
An Adaptive Approach for Reactive Actor Design

Daria E. Bergen*

The Naval Research Laboratory
bergen@enews.nrl.navy.mil

James K. Hahn†
The George Washington University

hahn@seas.gwu.edu

Peter Bock†
The George Washington University

pbock@seas.gwu.edu

Abstract

To address the complex and dynamic conditions of a virtual
environment, computer animation researchers are applying
methods similar to the ones used in artificial life to create
reactive actors. A reactive actor is a control entity whose
behavior is based on the sensory information it receives from
the environment. The system presented within this paper,
RAVE (Reactive Actors in Virtual Environments),
demonstrates the successful use of a reinforcement learning
model to automatically generate controllers for typical 2D
navigational tasks. This is an improvement to existing
methods because it requires no programming, can be used for
a variety of tasks, and the control algorithms adapt during
run-time. Collective Learning Systems (CLS) theory is
integrated with a hierarchical controller to create control
modules that quickly converge on optimal navigational
strategies. Five different worlds are created to train and
evaluate the actors. Performance metrics and results are
presented for three different navigational tasks: obstacle
avoidance (avoid), heading towards a goal object (goto), and
moving away from a threat (retreat).

CR Categories: G.3 [Probability and Statistics]:
Probabilistic Algorithms; I.2.6 [Artificial Intelligence]:
Learning; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Animation, Virtual Reality.

Additional Keyword: Behavioral Modeling, Collective
Behavior, Virtual Actors, Learning Automaton.

1.0 Introduction

Designing motion control algorithms for characters
within virtual environments presents new challenges for
computer animation researchers. A virtual environment
differs from a classical frame based animation system mainly
in its non-deterministic nature. Kinematic methods, such as
key framing, are not effective due to the unpredictable
movement of the user. Unlike creating a one minute motion
sequence for a computer generated scene, the motion
generated for a virtual environment must be valid for an
unspecified length of time. To address these complex and
dynamic conditions, actors should respond to events within
the environment as they occur and not simply follow pre-
specified scripts.

A reactive actor is a control entity that autonomously
chooses its behavior based on information it receives from the
environment and its internal state. Within the field of
computer animation, there has long been an interest in the

* The Naval Research Laboratory, 4555 Overlook Ave. SW,
Code 5707, Washington, DC 20375
† The George Washington University, Department of
EE&CS, 801 22nd Street NW, Washington, DC 20052

creation of autonomous actors (Magnenat-Thalmann &
Thalmann, 1991; Zeltzer, 1985), and advancements in virtual
environment technology makes improvement to methods for
virtual actor creation and control both timely and crucial.

The objective of this work is to develop an adaptive
control technique to improve the creation and run-time control
of reactive actors. The system presented within this paper,
RAVE (Reactive Actors in Virtual Environments),
demonstrates the successful use of a reinforcement learning
model to automatically generate controllers for typical 2D
navigational tasks. Collective Learning Systems (CLS)
theory is integrated with a hierarchical controller to create
control modules that quickly converge on optimal
navigational strategies. This model can also be used for
adaptation, during run-time, to cope with changing
environment conditions. In reactive actor design, adaptation
has previously been explored only as a pre-processing step.
This work demonstrates why learning, during run-time, is a
useful and necessary component.

2.0 Problem Domain

Traditionally, a combination of hierarchical control and
procedural methods have been used in reactive actor design
(Blumberg & Galyean, 1995; Perlin & Goldberg, 1996; Tu &
Terzopoulos, 1994; Zeltzer, 1985). Hierarchical approaches
are chosen because they lead to reusable, extendible, and
responsive control models. A generic hierarchical model is
presented in Figure 1. The left column lists the associated
level of control abstraction (Zeltzer, 1985), and the right
enumerates the input to each subsystem. In brief, sensors
receive world information and possibly task level commands
from the animator. The reasoning engine interprets the
sensory information and selects an appropriate task from the
actor's motion repertoire. The functional control units invoke
procedural control units to achieve their goals. Finally, the
procedural control units update effectors which cause some
attribute(s) of the actor to change.

Researchers in the fields of Artificial Life (Langton,
1994) and Adaptive Behavior (Maes, 1992) are also interested
in designing autonomous beings. There are many similarities
between the design of autonomous agents and the design of
autonomous actors, particularly in the low-level architectural
design. At a high level, however, the focus is less similar.
Within the field of computer animation, the essence is the
story. Animators are interested in generating characters that
are expressive and have consistent personalities. While a
certain level of autonomy is desired, the animator must also
be able to direct the actor at various levels and during different
stages of design.

