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Figure 1: Left: a trainee is conducting intubation using the system instrumented with EM sensors. Middle: the see-through
visualization from the HMD provides real-time motion tracking. Right: the post-trial feedback in the playback mode shows the
color-coded motion trajectory with warm colors indicating the regions that need more attention for improvement.

ABSTRACT

Neonatal Endotracheal Intubation (ETI) is a critical resuscitation
skill that requires tremendous practice of trainees before clinical
exposure. However, current manikin-based training regimen is inef-
fective in providing satisfactory real-time procedural guidance for
accurate assessment due to the lack of see-through visualization
within the manikin. The training efficiency is further reduced by the
limited availability of expert instructors, which inevitably results
in a long learning curve for trainees. To this end, we propose an
intelligent Augmented Reality (AR) training framework that pro-
vides trainees with a complete visualization of the ETI procedure
for real-time guidance and assessment. Specifically, the proposed
framework is capable of capturing the motions of the laryngoscope
and the manikin and offer 3D see-through visualization rendered to
the head-mounted display (HMD). Furthermore, an attention-based
Convolutional Neural Network (CNN) model is developed to auto-
matically assess the ETI performance from the captured motions as
well as identify regions of motions that significantly contribute to the
performance evaluation. Lastly, augmented user-friendly feedback
is delivered with interpretable results with the ETI scoring rubric
through the color-coded motion trajectory that classifies highlighted
regions that need more practice. The classification accuracy of our
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machine learning model is 84.6%.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Mixed / augmented real-
ity; Computing methodologies—Modeling and simulation—
Simulation types and techniques—Real-time simulation; Com-
puting methodologies—Machine learning—Learning paradigms—
Supervised learning; Human-centered computing—Visualization—
Visualization techniques—Heat maps;

1 INTRODUCTION

Neonatal endotracheal intubation (ETI) is an essential resuscita-
tion skill for the ventilation of the newborns [20, 25]. Mastering
such skill is often complicated by narrow airways, relatively larger
tongues compared to adults, anterior glottic positions, and low res-
piratory reserves of neonates. The Neonatal Resuscitation Program
(NRP) training curriculum requires healthcare providers to under-
take tremendous practice to master the ETI procedure with the goal
of successfully completing an ETI procedure within 30 seconds [38].
Current ETI practice is often conducted on high-fidelity manikin
simulators with an instructor monitoring the practice and providing
feedback to trainees [40]. However, current manikins are not capable
of providing sufficient procedural information for both instructors
and trainees due to the lack of internal situational awareness within
the manikin [39, 45].
Moreover, trainees have limited understanding of the practice

trials they perform because it is difficult to identify undesirable
movements merely based on trial outcomes. Hence ETI trainings are
heavily reliant on instructors’ feedback and evaluations. However,
the availability of instructors is often restricted by their substantial
clinical duties, which hinders trainees from obtaining sufficient train-
ing opportunities. Therefore, it is essential to develop a new training
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paradigm to accelerate skill acquisition of healthcare providers and
increase their training opportunities.
In medical training, research has shown that visual feedback

enabled by augmented visualization is beneficial for accelerating
medical skill acquisition [42,47]. Augmented Reality (AR) based
training systems have emerged as a promising solution to provide
situational awareness during ETI procedures, such as by visualizing
the laryngoscopic view [8,35]. However, most of the visual feedback
in AR based training systems only provides the perceptions during
the ETI procedure without the automated assessment. This delivers
limited constructive summative feedback for skill acquisition due to
the difficulty of identifying critical motions [10, 47]. Consequently,
these AR based training systems still require feedback from instruc-
tors, including monitoring and evaluating the procedures. On the
other hand, while classic machine learning algorithms have been
used to provide assessments with user-friendly interpretable feed-
back in medical procedure evaluations [15, 16, 23], these methods
have limited capabilities for complex medical procedure evaluations
because of the information loss that results from using hand-crafted
features [43]. Convolutional Neural Network (CNN) [17, 34, 43]
has shown an impressive representation power of convolutional fea-
tures in the medical skill assessment but often lacks user-friendly
interpretation. Therefore, it is challenging to integrate automated
assessments with AR based training systems, providing both reliable
performance evaluation and user-friendly feedback. Relatively little
work has been done to explore the intelligent ETI training approach
that combines the automated assessment with AR simulation.
In this paper, our main contribution is the development of a

new intelligent AR training framework for facilitating ETI practice,
which integrates AR visualization with an interpretable machine
learning model to address critical issues in the current training reg-
imen. Specifically, the technical contributions of this paper are as
follows:

• Build a real-time AR simulation system that captures entire
motions of the manikin and the laryngoscope for rendering 3D
see-through visualization of the ETI procedure and extracting
kinematic multi-variate time-series (MTS) data.

