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Abstract

This paper presents a literature survey of automatic 3D surface registration techniques emphasizing the mathematical and algorithmic
underpinnings of the subject. The relevance of surface registration to medical imaging is that there is much useful anatomical information
in the form of collected surface points which originate from complimentary modalities and which must be reconciled. Surface registration
can be roughly partitioned into three issues: choice of transformation, elaboration of surface representation and similarity criterion, and
matching and global optimization. The first issue concerns the assumptions made about the nature of relationships between the two
modalities, e.g. whether a rigid-body assumption applies, and if not, what type and how general a relation optimally maps one modality
onto the other. The second issue determines what type of information we extract from the 3D surfaces, which typically characterizes their
local or global shape, and how we organize this information into a representation of the surface which will lead to improved efficiency
and robustness in the last stage. The last issue pertains to how we exploit this information to estimate the transformation which best aligns
local primitives in a globally consistent manner or which maximizes a measure of the similarity in global shape of two surfaces. Within
this framework, this paper discusses in detail each surface registration issue and reviews the state-of-the-art among existing techniques.
 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction This problem is a subset of the general medical image
registration problem, as surveyed recently by Maintz and

The registration of 3D surfaces is dealt with extensively Viergever (1998), who also discuss landmark and volume
in machine vision and medical imaging literature. Its registration, but we emphasize algorithmic details, with a
applications vary from building terrain maps, in the view to providing some motivation for each technique.
context of providing autonomy to a planetary rover Surfaces provide more redundancy than landmarks, and
(Hebert et al., 1989), and depth maps of a sea floor for this redundancy may be particularly advantageous for
oceanographic studies (Kamgar-Parsi et al., 1991), to the characterizing non-rigid motion. Moreover, we can make a
recognition of objects from a CAD database (Fan et al., distinction between landmarks automatically extracted
1989), and of course, to reconciling various imaging from surfaces, which can be seen as feature point-based
modalities in biomedical imaging (Collignon et al., 1993). surface registration and are included in this survey, and
The goal of this paper is to provide a detailed overview of manually identified landmarks, which may be tedious to
surface registration techniques which have been, or could determine and less repeatable than the former. Further-
potentially be, applied to anatomical surfaces. more, a surface-based approach is likely to be less affected

than volumes if the two modalities of interest cover parts
of the anatomy which overlap only partially, for example if*Corresponding author.
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which appears in the second modality. In other words, we elaboration of surface representation and similarity
can usually register a subpatch with a larger surface patch, criterion, and matching and global optimization. The
on the basis of local and global surface shape, as will be first issue concerns the assumptions made about the nature
seen later. Finally, in medical imaging literature, ana- of relationships between the two modalities, e.g. whether a
tomical surfaces are usually explicitly identified within rigid-body assumption applies, and if not, what type and
tomographic data such as MRI and CT and are often how general a relation optimally maps one modality onto
closed (Herman and Liu, 1979; Udupa, 1982). We expand the other. The second issue determines what type of
on this definition by including range images of anatomical information we extract from the 3D surfaces, which
structures, such as those obtained by laser-based triangula- typically characterize their local or global shape, and how
tion, which have a particular relevance to image-guided we organize this information into a representation of the
surgery (Audette and Peters, 1999; Simon et al., 1994b; surface which will lead to improved efficiency and robust-
Kikinis et al., 1994) and which are typically open. ness in the last stage. The last issue pertains to how we

Registration, between modalities A and B, is the estima- exploit this information to estimate the transformation
tion of a mapping between coordinate systems Ref and which best aligns local primitives in a globally consistentA

Ref associated with each modality: manner or which maximizes a measure of the similarity inB

global shape of two surfaces. Within this framework, thisx 5 T(x ), (1)B A paper discusses each surface registration issue in detail and
where x 5 (x , y , z ) and x 5 (x , y , z ) are points in reviews the state-of-the-art among existing techniques.A A A A B B B B

coordinate systems Ref and Ref respectively whichA B

correspond to the same anatomical point, and where the
quality of this mapping can be quantified by a global

2. Choice of transformationmeasurement based on fitting residuals. In an ideal, noise-
and distortion-free environment where the same anatomy is

The first stage is the formalization of the assumptionsimaged by two modalities of like scale, the computation of
about the type of relation T between the two 3D surfacesthe transformation from point pairs matched on the basis
which is appropriate for mapping points x onto x . InA Blocal information would produce a relation which is also
most registration problems, T is a transformation betweenglobally consistent. In other words, the resulting trans-
the same anatomy imaged either by different modalities orformation would exactly align all pairs of homologous
by one modality at different times. In this context, apoints. In practice, the data contain noise and distortion,
rigid-body transformation is applicable provided that theand the anatomy itself may distort between images.
deformations sustained by the anatomy are negligibleTherefore the optimal relation (especially if a rigid trans-
compared with the required accuracy of the transformation.formation assumption is maintained) is that which re-
If the deformations between surfaces are significant, andconciles local homologous point alignment and global
especially if these deformations are caused by factors otherconsistency in some optimal manner.
than noise and distortion within the modality, then aSurface registration can be roughly partitioned into three
nonrigid transformation must apply. Moreover, one canstages, as illustrated in Fig. 1: choice of transformation,
further classify nonrigid transformations based on whether
they are specified by a global or piecewise local fitting.

2.1. Rigid-body transformation

A general rigid-body transformation can be expressed as
combination of a rotation and a translation:

x 5 R x 1 t . (2)B AB A AB

Consequently, rigid-body registration typically seeks the
values of R and t which minimize

N
2min O ix 2 (Rx 1 t)i , (3)B Ai iR,t i51

Fig. 1. 3D surface registration framework, featuring the choice of given 3D point correspondences x and x . The problemA Bi itransformation between two anatomical surfaces (and of the search space can be reformulated in a manner which decouples the
for transformation parameters); the representation of the surface in terms

computation of t from that of R by referring the coordi-of matching primitives (e.g. regions of consistent curvature); and finally,
nates to the respective centroids of each point set, leadingthe matching of surface primitives and computation of the ‘‘best’’

transformation. to the minimization
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N quaternions (Faugeras and Hebert, 1986; Horn, 1987). A
29 9min O ix 2 (Rx )i quaternion can be thought of as a generalization of aB Ai iR,t i51 complex number, with a real part and three imaginary
N 31 parts, or as a composite of a 3-vector in R and a scalar

]9where x 5 x 2 O xA A Ai i j in R. Moreover, the rotation quaternion can also beN j51

interpreted in terms of the axis-angle representation by theN1 ~Euler Symmetric Parameters (Walker et al., 1991): q 5]9and x 5 x 2 O x (4)B B Bi i jN Tj51 sin u /2n, cos u /2 . In other words, the orientation of thef g
3-vector component specifies the axis of rotation, and theThe translation is given by the difference of centroids:
norm of the 3-vector and the scalar component are related

N N to the rotation angle about this axis. Horn casts the search1 1
] ]t 5 O x 2 R O x . (5)B A for the optimal rotation parameters as a maximizationj jN Nj51 j51

based on quaternion components (in contrast to the
We review four common representations for rotation, as minimization of Faugeras and Hebert (1986)). His objec-
well as a fifth model which represents both translation and tive function is optimized with respect to rotation by
rotation. The relevance of choosing one particular repre- finding the eigenvector corresponding to the largest posi-
sentation is that it may lead to more efficient and/or tive eigenvalue of a matrix N (see Horn, 1987) determined
numerically stable estimation of its parameters than others, from centroid-referred point coordinates.