Given this as the high level research goal, one can
identify at least six major research areas in reactive actor
design. Finding the balance between autonomy and
directability is the first essential component. Questions
concerning when, where, and how much autonomy is
necessary and when, where, and how an animator will direct
an autonomous actor remain to be answered (Blumberg &
Galyean, 1995). Methods for creating expressive motion

(Perlin, 1995) are still being explored. The actor should
exhibit a consistent personality and the animator should be
able to influence its personality directly and indirectly. Task
decomposition is another important area. Determining
exactly how an animator breaks down a complex task into
primitive modules remains to be solved. Behavior arbitration
involves combining the primitive tasks to create complex
behavior. Issues in behavior selection, smooth transitioning
between tasks, and methods for avoiding "dithering"
(Blumberg, 1994) must be addressed. Finally, the exact roles
of learning and evolutionary methods within the design of
the control units must be identified. Are they mutually
exclusive design decisions, or can they compliment each other
in the creation and control phases?

Reasoning Engine

Motion Repertoire

Control Algorithms

Geometric Model

Agent Abstraction

Functional Abstraction

Procedural Abstraction

Structural Abstraction

Actor's personality,
 event-action pairs,
task oriented goals.

Functional Control Units

Procedural Control Units

Hierarchical structures,
constraints,

physical attributes.

Reactive ActorAbstraction Level Input Data

Sensors

Effectors

Figure 1: Hierarchical Control Model

A subset of these research problems is addressed within
this work. A bottom-up approach is taken, and the individual
control units within the actor's motion repertoire are the focus
of this paper. Specifically, the problem of designing and
controlling a motion repertoire for obstacle avoidance and 2D
navigation is investigated. Issues concerning the evaluation
of motion characteristics and the role of learning in control
module creation are examined.

3.0 Related Work

Motion repertoires for navigational tasks have been
defined procedurally with standard program languages
(Reynolds, 1987; Sun & Green, 1993; Tu & Terzopoulos,
1994) and with dataflow networks (Wilhelms & Skinner,
1990). Programming expertise is required when a procedural
method is used and creating algorithmic descriptions for each
primitive task can be tedious and time consuming. Reynolds's
seminal work in behavioral modeling (Reynolds, 1987) was
initially presented as a means of reducing the tedium
associated with scripting the paths of many actors. This
general model has been modified slightly over time but
remains the standard method for obstacle avoidance and low-
level navigation.

Evolutionary techniques and standard search methods
have been used to automatically generate task level modules
for articulated figure motion (Gritz & Hahn, 1995; Ngo &
Marks, 1993; Sims, 1994; van de Panne & Fuime, 1993).
The results achieved are impressive and the motion generated

with these models is believable and enjoyable to watch.
However, the adaptation of the control modules has strictly
been applied as a preprocessing step. Researchers have not
explored issues related to run-time adaptation. Evolutionary
methods are useful for globally exploring large search spaces
but not for a localize search. Since animators also desire a
variety in behavior, evolutionary techniques are ideal for
exploring the entire controller space and finding a specific
style of motion. They fail to offer assistance, however, when
minor modifications to a control algorithm are needed.
Alternative methods must be used when incremental
improvements or run-time adaptation is desired.

The system presented within this paper uses an
adaptive machine learning methodology to automatically
generate functional control units for typical 2D navigational
tasks. This is an enhancement to existing methods used for
navigation because it requires no programming, can be used
for a variety of tasks, and the control algorithms adapt during
run-time. The method has been used for obstacle avoidance,
movement towards a goal, and movement away from a threat.

4.0 RAVE Architecture

An overview of the RAVE architecture is presented in
Figure 2. As with other reactive systems, sensory
information is extracted from the world, passed to the actor,
and used to determine the actor's behavior. The uniqueness of
RAVE lies in the design of the motion critic sub-system and
the addition of an adaptive learning module.

Simulation System Reactive Actor

Sensors

Effectors

Virtual Environment

Motion Critic

Behavior
Statistics

Collective
Learning
System

Motion
Evaluation

RespondentStimulant

Figure 2: RAVE Architecture

4.1 Sensors and Effectors

Within the literature, two alternative approaches to
synthetic vision have been explored; object (or symbolic)
based (Reynolds, 1988) and image based (Horswill, 1992)
vision models have both been used. RAVE uses a symbolic
vision sensor. This was chosen over an image based
approach for a number of reasons. One advantage is that
exact information can be conveyed to the actor; algorithms for
determining object type, velocity, distance, and color are not
necessary. Computing symbolic features also requires little
additional overhead since many object attributes are already
kept in a database for rendering purposes. Finally, a
symbolic approach can be easily extended. Additional features
can be incorporated quickly by appending attributes to the
sensory input stream.

