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Abstract

This paper presents an object-oriented system design
supporting the composition of scientific data visualization
techniques based on the definition of hierarchies of typed
data objects and tools. Traditional visualization systems
focus on creating graphical objects which often cannot be
re-used for further processing. Our approach provides
objects of different topological dimension to offer a
natural way of describing the results of visualization
mappings. Serial composition of data extraction tools is
allowed, while each intermediate visualization object
shares a common description and behavior. Visualization
objects can be re-used, facilitating the data exploration
process by expanding the available analysis and correlation
functions provided. This design offers an open-ended
architecture for the development of new visualization
techniques. It promotes data and software re-use,
eliminates the need for writing special purpose software
and reduces processing requirements during interactive
visualization sessions.

1. Introduction

1.1. Visualization Objects and Processing
Modules

We examined several well-known visualization
systems (AVS, Explorer, FAST, Khoros, ...) and the
techniques they use to interconnect independent data
processing modules. A typing system is usually provided
to define process interfaces, and connections are only
allowed between I/O ports accepting the same type of data.
For this paper, the word type 1is used in the
programming language sense for input and output abstract
data structures. Graphical output is usually the end-
product of a visualization session. Thus, data of various
types are passed between modules - each module possibly
creating data of a new type - until displayable geometry is
output for a final rendering. Data-flow architectures already
support some form of data sharing. However, the data
produced for the graphical display stage of a visualization
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are collections of graphics primitives, using a system-
defined geometry type. Rendering/display modules become
in effect a bottleneck, taking geometric data in, without
allowing their re-use by non-graphical processing tools.
Common visualization tools have too often focused on
directly producing geometric data (for example, sets of
polygons or line segments) ready for the fast hardware
rendering workstations of the 1990's. Thus, individual
polygons or lines are generated with normal information
and a color index or an RGB value associated with each
vertex. Rendering such objects can often be done in real
time but unfortunately, rendering is the only operation
that can be applied to such objects.

1.2. Previous work

Foley and Lane [2] have presented multi-valued
visualization techniques. They assume the definition of a
geometric object D (which can be formed of several
disjoint surfaces). D is a user-defined surface or an iso-
surface and is used as a value probe to examine volume
data at the surface of the object. Color Blended Contours,
Projected Surface Graphs, Contour Curves on a Projected
Surface Graph, Iso-Surface and Hyper-Surface Projection
Graphs are the tools they use to compose volumetric
rendering techniques. However, their work is restricted to
the use of surfaces for geometric support, and their
analysis of data is limited to rendering operations.

The definition and use of object-oriented abstract data
types for scientific visualization has been documented by
several authors [3,6,8,11]. However, they do not deal
with composition techniques and a system design to
support these techniques. The data types provided do not
foster the re-use of data objects for composition purposes.
In a Visualization '91 Workshop Report [1], the notion of
"Functions of Several Variables" (FOSV) is discussed as
the most important abstract data type relevant to scientific
computations. The workshop participants propose to use
this data class as the starting point for a reference model,
and consider Visualization mappings as operations
between FOSV instances. Lucas et al. [8] use this
paradigm and present a high-level overview of Data
Explorer. Our system design differs from their approach



by putting more emphasis on data integrity and
requirements for Functional Composition.

1.3. Motivation and Design Goals

To promote serial composition of visualization
techniques, we must augment the inter-connectivity of
modules with carefully designed typed output and allow
several visualization primitives to form a composite
visualization object. We give visualization objects a
broader functionality than pure graphics primitives. An
object-oriented design is used to encapsulate both
geometry and field data so that objects can be freely
exchanged between data operators. Each data class is
endowed with data extraction and rendering operators. Our
emphasis is on combining visualization techniques to
create composite visualization designs and providing an
abstraction which favors data and code re-use. It is
particularly useful for multi-variate field data, where more
than one scalar field is considered at each grid point, and
where we can alternate between different data field views,
independently of the underlying geometry.

In Section 2, we briefly introduce the object-oriented
paradigm. Section 3 shows how most sets of scientific
data can be described by the generic unstructured data grids
in 3-D space and gives details about the general purpose
sets of line-, surface- and volume-elements of points and
the functions associated with them. Section 4 shows how
data visualization tools are re-defined and combined to
achieve Data Selection and Functional Composition.
Section 5 describes several examples. We offer some
discussion in section 6 and conclude in section 7.