• Develop an automated assessment procedure that provides real-
time performance evaluation by using an attention-based CNN,
which is better at learning salient motion patterns to predict
the level of performance.

• Generate user-friendly interpretations of ETI procedures that
combine the assessment rubric of ETI training with the localiza-
tion of contributing regions of the motion for CNN prediction
by using the Generalized Gradient-weighted Class Activation
Mapping (Grad-CAM++).

• Create augmented visualization tools for assessment interpre-
tations that offer detailed feedback to trainees through the
head-mounted display (HMD), including the summative in-
formation of ETI performance and the color-coded motion
regions that require further improvement.

2 RELATED WORKS

2.1 Medical AR Simulation
With the increased demand of healthcare providers, there is a press-
ing need for innovative training modalities, such as AR, to develop
efficient training platforms and facilitate the medical skill acqui-
sition. Most of the modern AR frameworks for medical training
rely on high-fidelity physical manikins and the optical see-through
HMD (OST-HMD), which combines additional information from
the virtual world with objects that reside in the real world [4, 36].
To accomplish complex training tasks that involve situational aware-
ness and proper motion trajectory, medical AR systems integrate

various techniques such as motion tracking, registration, and visual-
ization [10].
For ETI training, there are only a few AR-based ETI simulators

that have been developed in recent years. Alismail et al. [2], Carl-
son et al. [8], and Matava et al. [33] presented video laryngoscope
applications with HMD to help trainees better recognize the glottis
by providing 2D video laryngoscopic view on the display. Although
these works provide additional visualization for trainees to under-
stand the procedure, they do not offer free viewpoint visualization to
help the instructor assess the performance [10] with spatial percep-
tion. To provide users with spatial perception, Hamza et al. [24] and
Ballas et al. [6] superimposed the 3D virtual anatomical model over
physical manikins, delivering real-time visualization to users during
the procedure. Although these visualization tools improve situa-
tional awareness, there is only limited feedback on improving their
ETI performances. Therefore, current AR-based ETI simulators still
require supervision and feedback from the instructor. To the best
of our knowledge, none of these works have automated feedback to
provide both performance and user-friendly interpretation for ETI
procedure. In contrast, our AR training framework provides a solu-
tion for combining automated feedback with an AR-based simulator,
which can reduce the intervention of instructors.

2.2 Feature Extraction for Motion Analysis

Motion features are critical to represent the discriminative char-
acteristics for motion analysis. For ETI training, electromagnetic
(EM) [6, 37, 48], inertial [7], and optical sensors [24] have been
used to capture the motion of instruments and limited fiducial points
on manikins or patients. To acquire accurate force measurement,
Garcia et al. [21] applied force transducers and pressure-sensitive
films to measure the forces imparted on specific parts of the manikin
during the procedure. Besides accurate force measurements, Delson
et al. [11] further evaluated the global movement features that con-
tain the limited information of motion characteristics, such as path
length. Although experimental results of these works have shown
that the hand-crafted features, such as global movement, have repre-
sentation power to distinguish in simple procedures, it is insufficient
to distinguish the performance of a complex medical procedure with
only limited information. For example, the global movement fea-
tures only focus on the most significant information, which causes
the loss of discriminative local trajectory information. In addition,
the hand-crafted features are also prone to have co-linearity, which
results in only a few of them contributing to the analysis. For ex-
ample, the hand pose adjustments in pitch and yaw direction tend
to occur simultaneously which causes co-linearity for performance
prediction. These factors lead to insufficient representation power
for performance analysis. Instead of using global movement fea-
tures, we directly use convolutional features learned by CNN from
the kinematic MTS data without any human intervention. Also,
the kinematic MTS data can maintain the robustness of the input
representation without losing any discriminative information.

2.3 Automated Assessment of Medical Procedure

There is an increasing need for developing automated assessment sys-
tems that alleviate the increasing shortage of instructors and provide
consistent, quantitative, and objective assessments for better training
outcomes. It is possible to develop automated assessment systems
with machine learning algorithms to emulate the analysis of human
instructors in complex medical procedures with discriminative fea-
tures extracted from motions. Pairwise preference classifier [32]
was proposed to simplify the complex procedure assessment. But its
results are highly dependent on the chosen reference for comparison.
Traditional machine learning algorithms, such as Support Vector
Machine, Hidden Markov Models, and linear regression, have been
used in performance evaluation and gesture classification for com-
plex medical procedures [1, 49–51]. However, these approaches
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Figure 2: The overview of our intelligent AR training framework pipeline.