1or may be better suited to a particular surface representa- The motivation for the dual quaternion rigid trans-
tion. It is worth noting that these techniques are applicable formation estimation technique of Walker et al. (1991) is
not only to the registration of surfaces, but also to any set that other rigid transformation estimation techniques first
of explicit point pairs. Furthermore, while they may not determine optimal orientation and then use this solution to
have been published in a medical imaging context, they are obtain the translation (e.g., Arun et al., 1987), resulting in
still applicable to anatomical data. the accumulation of error in this computation. The dual

The orthonormal matrix representation consists of a quaternion technique solves for both relative orientation
3 3 3 matrix, which can be viewed as a mapping from and position by minimizing a single cost function. The
reference frame A to frame B, once the translation between underlying model views the transformation between two
their origins is compensated, where each element R is a coordinate frames as a translation of the original coordi-ij

direction cosine [i.e. the projection of one axis of reference nate frame along a direction n by a distance d, followed
frame A onto one axis of reference frame B (Craig, 1989)]. by a rotation by an angle u with respect to a line having n
Arun et al. (1987) obtain rotation by first computing the as its direction and passing through a point p, as illus-
singular value decomposition (Press et al., 1992) of the trated in Fig. 2. Walker reports similar accuracy to Arun’s

N T9 9matrix H 5 o x x determined from centroid-referred SVD technique for estimating rotation, but improvedi51 B Ai i

coordinates: accuracy for estimating translation, across identical sets of
T point correspondences.H 5 UDV , (6)

where D is diagonal and U and V are orthonormal. The
Trotation is given by the expression R 5VU .

We briefly address two interesting representations, the
Euler angles and axis-angle models, although we empha-
size less the techniques that employ them, because they are
iterative rather than closed-form. We can express rotation
as the product of three successive rotations (g, b, a) of a

ˆ ˆ ˆpredefined fixed coordinate system about axes x, y and z,
ˆ ˆor equivalently, as a succession of rotations about z, y and

x̂ moving axes (Craig, 1989). Huang et al. (1986) use this
Euler angle representation to design a 3D iterative motion
estimation scheme that is a sequence of well-behaved 2D
minimizations involving the projections of (partially ro-
tated) points on the x 2 z, y 2 z and x 2 y planes. More-
over, a rotation can also be completely specified by a Fig. 2. Illustration of the dual quaternion model for rigid transformation
unique vector whose direction is the rotation axis and (Walker et al., 1991) (reproduced with the permission of R.A. Volz,

copyright Academic Press, 1991).whose norm is the rotation angle about this axis (Ayache,
1991). Lin et al. (1986) adopt the axis-angle representation
for a Fourier space approach to rigid-body motion estima- 1 ˆA dual number a 5 a 1 ´b is defined as a combination of two real
tion which does not require explicit correspondences. numbers a and b, with a special multiplication rule given for ´ given by

2A widely used representation of rotation is based on ´ 5 0, such that, e.g. (a 1 ´b)(c 1 ´d) 5 ac 1 ´(ad 1 bc).
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2.2. Nonrigid transformations Approximation is the search for transformation parame-
ters which map matched points or features as closely as

In the event that surface deformations must be ac- possible globally, but not necessarily perfectly individual-
counted for in the transformation, a nonrigid approach ly, whereas interpolation finds the transformation which
must be adopted. The simplest classes of nonrigid trans- maps two 3D surfaces so that matched control points are
formations are basically generalizations of the rigid body exactly satisfied. In the former case we assume that some
transformation. A more general formulation is one where a noise or unwanted distortion exists and should not be
global polynomial function maps surface A to surface B. accounted for in the transformation. For large numbers of
To make the mapping even more general, a global control points, this choice makes sense because matches
polynomial can be replaced by piecewise polynomial likely include inaccuracies, but taken together they contain
relations, or splines, and such functions can be seen as sufficient statistical data to make the transformation reli-
either interpolating, whereby the transformation they ex- able. Interpolation is more appropriate for a few accu-
press is directly determined by the motion between two rately-matched control points, since it involves an in-
sets of primitives (and as such is sensitive to errors in the dependent parameter for each control point match, which
data), or approximating, whereby the agreement between may result in unexpected undulation for a high-order fit.
the local motion of any pair of matches is reconciled with For a cartesian formulation, the global polynomial
global consistency, in some optimal manner. transformation in three dimensions can be stated as fol-

lows:
2.2.1. Generalization of rigid body motion: the affine

i j kx 5O a x y z ,transformation B ijk A A A
ijkThe generalization of the rigid body transformation

i j krelevant to 3D surface matching is the affine transforma- y 5O b x y z ,B ijk A A A
ijktion. The general affine class of transformations is char-

acterized by the expression i j kz 5O c x y z , (8)B ijk A A A
ijkx 5 A x 1 b , (7)B 333 A 331

where there is no orthogonality constraint on the elements where a , b and c are the constant polynomialijk ijk ijk

a of matrix A as there is in Eq. (2). Affine transforma- coefficients to be determined. If interpolation is used, theseij

tions do not in general preserve angles or lengths, but coefficients express a system of 3N unknowns which can
parallel lines remain parallel (Foley et al., 1990). The be determined by N control points. In a least squares
affine transform relating two 3D surfaces is solved by approximation, the sum over all matched feature /point
Feldmar and Ayache (1994a), whose method matches pairs of the squared difference between the left and right-
‘‘closest’’ points of compatible shape. This ensures that the hand side of these equations is minimized, for example by

Nsolution to the minimization min (1 /N) o iAx 1 setting the partial derivatives associated with these equa-A,b i51 A i2b 2 x i tends to a stable solution. Moreover, Henri et al. tions to zero.Bi

(1991) determine the translation, rotation and nonuniform Jacq and Roux (1993) implement a trilinear interpola-
scaling which maps stereotactic frame coordinates to tion (i.e. where the summation indices i, j and k each go
corresponding CT or MR voxel values, prior to superim- from 0 to 1, and where i 1 j 1 k < 3), determined by eight
posing stereoscopic DSA images on the equivalent projec- reference distortion values which span the volume to be
tions of the volumetric scan. warped. Subsol et al. (1994) register skulls and cortical

surfaces to build a 3D atlas, by first rigidly matching
2.2.2. Global polynomial functions crestlines and then using an iterative closest point algo-

A more general formulation is one where a global rithm (both techniques are discussed in Section 3) on
polynomial function, typically of order 2–5, maps surface crestline points to determine a global second order polyno-

´A to surface B (Lavallee, 1996). Global methods use mial to describe the relation between iteratively trans-
nmatched point pairs to generate a single optimal trans- formed surface A and surface B. This results in a 2 -order

formation, based on a sufficient number of points to polynomial transformation, based on n iterations.
(over)determine the parameters of the transformation, via For closed surfaces that can be modelled as functions on
either approximation or interpolation. Polynomial trans- a sphere, some authors prefer to work in spherical coordi-
formations are typically expressed in either cartesian or nates (Coppini et al., 1987; Chen et al., 1994). For
spherical coordinates. Moreover, global polynomial trans- example, spherical harmonic surfaces are closed surfaces
formations are only useful to account for low-frequency on a sphere that can be decomposed into a set of
distortions because of their unpredictable behaviour when orthogonal functions. To represent an arbitrary shape, the
the degree of the polynomial is high (Brown, 1992). This radius r(u, f) in the spherical coordinate system (centered
component of inter-surface motion is typically computed on the centroid) can be written as a linear sum of spherical
after an initial rigid alignment. harmonic basis functions:
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N n method presupposes the use of relatively sparse point
r u, f ¯O O [A U (f, u ) 1 B V (f, u )], (9) matches in order to determine a set of local polynomials ors d nm nm nm nm

n51 m50 spline functions exactly, when in fact it may be useful to
consider denser displacement information to describe awhere A and B are basis coefficients computed fromnm nm
fundamentally underdetermined relationship. Moreover,the data points from a 3D object or surface and N
the notion of minimum bending is better suited to deforma-represents the order of the fitting. The basis functions are:
tion over a 2D, rather than 3D, domain.

