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creation of autonomous actors (Magnenat-Thalmann &
Abstract Thalmann, 1991; Zeltzer, 1985), and advancements in virtuz
environment technology makes improvement to methods fo

To address the complex and dynamic conditions of a virtue\ﬂirtual actor creation and control both timely and crucial.

; g : The objective of this work is to develop an adaptive
environment, computer animation researchers are applyi - . : g
methods similar to the ones used in artificial life to creat ntrol technique to improve the creation and run-time contro

reactive actors. A reactive actor is a control entity whos f reactive actors. The system presented within this pape

behavior is based on the sensory information it receives fro AVE t(Rteacttrl]ve Actors% |'n Vlrftual _Efnvwonm(tarrts), :
the environment. The system presented within this pape emonstrates the Successiul use of a reinforeement earir
RAVE (Reactive Actors in Virtual Environments) odel to automatically generate controllers for typical 2D
demonstrates the successful use of a reinforcement learni V(;?ati'g ?r?tletarlglt(:d W%? Ila?cr};gsarlt_:ﬁ?ggllncgon?r){)sllt:rmt(s) <(:(r':eLaStg
model to automatically generate controllers for typical 2D y J - ;

= 7 ; _..——control modules that quickly converge on optimal
navigational tasks. This is an improvement to existin vigational strategies. This model can also be used fc
methods because it requires no programming, can be used '

: - ; aptation, during run-time, to cope with changing
?ux‘?tri'r?]tg Ofctglslléiii\z/igdutagerncir?gtrg/stgr?wgth(@Es%d?r?éodr;nig nvironment conditions. In reactive actor design, adaptatio

integrated with a hierarchical controller to create contro as previously been explored only as a pre-processing ste

; - Y his work demonstrates why learning, during run-time, is a

modules that quickly converge on optimal navigational

strategies. Five different worlds are created to train aanefuI and necessary component.

evaluate the actors. Performance metrics and results are )

presented for three different navigational tasks: obstaclé-0 Problem Domain

avoidance gvoid), heading towards a goal objegb(o), and

moving away from a threatetreay). Traditionally, a combination of hierarchical control and
procedural methods have been used in reactive actor desi

CR Categories: G.3 [Probability and Statistics]: (Blumberg & Galyean, 1995; Perlin & Goldberg, 1996; Tu &

Probabilistic Algorithms; 1.2.6 [Artificial Intelligence]: Terzopoulos, 1994; Zeltzer, 1985). Hierarchical approache

Learning; 1.3.7 [Computer Graphics]: Three-Dimensionalare chosen because they lead to reusable, extendible, a

Graphics and Realism - Animation, Virtual Reality. responsive control models. A generic hierarchical model it
presented in Figure 1. The left column lists the associate

Additional Keyword: Behavioral Modeling, Collective level of control abstraction (Zeltzer, 1985), and the right

Behavior, Virtual Actors, Learning Automaton. enumerates the input to each subsystem. In brief, senso
receive world information and possibly task level commands
1.0 Introduction from the animator. The reasoning engine interprets the

sensory information and selects an appropriate task from th
Designing motion control algorithms for charactersaCtor's motion repertoire. The functional control units invoke

within vinual environments presents new chalienges 10PIOCECLTE) SOUE) Ll Lo Schleye T sk, Finall, e
computer animation researchers. A virtual environmen P

differs from a classical frame based animation system main pribute(s) of the actor to change.

o 2 : - Researchers in the fields of Artificial Life (Langton,
in its non-deterministic nature. Kinematic methods, such : : .
key framing, are not effective due to the unpredictable 994) and Adaptive Behavior (Maes, 1992) are also intereste

movement of the user. Unlike creating a one minute motio ﬁ(tjvs:gr?lt?]%E:ju(;[gir(];]%moofuasukt)grl]r:)grﬁbu-ghgé%r?trg ;?%n%/hz'rgggirg'ne
sequence for a computer generated scene, the moti : ; ) ;
generated for a virtual environment must be valid for a tonomous actors, particularly in the low-level architectural

unspecified length of time. To address these complex a sign. At a high level, however, the focus is less similar

dynamic conditions, actors should respond to events withi e ;\hg f'etld of com{)utert ac;n_matlon, t?e esEencet IS ttr;f
the environment as they occur and not simply follow pre: ory. Animators are Interested in generating characters
specified scripts are expressive and have consistent personalities. While