require feature selection methods to determine the discriminative
features for prediction. Therefore, their predictability is limited by
the selected features. In contrast, neural network, an emerging tech-
nique of machine learning, implicitly realizes the feature selection
by emphasizing the discriminative motion patterns directly from
captured data. CNN, which is a representative architecture of neural
networks, has been applied to solve classification and regression
problems with time-series data. Wang et al. [44] proposed several
baseline methods for processing MTS data, such as ResNet [26] and
Fully Convolutional Network (FCN) [31]. However, the datasets of
medical procedures usually have limited sample sizes due to data
privacy and the high cost of acquiring data, resulting in poor training
results. To address the limited training samples, Wang et al. [43]
introduced a data augmentation method to increase the sample size
by segmenting the kinematic MTS data into small fragments with
a fixed length. In addition, Fawaz et al. [17, 18] introduced FCN to
realize surgical performance evaluation with kinematic MTS data by
applying the Global Average Pooling (GAP) [30] to reduce the com-
plexity of the network. However, these methods cannot guarantee
that their networks can make predictions based on the meaningful lo-
cal motion patterns. Recently, image-based medical skill assessment
had been proposed in the computer vision community [13,14,53].
In particular, Doughty et al. [13, 14] have demonstrated that local
attention can facilitate the representation power of neural networks.
Therefore, our CNN model adopts the attention mechanism with a
convolutional block attention module (CBAM) [46] which generates
a weight map that corresponds to the specific label at each layer.
These attention weight maps guide the CNN to focus more on the
discriminative local motion patterns to the final prediction. Although
machine learning algorithms have been used to assess performance
in other medical procedures, there is relatively little research on ETI
automated assessment. Moreover, to the best of our knowledge, our
approach is the first attempt to integrate the automated assessment
of ETI performance with AR simulations.

2.4 Interpretable Methods for CNN

Although CNN achieves impressive performance on various medical
tasks, the “black box” effects from layered perceptual operations
make it challenging to develop user-friendly interpretation. In the
computer vision community, Class Activation Mapping (CAM) [52]
evaluates the contributions of each input data element with respect to
a specific label by using the weighed combination of feature map of
the last convolutional layer with the weight at the GAP layer by back-
propagation. Therefore, the heat map of the CAM results provides
localization of discriminative regions, which adds visual explana-
tions to the neural network prediction. Later, Gradient-weighted
Class Activation Mapping (Grad-CAM) [41] has been proposed to
use the gradient of backpropagation at the last convolutional layer
to weight the feature map, which has no limitation on network ar-
chitecture. However, these methods focus more on a single object
or pattern in their results [9]. Wang et al. [44] first introduced

one-dimensional CAM to address the interpretability problem of
time-series data classification. Furthermore, Fawaz et al. [18] first
applied one-dimensional CAM results to visualize surgical perfor-
mance assessment, but the approach lacked user-friendly explanation
to facilitate optimal surgical performance. In contrast, we use not
only Grad-CAM++ [9] to provide better localization of multiple
pattern instances from kinematic MTS data, but also combine them
with the ETI scoring rubric to offer a user-friendly explanation for
the regions that need more practice. Specifically, we can correlate
the movement patterns defined in the ETI scoring rubric with the
discriminative regions of the Grad-CAM++ results to achieve further
explanation. Therefore, we can provide both performance evaluation
and interpretable feedback with only one neural network.

Figure 3: The coordinates axes and the transformations between
different coordinate spaces in our intelligent AR training framework.

3 FRAMEWORK OVERVIEW

The proposed intelligent AR training system includes a standard full-
term Laerdal® task trainer manikin, a laryngoscope with a Miller
1 blade, a 3.0 mm endotracheal tube, a 3D Guidance® trakStar™

motion tracking system with 3 EM sensors (6 degrees of freedom
(DOF)), and a Microsoft® HoloLens™ HMD. The virtual model for
the task trainer was developed by CT scanning the manikin. We
extracted the segmented mesh from the volumetric data using 3D
Slicer4 [19]. A virtual laryngoscope was modeled on measurements
of a real Miller 1 blade and a laryngoscope handle. The HMD allows
users to experience 3D see-through visualization. AR devices, such
as Microsoft® HoloLens™, require remote data streaming and there-
fore, we developed a distributed framework to stream the motion
data from the computer to the HoloLens. Our distributed frame-
work is comprised of calibration module, communication module,
assessment module, and visualization module (Fig. 2). The entire
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framework was implemented in C++ and Python. Camera calibra-
tion and marker detection in the calibration module were realized by
OpenCV3.4. The visualization modules of the server and the client
were implemented with OpenGL and DirectX, respectively. The
client visualization on the HMD provides superimposed virtual mod-
els and all augmented feedback, which improves trainees’ situational
awareness during the training. In addition, the server renders the
virtual counterparts of instruments on the computer screen, which
provides additional visualization for review. In what follows, we
will explain each module in detail.

