
1

Reference: Gritz, Larry and James K. Hahn, “BMRT: A Global Illumination Implementation of the RenderMan Standard,”
Journal of Graphics Tools, Vol. 1, No. 3, pp. 29-47 (1996).

BMRT: A Global Illumination Implementation
of the RenderMan Standard

Larry Gritz† and James K. Hahn

The George Washington University*

† Author’s current address: Pixar, 1001 W. Cutting Blvd., Richmond CA 94804
* Dept. of EE&CS, 801 22nd St. NW, Washington DC 20052.
Email: lg@pixar.com, hahn@seas.gwu.edu

ABSTRACT

The RenderMan Interface specification proposed by Pixar is
a standard for communication between modeling software and
rendering software or devices. This standard has proven very
powerful and is extremely popular in production work. Although
the standard itself claims not to specify a rendering algorithm,
people have speculated RenderMan and global illumination are
mutually incompatible.

We have implemented a rendering system which fully
adheres to the RenderMan Interface and uses global illumination
algorithms. Specifically, this implementation supports
progressive refinement radiosity and distribution ray tracing in a
two-pass approach. This rendering system is widely distributed,
very popular, and has been used in production (three properties
usually not found in global illumination renderers). We discuss
how we overcame problems in mating global illumination
algorithms with the RenderMan standard, and make
recommendations for future versions of the standard to better
accommodate such algorithms. We also present a summary of
important lessons we learned by creating and distributing this
tool.

1. Introduction

The RenderMan® Interface was designed by Pixar to be a
standard communication protocol between modeling/animation
software and rendering software or devices [14][10]. RenderMan
gives a means of describing a photorealistic 3-D scene in terms
of what should be rendered, but without dictating which
algorithms or rendering methods should be used.

The RenderMan Interface has two bindings: a procedural
interface consisting of C language function calls, and an ASCII or
binary metafile binding known as RenderMan Interface
Bytestream (RIB). There exists a nearly one-to-one
correspondence between RIB requests and procedural API calls.
Individual RenderMan calls either (1) set the options, attributes,
and transformations which comprise the graphics state; or (2)

declare geometric primitives, which are bound to the current
graphics state at the time of their declaration. The exact nature
of the API calls and RIB protocol are well documented elsewhere
[14][1], and will not be described further in this paper.

RenderMan allows arbitrarily complex descriptions of
surface appearances (including geometric displacements),
illumination distributions from light sources, and attenuation by
volumes in RenderMan Shading Language (SL) [9][2]. This
powerful ability allows the user to extend the surface and light
descriptions in a way which is more flexible than generally
allowed by rendering systems.

The RenderMan standard does not dictate which
rendering algorithms a particular implementation should use.
Minimally, an implementation must support all of the geometric
primitives (including polygons and polyhedra, bilinear and
bicubic patches and patch meshes, NURBS, and quadrics),
perform hidden surface removal, provide antialiasing and
filtering, and support the hierarchical graphics state. In addition,
optional capabilities may be supported in a particular
implementation, including CSG, motion blur, depth of field, ray
tracing, radiosity, displacements, texture and environment
mapping, area light sources, and programmable shading in
Shading Language. Implementations are not expected to support
optional capabilities which are not possible or are impractical
given their rendering algorithms.

Until recently the only available implementation of the RI
standard has been Pixar’s PhotoRealistic RenderMan (PRMan).
This implementation has become very popular in the production
community, arguably becoming the de facto standard in
rendering software for feature film work. Several other
proprietary implementations of the RI standard no doubt exist,
but remain undocumented and are of unknown levels of
compliance to the standard (an exception is [13]). PRMan is
based on the REYES algorithm [6]. Indeed, it is apparent that
this implementation and the standard itself were developed hand-
in-hand. Though it claims to be independent of any particular
rendering algorithm, many aspects of the standard seem to rely

2

on the REYES or similar micropolygon-based scanline
algorithms, perhaps contributing to the lack of other available
implementations. This led people to speculate that the
RenderMan standard and global illumination were mutually
incompatible.

This paper describes a full implementation of the
RenderMan standard, publicly available and known as the Blue
Moon Rendering Tools (BMRT). BMRT uses global
illumination algorithms, supporting both ray tracing and radiosity
in a two-pass technique similar to [15]. This design presented
many challenges, both in attempting to support all of the
functionality of RenderMan without using REYES, and in trying
to use the RenderMan interface as the basis for a global
illumination renderer. We will describe our system, discussing
these challenges and our solutions.

