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Abstract

We contribute a new integrated system designed for high-
quality 3D reconstructions. The system consists of a sparse
set of commodity RGB-D cameras, which allows for fast
and accurate scan of objects with multi-view inputs. We
propose a robust and efficient tile-based streaming pipeline
for geometry reconstruction with TSDF fusion which min-
imizes memory overhead and calculation cost. Our multi-
grid warping method for texture optimization can address
misalignments of both global structures and small details
due to the errors in multi-camera registration, optical dis-
tortions and imprecise geometries. In addition, we apply
a global color correction method to reduce color inconsis-
tency among RGB images caused by variations of camera
settings. Finally, we demonstrate the effectiveness of our
proposed system with detailed experiments of multi-view
datasets.

1. Introduction

The ability to capture and reproduce digital versions of

real-world objects and scenes is a fundamental and essen-

tial task in the fields of multimedia, video games, computer

graphics and vision. Recent advances in general purpose

computing on GPU (GPGPU), capture technologies (e.g.

Microsoft Kinect, 3D scanner) and consumer head-mounted

devices (e.g. Microsoft HoloLens, HTC Vive, Oculus Rift)

provide the means and the potential for a large variety of

applications, such as human body analysis, digitalization of

cultural heritage, immersive augmented/virtual reality and

many others. As a result, there is an increasing demand for

high quality surface reconstruction systems especially with

commodity RGB-D sensors.

Some previous researches reconstruct geometries from

a sequence of depth images with a single hand-held cam-

era. These methods usually suffer from severe motion

blur in the captured RGB images and have synchroniza-

tion issues between the RGB and the depth cameras. The

camera poses are usually calculated by frame-to-frame or

frame-to-model registration that could introduce tracking

errors such as drifting. Moreover, the scene needs to

be static during the entire scanning process, which is es-

pecially difficult for applications like human body scan-

ning [29, 30]. Most of the online reconstruction methods

[22, 39, 9, 35, 21, 13, 34, 42, 7] apply truncated signed dis-

tance fields (TSDF) to fuse multiple depth images into one

volume. Although the sparse data structures of TSDF have

been widely researched to reduce memory usage, existing

algorithms are still not robust and efficient enough to cull in-

active regions for fusion. On the other hand, a visually con-

vincing reconstruction should incorporate both high-quality

geometries and textures. Some frameworks simply recon-

struct the texture by blending the colors acquired directly

from the RGB images [13, 12, 34, 22, 35, 42, 9, 7]. How-

ever, since the geometry may not be perfectly reconstructed,

and the RGB cameras may not be precisely calibrated and

registered, these methods usually produce blurry textures

with obvious misalignments. Moreover, most commodity

RGB-D devices have no controls over the camera settings

(e.g. exposure and white balance), which causes more diffi-

culties in producing color consistent RGB images from dif-

ferent views.

In this paper, we describe how we address the above

challenges to achieve high quality reconstruction of photo-

realistic textured geometries. Our capturing system consists

of a sparse set of commodity RGB-D cameras. The cam-

eras are arranged in a circle surrounding the capture area,

which allows for faster and more accurate scan than a sin-

gle hand-held camera (Fig. 1). We firstly refine the camera

poses by global registration to fix general misalignments in

the depth and the RGB images. Our tile-based streaming

pipeline supports efficient and high resolution GPU-based

TSDF fusion. The detection algorithm can robustly cull in-

active tiles to reduce unnecessary data transfer and calcula-

tion. For reconstructed geometries, we use point-based rep-

resentation, which allows to extract vertices with adaptive

resolution to match the fine details of the RGB images. We

then employ a multi-grid warping method to solve the mis-
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Figure 1. Overview of our geometry and texture reconstruction pipeline.

alignments at multiple scales and address local distortions

and edge artifacts at surface boundaries as well. Moreover,

we propose a global multi-view color correction method to

reduce color variations across all the camera views. Lastly,

our weighting scheme in the color integration can amelio-

rate some of the view-dependent artifacts to further improve

the texture quality.