2. The Object-Oriented Paradigm

In most conventional programming languages, every
name (identifier) has a type associated with it. This type
determines what operations can be applied to the name.
For example, integer and floating point zypes come with
the pre-defined +, -, *, / operators. The programming
paradigm provided by object-oriented languages favors a
similar process of defining types and associated operators.

Abstraction is defined as the process of extracting
essential properties of a concept. Data structures allow the
abstraction of the structural aspects of the data
organization. Procedures and functions allow the
abstraction of behavioral aspects. The C++ programmer
can combine these two user-defined abstractions to create
data classes, defining new types for which access to data is
restricted to a specific set of access functions. The data
structure thus embedded in a class definition can be
initialized, accessed and operated upon by ways of these
access functions. These functions are shared by all
instances of the class and common behavior among them
is thus insured.

Sub-classes can be derived from a parent class by
sharing data structures and operations. Inheritance is the
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technique which allows sub-classes of a parent class to re-
use (inherit) the parent's functions. Using the object-
oriented paradigm, our aim is to define high-level classes
for each set of data common to the visualization field.
Associated with these definitions are display and
processing tools needed to operate on such sets of data.

3. Data Classes based on the Spatial
Domain

Gridded data are a common occurrence in scientific
computations. Data may come in regular, rectilinear,
curvilinear or arbitrary grids. As Butler et al. have
remarked [1], visualization mappings generally use and
produce sets of points in space, with associated data
values. Furthermore, common data extraction tools are
generally mappings from n-D space to (n-k)-D space and
most sets of data can be described by generic data
structures in such spaces.

To manipulate sets of points, several user-defined
types are used. We use a Point class for points in R3,
with associated data values. The elementary linear segment
joining two Points is defined by the class LineCell.
Likewise, the class SurfaceCell is represented by sub-
classes of the basic surface elements (triangle, quad, etc.),
and the class VolumeCell, with sub-classes of
elementary volume elements (tetrahedron, prism,
hexahedron, etc.). The C++ classes PointSet,
LineSet, SurfaceSet and VolumeSet are then used to
organize sets of elementary objects of the respective types.
A class hierarchy exists to combine cells of identical
topological dimension, and the sets only manipulate
pointers to the 1-D, 2-D or 3-D classes of cells. This
allows the combinations of cells of different sub-classes
often found in Finite Element Analysis (grids of mixed
elements) and the data processing is then achieved with a
look-up of the appropriate functions of each sub-class.

3.1. Data Fields

A general dataset will consist of points and associated
data values in the form of scalar, vector or tensor fields. A
Field class provides a conceptual definition which
encompasses the PointSet, LineSet, SurfaceSet and
VolumeSet sub-classes. An instance of class Field is a
set of data with a given number of points, elementary
cells, and field variables. Figure 1 shows part of our class
hierarchy, with some of the basic entities we have defined:

The following functions are provided with the
definition of Field. The sub-classes LineSet,
SurfaceSet and VolumeSet take advantage of method
inheritance and can re-use all of these:

+ Evaluate the type of the cells and their

connectivity.

»  Create a Postscript description file for hardcopy

presentation.



VolumeSets

Sc_ets of ..

—
—

f

LineSets PointSets

Sets of ...

!
!
v

(P &

Hexahedron \ Tetrahedro:

£

Prism

/
/ / l
A

d

Line-Segmen

Figure 1: Class Hierarchy

« Display the set as an opaque volume, a wire
frame, a cloud of pseudo-colored points.

«  Display the set as deformed geometry.

+ Clip against geometric objects and display as
above.

»  Clip against another instance of Field.

» Copy, scale, reshape and orient a data glyph at
selected points (See [6]).

»  Derive gradient, curl, divergence or Laplacian of a
field variable.

» Clip the set based on data values or based on
spatial coordinates.

+ Use the set of points as Point Locators (to
initiate particle tracing for example).

+  Use the points' coordinates and/or their associated
data values.

The core of a data visualization process consists of
mappings of the dependent variables to graphical
primitives. These mappings are implemented generically
by the processing functions of each sub-class of Field.
When all visualization tools are designed to use and
output data of type Field (or its sub-types), functional
composition, whose goal is to combine visualization
primitives into a composite visualization technique, can
be readily implemented (see section 4). Instances of the
sub-classes of Field can either use the functions defined
above, or use specialized operations. For example, the
PointSet class has functions to store, access or modify
the coordinates and data values of points and to draw the
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points in several ways. The other sub-classes have more
specialized functions.