U (u, f) 5 cos(mf)P (cos(u ))nm n,m Another useful piecewise polynomial representation is
the B-spline, particularly in the context of smoothingand V (u, f) 5 sin(mf)P (cos(u )), (10)nm n,m
(regularizing) and least-squares spline approximation

2 m / 2 m m (Dierckx, 1995). Given a set of displacement data d(x , y ,where P (x) 5 (1 2 x ) d /dx P (x) and P ( ? ) is the r rn,m n n

z ), and three sets of knots l , i 5 0, . . . , f 1 1, m , j 5Legendre polynomial of degree n (Press et al., 1992). In r i j

0, . . . ,g 1 1, and n , k 5 0, . . . ,h 1 1, we can compute theother words, surfaces S and S , and the displacement kA B

least-squares pth order volumetric splinebetween them, can be seen as functions on a sphere,
represented by a set of real coefficients A and B .nm nm

Because the shape is approximated as a sum of different u(x, y, z) 5O u B (x)B ( y)B (z), where, e.g.i, j,k i j k
i, j,kharmonics, in theory this representation can reconstruct

i1p11 phigh-frequency surface detail. (l 2 x)lCoppini et al. (1987) model the epicardial stretch tensor, ]]]B (x) 5 O if x [ [l l ] andi i ll 2 ll il5ibased on tracked vascular bifurcations, by performing a
B (x) 5 0 elsewhere, (12)third-order spherical harmonic fitting over individual dis- i

placements r u , f 2 r u , f , after correction for trans-s d s dA i i B i i
2and such that d 5 o (w (id 2 u(x , y , z )i)) is mini-lation and rotation. Chen et al. (1994) adopt a similar r r r r r r

mized. Here, the determination of B-spline coefficients ofmethod, but first characterize global shape with super-
u is by the least-squares solution of an overdeterminedquadric surfaces (Barr, 1981; 1984; Bajcsy and Solina, i, j,k

linear system. For a smoothing spline approach, the1987), prior to characterizing local shape variation with
problem is to find the function u (x, y, z) minimizing aspherical harmonics. p

smoothing norm which is a function of the B-spline
´coefficients, subject to d , S. Szeliski and Lavallee (1996)2.2.3. Local nonrigid transformations: piecewise

model the nonrigid transformation between two anatomicalpolynomials
surfaces as a first order spline in x, y and z, which isGlobal mapping functions do not always adequately
constrained by zeroth and first order stabilizers. Thiscapture deformations of anatomical structures, which are
approach penalizes large variations of the spline coeffi-´often intrinsically local (Lavallee, 1996; Bookstein, 1989).
cients, while also enforcing agreement with displacementPiecewise polynomial functions produce a more general
data. We (Audette and Peters, 1999) have recently demon-relation. In general, the relative density and reliability of
strated the use of 2D recursive splines (Unser et al., 1993a,the data determine whether an interpolation or an approxi-
1993b) to efficiently characterize nonrigid cortical motionmation scheme is used.
undergone during brain surgery, as captured by a timeOne well-documented interpolating scheme is the thin-
sequence of range images.plate spline (Duchon, 1976; Bookstein, 1989). The thin-

Lastly, a few other ways of characterizing nonrigidplate spline over a 2D domain can be expressed as z(x,]]2 2 2 2 motion appear in the literature. Goldgof and Mishray) 5 U(r) 5 r log r , where r 5 x 1 y , and as such U isœ
classify the nonrigid motion of surfaces in terms of how ita fundamental solution of the biharmonic equation. The
affects their mean and Gaussian curvature properties,interpolant f( p) is optimal in that it has minimum bending
namely as rigid, isometric, homothetic, conformal andenergy amongst all functions which pass exactly through

2general nonrigid (Goldgof et al., 1988a; Mishra et al.,points x 5 p , z p ; i.e.s s ddi i i
1991). Moreover, Feldmar and Ayache (1994b) determine

2 2 2 2 2 2 locally affine transformations for individual surface points≠ f ≠ f ≠ f
] ]] ]E E 1 1 dxdy (11)S D S DF S D G2 2 (A , b ) by a weighted sum of the rigid transformation≠x≠y A,i A,i≠x ≠y

R

is minimized. This type of interpolation function can then
2be applied to modelling nonrigid motion. Instead of having Conformal motion is characterized by proportionality of the co-

efficients of the first fundamental form (do Carmo, 1976):f( p) represent a displacement in the z-direction over the
E F Gp 5 (x, y) domain, it can express the x-component of a A A A
] ] ]5 5 5h(u, v).
E F Gdeformation. Likewise functions g( p) and h( p) can express B B B

the y- and z-components of a deformation (Bookstein, This function h(u, v) becomes a constant over (u, v) for homothetic
1989; Evans et al., 1991), where now p 5 (x, y, z). This motion, and identity for isometric motion.
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parameters of locally neighbouring matched surface points transformation. On the other hand, most point and model-
(R , t ), where k ± i. based methods may be attractive in the case of small orA,k A,k

iteratively estimated motion, because they exploit large
redundancy of information, which is especially useful for

3. Surface representation and similarity criterion estimating locally nonrigid transformations, as these are
inherently underdetermined.

The second stage of registration consists of computing a
surface representation and defining a matching criterion 3.1. Feature-based representations
based on it. In general, the surface representation should be
stable over the two modalities or over the time sequence Feature-based matching is largely founded on the use of
considered. It should afford a similarity criterion which is differential geometry to describe local surface shape (do
sufficiently discriminating to associate homologous points Carmo, 1976; Besl and Jain, 1986). According to Bonnet’s
unambiguously and efficiently, if the application dictates fundamental existence and uniqueness theorem, if two
that algorithmic performance is an issue. There are four surfaces S and S possess equivalent fundamental forms IA B

approaches to representing a surface for the sake of and II (or equivalent Gaussian and Mean curvatures K and
registration: feature, point, and model-based methods as H ), then there exists an appropriate translation and rotation
well as techniques based on global similarity. The defini- such that S and S coincide exactly (Besl and Jain, 1986).A B

tion of the similarity criterion is typically closely related to In general, feature-based matching is applied to computing
the choice of matching primitive. Furthermore, the criteria rigid transformations.
for selecting a particular primitive are application-specific, Features used for surface registration fall into three
depending for example on whether the anatomy of interest categories: (sparse) point features (distinct from dense
is smooth, such as the cranium, or highly angular, such as point-based schemes, also referred to as free-form surface
a vertebra. Other factors which influence this choice registration), curves and regions. Point features are salient,
include the size of the transformation to be computed (i.e. well-localized, sparse loci of important geometric signifi-
whether the two surfaces are separated by an arbitrarily cance, such as extrema of curvature: local peaks, pits,
large transformation or roughly aligned), and whether the saddle points where the two principal curvatures are most
transformation is rigid or non-rigid. pronounced, or where K is at a local minimum or