2. Related Work
2.1. TSDF Fusion

Curless et al. [12] introduces a volumetric method to in-

crementally fuse multiple range maps into a single TSDF.

The range maps are integrated with weights relative to the

uncertainty of measurements, making the method robust

against noise. The surface is implicitly represented by the

zero crossing level set of TSDF thus the method has no re-

striction on the topology type of scanned objects. Due to

the development of GPGPU and the invention of commod-

ity depth sensors such as Microsoft Kinect, online TSDF

based reconstruction has become popular. KinectFusion

[22] is one of the real-time surface tracking and reconstruc-

tion methods. This method uses dense uniform grids to

store TSDF, projective depth difference to estimate signed

distance, and point-to-plane ICP to register new measure-

ment with previously fused surfaces. The whole system is

implemented on the GPGPU architecture making it possible

to perform reconstructions in real time.

However, the underlying data structure of KinectFusion

is memory intense, which limits its usage in large-scale

and high-detail surface reconstruction. Thus, some re-

searches are focusing on exploiting the spatial sparsity of

scanned surfaces to address this problem. Voxel Hashing

[35] proposes a spatial hashing scheme to compress and

stream voxel chunks. Octomap [21] uses sparse voxel oc-

tree to represent the scene in a multi-resolution hierarchy

for robot planning and localization. This method also ap-

plies a probability model to estimate spatial occupancy for

each voxel. Chen et al. [9] applies a multi-level hierarchical

GPU based data structure to perform dynamic fusion and

lossless streaming between GPU and host. In our system

we are using tilemaps to subdivide the space into sparse

tiles. Although the data structure is not as scalable as oc-

tree or hash table, it is sufficient for scanning most indoor

scenes. We will describe our distance and weight metrics in

the TSDF fusion and introduce a more robust and efficient

culling algorithm to enhance the performance.

2.2. Texture reconstruction

While much attention has been paid to the problem of re-

constructing accurate geometries, the reproduction of high-

quality textures is equally important in applications that re-

quire photo-realistic appearances of the scanned objects. A

commonly used approach is to simply project each vertex

of the geometry onto the RGB images and compute the

vertex color by blending the pixel colors at corresponding

image locations. Various sophisticated blending schemes

have been proposed by [36, 38, 33, 8]. But since the mis-

alignment of images is not addressed, these methods often

result in blurry textures. Instead, some other approaches

[25, 40, 44, 10, 27] select one view per face by solving a

discrete labeling equation or a Poisson equation to hide vis-

ible seams between overlapped images. However, they can

still produce tearing artifacts with large misalignments of

input images. On the other hand, a number of works pro-

pose to address either the inaccuracies in the camera calibra-

tion [37, 26, 4, 41, 11] or handle inaccuracies in geometry

and optical distortions of the input images [15, 14, 1]. But

these methods address each of those core problems sepa-

rately, and thus, are suboptimal.

More recently, a small number of approaches have ad-

dressed the above problems simultaneously. Zhou and

Koltun [48] present compelling results on texture optimiza-

tion by refining rigid camera poses along with non-rigid

warpings of RGB frames. However, this method uses a sin-

gle scale control lattice which may fail to converge to the

global minimum. It also lacks regulations on the warping

field that may lead to unreasonable deformations. The re-

cent work of Bi et al. [5] builds upon the work of Zhou and

Koltun [48] by proposing a global patch-based system that

synthesizes aligned images from input images. They simul-

taneously maximize the local similarity between the aligned

and input images and ensure the photometric consistency of

all the aligned images. This method produces high-quality

results in most cases, but is expensive to process, and also

not able to preserve the semantic information of the texture

when large misalignments are present. In our approach, we

address the above shortcomings using a multi-grid warping
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method with multiple constraints to regulate the warping

field.