A reacie actors a control ety that autonomously ESTT SVE1of autonomy 1S destec: te animator muct s
chooses its behavior based on information it receives from t

; . g ; ages of design.
environment and its internal state. Within the field of Given this as the high level research goal, one car

computer animation, there has long been an interest in tr?gentify at least six major research areas in reactive actc
design. Finding the balance betweamtonomyand
directability is the first essential component. Questions

* The Naval Research Laboratory, 4555 Overlook Ave. SW, concerning when, where, and how much autonomy is
Code 5707, Washington, DC 20375 necessary and when, where, and how an animator will direc

T The George Washington University, Department of an autonomous actor remain to be answered (Blumberg ¢
EE&CS, 801 22nd Street NW, Washington, DC 20052  Galyean, 1995). Methods for creatiegpressive motion




(Perlin, 1995) are still being explored. The actor shouldvith these models is believable and enjoyable to watch
exhibit a consistent personality and the animator should bdowever, the adaptation of the control modules has strictly
able to influence its personality directly and indirectliyask  been applied as a preprocessing step. Researchers have
decompositionis another important area. Determining explored issues related to run-time adaptation. Evolutionar
exactly how an animator breaks down a complex task intmethods are useful for globally exploring large search space
primitive modules remains to be solveBlehavior arbitration  but not for a localize search. Since animators also desire
involves combining the primitive tasks to create complexariety in behavior, evolutionary techniques are ideal for
behavior. Issues in behavior selection, smooth transitioningxploring the entire controller space and finding a specific
between tasks, and methods for avoiding "dithering'style of motion. They fail to offer assistance, however, wher
(Blumberg, 1994) must be addressed. Finally, the exact rolesinor modifications to a control algorithm are needed.
of learning and evolutionary methodwithin the design of Alternative methods must be used when incrementa
the control units must be identified. Are they mutuallyimprovements or run-time adaptation is desired.

exclusive design decisions, or can they compliment each other ~ The system presented within this paper uses al
in the creation and control phases? adaptive machine learning methodology to automatically
generate functional control units for typical 2D navigational
tasks. This is an enhancement to existing methods used fi

[ Aosvaction tevel | | [ Remewvencior | | [ mpuoam ] navigation because it requires no programming, can be use
for a variety of tasks, and the control algorithms adapt during

run-time. The method has been used for obstacle avoidanc

movement towards a goal, and movement away from a threa

Agent Abstraction i i Actor's personality,
¢} Reasoning Engine J evint-actiog pairls,
task oriente oals. H
i ’ 4.0 RAVE Architecture

Functional Abstacton | [ otion Repertoire |tt— Funcional Control Uni] An overview of the RAVE architecture is presented in

Figure 2. As with other reactive systems, sensory
information is extracted from the world, passed to the actor
rocedural Abstraction | | Control Algorithms Procedural Control Unit and used to determine the actor's behavior. The uniqueness
Procedural Abstract d d to det th tor's beh Th
ies i i i itic sub-
] RAVE lies in the design of the motion critic sub-system and
Y the addition of an adaptive learning module.
Effectors
‘ ) Motion
. - Evaluation Collective
v . . Motion Critic — Learning
Structural Abstraction Geometric Model | HleraE%I?]lgta}laisé[[g?lure, System
physical attributes.
A A
Figure 1: Hierarchical Control Model Ststics stimulant | Respondent
A subset of these research problems is addressed within :
this work. A bottom-up approach is taken, and the individual Sensors
control units within the actor's motion repertoire are the focus N
H 'S . . Simulation Syste Reactive Acto
of this paper. Specifically, the problem of designing and Effectors
controlling a motion repertoire for obstacle avoidance and 2D
navigation is investigated. Issues concerning the evaluation | .. emwronmen
of motion characteristics and the role of learning in control - -
module creation are examined. Figure 2: RAVE Architecture
3.0 Related Work 4.1 Sensors and Effectors