The feature-based method attempts to express surface maximum. The second type of feature corresponds to
morphology as a set of features which are extracted by a contiguous lines or curves, consisting typically of differen-
preprocessing step. Such features provide a compact tial structures such as ridges or boundaries between
description of the surface shape (at the expense of losing regions. Regions, in turn, are areas possessing some
information), which is quantifiable by stable, discriminat- homogeneous characteristic, such as consistent curvature
ing scalar measurements. The similarity criterion is then an sign. Each feature in surface S can be matched with itsA

outgrowth of this feature characterization: it consists of a homolog in S by first characterizing each feature in eitherB

comparison of scalar measurements. The point and model- surface by parameters expressing its respective topology,
based methods do not attempt to reduce the surface and looking for a compatible vector of parameters in the
representation to a more compact description, rather they other surface. If there is more than one suitable candidate
use all, or a large subset of all, points. Generally, for the for a given feature, the match can be disambiguated by
point-based method, the primitive used is often the surface assuming that neighbouring features on the same surface
point itself, and the similarity criterion is a distance to be which are matched one-to-one should undergo motion
minimized between a pair of surface points. For model- consistent with the ambiguous candidate. False candidates
based approaches, often an implicit criterion is used, such can then be eliminated on the basis of motion inconsis-
as an external force or halting condition driven by two sets tency.
of image data, with which an evolving deformable surface Moreover, accuracy issues related to feature extraction
model must be reconciled. Finally, a new class of registra- include the use of the neighbourhood information around
tion methods matches surfaces typically on the basis of each surface point to stabilize the computation of its
their global similarity. While there are currently few differential properties (Sander and Zucker, 1990; Ferrie et
anatomical applications, the relevance of these methods al., 1993) and the sensitivity to noise statistics of a given
stems from the feasibility of precomputing a number of numerical method for estimating derivatives and surface
training views of a surface generated from a patient’s curvature (Flynn and Jain, 1989; Abdelmalek, 1990; Roth
tomographic data, and from the desirability of computing and Levine, 1993). Finally, another relevant area of
arbitrarily large transformations for smooth, relatively research is the application of recursive infinite impulse
featureless surfaces. response filters (Proakis, 1996), particularly near-Gaussian

The feature-based and global approaches are potentially exponential filters (Shen and Castan, 1986; Deriche, 1987;
more discriminating than point- or model-based tech- Deriche, 1990) to speed up the smoothing stage prior to
niques, and can therefore resolve a large motion or feature extraction (Monga et al., 1992; Thirion, 1994).
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3Point features can be matched on the basis of their of smoothed curves . Each shape signature is represented
intrinsic information, such as surface curvature values, as as a hash table (see Section 4), where entries are associ-
well as position relative to neighbouring point features. ated with pairs of curvature–torsion values (k, t). The

´One such feature is the extremum of principal curvatures, improvements introduced by Gueziec and Ayache relate to
computed by Thirion (1994) within volumetric data by the approximation of the curves, to the hash table and to
detecting the zero-crossings of two ‘‘extremality’’ func- the statistical analysis of various invariants for matching,
tions. The first function is discussed later in this section, particularly in directly determining a 3D transformation
and is used to detect ridge lines, or lines of locally from homologous points on matched curves.
maximal higher principal curvature, while the second Regions constitute an even denser feature-based repre-
function finds a local extremum of the lesser principal sentation. They are typically characterized either by the
curvature within each ridge line. The scalar measurements homogeneity of their local surface shape or as being
used in the matching include the type of extremal point, circumscribed by some boundary. One advantage is that
which depends on the sign of the principal curvatures, the the notion of neighbourhood between regions is natural
response of the extremality functions, the principal curva- (Toriwaki and Yokoi, 1988), and leads to the characteriza-
ture values, and the distances and orientations of vectors to tion of a surface as an adjacency graph. Matching is then
neighbouring points. An alternate representation, used by carried out as an exercise in finding the maximal clique of
Goldgof et al. (1988b) in terrain matching but nonetheless compatible subgraphs (see (Radig, 1984) and the refer-
applicable to anatomical surfaces if they possess sharp ences therein). Here, groups of regions are matched based
corners, is the extremum of Gaussian curvature (K), on neighbourhood topology as well as local region charac-
detected on the basis of a threshold on the value of K. teristics. One definition of homogeneity used to segment

A somewhat less compact way of representing surface surfaces into regions or surface patches is the K /H sign
shape is as a collection of curves. One particularly relevant combination (Besl and Jain, 1986; Kehtarnavaz and
curvilinear feature in medical images is the ridge or crest Mohan, 1989). Surfaces can be subdivided into patches
line (e.g. the trough of a sulcus or the maximum height of according to surface type: elliptic and outwardly bulging
a gyrus). As pointed out by Maintz et al. (1996), there are (K . 0/H , 0), elliptic and inwardly bulging (K . 0/H .

many ways to define a ridge, and consequently many ways 0), parabolic and outwardly bulging (K 5 0/H , 0),
to detect one. Monga et al. (1992) and Monga and parabolic and inwardly bulging (K 5 0/H . 0), planar
Benayoun (1995) look for a contiguous set of loci of a (K 5 0/H 5 0) and hyperbolic or saddle shaped (K , 0/
surface where the largest principal curvature k is locally H ± 0). In practice, a small nonzero threshold is used to1

maximal. These correspond to the zero-crossings of the determine sign. An illustration of a K /H surface repre-
extremality function e 5=k ? t , where =k is the direc- sentation for a range image of a femur epiphysis appears in1 1 1 1

tional derivative of the largest principal curvature, and t is Fig. 3.1

the principal direction corresponding to k .1

Maintz et al. (1996) propose two operators of their own
which stem from the consideration of the gradient w of a
smoothed surface and its right-handed normal v in the
proximity of a ridge. The gradient at any non-ridge
position points towards the ridge, but at a ridge position
the gradient is aligned with the ridge. A consequence of
this geometry is that the directional derivative along v of a
surface is characterized by a highly concave profile at a
ridge point in comparison with other points. Maintz then
detects a ridge point either as a minimum of the second
derivative of the surface, or as a maximum of the
derivative of the direction of the gradient, along v. An

Fig. 3. (a) Range image of femur epiphysis; (b) regions based on K /Halternative to a ridge-based curve is the distance contour
sign combination. Both are courtesy of Gilbert Soucy of the McGill

(Radack and Badler, 1989), which could be applied to Centre for Intelligent Machines.
anatomical data, and which is the set of points of constant
distance from a highly salient point.

´Gueziec and Ayache (1994) present an elegant tech-
3 3nique for characterizing and matching curves, which in For a curve a : I 5 (a, b) → R , parametrized by arclength s, curvature

k(s) is the scalar ia0(s)i. It is a measure of how rapidly the curve pullsturn is based on the curve matching algorithm of Kishon et
away from the tangent line t(s). The direction of a0(s) is given by the unital. (1990). Kishon addresses the problem of finding the
normal n(s), and the unit vector b(s) 5 n(s) 3 t(s) is called the binormal

longest matching subcurve appearing in two curves. This vector. Torsion t(s) corresponds to ib9(s)i, and it is a measure of how
uses local, rotationally and translationally invariant, stable quickly the curve pulls away from the osculating plane at s spanned by n
shape signatures, namely curvature k(s) and torsion t(s), and t (do Carmo, 1976).
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3.2. Point-based methods noise, and in the case of Zhang, to exclude outliers. They
also introduce execution efficiencies: Zhang uses k-D trees

Point-based methods register surfaces on the basis of to make the search for closest points more efficient, and
´relatively dense point sets brought into correspondence, Lavallee dispenses with this search altogether by pre-

where these point sets constitute all, or a significant subset computing a distance map, which unfortunately does not
of, the available surface point samples. An alternate name provide explicit point pairs and thus still entails a search
for surface matching based on dense point sets is free- for optimal transformation parameters. Simon et al.
form surface matching (Besl and McKay, 1992; Zhang, (1994a, 1994b) apply this technique to intrasurgical regis-
1994). The two point sets are generally assumed to be tration of a range image of the head with a surface
relatively close to being aligned, and are usually registered extracted from tomographic data and address the issue of
by iteratively minimizing a global function such as the sensitivity to the perturbation of individual points. We
sum of squared distances between mutually closest points (Audette and Peters, 1999) also use a free-form surface
between (possibly transformed) surface S and surface S , technique to characterize intrasurgical non-rigid corticalA B

as expressed by Eq. (3). Differences between many of motion, where we refine the distance map proposed by
´these methods exist strictly at the level of the choice of Lavallee: a closest-point map is produced, which provides

distance metric and of the methods of optimally finding a explicit point pairs suitable for closed-form transformation
match based on this metric (described in detail in Section computation.
4). An illustration of this technique appears in Fig. 4. Other point-based techniques, which differ from those