Within this work, three vision channels provide
information about the closest object in the left, middle, and
right field of view (FOV); object type, distance, and direction
information are provided. Parameters for the vision module

include the angle for each field of view triangle (α, β, and ψ)
and the length of the vision range (v). See Figure 3.

Left FOV

Middle FOV

Right FOVα ψ
β

v

Figure 3: Vision Sensor

Moving towards a goal or away from a threat requires
additional information. The bearing sensor is used to receive
azimuth and distance information about a goal or threat
object. The user can vary the desired range (d) and the sensing
range (r). The desired range will determine how close to a
goal or how far from a threat the actor should be. The
sensing range determines at what range the actor can
differentiate distances. For example, the bearing sensor in
Figure 4 would return a value of "NW and beyond sensing
range".

W

N

S

E

NE

SW

NW

SE

r
d

r - sensing range
d - desired range

goal

Figure 4: Bearing Sensor

An actor is represented with a position vector (p) and
an azimuth (θ). Each actor travels at a constant speed in the
direction of its heading vector (h). The effector modifies the
heading vector by requesting a change in θ. This turns the
actor to the left or to the right.

4.2 Motion Critic

The motion critic receives behavioral statistics from
the simulation system and assesses the quality of the motion.
The criteria used to evaluate the motion may remain constant
or vary over time. The assessment is sent to the Collective
Learning Systems (CLS) as an evaluation.

Computing an evaluation requires assigning a
quantitative measurement to the motion sequence. This is
not always straightforward task. For example, one valid
measurement for obstacle avoidance would be to count the
number of collisions that occur. The actor would receive a
positive evaluation (reward) for a small number of collisions
and a negative evaluation (punishment) for a large number of
collisions. Using this as the only criterion, however, could
create an actor that moves in a circular pattern. This may or
may not be the behavior the designer had in mind. An

evaluation that combines the number of collisions and the
distance traveled would create different results. Examples of
various evaluation policies are presented within §5.5.
Varying the evaluation policy is one method of controlling
the resulting motion.

4.3 Collective Learning System

Collective Learning System Theory (Bock, 1993) is an
adaptive machine learning methodology inspired by learning
automata theory (Narendra & Thathachar, 1974; Samuel,
1959; Tsetlin, 1962) and related to classical automata theory
and statistical analysis. A collective learning automaton
(CLA) is a finite state machine that modifies its internal
structure, learning the appropriate state transitions, as a result
of its interaction with the environment. An overview of a
collective learning automaton is presented in Figure 5.

Environment

Collective Learning
 Automaton

Evaluation

Compensation

Update

Selection

Response

Stimulus

Behavior

Memory

ξ

γ

History

Figure 5: Collective Learning Automaton

The CLA receives evaluations from the environment
and adjusts its behavior as a function of the rewards and
punishments it receives. The environment does not evaluate
the CLA after every interaction; a sequence of stimulus-
response pairs are saved in a history structure (η) and
evaluated together at the end of a stage. The length of a stage
is determined by a system parameter, collection length (l).
The evaluation (ξ) is received by the compensation function
which provides a method for the CLA to adjusts its view of
the evaluation. The compensation function converts ξ into a
compensated value (γ) that is used by the update process.
The update process uses γ to either increase or decrease the
probability of a stimulus-response pair from happening again.

The selection process occurs at every timestep. The
stimulus received from the environment is used to access the
CLA's state transition matrix (Figure 6). This matrix
consists of column vectors of all possible stimuli <φ1, φ2,
…, φn> and associated with each stimulus is a tuple of valid
responses <ω1, ω2, …, ωm>. A weight (wij) is stored
with each stimulus-response pair. This weight is used by the
selection process to determine the approach response for a
given stimulus.

CLS theory was chosen for this application because it
converges quickly, and updates to memory can be performed
in real-time. This model also gives the animator the ability
to make small modifications to the behavior of the actor; he
can control the motion by modifying the evaluation function
or by adjusting the learning parameters. Finally, another
appealing aspect of this model is that once the controller has
converged, rules which were learned can be extracted if desired.