4 CALIBRATION AND COMMUNICATION

Calibration is crucial in capturing accurate motion data for a multi-
modal system. We used EM tracking system for system calibration
(Fig. 3). The calibration module registered all instruments with their
virtual counterparts by evaluating transformations of sensors into a
unified global coordinate space. We set the EM transmitter base as
the origin of the global coordinate. The system calibration contains
the following steps: Firstly, we evaluated Tmodel �→sensor matrices
between virtual instruments and corresponding attached sensors by
using the predefined fiducial markers, including transformations for
the laryngoscope and the manikin. To evaluate the transformation
between the base space and the AR HMD space, a 3D-printed cal-
ibration marker was designed with the Aruco marker [22] and the
EM sensor attached at known relative positions. Then the correspon-
dence set of 3D points can be collected by sampling positions of the
marker center in the AR HMD space and corresponding positions
of the attached EM sensor in the transmitter base space. Finally,
the optimal transformation Tbase�→hmd can be calculated from the
correspondence set by using the singular value decomposition al-
gorithm [3]. After the system calibration, both the laryngoscope
and the manikin were registered to their virtual counterparts so
that we can easily transform between the model space and the AR
HMD view space for tracking and visualization with the following
equation:

Tmodel �→view =Thmd �→view ·Tbase�→hmd

·Tsensor �→base ·Tmodel �→sensor
(1)

Note that Tmodel �→view and Tsensor �→base represent the transformation
from virtual model space to the AR HMD view space and the trans-
formation from sensor to the base space, respectively.
For the communication module, we implemented both the server

and the client in an asynchronous manner. We applied user datagram
protocol (UDP) to achieve real-time transmission rates for streaming
different kinds of data packets, such as command data, motion data,
assessment data, and visualized feedback data. To maximize the
data throughput, we created multiple threads for the server and the
client and assigned a unique port number to each communication
task.

5 AUTOMATED INTELLIGENT ASSESSMENT

Although the neural network has been applied to efficiently tackle
various complex tasks, its poor interpretability hinders wide use in
medical domains. To address this problem, we developed an intel-
ligent assessment module consisting of both attention mechanisms
and Grad-CAM++ explanation. As a result, the system provides both
real-time evaluations and prediction interpretations for visualization.

5.1 Study Design
We collected an ETI motion dataset that includes 193 trials per-
formed by 45 subjects. The study was approved by the Institutional
Review Board of the cooperative institution. Our dataset includes
both attending neonatologists and pediatric residents, thus preserv-
ing the diversity of expert levels and strategies of neonatal ETI. For
the realism of the experiment environment, we set up our system

on an infant warmer in the neonatal intensive care unit. Before the
experiment, each participant had a chance to practice on the manikin
until one successful intubation was achieved. Then each subject
performed 3 to 5 trials of ETI procedures and motion data of the
laryngoscope and the manikin were recorded. The 3D motions of
the trials were subsequently played back on the server computer
screen and evaluated by 3 expert raters who have more than 6 years
as practicing neonatologists. To minimize the risk of subjective bias,
each rater was blinded to every participant’s identity, and the order
of the playback was randomized. For each trial, each rater gave
an integer-valued score, 1 (bad), 2(fair), or 3(good), for the overall
performance of the procedure. To evaluate the scoring consistency
among expert raters, we evaluated the agreements on scoring with
the concordance correlation coefficients. The concordance correla-
tion coefficients for all 3 rater pairs are 0.80, 0.87, and 0.82, which
confirms the raters’ agreements on scoring. Therefore, we could use
the dataset with averaged scores to develop a CNN by using motion
data as the input features and overall score as the labels.

5.2 Input Preprocessing

Instead of using hand-crafted features, such as path length and total
time, which cannot fully characterize motion, we used kinematic
MTS features from the raw motion sequences to train the CNN,
such as positions, rotations, and their corresponding first derivatives.
These features reflect basic motion information, leading to better
generalization for the model input. To prevent from involving a
huge number of parameters to be trained in CNN, we opted not to
include the motions of both the manikin and the laryngoscope. We
instead used the relative transformation between the manikin and the
laryngoscope to compress the kinematic features in the head sensor
space. We set the maximum length of the input data to 60 seconds
because ETI attempts can be highly time-variant.