One common distance metric is the distance from a discussed above in terms of the distance metric which is
point x in set X 5 x 7 S to the (transformed) point minimized, have been proposed by Chen and Medionih jB B B B

set X 5 x 7 S : (1991), by Pelizzari et al. (1989) by Soucy and Ferrieh jA A A

(1997), and by Rangarajan et al. (1997). Chen uses a
d(x , R x 1 t ) 5 min d(x , R x 1 t ). (13)B k A,min k B k A k subset of control points in relatively smooth areas, leadingx [XA A

to an iterative technique with very good convergence
Besl and McKay (1992) propose the Iterative Closest properties. For each surface normal n defined at a controlA,i

Point (ICP) method to determine the closest point pairs point x , its intersection x with surface S is found.A,i B,i B

according to Eq. (13), then compute the transformation Next, defining s the plane tangent to S at x , the globalB,i B B,i

from these pairs with a quaternion technique. The positions transformation which minimizes the sum of squared dis-
of the surface points S (‘‘data shape’’) are then updated: tances between the set of transformed x with theirA A,i

X 5 RX 1 t and the process iterates until the mean- corresponding tangent planes s on S is computed.A,k A,k21 B,i B

square distance, or point matching error, stabilizes to Pelizzari fits a ‘‘hat’’ or external surface, consisting of
within some tolerance. An accelerated variant of the ICP relatively sparse points from the scalp as imaged by the
method (discussed in Section 4) is also proposed. The modality of lesser resolution or coverage, to a ‘‘head’’
method is better adapted to registering comparable patches, constituted by the set of 2D contours extracted on a
but a subpatch can also be put into correspondence with a slice-by-slice basis from the higher coverage / resolution
larger patch, at the cost of considering several ‘‘initial modality. The residual which is minimized is the sum of
translation states’’. distances from each hat point to the head surface, along a

´Zhang (1994) and Lavallee and Szeliski (1995) adopt an direction from the former point to the head centroid. Soucy
objective function identical to that proposed by Besl, proposes an iterative technique which takes local surface
except for weighting factors to accomodate measurement shape into account. It matches small surface patches (as

small as 3 3 3 pixels) by minimizing a similarity functional
which enforces compatible local shape and piecewise-
smooth motion. Rangarajan matches points with a tech-
nique (demonstrated on 2D autoradiograph slices but
equally applicable to 3D surfaces) which imbeds the search
for match pairs and for optimal transformation parameters,
as well as the explicit exclusion of outliers, into one
elegant minimization, which makes the method more
robust to initial transformation estimation than the ICP
technique.

Finally, Feldmar and Ayache (1994a,b) do not attempt
strictly to find closest points, but to find closest feature
vectors. This approach is a comparison of 8 parameters,
namely the coordinates of each point (x, y, z), theFig. 4. Iterative point-based registration of phantom face range data
components of its normal (n , n , n ) and the principal´(courtesy of S. Lavallee, R. Szeliski and L. Brunie, copyright MIT Press, x y z

´1986 [Lavallee et al., 1996]). curvatures k and k of the surface at that point. They1 2
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determine a globally affine transformation and then pos- shape model (Terzopoulos et al., 1988) and Bajscy’s
sibly a set of locally affine transformations, by extended multiresolution elastic matching (Bacjsy and Kovacic,
Kalman filtering (see Section 4), based on point-pairs 1989). Kass casts the 2D contour detection and tracking
which minimize the following expression: problem of intensity images as a minimization of the

following energy functional:2 2d(v , v ) 5 a (x 2 x ) 1 a ( y 2 y )A,i B, j 1 A,i B, j 2 A,i B, j
12 2

1 a (z 2 z ) 1 a (n 2 n )3 A,i B, j 4 xA,i xB, j
E 5E E v(s) 1 E v(s) 1 E v(s) ds, (15)s d s d s dsnake int image con2 2

1 a (n 2 n ) 1 a (n 2 n )5 yA,i yB, j 6 zA,i zB, j 0

2 2
1 a (k 2 k ) 1 a (k 2 k ) , (14)7 1A,i 1B, j 8 2A,i 2B, j which is a controlled-continuity spline under the influence

of image forces and external constraint forces. Ter-where a are weights determined by minimum and maxi-i zopoulos’ model is expressed asmum data values. In other words, the closest point to xA,i

on S is one which best fulfills a compromise between 3D 2B ≠ n ≠n d%(n)
distance, difference in normal orientation, and difference ] ] ]]m 1 g 1 5 f(n), (16)2 ≠t dn≠tof principal curvatures.

and consists of a deformable sheet of elastic material,
3.3. Model-based representations which is rolled to form a tube, through which passes a

deformable spine, also of elastic material. Coupling forces
Deformable surface modelling consists of expressing try to make the shape retain its axial symmetry, and

surface identification (segmentation) in one volume or extrinsic forces constrain the shape to be consistent with
surface tracking over a volume sequence, as a model which one or more 2D image projections. The Bajscy model is
reconciles the likely shape and/or dynamic behaviour of

≠u2the surface, according to some physically-based or sur- ]m= u 1 l 1 m 1 F 5 0, i 5 1, 2, 3, (17)s di i≠xface evolution expression, with raw image data. With i

some exceptions (Amini and Duncan, 1992; Sclaroff and 4where u is the dilatation at a point on the body, and mPentland, 1993), such methods generally compute curve
´and l are Lame’s constants, which define the elasticand surface motion not by explicit matching, but by

properties of the model. The external forces F 5 (F , F ,1 2implicit consideration of image motion in the form of TF ) bring similar regions of two 3D objects into corre-3virtual forces that tend to make the model agree with shifts
spondence by enforcing grey-level value correlation andin strong image gradients. Because the thrust of active
edge alignment between blurred volumes (in a multiresolu-surface models is mostly on segmentation, only influential
tion framework).techniques and those which emphasize registration are

Research conducted separately by Pentland (Pentlanddescribed in detail. For more on active contour and surface
and Sclaroff, 1993; Essa et al., 1993) and by Terzopoulosmodels, the reader is referred to McInerney and Ter-
(Terzopoulos and Metaxas, 1991; McInerney and Ter-zopoulos (1996) for physically-based models and to
zopoulos, 1995) proposes a finite-element model approachSethian (1996b) and to Kimmel et al. (1997) for surface
to the numerical solution of deformable surface models,evolution models. One important issue in segmentation
and consequently these surface models are based on thewhich has an impact on the accuracy of the registration is
finite-element equilibrium equation, which has the formanisotropic filtering, whereby smoothing which is re-

quired for surface extraction is carried out tangentially to ¨ ~MU 1 CU 1 KU 5 R, (18)
the surface, without washing out image features in the
direction normal to it (Perona and Malik, 1990; Alvarez et where M, C and K are virtual mass, damping and stiffness
al., 1992; Kimia and Siddiqi, 1996). matrices, U is the displacement of the FEM nodes, and R

For physically-based deformable surface models, the is the sum of external forces, determined by image data.
basic idea is to model an object which is tracked over time Pentland and Terzopoulos use a hybrid representation
as being in, or quickly reaching, an equilibrium between featuring a superquadric ellipsoid upon which is grafted a
internal and external virtual forces. Internal forces include displacement function, which in turn is estimated by finite-
inertia, damping and strain, and are typically determined element modelling. In a static segmentation context, this
by the current state which is assumed for a 3D object. displacement function represents the difference between
External forces are typically determined by image data. the simple superquadric shape and the final, more general
The relative motion undergone by the various parts of a shape which is more in keeping with image forces. In a
surface is a result of the interaction of these two sets of surface tracking context, a general shape at t is used as ak

forces, according to formal physical principles.
4Important early research includes Kass’ snakes paper This is the change in volume per unit initial volume under small

