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ABSTRACT
In this paper, we present a technique for managing overload conditions that occur when computational resources are not
sufficient to evaluate all the active sound sources in a Virtual Environment. A real-time scheduling strategy is introduced
which degrades less important sound sources so that resource constraints are met. Finally, scheduling algorithms are
considered based on their effect on listeners’ perception of the resultant sound quality.
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INTRODUCTION
Synthetic sound generation is a computationally expensive process and resources may often not be sufficient to evaluate all
the active sound sources in a complex Sonic Environment (SE). A major focus of our work has been on devising graceful
degradation schemes for managing overload conditions so that the perceptible effects of overload are minimized. The
Virtual Audio Server (VAS) was used as a framework for studying real-time scheduling algorithms that manage the sound
generation process. VAS was developed as a general framework for the study of problems associated with integrating sound
into Virtual Environment (VE) interfaces. The system provides an extensible scheduler that facilitates the development of
real-time scheduling algorithms.

THE VAS SYSTEM
VAS is partitioned into four functional areas as depicted in fig. 1. The system has a client/server architecture that facilitates
load balancing by distributing the graphics and audio processing on different machines. VAS’s distributed architecture is
based on Remote objects. Each VAS auditory object with which the client interacts has a corresponding remote object on
the client’s machine. Remote objects maintain their state and communicate with their corresponding VAS objects through a
Remote Procedure Call (RPC) interface when their state changes due to a client interaction. In this fashion, an object-
oriented interface to the server can be maintained and communication between client and server is minimized.

Sonic Scene Elements model the elements comprising the Sonic Environment (SE). They consist of the Auditory World,
which maintains the overall state of the server and provides access to the other objects in the world. Auditory Actors model
sound producing entities in the world.  Two derivations of the Auditory Actor: Auditory Space, and Listener model the
enclosures within the SE and the listener respectively. Auditory Actors have a sound repertoire consisting of a set of Sound
objects, each representing a sound source. They evaluate sound samples in real-time and write the resultant samples to VAS
Devices. An instance of a Device object is attached to each Sound object and provides it with a device independent interface
to any spatialization device used by the server. Finally, the Scheduler manages the real-time evaluation of active sounds in
the server.
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Figure 1 VAS system architecture

VAS Sounds as active objects such that each Sound object has a thread of execution associated with it. This thread is
responsible for evaluating the sound signal and writing the resultant samples to the device object. Upon instantiation, Sound
objects register themselves with the Scheduler providing it with an evaluation routine, which when executed, generates the
samples. The Scheduler determines the execution time allotted to this routine.

Synthetic sounds are represented in VAS using Timbre Trees [5], a representation developed specifically for use in
computer animation. A Timbre Tree consists of a set of parameterized signal generating and signal modifying nodes
arranged in a tree structure. A tree is evaluated by instantiating its parameters and traversing it in a pre-order fashion.

REAL-TIME SCHEDULING
The VAS Scheduler uses a real-time scheduling strategy for managing the sound generation process. Such a strategy is
necessary when the correctness of a computation depends not only on the results produced but also on the timeliness of
those results. The scheduling strategy used in VAS is based on the imprecise computation model. In a seminal paper Chung
et.al [1] describe a technique for evaluating monotone processes using a model for imprecise computations. A monotone
process is one that is guaranteed to produce increasingly accurate results as it is allowed to execute longer. The imprecise
model partitions a task into a mandatory part and an optional part. The mandatory part is that required to produce results at
the minimum acceptable precision. The mandatory task set is scheduled as a hard real-time task set so that the scheduler
guarantees the execution of all the tasks in the set. Any remaining time in the schedule is used to schedule the optional parts
of the task set.

The use of the imprecise computation model in the VAS scheduler forms a basis for our use of graceful degradation in the
sound generation process. The scheduler initially assigns all active sounds enough execution time to generate a sound at the
minimum acceptable resolution. Following that, the scheduler assigns each sound additional execution time in order to
minimize some error metric. The scheduling algorithm determines how additional time is allocated to the optional part of
the active sounds based on the available time in the schedule and the priority of the active sounds.

In the following sections we describe our technique for prioritizing sounds and for iteratively evaluating sounds. We then
consider various scheduling algorithms based on their effect on the perceived quality of the generated sounds.