5.3 Attention-Based Dilated CNN

Our framework used an attention-based dilated CNN (Fig. 4) for
real-time performance evaluation and localization of motion regions
that need more practice. The proposed network had 5 convolutional
modules (1 dilated convolutional layer for feature extraction and 4
attention-based dilated convolutional modules for motion pattern
extraction), a GAP layer, and a fully convolutional layer. The input
of the network was the kinematic MTS data, and the output was a
score label of 3 levels. The feature maps in the hidden layer were
organized as L×C × 1, where L represents the sequence length
and C ∈ {8,16,32,64} represents the number of feature channels.
However, not all the information on kinematic MTS data is useful.
For ETI procedure, trainees are prone to conducting some irrelevant
movements that contribute little to skill acquisition, which hinders
the localization of discriminative motion patterns for ETI evaluation.
To make CNN evaluate performance based on discriminative motion
patterns, both dilated convolution and attention mechanism in CNN
architecture are applied to our intelligent assessment model for
improving the representation power. This expanded receptive fields
and integrated attention values that focus on the important features.
The receptive field is one of the key factors that determine the

representation power of feature maps in the convolutional layers.
With a larger reception field of the convolutional layer, the feature
map can be evaluated from a wider coverage of the input data. In-
creasing the depth of the network will generally expand the receptive
field and therefore, the high-level features can be extracted at the top
layers of the networks. However, the depth of the network is limited
by the size of the training dataset and computational resources due
to the increasing size of trainable parameters. Adding pooling layer
is an alternative to expand the receptive field but this suffers from
the loss of input information due to average pooling or max pooling
operations. Instead of increasing the depth of network or adding
pooling layers, we applied dilated convolution operation to the CNN
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Figure 4: The architecture of the CNN model for intelligent assessment. DConv, DConv+CBAM, GAP, and FC represent the dilated convolutional
layer, the dilated convolutional block with attention module, the Global Average Pooling, and the fully connected convolutional layer, respectively.
Backprop denotes the backpropagation to the last convolutional layer. ⊗ represents element-wise multiplication between the feature map and
attention values.

model. Dilated convolution can expand the receptive field by scaling
the stride of kernel without losing any feature information. There-
fore, we can use limited data to train a relatively small network for
evaluating ETI performance.
The attention mechanism, which was initially proposed in Natu-

ral Language Processing (NLP) domain [5] and deployed in CNN
for solving computer vision tasks [27], is another key factor that
determines the representation power. The core idea of attention
mechanism is to learn a weight vector that can amplify the contri-
bution of highly correlated regions, and thus leading to a learned
feature space with more representative patterns. In order to pro-
vide meaningful AR augmented feedback such as the localization of
undesirable motion patterns, we need not only an acceptable classifi-
cation accuracy but also a meaningful feature space, both of which
can encode various motion patterns in different skill levels. To make
CNN focus more on utilizing discriminative motion patterns for pre-
diction, we integrated the attention mechanism into our dilated CNN
architecture to improve the performance. Specifically, we realized
the attention mechanism with CBAM [46]. For each attention-based
dilated convolutional block in our model, the attention map will
amplify the hidden layer feature map by conducting an element-wise
multiplication. Therefore, the attention maps at each block provide
helpful guidance on learning discriminative motion patterns with the
classifier during training.

5.4 Interpretable Feedback with Grad-CAM++
The neural network suffers from the opacity of inference, which
does not provide interpretable results on its prediction. While CAM
results are difficult to interpret directly in a user-friendly manner,
it is necessary to explore alternative ways, like indirect methods,
to offer user-friendly explanations for a specific problem, such as
ETI assessment in our case. Our framework contributes a method
to provide user-friendly feedback for ETI training based on the
Grad-CAM++ results and ETI scoring rubric.
Unlike Grad-CAM [41], which directly evaluates the weighted

combination of gradients, Grad-CAM++ uses a weighting func-
tion to weight each gradient component thereby achieving better
sensitivity in detecting multiple discriminative patterns. The one-
dimensional Grad-CAM++ result is a vector of contributing values.
The vector of contributions L can be formulated as the linear combi-
nation of weights ws

c and the last convolutional layer feature Ac. For
a specific score s ∈ [1,3], we have

Ls
t =

C

∑
c

ws
c ·Ac

t , (2)

where c ∈ [1,C] represents the specific channel in the CNN, and
t ∈ [1,T ] represents the timestamp of kinematic MTS data. In Grad-
CAM++, the weight value is designed as the weighted sum of the

gradients ∂ys
∂Ac

t
from the backpropagation and corresponding weight

αcs
t that is derived from gradients.

αcs
t =

∂ 2ys
(∂Ac

t )2

2 ∂ 2ys
(∂Ac

t )2
+∑T

t Ac
t

∂ 3ys
(∂Ac

t )3

(3)

ws
c =

T

∑
t

αcs
t ·ReLU(

∂ys

∂Ac
t
), (4)

where ReLU(·) is the Rectified Linear Unit (ReLU) function that
suppresses the negative gradients to 0.

Note that the discriminative regions in the ETI kinematic MTS
data cannot be interpreted as the regions for the specific label because
we do not know whether these regions have a positive or negative
meaning for the specific label. Therefore, the discriminative re-
gions of Grad-CAM++ results cannot directly provide interpretable
feedback on improving trainees’ performance.