However, most of the previous methods [48, 5, 20] as-

sume that the scene is captured with fixed camera settings.

Even though their methods present impressive results on

texture alignment, the result would suffer from visible color

variations when using cameras with automatic parameter

settings. To attenuate such artifacts, some methods have

been proposed to either compute a leveling texture that al-

leviates color differences at image borders [43, 3] or search

for a linear function that minimizes the color differences

between pairs of images [8, 31, 2]. However, the former

methods only locally alleviate color differences at overlap-

ping areas of images, while the latter cannot build a very

robust color correction function since pixel by pixel align-

ments between images are not guaranteed. Therefore, we

apply a histogram matching algorithm similar to [17, 32]

by aligning the cumulative histograms of color correspon-

dences in image pairs, which produces visually better re-

sults.

3. Surface Reconstruction
In this section we present our surface reconstruction

framework. The depth images acquired from multiple sen-

sors are preprocessed to reduce noises and artifacts, and

then globally registered to refine the camera poses. The re-

sulting depth images are fused into TSDF with our distance

and weight metrics in a tilemap based streaming pipeline.

Finally, point clouds are extracted from TSDF for texture

optimization and rendering.

3.1. Depth Image Preprocessing

We preprocess the captured depth images to reduce

noises and outliers. We remove the depth samples whose

values are out of the reliable measurement range (0.5m to

5m) of the depth cameras. We also discard samples dis-

tant from most of the neighboring samples. Moreover, we

eliminate small area patches by region growing and further

reduce noisy points around surface edges by erosion opera-

tion. Finally, depth images are undistorted based on corre-

sponding intrinsic parameters of the cameras and back pro-

jected to generate point clouds in each view space.

3.2. Global Registration of Camera Poses

We apply global rigid registration on the generated point

clouds P to correct the surface misalignment due to the

errors in the camera calibration. Consider two cameras i
and j among the K depth cameras. We project the point

pi ∈ Pi captured from camera i onto the image plane of

camera j. Instead of using projective correspondence, we

search in the 5 × 5 neighboring region around the projec-

tion point in Pj and choose the best matching point pi,j as

the correspondence of pi. The positions, normals and colors
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Figure 2. Point-to-plane distance estimation. O is the cam-

era origin. v is the voxel center in camera space. u is the

projection of v on the focal plane. Γdepth fetches the depth

value at u. r is the viewing direction. φ is the angle between

r and the optical axis Z, while θ is the angle between r and

the local surface normal n.

of the points are used as features to evaluate the scores of

candidate points in the neighboring region. This method re-

sults in a better correspondence finding when the surface

lacks geometric features or there are misalignments with

other surfaces on the edges. For each pair of correspon-

dent points, the residual is measured as their point-to-plane

distance [28]:

E(T) =
∑
j∈K

∑
i∈K

∑
pi∈Pi

‖(TjMjM
−1
i T−1

i pi − pi,j) · ni,j‖2

(1)

M are the camera poses from the calibrated extrinsic pa-

rameters of the cameras. T are the correction transforms.

M,T ∈ SE(3). Then the registration problem is to solve

for the optimal T that minimize the energy function. This

results in a dense linear system of 6K parameters which is

solved by singular value decomposition (SVD) method.

3.3. Fusion with TSDF

After registration, all depth maps are fused into one uni-

form grid space referred to as the TSDF. Each grid sample

of the TSDF at position v consists of two components: dis-

tance D(v) and weight W (v). The distance value measures

the distance from the center of the voxel to the closest point

on the surface. The reconstructed surface is thus implicitly

represented by the zero-crossing level set of the TSDF. It

is usually expensive to compute an accurate transform from

polygonal meshes to distance fields [23]. We use an alter-

native fast approach similar to [19] that measures the Eu-

clidean distance from the voxel center to the local tangential

plane around the projection point (See Fig. 2). This point-

to-plane method only adds a correction term cos θ/ cosϕ to

the depth difference but yields a better distance estimation

for planar surfaces as it assumes the scanned surfaces to be

piecewise linear.