2. System Overview

Our renderer implements a two-pass radiosity /
distribution ray tracing scheme. The basic algorithm may be
outlined as follows:

1. The input RIB stream, which specifies the scene to be
rendered, is parsed. Each RIB directive corresponds to a
particular RenderMan procedural API call. These calls
change options or attributes, alter transformations, or declare
geometry (which binds to the current attribute list).

2. When the WorldEnd directive is reached, indicating that
all information necessary to render a particular frame has
been transmitted, an automatic bounding hierarchy is
constructed to speed up the ray casting, and the rendering
calculations begin.

3. If radiosity calculations are desired, the geometry list is
meshed. Our system implements a progressive refinement
radiosity solution which uses ray casting to calculate form
factors and distribute energy directly to element vertices
[5][16]. High radiosity gradients may cause geometry to be
progressively diced into finer elements.

4. The first energy distributed by the progressive refinement
radiosity is the energy which comes from the explicit light
sources (i.e. those defined with RiLightSource and
RiAreaLightSource). For each element vertex, the ap-
propriate light source shader is invoked in order to calculate
how much energy reaches that element vertex. Several
samples may be taken from randomly selected points on the
geometry comprising each area light source to minimize the
error.

5. After the light source list is exhausted, redistribution of
reflected energy is performed, including geometry which had
been designated as emissive. At each step, the patch with the
highest unshot energy has its energy redistributed into the
environment. The progressive refinement stops when either
a specified maximum number of progressive refinement steps
have been reached, or the remaining unshot energy in the
entire environment is below a certain threshold. We employ
a separate accounting of radiosity coming from direct sources
(lights) and indirect sources (reflection from other geometry).

This allows us to recalculate the direct component again on
the second pass, which affords many advantages [12][8].

6. Once the radiosity pass is completed, distribution ray
tracing [7] of the scene is performed. Prior to rendering time,
the shader compiler parses the Shading Language code and
generates an assembly-like code for a simulated stack-based
computer. This allows for fast interpretation of compiled and
optimized shader code in a machine-independent manner.
When the closest intersection to a ray is found, the
displacement shader (if any) and the surface shader for that
object are interpreted, resulting in the surface color and
opacity of the visible object. Though there is some overhead
associated with interpreting the shader (as opposed to having
it compiled into the renderer itself), this is minor compared
to time spent calculating ray-object intersections, calculating
noise values, etc., and affords extra flexibility when
designing and implementing shaders.

When performing shading calculations on the ray tracing
pass, calls to the SL function ambient() return the indirect
illumination component of the radiosity calculations
performed earlier. The values are returned from the radiosity
mesh corresponding to the parametric position at which the
ray intersected the object.

The renderer also attempts to handle specular-to-diffuse
illumination, such as light bouncing off of a mirror. The
mechanism for this calculation is documented in [8]. The SL
built-in functions which integrate the contributions of light
sources1, automatically compute and account for this mode of
energy transfer.

3. Ray Tracing / Radiosity Implementation of
RenderMan

Certain optional features of the RenderMan interface are
easy to perform automatically using distribution ray tracing [7].
These include solid modeling (CSG), bump mapping, motion
blur, and depth of field. Other features of RenderMan were
obviously put in specifically to accommodate scanline renderers
which were not capable of ray tracing, including environment
mapping and shadow depth mapping. While there is no reason
why these cannot be used by a ray tracer, the functionality of
these features (reflection/refraction and shadowing) are generally
implicit in ray tracing. Therefore we support both explicit calls
to these “fake” functions, and also automatic calculation of these
effects.

Several RenderMan features do not map in obvious ways
to our radiosity/ray tracing paradigm. This section will cover
some of these and explain how we approached these problems.

3.1. Interpretation of shaders

When it is determined which geometry intersects a ray at
the closest point, a “ShaderVariables” record is prepared to

1 The semantics of SL mechanisms for integrating light source
contributions, including the built-in functions diffuse() and
specular(), is beyond the scope of this paper, but further
information may be found in [10][14].

3

contain the variables accessible to the shaders which determine
what the point looks like (surface position, normal, derivatives,
shading coordinates, etc.). The object class definitions for each
geometric primitive type include methods for computing these
quantities. When each shader is compiled, a list is automatically
made that specifies exactly which shader variables are needed by
the shader (for example, maybe it needs N, s, and t, but not
dPdu). To avoid unnecessary computation, only the shader
variables which are needed will be computed for a particular
shading calculation. The shader interpreter is invoked with these
variables.