3.2. LineSets

A LineSet is defined as a set of variables of type
LineCell with associated field values representing a
general 3-D space curve or line. Encapsulated with the
definition of this data structure are a few specialized
operations, available to all instances of the class, such as:

« Display the polyline as a simple curve, a tube,

streamtube, or as a ribbon.

»  Compute its length.

3.3. SurfaceSets

The class SurfaceSet represents the data structure of
a grid made of elementary surface elements of type
SurfaceCell. A SurfaceSet is defined as a set of
points with associated field values (a domain in 3-D
space), and an inter-element connectivity function (either
implicit as for regular grids, or explicit as for FEM
meshes) assembling points in the lattice. The set can be
formed of multiple disjoint surface patches. For example,
a 2-D Finite Difference grid is an instance of the class
SurfaceSet. We now list a few common operations for
such sets:

» Compute iso-contour lines for a selected scalar

field (LineSet objects).



» Compute streamline profiles based on a velocity
vector (LineSet objects).

Decimate or optimize the "mesh" [4, 12, 14].
Compute the grid's surface area.

Combine LineSet objects into a SurfaceSet.
Apply Texture Mapping techniques on the
surface to visualize a data component.

3.4. VolumeSets
The class VolumeSet characterizes the data structure
of a grid made of elementary volume elements like a
tetrahedral mesh for instance. Associated with the volumes
are operators such as:
«  Compute iso-contour surfaces for a selected scalar
field (SurfaceSet objects).
* Compute arbitrary cross-sections (SurfaceSet
objects).
» Compute boundary surfaces (SurfaceSet
objects).
+ Compute streamlines based on a velocity field
(LineSet objects).
« Compute its volume.
*  Volume Render.

At this point, it is easy to recognize that each
visualization technique is defined as an operator for each
class. These functions can be applied on the data values
and are used to create and exchange typed data objects
between each other. Functional Composition derives from
this careful design of typed data. We focus next on the
mappings from VolumeSets, to SurfaceSets, to
LineSets which are compositions of techniques. The re-
use of all the display and processing functions defined for
these data types is at the base of Functional Composition.

VolumeSets

Cross-sections
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i

SurfaceSets

\
Streamlines
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Cell-Boundaries
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Figure 2: Mappings between Field Objects
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4. Composition of Field Operators

4.1. Functional Composition

In our system, all functions are defined as mappings from
instances of Fields to other instances of Fields (or their
sub-classes). Figure 2 gives examples of visualization
techniques as mappings between variables of the
subclasses of Field .

Three-dimensional tools such as boundary surface-,
cross-section- and isosurface-extraction, which in current
systems are limited to creating displayable geometry, are
enhanced by creating objects of type Field amenable to
further enhancing and processing. Each instance of a
Field encapsulates an underlying geometry and some field
data. Thus, functional composition of data visualization
tools is made possible by inheriting all the display and
processing methods defined for the grid classes. Multiple
data extractions and geometry color mappings can be
serially composed, each taking a Field object and
producing another Field object.

An example of Functional Composition is to
consider a VolumeSet V with data fields f; through f;.
An intermediate object S of type SurfaceSet is created
with all of V's data fields stored at its points. Likewise, L
of type LineSet, inherits the data values of S and all
SurfaceSet and LineSet operations remain available
for S and L. For example,

S = Cross-Section(V, F(x, y, z))

/* cross-section surface F(x,y,z) = 0 */

L = Iso-contour-Line(S, fJ nb, min, max)

/* isocontour lines fj(X) = min to fj(X) = max */

Or more succinctly, to highlight the functional
composition taking place:

L = Iso-contour-Line(
Cross-Section(V, F(x,y, z)), {j, nb, min, max)

Figure 3 gives the schematic diagram showing the
functional composition taking place in our example.
Field objects are shown in ellipsoids while operators are
shown in rectangles. We highlight the fact that each
instance of Field can be displayed in several ways or
passed downstream for further data extraction. Defining
and processing the output of all common data
visualization tools as Fields promotes their functional
composition and allow further data processing. This
object-oriented approach of designing high level objects
for input and output of data visualization tools improves
the fan-in and fan-out of processing modules both in the
conventional function-based approach and in the new data-
flow systems. Data and code reuse are highly favored. The
visualization process gains efficiency and practicality by
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Figure 3: System view of Data Objects and Operations for the given example.

abstracting itself from hardware-oriented graphics
primitives. This approach becomes very useful for multi-
valued field data sets where we can alternate between
different data field views, independently of the underlying
geometry and without re-processing of the objects.
Computational requirements are thus reduced, promoting
interactivity.