Based on the agreements of expert raters on the scoring rubric, the
level of proficiency on motion trajectory is an important factor for
performance evaluation. The desirable movements for ETI should be
smooth and stable, while the reposition (up and down movements)
and rocking movements (side to side movements) of the laryngo-
scope should be considered undesirable movements. Moreover,
we generally assume that the undesirable movements are prone to
causing the excessive force on gums and deep insertion of the laryn-
goscope. Therefore, the ETI scoring rubric considers the desired
ETI procedures to minimize the occurrences of unstable movements
in the motion trajectory.

Inspired by these analysis, the performance classification with
3 score classes can be considered as different combinations of de-
sirable and undesirable movements in each ETI procedure. Grad-
CAM++ utilizes the CNN parameters that learn from the training
data so that the discriminative regions of Grad-CAM++ results have
statistical meaning in contributing to the prediction. Therefore, it is
necessary for trainees to pay more attention to these regions when
reviewing their ETI procedures. On the other hand, focusing on
all the undesirable movements from the ETI motion trajectory is
unnecessary because too many non-discriminative patterns will con-
fuse trainees in recognizing crucial regions that need more practice,
slowing the procedure of skill acquisition. Therefore, we devel-
oped the user-friendly interpretation that identifies the undesirable
movements in the discriminative regions of Grad-CAM++ results by
projecting Grad-CAM++ results in the ETI motion trajectory. Note
that those discriminative regions with smooth and stable movements
will be considered as desirable movements. In contrast, the discrim-
inative regions with high-frequency movements will be labeled as
undesirable movements. Based on these interpretations, trainees
can focus on their motion trajectories in those local discriminative
regions instead of paying attention to the entire trajectory.
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Figure 5: The visualization tools of our AR intelligent training framework. Left: visualization of useful features in ETI procedures. Right: visualization
of instructions for each phase of the ETI procedure.

6 VISUALIZATION

Our augmented visualizations can deliver to trainees with not only
real-time see-through visualization for situational awareness during
the trial but also visual feedback after each procedure so that trainees
can freely examine their performance from any viewpoint. During
the ETI procedure, trainees can enable see-through visualization
which renders the virtual cross-sectional manikin and the virtual
laryngoscope (Fig. 1). Trainees can adjust the laryngoscope based
on its spatial relations with the internal geometry of the manikin from
the see-through visualization. After each ETI procedure, trainees
can examine their motion trajectory at any step of an ETI procedure
(Fig. 1) in the motion playback based on the captured motion of
both the laryngoscope and the manikin. We also rendered a panel
to provide some useful parameters, such as penetration and depth
(Fig. 5). Penetration and depth provide indirect information about
the trainee’s motion trajectory, which helps them avoid applying too
much force. To offer more precise instructions, phases of movement
were derived according to the natural clinical progression of the
procedure (Fig. 5). For each phase, we provided some instructions
about the important aspects of the motion trajectory. To provide
some general information on assessment, the summative feedback
was rendered for trainees, such as performance score and total time.
To give feedback on trainee’s motion trajectory, the interpretable
results of Grad-CAM++ were color-coded and mapped to the 3D
motion trajectory (Fig. 1). The color-coded trajectory may generate
colors that do not transition smoothly, which causes difficulty of
identifying discriminative regions. Taking advantage of temporal
coherence of motions, we preformed a 1D convolution with Gaussian
kernel to the Grad-CAM++ results to address this problem. With
this visualized information, trainees can freely review these motion
regions in the motion playbacks from various viewpoints.
The visualization of the assessment feedback provides additional

information in the ETI training besides the intubation outcome. For
manikin-based training, ventilation is the most important measure of
success. The indication of successful ventilation is the inflation of
the lung (plastic bags) inside the task trainer manikin. Mastering the
medical motor skill requires trainees to perform successful intuba-
tion with well-controlled movements. However, most of the existing
training simulators only rely on intubation outcomes and cannot de-
liver appropriate assessment feedback. In contrast, our work allows
users to monitor the procedure with real-time evaluation and review
movements with highlighted discriminative motion regions.

7 RESULTS

In this section, we conducted both ablation studies and comparison
studies to demonstrate the effectiveness of the proposed framework
and the contribution of attention mechanism with quantitative and
qualitative results. The proposed CNN network was implemented
with PyTorch1.5 and Python3.7, which was trained with a NVIDIA
GTX 1080Ti GPU. For the training procedure, we used Adam opti-

mizer with multinomial cross-entropy as the objective function [28].
L2 regularization in the optimization and the batch normalization
in attention-based dilated convolutional modules were enabled to
prevent overfitting. The learning rate was set at 0.0001, and the
number of epochs was 600. The trained model was deployed in the
framework by using the LibTorch1.5 C++ library.

Table 1: A comparison of classification accuracy of various configura-
tions. The classification accuracies are averaged over 10 repeats.