 Stimulus (Φ)

Response (Ω)

φ 1 φ 2 L φn

ω 1 w11 w12 L w1n

ω 2 w21 w22 L w2n

M M M O M

ωm wm1 wm2 L wmn

Figure 6: State Transition Matrix (STM)

4.4 Run-time Loop

At every timestep, the objects within the actor's vision
field are determined and used to select a response. The
stimuli-response pair is saved in a history file and processed
at the end of the stage. The response is used to update the
actor's position and heading. Collision detection is performed
at the new location to ensure the move is valid. If the
response results in a collision, forward motion is prevented,
and the actor is placed at its previous location. At the end of
the stage, the motion sequence is evaluated, compensated, and
subsequently used to update the actor's STM. The following
is pseudo-code of the run-time loop for a learning reactive
actor:

while simulation is running do
for k = 1 to collection length do

draw world;
φi = process input stimuli;
ωj = select response(φi);
save stimuli-response(φi,ωj,ηk);
p' = update position(ωj);
check for collisions;
if (a collision occurred) p' = p;
calculate behavior statistics;

endfor
ξ = evaluate motion for stage;
γ = compensate evaluation(ξ);
update STM (γ,η);

endwhile

4.5 Performance Metrics

In order to measure the performance of the control
modules, a number of metrics were designed to monitor the
actor's ability to learn. These metrics are similar to the
evaluation functions used by the motion critic. They are
scaled to the range of [0,100] with 100 representing perfect
performance. The following "scores" are used to verify
RAVE's ability to automatically generate three navigational
tasks: obstacle avoidance (avoid), heading towards a goal
object (goto), and moving away from a threat (retreat).

During the run of each experiment, the statistics
collected depend on the navigational task being learned. For
the avoid task, the minimize-collisions (Sminc) and the
maximize-distance (Smaxd) scores are collected. For the goto

task, the time-in-goal-region score (Sin) determines how long
the actor stays within the desired goal region. Conversely,
the time-outside-threat-region score (Sout) indicates how well
the actor is staying away from a threat. The experiments are
subdivided into contests which last for 1800 timesteps (see
§6.0). The scores for each contest are computed as follows:

Sminc = 100 1− Cc

Ccmax







Smaxd= 100
Dc

Dcmax







Sin = 100
Tin

TSc − TT






Sout = 100− Sin

where Cc is the number of collisions that occurred during the
contest; Ccmax is the maximum number of collisions that
can occur; Dc is the distance traveled during the contest;
Dcmax is the maximum distance an actor can travel during a
contest; Tin is the number of timesteps the actor stays within
the desired range; TSc is the number of timesteps per
contest; and ΤΤ is the travel time, the minimum time needed
to travel to a goal or away from a threat region. Travel time
is incorporated into the equation to account for the actors
being placed at random locations at the beginning of each
contest.

5.0 Technical Approach

Five different worlds were created for training the
actors. Each world is 100x100 units and is bounded by walls.
The four worlds used to train the actors for the avoid task are
shown in Figure 7.

 (a) (b)

 (c) (d)

Figure 7: Environments for avoid
 (a) Open Field, (b) Hidden Corners,

(c) Racing Lanes, (d) Courtyard

The Open Field world contains no obstacles within its
boundaries. The Hidden Corners, Racing Lanes, and

Courtyard worlds have four internal wall obstacles. The
angles and spacing between the walls were varied to create
worlds with different characteristics. The Hidden Corners
world contains wall obstacles oriented at angles of 53˚, 0˚,
14˚, and 17˚. Two dead-end passageways were created to
observe how actors handled this situation. The Racing Lanes
world was created to see whether a world with symmetry was
easier to navigate. Each wall within this world is oriented at
14˚. Finally, the Courtyard world was created to test the
actor's ability to move through openings between walls. The
walls are oriented at 45˚ angles, and the openings are 7 units
wide.

The goto and retreat tasks used the same world (Figure
8). Five goals or threats were placed in the world, and the
target object was changed every 5 contests. The hemispheres
represent possible goals or threats within the world. Only
one object was active at any given time. The desired range to
stay next to the goal or away from the threat is depicted as a
circle surround the object.

Figure 8: Environment for
 goto & retreat

5.1 Sensor Implementation

The actors are one unit long, and each has a total
vision field of 180˚. The left, middle, and right FOVs were
set to equal angles of 60˚. For the avoid task, the vision
range was 20 units; and for the goto and retreat tasks it was
10 units in length. Initial results were obtained with the
actors traveling at a constant speed of 10 units per second.