4.2. Fields as Domain Selectors

Functional Composition can be interpreted as a data
filter of the first operand by the first operator, followed by
the application of another technique on the result of the
selection. Thus, Field objects can provide support for a
data extraction operator while remaining partially visible.
Transparency may allow the user to see through an
object, but the accurate display of multiple objects with
various transparency indices is difficult. Field objects can
be used instead without being displayed. Most often, we
will re-use a SurfaceSet (such as a cross-section) as a
data filter. Drawing its outside line-boundary can help
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visualize its extent in space, while it is re-used to apply
other data extraction techniques, such as contour line
drawing, or particle tracing confined to the plane. This
functional composition is of great help to the scientist
whose goal is to understand inter-relationships between
data fields. By providing a way to restrict the domain of
application of a data mapping to a sub-set of data of
interest, correlation between data fields is more easily
extracted and analyzed.

Field objects can also be used as input parameters
and their vertices can be used as point locators or seeds for
operations like particle tracing, or iso-surface
computations.

4.3. Other Operations on Fields

When Field instances are regarded as data selectors, it
can be appropriate to apply Boolean operations between
each instance. Union and intersection are very useful
operations that can lead to increased expressiveness.



Figure 4: Data Visualization around a high-
speed train

These operators can be defined for each sub-class of
Field, since the underlying data structure allows multiple
disjoint sub-sets of elementary cells. It is sometimes
necessary to completely remove a part obstructing the
view. Cut-aways, which remove features based on the
spatial coordinates of their vertices, have also been
considered. Since each instance of a Field encapsulates
an underlying geometry, we can perform Boolean
operations on their geometric structures, while conserving
all field data. The union of Fields is quite straightforward
but is only meaningful if the two objects merged carry the
same data information.

Other operations are also available between Fields.
For example, the tiling of a streamsurface (SurfaceSet)
with individual streamlines (LineSets). Ribbon and
streamsurfaces can be constructed thusly. This example
shows that we can reverse the natural order of
visualization processing shown in Figure 2 which
emphasizes going from a higher dimension to a lower
dimension. Of particular interest are grid definition
techniques which allow us to construct computational
grids by scaling, translating and revolving LineSets and
SurfaceSets.

5. Examples

Our library of Field classes and operations has been
implemented in C++ and runs on SGI workstations. The
graphic toolkit Inventor [13] has been used to perform all
display operations. Our examples show compositions of
data extraction capabilities and highlight the polymorphic
display options available to objects of our three most
important classes: VolumeSet , SurfaceSet and
LineSet.

Our first example in Figure 4 consists of a
VolumeSet object of 127,049 tetrahedral elements with
energy, density and velocity (Vy, Vy, Vz) stored at each

Figure 5: Visualization of Velocity Fields by
Polymorphic Rendering

grid point. The object under study is a high-speed train in
a flow field. We focus our attention on the front of the
vehicle and proceed by calculating an isovalue surface of
the x-component of velocity which shows up as a large
bulgy surface on the nose of the train. Cross sections
along the direction of travel and perpendicularly to the
direction of travel are also computed. The addition of the
SurfaceSets created is then used to show a composition
of several data encoding. The cross-sections, the isosurface
and the boundary surface are colored with the pressure field
(lower left image) and combined to restrict the input
domain for the computation of iso-energy lines, shown
with a different colormap encoding the variations of the
cross-velocity field. Note that the iso-surface actually
encodes four scalar variables simultaneously. A pseudo-
coloring of the pressure is shown while the iso-lines
which are restricted to its surface are colored with a fourth
data mapping.

Our second example in Figure 5 shows polymorphic
rendering of particle traces computed by a VolumeSet
object. A cylinder in a transversal flow is studied in a
dataset of 246,725 volume cells. The volume object
computes its boundary surface on which we compute an
iso-pressure LineSet. Streamlines are also computed as
instances of LineSets. As such, they can be displayed
in a multitude of ways, without requiring any special-
purpose coding. A rake of streamlines is computed and
displayed as simple pseudo-colored space curves; another
LineSet is displayed with velocity vector icons placed at
regular intervals, while another one is displayed as a tube
and one is displayed as a ribbon, allowing additional color
encodings (In this example, the streamline LineSets are
colored with Pressure). Mappings to pseudo-colored
geometric objects can be activated interactively on the
various LineSets since the data and the geometry are
encapsulated in the same data-structure.