The other component weight is used to incrementally

accumulate new measurement (dk(v), wk(v)) from input
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Figure 3. TSDF fusion without (left) and with (right) dis-

tance weight wedge. Notice that the visible seams between

adjacent scans in the left figure are reduced in the right fig-

ure.

depth images with previous measurements in the TSDF:{
Dk(v) = Dk−1(v)Wk−1(v)+dk(v)wk(v)

Wk−1(v)+wk(v)

Wk(v) =Wk−1(v) + wk(v)
(2)

The weight is related to the error of the sensor measure-

ment, which has been investigated in several research works

[46, 16, 45, 24]. The variance of measurements increases

quadratically with respect to the distance. The depth value

is also distorted in a ring-like pattern near image borders

due to the non-uniform illuminance of the active infrared

sensor. Depth inhomogeneity of the time-of-fly (TOF) cam-

era and inappropriate preprocessing of the depth images

such as bilateral filtering can introduce non-existing points

around the edges of observed surfaces as well. Therefore

we design our weighting term based on these metrics as:

w = wgeo · wborder · wedge (3)

wgeo is the geometric term, which is proportional to the solid

angle subtended by the surface patch at the sensor origin.

Thus the surface that is closer and facing towards the sensor

will contribute more to the final integration. wborder is in-

versely proportional to the square distance of the projection

of the point to the optical center of the image to deal with

the distortion at image borders and allow smooth transition

between overlapped scans. wedge is proportional to the dis-

tance from the projection image pixel to the closest discon-

tinuity pixel on the depth image. As depicted in Fig.3, this

weight can help reduce artifacts and visible seams near scan

edges. The influences of other factors, such as sensor inter-

ference, surface materials and environment temperature, are

not considered in this paper.

3.4. Streaming Pipeline

A dense volume representation of TSDF is both memory

intense and computationally expensive. Therefore, we rep-

resent the TSDF in a two-level tilemap grid [18] to exploit

the spatial sparsity of scanned objects (Fig. 4). The volume

space is subdivided into uniform tiles of size m. All the al-

located tiles of voxels are stored in a large pool. The tile

new 

TSDF Tile Pool 

Free Tile Stack ▪ Remove Empty Tiles 

▪ Generate Task 

▪ Allocate New Tiles 

▪ Update Tiles 

inactive active empty unallocated 

Figure 4. Streaming pipeline of the tilemap based TSDF

fusion.

offset in the pool is stored in a separate offset table. The

coordinate of a voxel is thus calculated as:

p = OFFSET(�v/m�) ∗m + v MOD m (4)

where v is the virtual location of the voxel in the TSDF

volume and p is the corresponding physical location in the

tile pool. All the tiles are initialized as free and pushed into

a stack.

If a tile is outside the camera frustum, occluded by the

scanned surface, or missing valid measurements, the tile is

not involved in the fusion phase. Thus we launch a detec-

tion kernel to cull these inactive tiles to avoid unnecessary

data transfer and calculation. We construct an axis aligned

bounding box (AABB) for each tile to perform intersection

tests with the view frustum and the scanned surfaces. The

size of the AABB should be adjusted to take the width of

the TSDF band into consideration. If a tile is not culled by

the view frustum, we project the AABB of the tile onto the

image plane. We calculate the minimum and the maximum

depth values within the projection region as the near and far

clipping planes. A tile is culled if the tile is behind the far

clipping plane or the tile is empty and in front of the near

clipping plane (See Fig. 5). Notice that the empty space in

front of the measured depth implies that there is no other

surface in the way. Thus, the non-empty tiles in front of the

near clipping plane may require integration to fix errors and

thus cannot be culled.