In order to determine which objects are within the
actor's FOV, objects are first culled against the bounding
rectangle of the actor's entire vision field. Axis-aligned
bounding boxes are computed for all objects and used for an
initial overlap test. Exact intersection testing is needed only
if these areas overlap. Since an interactive update rate is
necessary, an exact edge-to-edge intersection test with the
object's polygons is not performed; geometric footprints are
used to simplify the calculation. Footprints are created by
projecting the bounding rectangle onto the ground plane. The
edges of the footprint are then checked against the field of
view triangle.

5.2 Stimulus-Response

At the beginning of each timestep a stimulant key is
created to access either the vision or bearing STM. The
vision sensor returns which objects, if any, are within the
actor's left, middle, and right FOV. The object type and
distance from the actor are used to create an index to the
actor's vision STM. Objects within the world are classified

into six categories; a 3-bit identifier is used as an object ID.
The distance to the object is quantized into four values: very
close, close, far, and very far. Distance is encoded with 2-
bits. The object and distance encoding are listed in Table 1.

Object Space (SPA) 000

Obstacle Static (OBS) 001

Obstacle Moving Towards (OBT) 010

Obstacle Moving Away (OBA) 011

Goal Static (GOS) 100

Threat Static (THS) 101

Dis tance Very Close 00

Close 01

Far 10

Very Far 11
Table 1: Object and Distance Encoding

The distance range is quantized in a linear manner and
the distance bits (dbits) are set as follows:

dbits=

00 if distance ≤
1
4

v

01 if
1
4

v < distance ≤
1
2

v

10 if
1
2

v < distance ≤
3
4

v

11 otherwise
















where distance is the distance from the actor to the object and
v is the length of the vision range. The object ID and
distance code for the left, middle, and right FOV are
concatenated to form a 15-bits key. The stimulant is used to
retrieve the respondent tuple from the vision STM (Figure 9).

Left FOV Middle FOV Right FOV
SPA OBT - Close OBA - Very Far

000-00 010-01 011-11

000000100101111

φ 1 φ k φ n

ω1 w11 w1k w1n

ω2 w21 w2 k w2 n

M M M M

ωm wm1 wmk wmn

Figure 9: Sensors to STM Index

The stimulant for the bearing STM is calculated in a
similar manner. The bearing sensor returns the azimuth and
distance from the goal or threat object. The azimuth is
quantized into eight values: N, NW, W, SW, S, SE, E, and
NE. This value is encoded with a 4-bit identifier. The
distance from the object is again quantized and encoded with
2-bits. The distance encoding is different for the bearing
sensor:

dbits=

00 if distance ≤ d

01 if d < distance ≤
d + r

2

10 if
d + r

2
< distance ≤ r

11 otherwise















where distance is the distance from the actor to the goal or
threat; d is the desire range; and r is the sensing range. The
azimuth and distance code are concatenated to form a 6-bit
stimulant key.

The response for both STMs consists of a heading
adjustment in the range of [+45˚, -45˚]. For the result
presented within this paper the response range, Φ = {+45˚,
+30˚, +20˚, +10˚, 0˚, -10˚, -20˚ -30˚, -45˚}.

5.3 Evaluation and Compensation

At the end of every stage, actors receive an evaluation,
ξ, in the range of [-1,1]. The actors are evaluated when a
collision occurs and after every 20 timesteps. With this
parameter setting, actors receive an evaluation approximately
every second, assuming 20 frames per second (fps).

To train the actors for the avoid task, and to create
behavior which minimizes the number of collisions, the
evaluation ξminc is computed as follows:

ξminc =
TSs

l
 if Cs = 0

−1 otherwise










where TSs is the number of timesteps without a collision
and l is the collection length. As mentioned previously, one
way of avoiding collisions is to travel in a circle. This is
usually not the desired behavior, so an evaluation function
was created to encourage straight movement. The evaluation
function used to maximize distance traveled, (ξmaxd), is
computed as follows:

ξmaxd=

Ds

Dsmax
 if Ds ≥ 3

4
Dsmax

− Dsmax− Ds

Dsmax
 otherwise









where Ds is the distance traveled during the stage and Dsmax
is the maximum distance the actor can travel, in a straight
line, during the stage.

