces to get the 

dynamic links close to the correct position and then use inverse kinematics to place them 

exactly. 

 Another feature of kinematic link control should enable an animator to toggle 

between kinematic and dynamic control during the course of an animation.  Such 

transitions are easy when going from kinematics to dynamics, but some consideration 
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must be given about how to handle the transition back from dynamics to kinematics.  

There should be some sort of blending function that would prevent links from "popping" 

from their positions under the dynamic simulation to the position of the link in the 

kinematic clone.  The two positions would not generally coincide. 

 Finally, the issue of timing must be addressed.  Animations are often 

choreographed first to get the timing of motions correct.  Timing is very important in 

animation and lends a lot to the interpretation of the intentions and emotions of a 

character.  Several of the examples exhibited relative large changes in the timings set 

down in the kinematic animation.  Perhaps a blending function is needed in areas where 

timing is critical that interpolates between the kinematic and dynamic positions is needed.  

Such a function would smoothly blend from the dynamic motion to the kinematic such 

that the articulated figure arrives at a key frame at the time prescribed. 
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