(Kass et al., 1987), Terzopoulos’ symmetry-seeking 3D strains and sum of principal strains in general (Malvern, 1969).
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first estimate towards the final shape at t , and the a coordinate system, and two shapes are nonrigidly regis-k11

displacement is just U 2 U . tered on the basis of modal feature vectors.k11 k

Significant improvements to the static model are sug- In contrast to the preceding models, those developed
gested by Cohen et al. (Cohen and Cohen, 1990; Cohen, independently by Malladi et al. (1995) and by Caselles et
1991; Cohen et al., 1992b), and by Metaxas et al. (Metaxas al. (1992) have a geometric, rather than physical, interpre-
and Kakadiaris, 1996; DeCarlo and Metaxas, 1996). If the tation, and are generally based on a curve or surface
model is not initialized close enough to the desired surface, evolution equation, a partial differential equation of the
short-range image forces may be unable to attract it. To Hamilton-Jacobi type (Levesque, 1992, Kimmel et al.,
alleviate this problem, Cohen (Cohen and Cohen, 1990; 1997). These techniques are attractive for registration
Cohen, 1991) uses a pressure force to inflate the model because they inherently compute contour or surface shape
towards the object surface. In (Cohen et al., 1992b), the parameters, and possess other advantages, such as robust-
surface produced by a physical model is characterized in ness to initialization as well as the capacity for a contour
terms of its differential structure, and the model is then or surface to split or to merge. Here, a contour or surface is
expanded to enforce the agreement of the surface’s normal viewed as the zero level of a higher-dimensional function.
orientation with that estimated by a Monga–Deriche edge For example, to identify a contour in 2D, a 3D hyper-
detector (Monga et al., 1991). Metaxas devises methods surface is initially placed completely inside (or outside)
for adaptively estimating virtual material properties such a shape, and then made to flow outward (or inward)
(Metaxas and Kakadiaris, 1996), and for using blending with a speed dependent on the strength of the image
functions in order to merge two simple (e.g. superquadric) gradient g(I), on surface curvature div(=u / i=ui) and on a
shapes to express more complex surfaces (DeCarlo and constant advection term n which acts as an inflation (or
Metaxas, 1996). deflation) force:

Improvements relating to surface tracking are proposed ≠u =u
] ]]5 g(I)i=ui n 1 div . (20)by Nastar and Ayache (1993) and by Sclaroff and Pentland F S DG≠t i=ui(1993). If physically based models can be viewed as

virtual masses on the surface with springs relating them to The factor div(=u / i=ui) is the curvature k of the level-set
their neighbours, this viewpoint can be extended over time contour in 2D. In 3D, it is the mean curvature H of the
to a spring between a boundary point at t and its closest1 level-set surface. The image gradient-based factor acts as a
neighbour at t , as pointed out by Nastar. Moreover, salient2 halting criterion which binds the level-set surface to
feature points such as curvature extrema are used to anchor intensity discontinuities. Recent improvements include a
the dynamic behaviour of the model, by attaching par- doublet term (Caselles et al., 1995, 1997; Kichenassamy et
ticularly stiff springs between feature point pairs. Sclaroff al., 1995) which prevents the surface from overshooting
suggests that FEM numerical estimation can benefit from a past image gradients, and the application of the fast
change of basis from nodal to modal displacements f, marching level sets algorithm (Sethian, 1996a; Malladi
where U 5 fsin v t 2 t and v represents a virtualf s d g0 and Sethian, 1998).
frequency of vibration, based on object shape, corre- Lastly, the model of Amini and Duncan (1992) uses 3D
sponding to each mode (see also the section in (Bathe, surface points as its raw data, and views the local surface
1982) on mode superposition). This change of basis is shape as a bending energy from an idealized thin flat plate

2 2justified not on the grounds of expected periodic motion, ´ (u, v) 5 k 1 k . It seeks to match surface points ofbe 1 2
but because it decouples the system of Eq. (18), which is consistent energy and therefore of consistent principal
now expressed as the eigenproblem (neglecting damping curvature. Moreover, their model also has a stretching
by taking C 5 0): energy term which penalizes non-conformal motion (i.e.

motion where the proportionality of the various coeffi-
2KF 5 MFV , where F 5 f u ? ? ? uff g1 p cients of the first fundamental form, E, F and G, are not

2 maintained). Consequently, the following energy measure
v 1 is minimized over two surfaces:2 ?and V 5 ? . (19)? 2 23 42 l h(k 2 k ) 1 (k 2 k ) jv be 1A 1B 1A 1Bp

2 2 2E F F G E GA A A A A A
] ] ] ] ] ]1 l 2 1 2 1 2 .HS D S D S D JstThe matrix F has an interesting interpretation: its vector E F F G E GB B B B B B

entries f can be ordered according to increasing corre-i (21)2sponding eigenvalue v . In this case F is an orthogonal,i

frequency-ordered description of on object’s shape and its The tracking model of Cohen et al. (1992a) is similar to
natural deformations, somewhat like a Fourier series. An Amini’s in that it is characterized by a functional that
important consequence of this representation is that it leads minimizes curvature differences, between two 2D contours
to an explicit matching algorithm, after an initial rigid at comparable arclength parameters, while enforcing
alignment, where low-order nonrigid modes f are used as smooth motion along arclength. The zero arclength valuei



M.A. Audette et al. / Medical Image Analysis 4 (2000) 201 –217 211

on each contour corresponds to a matched feature point. points x to the 2D coordinates of a basis corresponding to
They propose an extension to 3D surface tracking in the an oriented point O:
same paper. ]]]]]]]2 2S (x) → (a, b ) 5 ix 2 pi 2 n ? x 2 p , n ? x 2 p .s ds s dd s s ddœO

(22)
3.4. Techniques based on global shape

The term spinmap comes from the cylindrical symmetry of
the oriented point basis. Given this basis, the 3D shape ofThe feature, point and model-based algorithms discussed
the neighbouring surface points can be reduced to a 2Dso far can be broadly described as relying on local
snapshot of global shape, which is a representation in-information to register surfaces. However, there are a few
variant to a rotation about its central axis L. 3D surfacerecently-published algorithms which register surfaces on
point correspondences can then be established on the basisthe basis of global surface geometry, that do not rely on a
of a 2D correlation between their respective spin maps.rough prior estimation of the transformation and that may
The applicability of the technique to anatomical surfaces isbe able to deal with relatively featureless patches. We are
demonstrated with skull and bone data sets. The use ofalluding to the spinmap representation of Johnson and
points matched by spinmap correlation to determine theHebert (1998) and to the eigenshape or appearance-
transformation between two surfaces is comparable tobased methods for registering 3D surfaces (Campbell and
feature-point matching, as addressed in Section 4.Flynn, 1999).

Early work on appearance-based techniques mostlyThe spinmap representation is a set of 2D footprints
deals with face recognition in 2D intensity images, and isconveying global surface shape in the neighbourhood of
based on projecting face images onto a feature space thatselected oriented points (Johnson and Hebert, 1998), as
spans the significant variations among known face imagesillustrated in Fig. 5. A 3D oriented point consists of a point
(Turk and Pentland, 1991). Murase and Nayar (1995)p and a surface normal n estimated at that point. In order
apply a similar framework to recognize 3D objects, whoseto describe its neighbouring topology, a 2D basis is
model is stored in a CAD database, from 2D images, asformed. To define this basis, Johnson first defines a line L
well as estimate the transformation between the two. Thisthrough p whose direction is along n, and a tangent plane
in turn is the basis for the eigenshape technique ofP through p. The two coordinates of the bases are a, the
Campbell and Flynn (1999) for object recognition andperpendicular distance of a neighbouring point to line L,
pose estimation of range images.and b, the perpendicular distance of this point to plane P.