The remaining active tiles are pushed into a task list and

examined to determine if they have already been allocated

in the tile pool. If not, a new tile is popped from the free tile

stack and assigned to the unallocated grid. When the allo-

cation is completed, the fusion kernel is launched to update

the TSDF value of the scheduled tiles in the task list with

the input depth images. Another kernel examines the dis-

tance values and removes the tiles that no longer intersect

the surface band back to the free tile stack.

3.5. Point Cloud Extraction

A point cloud is extracted from the fused TSDF to pre-

pare for texture optimization and rendering. Each TSDF
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Figure 5. Green tiles are non-empty, while blue tiles are

empty. Non-empty tiles F and E are either out of the view

frustum or behind the far clipping plane, thus they are both

culled. Empty tile C is in front of the near clipping plane,

therefore it is culled as well. The other tiles A, B and D are

active.

cell is subdivided until the projection of the cell on the color

image is smaller than a pixel. Point splats are then extracted

at the center of the solid cells on the isosurface. The solid

cells are those with opposite signs of distance values at cor-

ners. The splat normal is calculated as the gradient of the

TSDF by central difference. The splat radius is set to at least√
3/2 times the cell size to cover the entire cell so that the

splat can blend with neighboring splats during rendering.

Since the reconstructed surface may be different from the

actual scanned object, we generate a new depth image by

ray casting the TSDF for each RGB camera view. The new

depth image is then used in the texture optimization phase

to determine the visibility of a point to the camera view.

A GPU-based multi-pass surface splatting technique [6] is

implemented to achieve a high-quality rendering result.

4. Texture Optimization
This section explains in detail the texture optimization

process aimed at generating a photometrically consistent

texture from multi-view RGB images. The process involves

three procedures: color integration, multi-grid warping and

multi-view color correction. The multi-grid warping fixes

the misalignments between the reconstructed geometries

and the RGB images, while the color correction improves

the color consistency across the RGB images. Color inte-

gration is applied in both of the above procedures to pro-

duce the proxy of vertex colors for optimizations.

4.1. Color Integration

Given the reconstructed point cloud P with a set of

multi-view RGB images {Ik}, our goal is to compute an

optimal color C(p) for each vertex p ∈ P . We first project

each vertex p onto the generated depth image associated

with each RGB image to determine the visibility. If the

depth value of the vertex is not greater than the correspond-

ing value in the depth image plus a threshold, the vertex is

considered visible to the corresponding RGB image. Then

we compute an optimal color C(p) for each vertex as the

Figure 6. Left: optimization only at the finest scale. Middle:

our multi-grid approach. The thin line patterns are aligned.

Right: an illustration of the control points from a coarser

scale (red dots) and the next finer scale (green dots).

weighted average of the pixel colors from all the visible im-

ages V(p):

C(p) = (
∑

k∈V(p)

wk(p)ΓIk(uk))/(
∑

k∈V(p)

wk(p)) (5)

where uk is the projection coordinate of p on the image

plane of Ik. ΓIk(uk) is the bilinear interpolated pixel color

at uk. wk is the weighting term that specifies the contribu-

tion of the pixel color at uk to the integrated color C(p). A

good weighting function can significantly improve the vi-

sual quality of the resulting texture reconstruction. Here we

reuse the weighting metrics introduced in Sec. 3.3. We dis-

card observations in V(p) that have less weights or saturated

colors to avoid false, clamped or over smoothed values.

4.2. Multi-Grid Warping

Although the global registration of camera poses can

solve most of the misalignments among the scans, the re-

sult from direct color integration still suffers from blurring

artifacts caused by imprecise geometry reconstruction and

camera registration. Therefore, we propose a multi-grid

warping method to correct these misalignments. Similar to

Zhou and Koltun’s method [48], we define a set of control

points Q : {q ∈ R
2} and corresponding warping vectors

F : {f ∈ R
2} organized in a uniform grid over each im-

age plane (Fig. 6). For any in-between position u on the

image plane, the warping function F is calculated by bilin-

ear interpolating of the warping vectors from its four closest

control points.