3.2. SL Differential and Area Operators

Among the variables accessible by the shaders are the du
and dv values. These are defined as the distance in u-v
parametric space of the geometric primitive between shading
samples and are the basis for differential and area operators in
SL. Table 1 lists some differential quantities commonly used in
SL. For a REYES implementation, these are trivial to compute,
since they are simply the differences of the quantities evaluated
at adjacent micropolygons. Ray tracing is fundamentally a point
sampling process in screen space and does not use a regular
discretization of the geometric primitives, so it is not
immediately obvious how these values should be computed.

One may reasonably expect that a ray tracer should not
need to compute these quantities. But since these variables are
essential for analytical antialiasing of textures, we deemed it
important to support this facility. We approached this problem
as follows: Suppose P represents the point being sampled. Let
Pz represent the depth of P in eye (camera) space. Then we can
estimate the world space distance between screen samples for
this depth as:

d dest s z= P

where ds is the distance between screen space samples. This
geometric relationship is shown in Figure 1. We are simply
computing the distance at that depth which should map to
adjacent screen space samples. This is really an estimate for
|dPdu*du| and/or |dPdv*dv|, which are the changes in surface

position between adjacent screen samples (dPdu and dPdv are
the partial derivatives of the surface). By inverting, we can solve
for estimates of du and dv:

du
dPdu

=
d

kest
u dv

dPdv
=

d
kest

v

Finally, the orientation of the surface is taken into consideration
with the additional ku and kv terms. Comparing the view
direction to the partial surface derivatives serves to enlarge our
estimates of du and/or dv when we are viewing the surface at a
glancing angle. The orientation terms are:

ku =

−
⋅

1

1
2I dPdu

I dPdu

kv =

−
⋅

1

1

2
I dPdv

I dPdv

Each geometric primitive class has methods for calculating its
partial surface position derivatives, dPdu and dPdv, for a
particular surface point.

dest

P

screen space
samples

eye
ds

Pz

Figure 1: Calculating distance at intersection which corresponds
to adjacent screen samples.

Many of the functions in Table 1 take arbitrary
expressions as arguments. It is impractical to attempt to solve
these analytically at compile time, so we generate
ShaderVariables records for two auxiliary points on surface S,
P+u = S(u+du,v) and P+v = S(u,v+dv), which approximate the step
sizes between screen space samples. The shader is evaluated at

Table 1: Some differential quantities. SL built-in variables are in boldface.
RenderMan Quantity Interpretation

du, dv Change in u and v geometric parameters between adjacent shading samples.

dPdu, dPdv The partial derivatives of the surface at the point being shaded, i.e. ∂P/∂u and ∂P/∂v.

Du(x), Dv(x) Derivative of expression x with respect to parametric u and v.

Du(x) * du Estimated change in expression x between adjacent shading samples (along u direction).

area(p) Estimated differential surface area ≡ length(Du(p)*du ^ Dv(p)*dv)
(note: ^ is the SL operator indicating cross product)

sqrt(area(p)) Estimated change in point value p between adjacent shading samples.

texture(name, s, t) Filtered texture area lookup at coordinates (s,t), implicitly takes into account the change of
s,t between adjacent shading samples.

calculatenormal(p) ≡ Du(p)^Dv(p). If p is the displaced surface position, this returns the new normal.

4

these two points first, caching values passed to Du(), Dv(),
area(), and calculatenormal(). Then when the shader is called
for P (the point actually being shaded), these functions return the
differences between the expression at P and its value at the
auxiliary points. For example,

Du P P P
u v u du v u v() () /
, , ,= −+ du .

In order to prevent evaluating the entire shader three
times for each surface point, we utilize several shortcuts. First,
area operators on some simple expressions can be determined
analytically at compile time. For example, the common construct
Du(s) is the rate of change of shading coordinate s with respect
to geometric parameter u. This value is fixed for a particular
primitive, so the SL compiler recognizes this and can substitute a
reference to this value instead of invoking the shader again at
(u+du,v). Second, the compiler recognizes which parts of the
code contribute to the expressions sent to area operators. When
invoking the shader for the auxiliary points P+u and P+v, the
shader terminates immediately after the last area operator is
executed. Thus, code which is after the last area statement (and
therefore cannot contribute to any differential quantities at the
main shading location) will not be executed. Finally, certain
operators which are expensive and unlikely to have their results
used in area expressions are short circuited. For example,
diffuse() simply returns 0 for auxiliary points without walking
the light list or computing shadows. These shortcuts cause the
area operators to be evaluated correctly with very little overhead.