_ . o Within the literature, two alternative approaches to
~ Motion repertoires for navigational tasks have beersynthetic vision have been explored; object (or symbolic)
defined procedurally with standard program languagepased (Reynolds, 1988) and image based (Horswill, 1992
(Reynolds, 1987; Sun & Green, 1993; Tu & Terzopoulosyision models have both been used. RAVE uses a symboli
1994) and with dataflow networks (Wilhelms & Skinner, vision sensor. This was chosen over an image base
1990). Programming expertise is required when a procedurapproach for a number of reasons. One advantage is th
method is used and creating algorithmic descriptions for eaagkact information can be conveyed to the actor; algorithms fo
primitive task can be tedious and time consuming. Reynoldsietermining object type, velocity, distance, and color are no
seminal work in behavioral modeling (Reynolds, 1987) wasiecessary. Computing symbolic features also requires littl:
initially presented as a means of reducing the tediumadditional overhead since many object attributes are alreac
associated with scripting the paths of many actors. Thigept in a database for rendering purposes. Finally,
general model has been modified slightly over time busymbolic approach can be easily extended. Additional feature
remains the standard method for obstacle avoidance and losan be incorporated quickly by appending attributes to the
level navigation. sensory input stream.

Evolutionary techniques and standard search methods Within this work, three vision channels provide
have been used to automatically generate task level modulggormation about the closest object in the left, middle, anc
for articulated figure motion (Gritz & Hahn, 1995; Ngo & right field of view (FOV); object type, distance, and direction
Marks, 1993; Sims, 1994; van de Panne & Fuime, 1993)nformation are provided. Parameters for the vision module
The results achieved are impressive and the motion generated



include the angle for each field of view triangte 8, andy)  evaluation that combines the number of collisions and the
and the length of the vision rangg.( See Figure 3. distance traveled would create different results. Examples ¢
various evaluation policies are presented within 85.5.
Varying the evaluation policy is one method of controlling
the resulting motion.

Middle FOV

4.3 Collective Learning System

Collective Learning System Theory (Bock, 1993) is an
adaptive machine learning methodology inspired by learning
automata theory (Narendra & Thathachar, 1974; Samue
1959; Tsetlin, 1962) and related to classical automata theor
and statistical analysis. A collective learning automaton
(CLA) is a finite state machine that modifies its internal
Figure 3: Vision Sensor structure, learning the appropriate state transitions, as a resi
of its interaction with the environment. An overview of a

_.Moving towards a goal or away from a threat requiregollective learning automaton is presented in Figure 5.
additional information. The bearing sensor is used to receive

azimuth and distance information about a goal or threat Environment
object. The user can vary the desired radyarid the sensing g
range ). The desired range will determine how close to a
goal or how far from a threat the actor should be. The
sensing range determines at what range the actor car

History I I Memory I

Right FOV

Collective Learning
Automaton

differentiate distances. For example, the bearing sensor in
Figure 4 would return a value of "NW and beyond sensing
range". |
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\[/3 Figure 5: Collective Learning Automaton

The CLA receives evaluations from the environment
and adjusts its behavior as a function of the rewards an
punishments it receives. The environment does not evalua
the CLA after every interaction; a sequence of stimulus-

Sw SE response pairs are saved in a history structure and
—— evaluated together at the end of a stage. The length of a sta
S is determined by a system parameter, collection lerigth (
Figure 4: Bearing Sensor The evaluation§) is received by the compensation function