In Murase’s application, the basic idea is to take severalA spinmap S is the function which maps 3D neighbouringO training views of an object, which rests on a turntable. The
object pose is varied by rotating the turntable by an angle u

in increments of a few degrees. Each N 3 N image I(i, j)
corresponding to a training view is represented as an

2N -vector

Tx̂ 5 I(1, 1) ? ? ? I(1, N)I(2, 1) ? ? ? I(2, N) ? ? ? I(N, N) ,f g
(23)

obtained by concatenating the rows of the image and
taking the transpose. An image is then equivalent to a point

2in a huge N -dimensional space. Fortunately, most of the
variation in the images can be accounted for by a subspace
spanned by just a few vectors, as in principal component
analysis (or Karhunen-Loeve expansion) (Fukunaga,
1990). Each vector corresponding to a distinct training
view constitutes a column of an object image set

ˆ ˆX 5 [x , . . . , x ], (24)2N 3m 1 m

where m is the number of training views. A covariance
matrix is then defined from the image set:

TQ 5 XX . (25)2 2N 3N

The eigenvectors [e ? ? ? e ] corresponding to the k largest1 kFig. 5. (a) An illustration spinmap geometry; (b) points distributed on the
eigenvalues are computed (Murase lists three algorithmssurface of a femur bone, shown with three point bases and their
for doing this efficiently), where l e 5 Qe , comprising acorresponding spinmaps, appearing as point sets and grey-scale images i i i

(courtesy of A.E. Johnson). parametric eigenspace.
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Thereafter, the set of training views projected onto the 4.1. Discrete feature matching and transformation
parametric eigenspace constitutes samples of a smoothly computation
varying manifold. If k 5 3 this manifold is a closed curve
whose arclength is a one-to-one function of u in the 3D Feature matching generally determines a rigid trans-
space spanned by [e e e ], which in turn can be fitted with formation, due the relative sparseness of features, and1 2 3

cubic splines. Given a new image, its pose can be involves a comparison in terms of shape parameters, such
estimated by projecting it onto the parametric eigenspace. as surface curvature values at extrema, curvature and
For example, if k 5 3, this can be achieved by finding the torsion values of curvilinear features, and shape type,
position of its projection within the cube spanned by averaged properties and size for regions. In the event a
[e e e ]) and by finding the closest point on the manifold particular matching technique does not imbed a trans-1 2 3

to this projection. The pose can then be estimated by formation computation, most of the rigid-body motion
interpolation along arclength between the two closest representations reviewed in Section 2.1 lead to a closed-
discrete poses. form expression for estimating rotation and translation.

Now, for surface registration (Campbell and Flynn, Early techniques include pose clustering (also known as
1999), we are dealing with more than one pose parameter generalized Hough transform), sequential hypothesis and
(i.e. not just u corresponding to turntable rotation), but the test (also known as prediction and verification and align-
framework is the same (and this could applied to register- ment), and geometric hashing. We also review the eigen-
ing an open anatomical surface with a closed surface vector technique of Shapiro and Brady (1992) for match-
extracted offline from tomographic data). The steps are ing point features.
(the first three can be implemented offline): Pose clustering matches like simple or compound struc-
• compute training views of the anatomy at sufficient tures and derives a transformation from each such corre-

increments of each pose parameter; spondence. This approach involves quantizing the space of
• compute the parametric subspace which captures enough relevant transformations and using it as an accumulator in

of the shape variation across all poses; which each match increments a corresponding cell. A
• project back the training views to this subspace to globally acceptable transformation is detected as a cluster

generate a manifold (which may then be smoothed); in the space of all such candidate transformations (Stoc-
• and for a new open surface, project it also onto the kman, 1987).

parametric subspace and obtain its transformation by Sequential hypothesis and test consists of picking a set
interpolating the projections of discrete training poses. of feature pairs which are consistent and which determine

a transformation, validating these hypothesized matches
based on how other features from the two spaces agree

4. Matching, optimization and transformation with the putative transformation, then possibly backtrack-
computation ing and proceding anew with a new set of consistent

feature pairs (Bolles and Horaud, 1986; Chen and Huang,
The third stage comprises the search for corresponding 1988).

points or feature pairs, based on the surface representation Geometric hashing involves precomputing local match-
of the second stage, and the computation of the optimal ing information, which is rotationally and translationally
transformation as idealized in the first stage. The search for invariant, and storing it in the form of a hash table, where
a match can be either a succession of comparisons of each entry is associated with a simple or compound feature
discrete candidates, as is frequently the case for feature to which a local coordinate system (or basis) can be
pairs, or an iterative minimization of an objective function, unambiguously assigned, for surface A. Subsequently, a
as usually occurs with point- and model-based schemes. feature or set of features in surface B is similarly char-
The subsequent transformation computation depends on acterized. Finally, given the transformation between the
the assumptions made in the first stage. It comprises a two local bases, the consistency of the mapped non-basis
closed-form computation or an iterative search for the six features is evaluated, where consistent feature pairs val-
or more parameters which best align feature pairs. Alter- idate this transformation by voting for it (Lamdan and
nately, a Kalman filtering approach presents advantages to Wolfson, 1988; Kishon et al., 1990).
tracking surface points over an extended time sequence, as Shapiro and Brady (1992) match feature points on the
this estimation of transformation parameters is optimal for basis of consistent same-space distances by an elegant
the noise characteristics of the whole sequence yet is eigenanalysis technique, following the inter-image dis-
recursive over time. As for the techniques based on global tance-based matching technique of Scott and Longuet-
shape, points whose spinmaps correlate well are used to Higgins (1991). Shapiro suggests accounting for global
(over-)determine a transformation in the same manner as structure, and proposes that each image or surface be
discrete feature points (discussed below). The special case represented by a proximity matrix H of intra-image (or
of appearance-based matching was fully described in the intra-surface) distances. The eigenvalues of each matrix are
previous section. then computed, resulting in a modal matrix V whose
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columns correspond to the eigenvectors of H. Each row of in a space of k dimensions (here k53). Each successive
V can be thought of as a feature vector F containing the cut plane passes through a point chosen such that it dividesi

modal coordinates of a feature i. The final stage consists of the remaining points into clouds of roughly equal numbers
correlating the two sets of feature vectors F and F . of points, producing a left and a right son. Each son is spliti,A j,B

In general, techniques involving some sort of voting or into two grandsons by choosing the appropriate plane
accumulation, such as pose clustering and geometric parallel to x 2 z, followed by a plane parallel to x 2 y, and
hashing, are likely to be the most robust, particularly to so on, while alternating the cut plane orientation, until
missing information (such as a partial overlap between sufficient divisions occur such that no resulting rectangular
different modalities, i.e. registering a sub-patch with a parallelopiped contains a data point. Such a cut is termed a
larger surface patch). ‘‘leaf’’. Each node n of the 3-D tree is characterized by a

point x (n) through which it passes, and a parameter t(n)A,i

4.2. Closest point finding and global optimization indicating the orientation of the cut plane. The search for
the closest point via a 3-D tree calls a recursive procedure

Free-form surface matching involves a closest-point that begins at the root of the 3-D tree assigned to X , andA

finding stage, which may or may not benefit from some exploits the tree structure, branching off into one son or the
form of preprocessing (k-D trees, distance maps), and other depending on the signs of the distance components,
frequently a global optimization stage which is used either to zero-in on the best candidate.
to compute the best current transformation T based on the A distance map can be precomputed off-line, to de-k

latest closest-point pairs, or to accelerate the convergence termine for each voxel in a volume containing a surface S ,B

of these fundamentally iterative techniques towards a the closest point on that surface and the distance to it.
definitive result. Thereafter, for a surface S falling within this mappedA