A number of policies can be used to compute the final
evaluation (ξ). Informal experiments where the average of
ξminc and ξmaxd was used, lead to poor performance.
Stages where the actor avoided all obstacles were not rewarded
appropriately when the distance criteria was not met.
Conversely, the actor was rewarded for mediocre collision
avoidance when it was able to travel a great distance, while
bumping into things. A dynamic evaluation function was
ultimately used; the actor was trained to first avoid obstacles
and then encouraged to maximize its distance traveled. The
final evaluation function used for the avoid task is:

ξ =
ξminc if ξminc< 1

ξmaxd otherwise







For the goto task, in order to move towards a goal
region, the actor must minimize its distance from the goal
object. The evaluation function used to decrease the distance
from the goal (ξdd,) is:

ξdd =

∆Dtowards

Dsmax
 if Dse> r

1 otherwise








where ∆Dtowards = Dss - Dse;; Dss is the distance from the
goal at the start of the stage; and Dse is the distance from the
goal at the end of the stage. For this task, the actor was
trained to first avoid obstacles and then to decrease its distance
from the goal until it was inside the goal region. Once inside
the goal region, the actor should minimize its change in
distance from the goal. This evaluation (ξmin∆d) encourages
the actor to circle the goal:

ξmin∆d = 1− 2
∆D

Dsmax







where ∆D = |Dss - Dse. |. The final evaluation function used
for the goto task is:

ξ =

ξminc if ξminc< 1

ξdd if Dse≥ r

ξmin∆d if ξmin∆d < 1

ξmaxd otherwise
















Finally, for the retreat task, the objective is to train the
actors to stay away from the threatening object. The
evaluation for this task (ξid,) encourages the actor to increase
the distance between itself and the threat object.

ξid =

∆Daway

Dsmax
 if Dse< r

1 otherwise








where ∆Daway = Dse - Dss . The dynamic evaluation
function used for retreat trains the actor to first avoid
collisions, then maximize its distance from the threat, and
once outside the threat region, maximize its distance traveled.
The final evaluation function used for the goto task is as
follows:

ξ =

ξminc if ξminc< 1

ξid if Dse< r

ξmaxd otherwise













For all initial experiments γ = ξ; evaluations were
used directly in the update function. Investigating the affects
of the compensation function on the "personality" of the actor
is an area that will be explored in future work.

5.4 Update Function

The compensation value (γ) is applied to the weights
of the stimulus-response pairs within the history structure
(η). The update function increases or decreases the strength

of the stimulus-response pair in the actor's vision or bearing
STM. Again, a number a policies can be used. An
elementary update function simply adds γ to the initial
weight:

′w ij = max(γ + wij ,wc) if γ ≥ 0

′w ij = min(γ + wij ,wf) otherwise

where wij is the weight associated with stimulus i and
response j ; wc is the weight ceiling; and wf is the weight
floor. This update policy works well when the environment
is static or changes very little. During informal
experimentation, it was found that this method is not
appropriate for this application. The actor could learn a sub-
optimal navigational strategies early in the match, and when
it was in a region of the world where the strategy was not
appropriate (i.e. a sharper turn was necessary), it would need
to "unlearned" erroneous information. Discovery and
extinction factors are used within the update function to adjust
for situations like this. When using the discovery and
extinction values, the increase or decrease in weight is
proportional to the distance from the weight floor or ceiling.
With this policy, sub-optimal strategies quickly lose their
strength and new responses will be tried. The update policy
used for this work is as follows:

′w ij = δ (wc − wij)(γ + wij) if γ ≥ 0

′w ij = ε (wij − wf)(γ + wij) otherwise

where δ is the discovery factor and ε is the extinction factor.

5.5 Selection Function

The selection policy used is MTDS/RA [Maximum
Thresholded Deterministic Selection with Random
Arbitration] (Bock, 1993). The bounded weights within the
respondent tuple are mapped to pseudo-probabilities and the
respondent with the largest probability, within a threshold
value, is selected. If two or more respondents fall within the
selection range, a respondent within the range is randomly
picked.

5.6 Behavior Arbitration

For the goto and retreat tasks, a heuristic is used to
determine how to alternate between collision avoidance using
the vision STM and directed movement using the bearing
STM. If an object is within the actor's vision field, a
pending collision is assumed, and the vision STM is used to
circumvent the collision. If no pending collisions are
identified, the bearing STM is used to provide the actor with
information concerning the goal or threat object. Table 2
provides a summary of the various environment parameters
used in this work.