which provides a method for the CLA to adjusts its view of
An actor is represented with a position vecioy énd  the evaluation. The compensation function convieitgo a
an azimuth §). Each actor travels at a constant speed in theompensated valugy)(that is used by the update process.
direction of its heading vectoh). The effector modifies the The update process usgso either increase or decrease the
heading vector by requesting a changé.inThis turns the probability of a stimulus-response pair from happening again
actor to the left or to the right. The selection process occurs at every timestep. Th
4.2 Motion Critic stimulus received from the environment is used to access tt
: CLA's state transition matrix (Figure 6). This matrix
The motion critic receives behavioral statistics fromconsists of column vectors of all possible stimudi <¢p,
the simulation system and assesses the quality of the motion., ¢h> and associated with each stimulus is a tuple of valic
The criteria used to evaluate the motion may remain constafgsponses &1, w2, ..., wm>. A weight (ijj) is stored
or vary over time. The assessment is sent to the Collectiwgith each stimulus-response pair. This weight is used by th
Learning Systems (CLS) as an evaluation. selection process to determine the approach response for
Computing an evaluation requires assigning agiven stimulus.
guantitative measurement to the motion sequence. This is CLS theory was chosen for this application because i
not always straightforward task. For example, one vali¢onverges quickly, and updates to memory can be performe
measurement for obstacle avoidance would be to count the real-time. This model also gives the animator the ability
number of collisions that occur. The actor would receive &% make small modifications to the behavior of the actor; he
positive evaluation (reward) for a small number of collisionscan control the motion by modifying the evaluation function
and a negative evaluation (punishment) for a large number of by adjusting the learning parameters. Finally, anothe
collisions. Using this as the only criterion, however, couldappealing aspect of this model is that once the controller he
create an actor that moves in a circular pattern. This may épnverged, rules which were learned can be extracted if desire
may not be the behavior the designer had in mind. An



task, the time-in-goal-region scor§{) determines how long

Stimulusp( the actor stays within the desired goal region. Conversely
the time-outside-threat-region scofg (¢ indicates how well
0 Q- [0} the actor is staying away from a threat. The experiments ai
subdivided into contests which last for 1800 timesteps (se
| Wa Wi e W §6.0). The scores for each contest are computed as follows:
o _ G C
Response®) | w: | Wa Wz -+ Wan Sm'nc_loog‘l ComaxE
0 Dc O
Sm d=100F
o cmaxa
O Tin O
(O Wm1 Wm2 Wmn Sn =100
" s -TTH
Figure 6: State Transition Matrix (STM) Sout =100— Sn
4.4 Run-time Loop whereCg is the number of collisions that occurred during the

contest;Ccmax is the maximum number of collisions that
At every timestep, the objects within the actor's visioncan occur;D¢ is the distance traveled during the contest;
field are determined and used to select a response. TDgmaxis the maximum distance an actor can travel during ¢
stimuli-response pair is saved in a history file and processasbntest;Tjn is the number of timesteps the actor stays within
at the end of the stage. The response is used to update the desired rangeT S is the number of timesteps per
actor's position and heading. Collision detection is performedontest; and’'T is the travel time, the minimum time needed
at the new location to ensure the move is valid. If theo travel to a goal or away from a threat region. Travel time
response results in a collision, forward motion is preventeds incorporated into the equation to account for the actor:

and the actor is placed at its previous location. At the end @feing placed at random locations at the beginning of eac
the stage, the motion sequence is evaluated, compensated, aofdtest.

subsequently used to update the actor's STM. The following
is pseudo-code of the run-time loop for a learning reactivg o Technical Approach

actor:
) ) o ) Five different worlds were created for training the
while simulation is runninglo actors. Each world is 100x100 units and is bounded by walls
for k = 1to collection lengthdo The four worlds used to train the actors for dweidtask are

draw world: shown in Figure 7.
@ =process input stimuli;
wj =select responsg); / —_—
save stimuli-responsg(aj, nk);

p' = update positiong);
check for collisions;
if (a collision occurred) p' = p; \
calculate behavior statistics;
endfor
& =evaluate motion for stage;
y =compensate evaluatiof){ k
update STM¥n);

(a) (b)
endwhile

4.5 Performance Metrics /

In order to measure the performance of the contr
modules, a number of metrics were designed to monitor t
actor's ability to learn. These metrics are similar to th
evaluation functions used by the motion critic. They ar
scaled to the range of [0,100] with 100 representing perfe
performance. The following "scores" are used to verif
RAVE's ability to automatically generate three navigational © )

tasks: obstacle avoidancavpid), heading towards a goal . ) . .

object goto), and moving away from a threaé(reat). Figure 7: Environments favoid
During the run of each experiment, the statistics (@) Open Field, (b) Hidden Corners,

collected depend on the navigational task being learned. For (c) Racing Lanes, (d) Courtyard

the avoid task, the minimize-collisionsStinc) and the The Open Field world contains no obstacles within its
maximize-distanceSmaxd scores are collected. Fortheto  pgyndaries. The Hidden Corners, Racing Lanes, an