Method Accuracy
No Dilated Convolution Dilated Convolution

ResNet 79.1% (Baseline) 79.3%

CNN 78.8% 81.5%

ResNet+Attention 81.0% 83.1%

CNN+Attention 81.7% 84.6% (Ours)

To validate the model’s effectiveness, several ablation studies
were conducted to validate the predictability and demonstrate the
meaningful pattern localization of the proposed attention-based di-
lated CNN in our automated assessment model. All configurations in
these experiments used the same kernel size of the first convolutional
layer. We used ResNet [26] with 1D convolution as the baseline
method. The ablation studies were designed from the following
aspects: 1. Importance of dilated convolution; 2. Importance of
attention mechanism; 3. Importance of jointly applying attention
mechanism and dilated convolution. The training set and testing set
were generated by the random partition of the scored dataset. The
results on classification accuracy are reported in Table 1. Without di-
lated convolution, the ablation study of attention mechanism shows
that both the baseline and the original CNN method can be improved
by 1.9% and 2.9% respectively with the attention mechanism. With
dilated convolution, attention mechanism can improve performances
of the baseline method and the CNN method by 3.8% and 3.1%,
respectively. With the attention mechanism, the ablation study of
dilated convolution shows that the dilated convolution can improve
performance of the ResNet method and the CNN method by 2.1%
and 2.9%, respectively. The results also show that the proposed
model outperforms the original CNN model by 5.8%, which indi-
cates that our work can provide good performance evaluation. The
improved performance demonstrates that the attention mechanism
improves the discriminative power of the classification model.
The contribution of the attention mechanism on improving the

classification of each score class was also explored. We computed
the confusion matrices (Fig. 6) and receiver operating characteris-
tics (ROC) curves (Fig. 7) for all experimental configurations. The
confusion matrices show that CNN models are substantially better
in predicting the score classes 1 and 3 and slightly worse in pre-
dicting the score class 2 than the ResNet models under the same
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Figure 6: The confusion matrices of different neural network models in all experiments. The matrices in the blue box are evaluated from the
ablation study that includes ResNet models and CNN models, where (A) represents the network with attention mechanism and (D) represents the
network with dilated convolution. The matrices in the yellow box are evaluated from the baseline comparison study. The confusion matrix of our
method is shown in the green box (h).

configuration of the ablation study. This indicates that the convo-
lutional features of CNN models can distinguish the bad and good
performances better than ResNet models. Compared to the original
configuration (Fig. 6a and Fig. 6b), which has no dilated convolution
and attention mechanism, models with dilated convolution (Fig. 6c
and Fig. 6d) had a more evenly distributed prediction on all score
classes and an improved prediction on the score class 3. For models
with attention mechanism (Fig. 6e and Fig. 6f), the results show that
the predictions outperform the ones in the original models. Specif-
ically, the predictions of the attention-based CNN model (Fig. 6f)
outperformed the original CNNmodel (Fig. 6b) by 10.0% and 27.0%
on the score class 1 and the score class 3, respectively. These results
illustrate that the attention mechanism can guide the classifier to
focus more on discriminative motion patterns that distinguish bad
and good performances, resulting in better discriminative power of
the proposed method. We further explored the classification of score
3 with the kinematic MTS data and find that the motions of score
level 3 generally are shorter sequences than the ones in the motions
of the other 2 score levels, resulting in fewer numbers of effective
features. Therefore, integrating attention mechanism shows better
representation power of the discriminative model in the kinematic
MTS data with limited length. Moreover, the confusion matrix of
the proposed model (Fig. 6h) shows that dilated convolution can im-
prove the prediction on score class 2 from the attention mechanism
(Fig. 6f).

For a ROC curve, a larger area under the curve (AUC) value
indicates better predictability. Note that the macro-averaged and the
micro-averaged AUC values of all approaches were larger than or
equal to 0.8 (Fig. 7), indicating that all models in the ablation study
had excellent predictability. Specifically, most of the AUC values of
each score class in CNN models were above 0.8 except the original
CNN method (Fig. 7b), which indicated the good predictability of
CNN models for each score class. Both dilated convolution and
attention mechanism can facilitate the predictability for CNN meth-
ods. The AUC results of the proposed model (Fig. 7h) outperformed
all the others. Therefore, we can conclude that the proposed model
can accurately and reliably evaluate ETI performance. The abla-
tion study shows that we can apply dilated convolution to expand
the receptive field and utilize attention mechanism to improve the
performance of CNN for ETI assessment.