6.0 Results

A total of twelve experiments were run to test the
performance of RAVE. Scores (§4.5) were computed at the
end of every contest and a total of 50 contests were executed
for each experiment. To provide them with an opportunity to
learn a variety of navigational strategies, the actors were
randomly placed at a new position and heading at the
beginning of every contest.

Size of World 100x100 units
Number of Actors 1 to 5
Number of Wall Obstacles 4 to 8
Number of [Goals | Threats] 5
Switch [Goal | Threat] after 5 contests
Speed of Actor 10 units per sec
Vision Range (v) 10 or 20 units
Left FOV Angle (α) 60˚
Right FOV Angle (β) 60˚
Middle FOV Angle (ψ) 60˚
Sensing Range (r) 30 units
Desired Range (d) 10 units

Table 2: Environment Conditions

To validate the avoid task, actors were trained in the
four worlds described in §5.0. One set of experiments was
run with only one actor and another set with a total of five
actors in the world. All actors were adaptive, and each had its
own memory structure. Figure 10 demonstrates typical
navigational strategies which were learned; the path the actor
took through the environment is traced, and the S represents
the start of the path. Actors were able to converge to an
optimal strategy quickly, and the graphs in Figure 12
demonstrate near perfect collision avoidance occurring as early
as contest number 5 (after 9000 timesteps). It took a longer
period of time to learn to navigate the worlds with internal
wall obstacles. The periodic decline in performance, shown
in Figure 12b, represents contests where the actor was placed
at a new location and needed to learn how to navigate that
particular area of the world.

S

S

S

S

Figure 10: Obstacle Avoidance Behavior

For the goto task, one world was used. Again, one
experiment was run with only one actor and another with five
actors in total. Figure 11a provides an example of a typical
goto strategy which was learned. The graphs in Figure 13
plots the performance metrics for this task. Figure 13a was
an experiment performed with only one actor within the
world, and Figure 13b demonstrates the results when five
actors were within the world. Remaining within the desired
range to the goal is more difficult when other actors are
present. Collision avoidance takes precedence over staying
within the desired range, and the lower scores in the Sin score

represent times when the actor needed to stay outside the
region to avoid a collision.

The world used to verify the retreat task was similar,
except that the goal objects are now treated as threats. Again,
one experiment was run with only one actor and another with
five actors. A screen shot of a path taken when retreating
from a threat is shown in Figure 11b, and the performance
metrics are presented in Figure 14. Again, the actors were
trained to avoid collisions, leave the threatening area, and
once outside the range of the threat, maximum their distance
traveled.

Stage 20 Timestep
Contest 90 Stages
Match 50 Contests

Table 3: Experiment Parameters

Experiments were run on a SGI Indigo2 Extreme with a
150Mhz R4000 MIPS RISC processor and 64MB of RAM.
RAVE can be run interactively or in batch mode. When run
interactively, with a 200x200 display window, 72 fps can be
achieved while the actors are learning. A contest takes
approximately 25 seconds, and a match can be completed
within 21 minutes. In batch mode, a contest takes 5 seconds,
and a match is finished in 4 minutes.

S

S

(a) (b)
Figure 11: Examples of (a) goto and (b) retreat

7.0 Conclusions

This adaptive methodology for reactive actor design and
control can be used to aid in the building and controlling of
reactive actors. The robustness of functional control units is
improved when an adaptive approach is used, because the
actors can modify their behavior during run-time. The
usefulness of this approach was demonstrated with three
different navigational tasks: avoid, goto, and retreat.
Evaluation functions for assessing the quality of the motion
and performance metrics for monitoring the actor's motions
were designed.

8.0 Future Work

RAVE will be extended to include additional tasks
within the motion repertoire. It is hoped that a
comprehensive set of navigational tasks can be designed so
that all types of navigational movement can be easily created.
Additional experiments will be performed to explore the
robustness of RAVE. The design of a complexity metric
which assigns a numeric value to the difficulty of navigating
through a specific virtual world would provide a quantitative
measurement for comparing reactive models. Finally,
additional experiments are needed to determine how various

evaluation functions and learning parameters affect the
characteristics of the resulting motion.

Acknowledgments

This work was funded in part by the Tactical Electronic
Warfare Division (TEWD) of the Naval Research Laboratory
and by the Office of Naval Research.

References

Blumberg, B. (1994). Action-Selection in Hamsterdam:
Lessons from Ethology. In J.-A. Meyer, H. L. Roitblat, &
S. Wilson W. (Eds.), From Animals to Animats: Proceedings
of the Third International Conference on Simulation of
Adaptive Behavior (SAB94) Cambridge, MA: MIT Press.