Courtyard worlds have four internal wall obstacles. Thanto six categories; a 3-bit identifier is used as an object ID
angles and spacing between the walls were varied to creafbe distance to the object is quantized into four values: ver
worlds with different characteristics. The Hidden Corner<lose, close, far, and very far. Distance is encoded with 2
world contains wall obstacles oriented at angles of 53°, Ohits. The object and distance encoding are listed in Table 1.
14°, and 17°. Two dead-end passageways were created to

observe how actors handled this situation. The Racing Lanes| gpject Space (SPA) 000
world was created to see whether a world with symmetry was -
easier to navigate. Each wall within this world is oriented at Obstacle Static (OBS) 001
14°. Finally, the Courtyard world was created to test the Obstacle Moving Towards (OBT)| 010
actor's ability to move through openings between walls. The Obstacle Moving Away (OBA) 011
mactil(las are oriented at 45° angles, and the openings are 7 units Goal Static (GOS) 100
Thegotoandretreattasks used the same world (Figure Threat Static (THS) 101
8). Five goals or threats were placed in the world, and the | Distance | Very Close 00
target object was changed every 5 contests. The hemisphere$ Close 01
represent possible goals or threats within the world. Only
one object was active at any given time. The desired range to Far 10
stay next to the goal or away from the threat is depicted as a Very Far 11

circle surround the object. Table 1: Object and Distance Encoding

The distance range is quantized in a linear manner an
the distance bits (dbits) are set as follows:

o if distance < %v

d
1if1v<distances lv
dbits= ] 2
1 . 3
SLO if =v<distances —v
0 2 4

F11 otherwise

wheredistanceis the distance from the actor to the object and
v is the length of the vision range. The object ID and
distance code for the left, middle, and right FOV are
concatenated to form a 15-bits key. The stimulant is used t
retrieve the respondent tuple from the vision STM (Figure 9).

Figure 8: Environment for
goto & retreat

5.1 Sensor Implementation
The actors are one unit long, and each has a total Lefst;f)V I\gg(le_eclligz og,ig.h\t,fogar
vision field of 180°. The left, middle, and right FOVs were 0000 5I001 011-1r1y
set to equal angles of 60°. For theoid task, the vision
range was 20 units; and for tgeto andretreat tasks it was
10 units in length. Initial results were obtained with the
actors traveling at a constant speed of 10 units per second. 000000100101111
In order to determine which objects are within the
actor's FOV, objects are first culled against the bounding
rectangle of the actor's entire vision field. Axis-aligned e | o |o
bounding boxes are computed for all objects and used for an
initial overlap test. Exact intersection testing is needed only R I A
if these areas overlap. Since an interactive update rate is @ | wa | wee [ wen
necessary, an exact edge-to-edge intersection test with the
object's polygons is not performed; geometric footprints are
used to simplify the calculation. Footprints are created by o | we | owe | i
projecting the bounding rectangle onto the ground plane. The

edges of the footprint are then checked against the field of
view triangle.

5.2

Figure 9: Sensors to STM Index

The stimulant for the bearing STM is calculated in a
. . . _similar manner. The bearing sensor returns the azimuth ar
At the beginning of each timestep a stimulant key isjistance from the goal or threat object. The azimuth is
created to access either the vision or bearing STM. Thguantized into eight values: N, NW, W, SW, S, SE, E, anc
vision sensor returns which objects, if any, are within theNgE, This value is encoded with a 4-bit identifier. The
actor's left, middle, and right FOV. The object type andjistance from the object is again quantized and encoded wit

distance from the actor are used to create an index to thepits. The distance encoding is different for the bearinc
actor's vision STM. Objects within the world are classifiedsensor:

Stimulus-Response



For thegoto task, in order to move towards a goal

00 if distance< d region, the actor must minimize its distance from the goa
U o object. The evaluation function used to decrease the distan
Hb1 ifd < distance < from the goal &qg,) is:
dbits= 7
L d+r . DADtowards .
(10 if —— <distance< r = if Dse>r
O 2 Edd =[] Dsmax
511 otherwise Bl otherwise

wheredistanceis the distance from the actor to the goal orWhereADiowards= Dss- Dse; Dssis the distance from the
threat;d is the desire range; amdis the sensing range. The 90al at the start of the stage; @Dgeis the distance from the
azimuth and distance code are concatenated to form a 6-8@al at the end of the stage. For this task, the actor we
stimulant key. trained to first avoid obstacles and then to decrease its distan
The response for both STMs consists of a headin§ oM the goal until it was inside the goal region. Once inside
adjustment in the range of [+45°, -45°]. For the resulth€ goal region, the actor should minimize its change ir
presented within this paper the response rardye,{+45°,  distance from the goal. This evaluatidininad ) encourages

+30°, +20°, +10°, 0°, -10°, -20° -30°, -45°}. the actor to circle the goal:
o O0AD [
5.3 Evaluation and Compensation gminAd _1_2$smaxﬁ

At the end of every stage, actors receive an evaluatiog,narepD =
¢, in the range of [-1,1]. The actors are evaluated when
collision occurs and after every 20 timesteps. With thi
parameter setting, actors receive an evaluation approximately CEmincif Eminc<1

O

Dss- Dse |- The final evaluation function used
Si"br thegototask is:

every second, assuming 20 frames per second (fps).
To train the actors for thavoid task, and to create

behavior which minimizes the number of collisions, the Eﬁdd if Dse>r
evaluationémincis computed as follows: &=
TS . B EEminAd if Eminad <1
B if Cs=0
§mine=10 gfmaxdotherwise

0 .
g1 otherwise . o :
Finally, for theretreattask, the objective is to train the

where TSs is the number of timesteps without a collisionactors to stay away from the threatening object. The
andl is the collection length. As mentioned previously, oneevaluation for this taské(d,) encourages the actor to increase
way of avoiding collisions is to travel in a circle. This is the distance between itself and the threat object.

usually not the desired behavior, so an evaluation function

was created to encourage straight movement. The evaluation CADaway if Dse<r
function used to maximize distance traveleéinfxd), is &id = DD Dsmax
computed as follows: _
BL otherwise
O Ds . 3 ) )
D if Ds > 1 Dsmax where ADgway = Dse- Dss. The dynamic evaluation
Emaxd= ]~ omax function used’ forretreat trains the actor to first avoid
0. Dsmax=Ds o wise collisions, then maximize its distance from the threat, anc
O  Dsmax once outside the threat region, maximize its distance travele

. . ) The final evaluation function used for tly®dto task is as
whereDg is the distance traveled during the stage@8ghax  follows: o

is the maximum distance the actor can travel, in a straight

line, during the stage. Emincif éminc<1
A number of policies can be used to compute the final 0

evaluation £). Informal experiments where the average of O, .

Eminc andémaxd was used, lead to poor performance. ¢ = [Xid if Dse<r
Stages where the actor avoided all obstacles were not rewarded g

appropriately when the distance criteria was not met. Hémaxdotherwise

Conversely, the actor was rewarded for mediocre collision
avoidance when it was able to travel a great distance, while For all initial experimentsy = &; evaluations were
bumping into things. A dynamic evaluation function wasused directly in the update function. Investigating the affects
ultimately used, the actor was trained to first avoid obstaclesf the compensation function on the "personality" of the actol
and then encouraged to maximize its distance traveled. Thean area that will be explored in future work.
final evaluation function used for tlaoidtask is: :

5.4 Update Function

Hpmincif gminc <1 The compensation valug)(is applied to the weights
§=0 of the stimulus-response pairs within the history structure
Hfmaxdotherwise (n). The update function increases or decreases the streng



of the stimulus-response pair in the actor's vision or bearing
STM. Again, a number a policies can be used. An
elementary update function simply adgsto the initial
weight:

Size of World 100x100 units
Number of Actors 1to5

Number of Wall Obstacles | 4 to 8

Number of [Goals | Threats] | 5

after 5 contests
10 units per sec
10 or 20 units

Switch [Goal | Threat]
Speed of Actor
Vision Range V)

w'ij = max(y +wij,we) if y=0

w'ii = min(y + wij, wf ) otherwise

Left FOV Angle @) 60°
where wijj is the weight associated with stimulusand Right FOV Angle ) 60°
responseg; we is the weight ceiling; anevf is the weight Middle FOV Angle (1) 60°
floor. This update policy works well when the environment [ Sensing Range’) 30 _units
is static or changes very little. During informal Desired Ranged] 10 units

experimentation, it was found that this method is not
appropriate for this application. The actor could learn a sub-
optimal navigational strategies early in the match, and when To validate theavoid task, actors were trained in the

it was in a region of the world where the strategy was ndiour worlds described in 85.0. One set of experiments wa
appropriate (i.e. a sharper turn was necessary), it would neeah with only one actor and another set with a total of five
to "unlearned” erroneous information. Discovery andactors in the world. All actors were adaptive, and each had it
extinction factors are used within the update function to adjustiwn memory structure. Figure 10 demonstrates typica
for situations like this. When using the discovery andhavigational strategies which were learned; the path the actc
extinction values, the increase or decrease in weight i®ok through the environment is traced, and the S represen
proportional to the distance from the weight floor or ceiling.the start of the path. Actors were able to converge to a
With this policy, sub-optimal strategies quickly lose theiroptimal strategy quickly, and the graphs in Figure 12
strength and new responses will be tried. The update polidemonstrate near perfect collision avoidance occurring as ear
used for this work is as follows: as contest number 5 (after 9000 timesteps). It took a longe
period of time to learn to navigate the worlds with internal
wall obstacles. The periodic decline in performance, showt
in Figure 12b, represents contests where the actor was plac
at a new location and needed to learn how to navigate th:

particular area of the world.

=
S—

The selection policy used is MTDS/RA [Maximum s
/ s
S

Thresholded Deterministic Selection with Random
Figure 10: Obstacle Avoidance Behavior

Table 2: Environment Conditions

w'ij = o(we —wij)(y +wij) if y=0

w'ij = g(wij - Wi )(y + wij) otherwise
whered is the discovery factor ardis the extinction factor.
5.5

Selection Function

Arbitration] (Bock, 1993). The bounded weights within the
respondent tuple are mapped to pseudo-probabilities and the
respondent with the largest probability, within a threshold
value, is selected. If two or more respondents fall within the
selection range, a respondent within the range is randomly
picked.

5.6 Behavior Arbitration

For thegoto andretreat tasks, a heuristic is used to
determine how to alternate between collision avoidance using
the vision STM and directed movement using the bearing
STM. If an object is within the actor's vision field, a
pending collision is assumed, and the vision STM is used to
circumvent the collision. If no pending collisions are
identified, the bearing STM is used to provide the actor with
information concerning the goal or threat object. Table 2
provides a summary of the various environment parameters
used in this work.

For thegoto task, one world was used. Again, one
experiment was run with only one actor and another with five
actors in total. Figure 11a provides an example of a typica

performance of RAVE. Scores (§4.5) were computed at th@010 Strategy which was learned. The graphs in Figure 1
end of every contest and a total of 50 contests were executBIptS the performance metrics for this task. Figure 13a wa
for each experiment. To provide them with an opportunity t&! experiment performed with only one actor within the
learn a variety of navigational strategies, the actors werd0rld, and Figure 13b demonstrates the results when fivi

randomly placed at a new position and heading at thactors were within the world. Remaining within the desired
beginning of every contest. range to the goal is more difficult when other actors are

present. Collision avoidance takes precedence over stayir
within the desired range, and the lower scores ir§hscore

6.0 Results

A total of twelve experiments were run to test the



represent times when the actor needed to stay outside thealuation functions and learning parameters affect the
region to avoid a collision. characteristics of the resulting motion.
The world used to verify theetreattask was similar,

except that the goal objects are now treated as threats. Agakgknowledgments
one experiment was run with only one actor and another with
five actors. A screen shot of a path taken when retreating This work was funded in part by the Tactical Electronic
from a threat is shown in Figure 11b, and the performan i

- P ; arfare Division (TEWD) of the Naval Research Laboratory
metrics are presented in Figure 14. Again, the actors we d by the Office of Naval Research
trained to avoid collisions, leave the threatening area, al y '
once outside the range of the threat, maximum their distance
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Figure 14:Retreat Performance Metrics