Prioritizing Sounds
In order to prioritize sounds in an SE we must determine which sounds the listener is attending to. This, of course, is
impossible to do specifically since attention is subjective; the listener cognitively decides what to pay attention to. The best
we can do is to attempt to guess what the listener may be paying attention to, based on the state of the listener and the state
of the sounds in the environment. We use three factors to rate sounds in the environment: the listener’s gaze, the intensity
of the sound, and the age of the sound.



The use of the listener’s gaze is based on the orienting response [2]. This is a human response to aural stimuli where the
listener will attempt to support the perception of aural stimuli through visual correspondence. In effect listeners will turn
their head so that they can see what they’re listening to.

The intensity of a sound is important due to masking phenomenon [4]. A higher intensity sound will tend to mask a lower
intensity sound if the two sounds are within the same frequency band. Determining the frequency content of a sound,
however, requires a Fourier Transform operation that we opted against given the real-time constrains placed upon the
system. We approximate this factor by simply giving louder sounds a higher scale factor.

The final scaling factor is based on the adaptation response of the human aural system [4]. Our sensitivity to aural stimuli
decreases as the presence of the stimuli persists. This process continues for approximately three minutes after which it levels
off. In effect, we adapt to persistent sounds in our environment making a sound’s age important.

The problem of predicting a listener’s attention from environmental factors is necessarily speculative due to the complexity
of the human hearing process, especially when cross-modal perception is considered. We consider this approach as a
starting point. Further work is necessary to study the effectiveness of this scheme with experimental data.

Iterative Generation of Sounds
The imprecise computation model requires that we iteratively evaluate a Timbre Tree at successively higher resolutions. If
the iteration is stopped before full resolution is reached, the evaluation routine will not have generated all the samples. The
missing samples are calculated using interpolation. To facilitate this, a buffer structure was devised which we call the
Interpolating Buffer or IBuffer. The IBuffer consists of a set of mini-buffers in a stacked configuration as depicted in fig. 2.
The depth of this stack determines the number of iterations necessary before full resolution is reached. On each iteration,
the evaluation routine calculates a block of samples equivalent to 100 ms at 1/d of the global sampling rate, where d is the
depth of the buffer. The resultant sample block is written to the IBuffer that fills one of its mini-buffers with the samples.

The order in which the mini-buffers are filled is predetermined by the IBuffer to minimize the number of empty mini-
buffers between any two full mini-buffers. The starting time of the evaluation at each iteration is offset by an amount p*d,

where p is the period of the target sampling rate and d is the depth of the current mini-buffer. Once the evaluation routine
has completed its last iteration, any empty mini-buffers are filled by linearly interpolating between the two closest full mini-
buffers. The content of the mini-buffers is then copied to an output buffer in an interleaved fashion as shown in fig. 2.

0 S0,0 S0,1 S0,2 S0,3 S0,4

1 S1,0 S1,1 S1,2 S1,3 S1,4

2 S2,0 S2,1 S2,2 S2,3 S2,4

3 S3,0 S3,1 S3,2 S3,3 S3,4

4 S4,0 S4,1   S4,2 S4,3 S4,4

S0,0 ... S4,0 S0,1 ... S4,1 S0,2 ... S4,2 S0,3  ... S4,3 S0,4  ... S4,4

Interpolated
mini-buffers

mini-buffers

output buffer

Figure 2 The interpolation step and output buffer. The IBuffer is depicted after three
iterations. The samples in mini-buffers 0,2 and 4 are evaluated. Those in 1 and 3 are
interpolated.

Scheduling Algorithms for Imprecise Computations
The final requirement necessary for a graceful degradation scheme is a scheduling algorithm for allocating execution time
to the optional tasks in the schedule. While a number of scheduling algorithms have been devised for the imprecise
computation model, the Least Utilization (LU) algorithm minimizes the average error given the characteristics of the sound
evaluation problem [1]. The LU algorithm orders tasks based on their weighted utilization factor. This is the ratio of a
task’s priority and the percentage of the available time that is required by the task in order to be fully executed. Execution



time is then allocated to the ordered tasks in a greedy fashion where optional task O1 receives as much of the available time
as it requires. Any remaining time is allocated to task O2 and so on.