Blumberg, B. M., & Galyean, T. A. (1995). Multi-Level
Direction of Autonomous Creatures for Real-Time Virtual
Environments. SIGGRAPH'95, 47-54.

Bock, P. (1993). The Emergence of Artificial Cognition: An
Introduction to Collective Learning. River Edge, NJ: World
Scientific.

Gritz, L., & Hahn, J. K. (1995). Genetic Programming for
Articulated Figure Motion. Journal of Visualization and
Computer Animation, 6, 129-142.

Horswill, I. (1992). A simple, cheap, and robust visual
navigation system. In J. A. Meyer, H. L. Roitblat, & S.
Wilson W. (Eds.), From Animals to Animats 2: Proceedings
of the Second International Conference on Simulation of
Adaptive Behavior (SAB92) (pp. 129-136). Cambridge, MA:
MIT Press.

Langton, C. G. (Ed.). (1994). Artificial Life IV: Proceedings
of the Workshop on Artificial Life. Cambridge, MA: MIT
Press.

Maes, P. (1992). Behavior-Based Artificial Intelligence. In J.
A. Meyer, H. L. Roitblat, & S. W. Wilson (Eds.), From
Animals to Animats 2: Proceedings of the Second
International Conference on Simulation of Adaptive Behavior
(SAB92) (pp. 2-10). Cambridge, MA: MIT Press.

Magnenat-Thalmann, N., & Thalmann, D. (1991). Synthetic
Actors in Computer-Generated 3D Films. New York:
Springer-Verlag.

Narendra, K. S., & Thathachar, M. A. L. (1974). Learning
Automata - A Survey. IEEE Transations on Systems, Man,
and Cybernetics, 14, 323-334.

Ngo, J. T., & Marks, J. (1993). Spacetime Constraints
Revisited. SIGGRAPH'93, 343-350.

Perlin, K. (1995). Real Time Responsive Animation with
Personality. IEEE Transactions on Visualization and
Computer Graphics, 1(1).

Perlin, K., & Goldberg, A. (1996). Improv: A System for
Scripting Interactive Actors in Virtual Worlds.
SIGGRAPH96, 205-216.

Reynolds, C. W. (1987). Flocks, Herds, and Schools: A
Distributed Behavioral Model. SIGGRAPH'87, 25-34.

Reynolds, C. W. (1988). Not Bumping Into Things. In
Physically Based Modeling Coursenotes Atlanta, Georgia:
SIGGRAPH'88.

Samuel, A. L. (1959). Some studies in machine learning
using the game of checkers. IBM Journal of Research and
Development, 3, 211-229.

Sims, K. (1994). Evolving Virtual Creatures.
SIGGRAPH'94, 15-22.

Sun, H., & Green, M. (1993). The Use of Relations for
Motion Control in an Environment With Multiple Moving
Objects. Graphics Interface'93, 209-218.

Tsetlin, M. L. (1962). On the Behavior of Finite Automata
in Random Media. Automation and Remote Control, 22,
1210-1219.

Tu, X., & Terzopoulos, D. (1994). Artificial Fishes:
Physics, Locomotion, Perception, Behavior. SIGGRAPH'94,
43-50.

van de Panne, M., & Fuime, E. (1993). Sensor-Actuator
Networks. SIGGRAPH'93, 335-342.

Wilhelms, J., & Skinner, R. (1990). A "Notion" for
Interactive Behavioral Animation Control. IEEE Computer
Graphics and Applications, May 1990, 14-22.

Zeltzer, D. (1985). Towards an integrated view of 3-D
computer animation. The Visual Computer, 1(4), 249-259.

Avoid (Open Field)

Contest

S
co

re

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46

Sminc Smaxd

Avoid (Hidden Corners)

Contest

S
co

re

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46

Sminc Smaxd

(a) (b)
Figure 12: Avoid Performance Metrics

Goto / Avoid

Contest

S
co

re

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46

Sminc Sin

Goto / Circumvent

Contest

S
co

re

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46

Sminc Sin

(a) (b)
Figure 13: Goto Performance Metrics

Retreat / Avoid

Contest

S
co

re

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46

Sminc Smaxd Sout

Retreat / Circumvent

Contest

S
co

re

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46

Sminc Smaxd Sout

(a) (b)
Figure 14: Retreat Performance Metrics