We first formulate the data term of our energy func-

tion as to maximize the agreement of optimal vertex colors

C : {C(p)} and corresponding pixel colors in associated

images V(p):

Edata(C,F) =
∑
p∈P

∑
k∈V(p)

‖ΓIk(uk + Fk(uk))− C(p)‖2

(6)

However, with sparse input of camera views, not all surfaces

of the scanned object can be covered by sufficient samples,

which makes the misassignments at the surface edges may
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not be simply recovered by the data term. Therefore, we

introduce a new term Eedge in our energy function:

Eedge(F) =
∑
k∈K

∑
u∈EGdepth

k

‖ΓDSrgb

k
(uk + Fk(uk))‖2 (7)

EGdepth is the set of discontinuity points on the edges of

the depth image. DSrgb is the distance map converted from

the edge map of the RGB image. This term attempts to

align the edges detected in the depth images to those de-

tected in the associated RGB images. This can significantly

improve the local texture alignments at surface boundaries

(not just between foreground and background objects) and

affect the warping vectors within the surface by the regu-

lation terms. This term may introduce artifacts when the

edges of RGB images are produced by other sources of dis-

continuities such as textures or shadows. But since we limit

this term within a narrow band around the depth edges, in

practice the artifacts are kept to a minimum and hardly no-

ticeable after color integration.

As the warping model above could easily produce some

unreasonable deformations, we add another two energy

terms Esmooth and Ereg to regulate the warping vectors.

Esmooth is applied to ensure that the deformation is con-

sistent across the warping field. Specifically, the warping

correction applied to a control point q should match those

applied from its neighboring control points N (q):

Esmooth(F) =
∑
k∈K

∑
i∈Qk

∑
j∈N (qk,i)

wi,j‖fk,i − fk,j‖2 (8)

where wi,j is a weighting term inversely proportional to the

distance between control points. Ereg is an L2 regularizer

on the magnitude of the warping vectors fk,i to keep the

deformed control points close to their original positions:

Ereg(F) =
∑
k∈K

∑
i∈Qk

‖fk,i‖2 (9)

Finally, our complete energy function is:

E(C,F) = λdataEdata(C,F) + λedgeEedge(F)+
λsmoothEsmooth(F) + λregEreg(F) (10)

where λdata, λedge, λsmooth, λreg are the weights to balance the

strength of each term. The objective E(C,F) is a non-linear

least-squares function. We solve C and F alternatively. That

is, we first fix the warping function F and solve C for each

vertex by the color integration, and then fix C and solve

the warping function F by Levenberg–Marquardt method

for each RGB image. The optimization problem results in

a large sparse linear system which is efficiently solved by

preconditioned conjugate gradient (PCG) method. This pro-

cess is repeated until the solution converges.
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Figure 7. Global multi-view color correction. The edges

in the top left graph depict the image pairs with common

corresponding pixels. The two figures at the bottom left are

examples of the masks of the common pixels in images 0

and 2. The graphs on the right illustrate the intensity distri-

bution of camera 0 and 2 before (first row) and after color

correction (second row).

The major issue of this method is how to choose an ap-

propriate size of the control grids. Small grid size can lead

to a large sparse linear system that is expensive to solve and

tends to be trapped into local minima (See Fig. 6). Large

grid size may have difficulties in recovering fine details of

the texture. Therefore, we propose a multi-grid method to

optimize the warping field F in a coarse-to-fine manner.

Specifically, we start with a coarser resolution of control

points and solve for the C and F as mentioned before. Then

we upsample the warping field from lower resolution by bi-

linear interpolation (See Fig. 6) and solve for the C and F
in a finer scale. We repeat these processes until reaching the

finest level of control grids. This multi-grid method is more

robust and converges in fewer iterations than single scale

approaches.