The performance of our library of tools provides for
interactive inquiries. The train dataset was processed for
isosurface and cross-sections in a few seconds, including
triangulation and connectivity computations for more than

(See color plates, page CP-35.)
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16,000 triangles. The surfaces were then joined, iso-
contoured and shaded in a few more seconds on an SGI
Crimson. Similarly, the outside surface of the cylinder
dataset was extracted and iso-contoured at interactive speed.
We have a limited user interface which allows a mix of
keyboard inputs and direct manipulation via the Inventor
toolkit. Since all objects in the graphics scene contain
geometry and data values, computational queries can be
readily answered. Each common grid type has
"constructor” methods available to read in and store sets of
data points and no programming is required. However, the
end-user would need to add an additional member function
for the given data type for data encoded in a new format.
6. Discussion

Since our visualization algorithms rely on connected
components of elementary cells, their implementation
requires more work. For example, functions like Marching
Cubes iso-surface extraction [7] or iso-contour lines are
cell-based by nature and their output is traditionally cast
into sets of disjoint geometric entities. Here, to take
advantage of the grid data structures and guarantee surface
continuity and a consistent right-hand rule ordering of the
vertices, surfaces are more easily constructed as a moving
front intersecting the volume [15]. Likewise, iso-contour
lines must also comply to our design and be fully
connected lines, instead of the concatenation of line
segments at rendering times. (This is curve sequence
contouring versus grid sequence contouring [10]). Note
that by construction, streamlines offer naturally connected
paths and don't require new implementations. We reap an
important benefit from this redesign. Consider iso-level
data mappings. There is a well known ambiguity which
arises when a cell spans a saddle in the data (Two opposite
corners above and two below the threshold value in a 2-D
cell). This may lead to spurious holes or surface segments
at rendering times, unless additional efforts are invested to
carefully handle these cases (See [9] for a very good
survey). We have implemented these functions in an
advancing front fashion to avoid this ambiguity. An
active set of cells is maintained at the boundary of the
isosurface and edge and orientation information is passed
to the new candidate cells. Because isocontour lines or
isosurfaces are constructed incrementally, we obtain local
coherency in the numbering scheme of points and
elementary cells. When re-used, the Field objects are
more efficient and they do not require additional
connectivity mapping or renumbering.

7. Conclusion

The data extraction operations we show in our
examples are not new, but our contribution is to provide
the environment where they can be easily combined. We
defined elementary cells of various topological dimensions
endowed with display and data extraction operators. They
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are assembled as Field objects to represent grids of data.
Field objects encapsulate data fields with an underlying
geometry and offer a rich functionality. They avoid the
strong type restrictions typical in other systems by
combining display and data manipulation operations.
They can be re-used at different stages of the visualization
process, thus increasing the fan-in and fan-out of
processing modules and enabling better composition of
data mappings. We could not achieve similar composite
visualization in the other systems we are familiar with,
because of their use of pure graphical primitives.

Our data objects can be joined or act as filters to
promote the serial composition of visualization
techniques. This composition helps understand inter-
relationships between data fields and facilitates the
analysis of data correlation. Our system design opens new
ways to scientific exploration and provides an open-ended
architecture for implementing new visual representations
whose effectiveness should be evaluated by using
principles of visual perception [5].

The structured definitions also allow quantitative
analysis to take place. For example, in medical imaging,
doctors may want to compute a volume contained between
iso-radiation surfaces. In fluid flow, flux computations
can be computed through surfaces of interest. Because the
objects we manipulate are all piece-wise approximations
of well-behaved volumes, surfaces and lines, we can
estimate lengths, surface areas, volumes and other
numerical values.

We have limited our discussion to grids of linear
cells. We intend to expand our library of tools to handle
cells with curved boundaries, often used in FEA. We will
also focus our effort to data sets in 3D space + time.
Constructing streamsurfaces from streamlines or isovalue
surfaces from contour lines on successive cross-sections
also shows that visualization processes are not limited to
mappings to lower dimensions. We plan to research other
examples of mappings to higher dimensions.
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