Classical techniques can be used to implement the volume, each of its points inherits the closest point
minimization of Eq. (13), and generally are of the uncon- precomputed for the voxel on which it falls. In the case of

´strained nonlinear optimization type (Luenberger, 1984). an octree spline implementation (Lavallee and Szeliski,
These approaches are based on the conditions that, for a 1995), the representation is carried out by a classic octree
minimum, the objective function must have a null gradient subdivision (Foley et al., 1990). For each corner vertex of
and a positive semidefinite Hessian matrix. Starting at all terminal cubes, the signed distance to its closest point
some initial point, one determines, according to a fixed on the surface is computed. The determination of the
rule, a direction of movement in the domain, then one distance to the closest point on S is achieved by interpola-B

moves in that direction to a relative minimum of the tion. Alternate techniques for computing the distance map
objective function along that line. At that point, a new of a surface are by fast marching level sets (Sethian,
direction is determined and the process is repeated, until 1996a; Kimmel et al., 1996), where distance is the arrival
some termination condition is met. These techniques time of a moving front starting from the initial surface, and
include the method of Steepest Descent, multivariate by various local mask-based distance transforms
Newton’s, Conjugate-Gradient and Quasi-Newton meth- (Borgefors, 1984, 1986; Paglieroni, 1992).

ˆods, and related methods (Luenberger, 1984). Alternately, each match pair x ; (x , x ) can bek A,k B,k

ˆThese methods are also used, once point-matches are viewed as a measure x of a match x resulting from thek k

determined, to iteratively compute optimal transformation application of the true transformation relating the two
´parameters. Lavallee and Szeliski use a Levenberg-Mar- surfaces, corrupted by a random error v . This leads to ank

quardt technique, which is a hybrid of the Steepest Descent extended Kalman filtering (EKF) (Kalman, 1960; Soren-
and multivariate Newton’s Method (Luenberger, 1984), to son, 1980) formalism for recursively estimating the opti-

´iteratively compute both rigid (Lavallee and Szeliski, mal (with respect to noise statistics) transformation param-
´1995) and non-rigid (Szeliski and Lavallee, 1996) trans- eters. The application of EKF to tracking surface points

formations. Besl and McKay’s accelerated ICP technique over time is an issue of expressing a relationship between
involves a series of line searches in a seven-parameter positions or feature vectors of the matched pairs and the
space spanned by rotation quaternion and translation (Besl transformation parameters as a measurement equation that
and McKay, 1992). The unaccelerated stage finds closest can be linearized, and for which the linear Kalman filter
point pairs and uses a quaternion technique to find the can recursively compute the best transformation estimate.
current iteration’s least-squares registration. Each such This is the technique used by Feldmar and Ayache (1994c)
iteration is equivalent to a small step in 7-space, and the for estimating the global affine transformation relating
accelerated stage fits an interpolant in the direction of this matched feature vector pairs. Because it is recursive, it
step (from the last 7-vector), whereupon the convergence presents advantages for tracking surface points over time.
can be improved by a line search for the minimum. Special Only the new measurements and the statistics and trans-
switching logic determines whether a linear or parabolic formation parameters of the previous iteration need to be
interpolant is used. considered, in computing the parameters which are optimal

The k-D tree (Zhang, 1994) is a sequence of bisections for the noise statistics of the whole sequence.
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4.3. Model-based motion estimation Terzopoulos and Szeliski (1992) also apply a Kalman filter
formalism to estimate 3D motion from a physical model.

The method of estimating motion from surface models Cohen (1991) suggests a finite-differences based technique
depends on the nature of the model. As seen in the for finding the energy-minimizing contour of his balloon
discussion of Section 3.3, many physically-based models model. Moreover, surface evolution models are im-
segment the surface explicitly, but surface motion is often plemented with a combination of central and upwind
just the difference between consecutive shapes at a given (Osher and Sethian, 1988; Levesque, 1992) finite-differ-
surface coordinate (u, v), particularly when the shape at ences (Malladi et al., 1995; Kimmel et al., 1997). For
time t is used to initialize the shape estimation at t alternative approaches to estimating deformable contoursk k11

(Terzopoulos et al., 1988; McInerney and Terzopoulos, and surfaces, see (Terzopoulos and Szeliski, 1992; McIner-
1995). The application of surface evolution models to ney and Terzopoulos, 1996).
motion estimation is still in its infancy, but as emphasized
by Audette and Peters (1999), this framework can be
exploited not only to extract a surface reliably, but also to
alleviate an explicit search for matches in a subsequent 5. Conclusion
point-based registration scheme.

Finite element modelling is the most prevalent technique This paper has presented a survey of surface registration
for computing physically based models (Essa et al., 1993; techniques, particularly those which apply to anatomical
Terzopoulos and Metaxas, 1991). Here, the displacement surfaces, with an emphasis on their mathematical or
FEM represents a surface as a mesh of 2D simple algorithmic foundations. We chose to represent the process
polygonal elements whose global behaviour (where a of registration as the succession of three stages: choice of
surface reaches equilibrium between internal and external transformation representation, choice of surface representa-
forces) can be characterized by an element-by-element tion and similarity criterion, and matching per se and
analysis of the dynamics involved. The global mass, global optimization. According to Section 2, transforma-
damping and stiffness matrices are summations of the tions can be categorized as rigid and non-rigid. Several
corresponding element matrices, as are non-concentrated different representations for rigid-body transformations
load matrices. In practice, the integration of expression have been surveyed, while non-rigid transformations can
(18) is simplified by neglecting either mass (Terzopoulos be further categorized into global and local polynomial
and Metaxas, 1991), leading to the explicit first-order representations, and according to the choice of coordinates

215 (t1d t ) (t ) (t ) (t ) (t )Euler integration U 5 U 1 dtsC d sR 2 KU d, (cartesian or otherwise), which is best suited for the
or damping, leading to the change of basis to modal problem.
coordinates and the expression (19), which can also be We saw in Section 3 that a feature, point, global shape
integrated numerically. or model-based approach can be employed to represent a

The Amini surface tracking technique finds closest surface for the purpose of registration, and that each has
points in a manner similar to free-form surface registration certain advantages. Feature-based and global shape-based
techniques (Amini and Duncan, 1992). For each point of techniques can determine an arbitrarily large rigid trans-
surface A, the point on surface B that minimizes expres- formation. A point-based technique is best suited for
sion (21) is selected. This ensures that the match is most bringing two surfaces into very close alignment, given a
similar in local surface shape and that its relative move- good starting point for the final transformation, particularly
ment is nearest to being conformal. The result is a 3D flow if we wish to quantify non-rigid motion, while a model-
field, which may be noisy, defined over the first surface. based approach is advantageous if identifying the surface
Thereafter, a vector smoothing technique (Horn and within a volume must be accomplished prior to registra-
Schunck, 1981) is applied to components of each flow tion. Furthermore, we discussed three categories of fea-
vector, and flow estimates are propagated over other tures: sparse points, curves and regions. We demonstrated
regions of the surface. that dense point-based techniques vary according to their

Other formulations have also been proposed for comput- definition of proximity between points and according to
ing or tracking deformable model points. The change of their means of estimating the closest point to a surface.
basis of expression (19) allows Sclaroff and Pentland Finally, we pointed out that models for identifying and
(1993) to adapt Shapiro’s modal matching technique to possibly registering surfaces are either based on physical
explicitly match FEM surface nodes. Pentland and or surface evolution equations. We identified which tech-
Horowitz (1991), Metaxas and Terzopoulos (1993) and niques compute surface motion implicitly, from the evolu-

tion over time of a 3D model, and which explicitly
establish correspondences between surface points.

Next, in Section 4 we offered a survey of the main
5 numerical estimation schemes or algorithms for matchingBased on virtual time steps which need not related to the time lapse

separating two surfaces. features (and points correlated on the basis of spinmaps),
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