In addition, we visualized the contributions of the motion seg-
ments to illustrate the impact of the attention mechanism on the final
prediction. The CNN model with only dilated convolution was con-
sidered as the reference model because it has been demonstrated to
have better accuracy distributions in all score classes. We compared
the proposed model with the reference model by using visualizations
of Grad-CAM++ results of all score classes (Fig. 8). We mapped
the results to the 3D positional segments of the laryngoscope handle
tip. The results show that the attention mechanism can identify
multiple discriminative motion regions. In particular, the number
of discriminative regions in the proposed model for score class 1
and score class 2 was significantly larger than the number in the
reference model. In particular, the results of the reference model
for score class 2 (Fig. 8c) can only identify a small fragment of
important movements, which show that the reference model cannot
learn the discriminative motion patterns well. In the results of score
3, the proposed model with attention mechanism identified more
fine-grained local regions than the reference model. From these
results, we conclude that our proposed model with the attention
mechanism can guide the CNN to make predictions based on dif-
ferent motion patterns instead of a single pattern as the reference
method (Fig. 8 c, and e). Moreover, the discriminative regions from
the results of the proposed model had a finer-level localization than
the ones from the reference model. These results also show that the
proposed user-friendly interpretation method is meaningful with the
attention mechanism. Note that discriminative regions had not only
rocking and reposition movements (dark red circles in Fig. 8d) but
also smooth and stable movements (dark green circle in Fig. 8d).
This interpretation matched the movement classification in the ETI
scoring rubric.

From the classification perspective, a desirable classifier should
have significant differences in the softmax scores to that made by
the classifier. In addition, the confidence of the localization has a
positive correlation with the softmax score of the network for the
specific class [46, 52]. The larger softmax score could result in
better localization. From the results (Fig. 8), the softmax scores
from our proposed model were generally larger than the ones from
the reference model by integrating the attention mechanism. This
indicates that the larger number of discriminative regions can lead
to a more confident prediction for the evaluation of ETI procedure.
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Figure 7: The ROC curves and corresponding AUC values of different
neural network models in the ablation study. The left and right columns
are ResNet models and CNN models, respectively. From the top to
the bottom row, the configurations are: no dilated convolution and no
attention; dilated convolution but no attention; attention but no dilated
convolution; and both dilated convolution and attention.

Table 2: A comparison of classification accuracy of different baseline
methods. The classification accuracies are averaged over 10 repeats.

Author Method Accuracy
Fawaz et al. [17] FCN 75.2%

Wang et al. [44] MLP 73.9%

Lea et al. [29] TCN 73.5%

Dipietro et al. [12] LSTM 79.5%

Ours Dilated CNN+Attention 84.6%

These ablation studies demonstrated the effectiveness of the at-
tention mechanism. In the quantitative evaluations, the confusion
matrices show that the attention mechanism improved prediction by
facilitating the capability of distinguishing the bad and good perfor-
mance. ROCs and AUCs show that integrating attention achieved
reliable predictability in all classes. In addition, the attention mecha-
nism improved softmax scores of the predicted class, which made
less confused prediction and improved the localization of discrimi-

Figure 8: Visual comparisons of all score classes with and without
attention mechanism. The ground-truth score class is shown on the
left of each row and P denotes the softmax score of each network for
the ground-truth class. The motion regions with warmer color indicate
higher contributions to the prediction.

native motion regions.
In addition, we compared the existing methods with the proposed

framework on our collected dataset. We replaced convolutional
operations in these compared architectures with 1D convolution
because most of these works used surgery images as input instead
of motion data. The fully connected layer for classification was
attached to the end of each network. The compared classification
accuracy was reported in Table 2. From the results, our method
achieved the best performance. In particular, our method is 11.1%
better than the MLP method. We also computed confusion matrices
for these methods (the yellow box in Fig. 6). From the results,
we observed that the FCN (Fig. 6i) classified the scores 1 and 2
well, but suffered from weak discriminative power for scores 2
and 3. Both TCN and MLP methods (Fig. 6j and Fig. 6k) cannot
distinguish score classes 1 and 2 well. In contrast, the LSTM (Fig. 6l)
could better classify each score class than the other three methods
because it benefited from learning the temporal motion patterns.
Finally, our method (Fig. 6h) achieved better prediction of each
score class than the LSTM method, which shows that the attention-
based dilated CNN can learn better temporal motion patterns to
evaluate the intubation procedure.

8 CONCLUSION

In this paper, we proposed a new intelligent AR training frame-
work for neonatal ETI training. The framework supports real-time
performance evaluation and post-trial playback with augmented visu-
alization. Therefore, it can not only improve the trainee’s situational
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awareness during the procedure, but also provide automated eval-
uation and feedback for self-practice. Quantitative and qualitative
results of the experiments show that the proposed real-time AR
framework has the potential to accelerate the progress of acquir-
ing the ETI skill for trainees and examine the skill proficiency of
expert neonatologists. In future work, we will explore with gener-
ative models to interpolate expert motions for feedforward motion
demonstration, which can further extend our intelligent AR training
framework to improve the training efficiency of various medical
procedures.
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