4.3. Color Correction

The RGB cameras of some commodity sensors, such as

Microsoft Kinect V2, only allow automatic color and expo-

sure controls, which makes it difficult to produce color con-

sistent images across different camera views especially un-

der non-uniform lighting and background conditions. The

resulting texture often reveals visible seams in overlapped

regions of different scans (Fig. 8b). The weighting scheme

in Eq. 5 can only hide the artifacts by blending the over-

lapped color samples, but cannot fundamentally solve the

problem. Therefore, we present a global multi-view color

correction method that optimizes per-camera parameters to

set all RGB images in a common color reference.

We begin by building color correspondences between

each pair of RGB images. We project each vertex of the

geometry onto the depth images associated with the RGB

images to perform visibility tests as previously described in
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Sec. 4.1. If one vertex can be seen in both camera views,

we project the vertex again onto the RGB images to obtain

a pair of color values and add them into the list of color

correspondences. In order to build a robust color correc-

tion function, we discard the color values near the extremes

which are less reliable. In addition, if two RGB images

do not have enough correspondence points, they are not in-

volved in the optimization phase. All the remaining camera

pairs thus form a graph structure G (Fig. 7).

Since small errors in the geometry may result in a large

difference in color mapping, pixel by pixel alignment is not

guaranteed. Our color correction algorithm is thus based on

the distribution of colors. Similar to the method in [32], we

build histograms for the correspondent colors for each RGB

camera and calculate corresponding cumulated histograms

(Fig. 7). Color consistency is solved by optimally align-

ing the quantile positions of the cumulated histograms to a

common one from the reference camera. We define two pa-

rameters, gain g and offset o, for each camera to fix color

discrepancies among RGB images. We solve the problem

as a graph-structured optimization over all the image pairs,

which involves a global minimization of a Linear Program-

ming problem:

argmin
g ≥ 0, g, o ∈ R

gref = 1 ∧ oref = 0

max
(i,j)∈G

| (giRl
ij + oi

)− (
gjR

l
ji + oj

) | (11)

Rl
ij corresponds to the lth quantile of the cumulated his-

togram of common pixels of image i with image j. ref is

the index of the chosen reference image. Here we only use

a set of quantile positions instead of the whole set of colors

to ensure scalability. We perform the optimization for each

color channel (R,G,B) independently.

5. Results
System Our capturing system consists of one master com-

puter, 3 node computers and 16 Kinect v2 cameras. The

node computers are connected to the master computer via

high speed Ethernet cables. Each computer connects up to

4 Kinects. The Kinects are arranged circularly covering a

scanning area of 5m × 5m (Fig. 1). Each node computer

records depth and RGB images from connected cameras to

local disks during capturing and streams the recorded image

sequences to the master computer for geometry and texture

reconstruction.

TSDF fusion Table 1 demonstrates how our tile-based

streaming pipeline can help to reduce TSDF storage and

calculation. We fuse the depth images of our benchmark

models into a volume at 5123 and 10243 resolution with a

tile size of 8 using our culling algorithm described in Sec.

3.4. The second column is the percentage of tiles allocated

in the tile pool among all the tiles in the volume. The third

column is the percentage of active tiles processed per depth

image on the average. In contrast, KinectFuion [22] needs

to process all voxels for each depth image. Voxel hash-

ing [35] performs ray casting through the truncation region

around the depth samples to detect active tiles. This method

may miss potential tiles on distant surfaces since it only uses

rays rather than frustums through the depth samples. Scal-

able volumetric surface reconstruction [9] applies a similar

approach to ours that projects the bounding volumes of vox-

els to the depth images to detect active voxels. But for the

tiles in front of the truncation region, the method may mark

them as free space which has the possibility to ruin valid

reconstructions by noisy measurements.