The behavior of the LU algorithm poses a number of problems when the algorithm considered for use in scheduling sound
evaluation routines. During overload conditions, large disparities in quality can occur between sounds that are close in
priority. Furthermore, because the optional tasks are not ordered by priority but by the weighted utilization factor, the most
important sounds may receive their minimum acceptable precision while less important sounds are fully evaluated. Finally a
problem occurs when priority crossover occurs between two such sounds, where abrupt changes in the quality of the sounds
occurs.

We can remedy one of these problems by simply ordering the optional tasks based only on their priority. This guarantees
that the most important sounds will receive as much of their required time as possible. Such an algorithm was implemented
and incorporated into VAS. The Priority Order (PO) orders the optional tasks based on their priority and assigns them
execution time in a greedy fashion. As expected the PO algorithm remedies one of the problems mentioned above. The
effects of the remaining problems are still pervasive in the resulting sound.

The problem with both the LU and PO algorithms lies in the large disparities that are possible in the execution time allotted
to the set of active sounds. These disparities occur because of the greedy assignment of time to optional tasks. During
overload a small number of sounds receive the majority of the execution time disregarding the priority of the remaining
sounds. We quantify this behavior using a measure of the fairness of an algorithm. We define the average fairness index of
an algorithm as a measure of its equity in assigning execution time to tasks based on their priority. A fair algorithm will
assign each task a percentage of the available time based on its relative importance.

The Priority Allocation algorithm (PA) assigns each optional task an execution time that is approximately proportional to
its priority.  The actual time assigned to an optional task may be less than that indicated by its weight because the
proportion of assigned time based on a task’s priority may exceed the total execution time of the optional task. Variations
also occur due to rounding of the assigned time to the nearest multiple of the iteration time of the sound. Any resulting free
time in the schedule is assigned based on the LU algorithm. Having satisfied the fairness constraint, the LU algorithm
assigns the remaining time in the schedule so that the average error is reduced.

SUBJECTIVE EVALUATION OF SCHEDULING ALGORITHMS
A listener study was conducted in order to test the perceptible effects of degradation when the LU, PO and PA algorithms
were used. We chose a test developed by the Swedish Broadcasting Corporation and used by the ISO MPEG/Audio in the
establishment of the international MPEG standard for storage and retieval of moving picutures on digital media [3]. The
method employed is a Triple Stimulus, Hidden Reference, Double Blind test. Subjects are presented with three items A-B-C.
Each item consists of an audio segment. Item A is always the reference. Items B and C contain the object and a hidden
reference. Because the test utilizes a hidden reference design, the subjects do not know which of B and C are the hidden
reference. Subjects rate the amount of imparement detected between items A-B and A-C using a five point, continuous scale
with one decimal.

In preparing the test, twelve audio sequences were generated each consisting of the three A-B-C items. The items where
generated by recording the result of evaluating two SEs which we refer to as City and Waves. The SEs were designed to
exhibit dynamic behaivior and impose varying degrees of load on the system. In general, the Waves SE imposes much
heavier load conditions. In order to generate the reference items, the SEs were evaluated using two processors so that
degradation did not occur. In generating the object items, the sounds were evaluated using only one processor resulting in
degradation.

Twenty subjects were presented with the generated sequences and asked to rate each item B and C in comparison to A. The
sounds were presented to the subjects using loud speakers in a group session with 10 subjects participating in each session.
The subjects were given a practice session so that they were familiar with the procedure.   
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Figure 3 Interaction bar plot for Algorithm effect by stimulus. The difference between the
ratings for the hidden reference and the object are used. Lower numbers indicate a better
rating.

The effect of the algorithm by stimulus is shown in fig. 3. The results showed that when the system was slightly overloaded,
the average error dominated and there was no significant difference in the rating of the LU and PA algorithms. Under heavy
overload conditions however, the fairness of the algorithms came into play and the PA algorithm received significantly
higher ratings.

CONCLUSION
The use of real-time scheduling techniques enables us to manage the sound generation process. When this process is
expressed in terms of the imprecise computation model, graceful degradation can be enacted when computational resources
are exceeded. The Priority Allocation algorithm described in this paper assigns execution time to sounds so that the
perceptible effects of overload are minimized.
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