Model Allocated Active (avg.)
512 1024 512 1024

sub-49-08 23.7% 16.5% 9.4 % 5.9%

sub-42-39 32.3% 22.6% 12.1% 7.7%

sub-56-28 22.2% 14.5% 8.0% 4.7%

Table 1. TSDF storage

Optimization performance We have tested both CPU

and GPU implementations for the non-rigid texture warp-

ing optimization. The calculation of J�J and J�r of the

Gaussian-Newton method costs 44ms per iteration for each

camera on average at the grid size of 8. In contrast, our

block based GPU implementation costs 11ms. The linear

system solver is implemented by the Preconditioned Conju-

gate Gradient (PCG) method which is fixed to 10 iterations.

The sparse matrix based CPU version takes 28ms while the

GPU version takes 7ms.

Texture quality Fig. 8 presents qualitative results of our

texture optimization. Fig. 8a is using naı̈vely blending for

comparison. As can be seen, the results suffer from blur-

ring and ghosting artifacts caused by the misalignments be-

tween RGB images and geometries. In Fig. 8b, with our

multi-grid warping method, most of the misalignments are

corrected and the resulting texture quality is significantly

improved. However, visible seams are still present along the

transitions of adjacent camera views due to different camera

settings. In Fig. 8c, we apply the color correction method

which greatly reduces the color variation. In order to clearly

show the difference, we render Fig. 8b and Fig. 8c by only

assigning each vertex the color from the best view. In Fig.

8d, we apply the weighted color integration. The artifacts

between scans completely disappear from the result.

We also evaluate the effects of enforcing our warping en-

ergy function with the edge term and the smoothness term

(Fig. 9). By optimizing with the original warping energy

function described by Zhou and Koltun [48], which only
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(a) (b) (c) (d)

Figure 8. Results of texture optimization. (a) naı̈ve aver-

aging; (b) multi-grid warping; (c) color correction; (d) final

result with weighted color integration. (b) and (c) are only

using the best view to show the visible seams between cam-

era views.

(a) (b) (c)

Figure 9. The effects of the smoothness term and the edge

term in our warping energy function. From left to right:

without smoothness and edge terms; with smoothness term;

and with both smoothness and edge terms.

has the data term and the regularization term, the resulting

texture can produce visible edge artifacts at surface bound-

aries (red boxes in Fig. 9a) and unreasonable deformations

(blue box in Fig. 9a). By adding the smoothness term to the

optimization, the deformations are constrained by neighbor-

ing warping field, but the edge artifacts still exist (Fig. 9b).

By adding the smoothness term along with the edge term,

the alignments on the edges are solved as well.

Fig. 10 compares our texture optimization results against

those of the other methods. While volumetric blending

[34, 22, 35, 7] produces blurry colors, best labeling method

by Waechter et al. [44] yields sharper textures. However,

the texture consistency may be violated when adjacent ver-

tices are assigned colors from RGB images with large mis-

alignment (notice the tearing artifacts on the face of the sub-

ject). Zhou and Koltun’s method [48] can correct most of

the misalignments, but with fixed size of control grids the

optimization may fail to converge to the global minimum,

Blend Waechter Zhou Ours

Figure 10. A comparison with other optimization algo-

rithms.

which results in undesirable misalignment. Moreover, as

described previously, since the warping function has no

regulations from the surface boundaries or the neighboring

warping field, the resulting texture mapping may have un-

reasonable distortions and edge artifacts. The problem be-

comes even worse when there is only a sparse set of im-

age inputs. In contrast, our multi-grid method addresses all

these issues properly and achieves a higher quality of tex-

ture reconstruction.

6. Conclusion

In this paper, we have presented an integrated system

to reconstruct high-quality textured geometries by using a

sparse set of RGB-D cameras. Our system is based on low-

cost commodity devices, which is flexible and accessible

for the creation of VR and AR content for various applica-

tions. Our tile-based stream pipeline can perform efficient

TSDF fusion with less calculation and memory overhead.

Our high-quality texture reconstruction depends critically

on the global camera pose registration and multi-grid image

warping to solve texture misalignments. In addition, our

global multi-view color correction method can further ame-

liorate visible seams between adjacent camera views due to

variations of camera settings and significantly improve the

color consistency of the texture.
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