3.3. Displacements

An important feature of RenderMan is the ability to use
displacement shaders. Similar to bump mapping [3],
displacement mapping actually moves surface points as well as
changing normals for shading. This allows for very realistic
detailing on surfaces and an alternate way to model fine
geometric detail while keeping the underlying geometric
primitives simple.

For a REYES or similar system, displacement shaders
can be used to alter the micropolygon vertices prior to hidden
surface elimination. Unfortunately, there does not exist a simple
method for handling displacements for a ray tracer (short of
dicing the primitives and ray tracing the micropolygons
themselves, which is very expensive in both time and memory).
For our implementation, we make the assumption that all
displacements will be small, evaluate the displacement shader at
points P+u and P+v in a manner similar to the way we handle area
operators. The displaced P variable is compared at all three
points and a new normal is computed:

′ = − × −+ +N P P P P() ()u v

This performs bump mapping based on the requested
displacements. Admittedly, this is an approximation which
suffers from several problems: the bumps do not self-occlude
(either from the point of view camera or the light sources), object
silhouettes are smooth, and other shading artifacts sometimes
occur from backwards-facing normals. Even so, this approach is
often quite adequate for relatively small displacements (see
Figure 2). Our implementation retains the advantage of
notational convenience; it is more intuitive to describe surface
detailing in terms of surface displacement than in terms of

perturbed normals. It is also important to retain compatibility
with other implementations which do support true displacements.
We do not see any inexpensive alternative strategy for using ray
tracing and true surface displacements together.2

3.4. Using trace

The Shading Language defines a function trace(P,D)
which returns the light color impinging on point P from direction
D. Scanline renderers normally would not support the trace
function (for example, PRMan always returns 0 from trace).
Renderers which lack this facility must simulate reflective and
refractive effects using environment maps. We continue to
support environment maps, since this is still useful as a speedup
method, and invaluable when combining CG foreground objects
with live action background plates. However, we also support
correct implementation of the trace function.

 We implement the Shading Language trace() function in
the obvious wayit directly invokes the ray tracing engine,
which may recursively invoke other shaders. In addition, rays
traced using this function may implicitly call the interior or
exterior volume shaders associated with the object. A sample
shader for a reflective metallic surface illustrates how the trace()
function can be used (see also Figure 4):

surface
shiny (float Ka=.25, Ks=1, Kr = 0.5, roughness = 0.005)
{

point Nf = faceforward (normalize(N), I);
point IN = normalize (I);
color env = Kr * trace (P, reflect (IN, Nf));
Ci = Cs * (Ka*ambient() + env +

 Ks*specular(Nf,-IN,roughness)));
}

Since trace may spawn rays which cause other objects’
shaders to be evaluated, it is necessary for the ray tracing engine
to support recursive rays, and for the SL interpreter to be fully
reentrant. This would not need to be the case for scanline
implementations. Indeed, the RI specification refers to the
variables available to the shaders (such as P, N, s, etc.) as global.

3.5. Lights and Shadows

During interpretation of the surface shader, the ambient(),
diffuse(), specular(), or phong() routines may be called to
evaluate the light striking the surface (or an illuminance loop
may appear in the shader). In any of these cases, the light source
list is traversed, integrating the energy received from all of the
nonphysical (LightSource) and physical (AreaLightSource)
lights. When automatic shadows are requested (explained in the
next section), ray casting is used to determine light visibility.

A small change is made to accommodate the radiosity
algorithm: Ambient light is really just a trick for simulating
interreflective effects which are explicitly calculated by the
radiosity pass. When only the ray tracing is performed,

2 Note: since acceptance of this paper, BMRT has been modified
to support true displacements, albeit at large memory and time
expense.

5

ambient() adds the contributions from all of the ambient light
sources in the scene. However, in the cases where radiosity is
performed, ambient() does not evaluate the ambient light sources
at all, but rather returns the indirect illumination which was
calculated during the radiosity pass. Remember that we
separated direct and indirect lighting on the first pass. Our
ambient() trick only adds the indirect component, since the direct
component will be recalculated by the diffuse() function.
Separating the two also allows for both higher fidelity in shadow
calculation and for additional shading cues due to bump and
displacement shading (since the light direction is not lost as it
generally is for radiosity computations). This accounting of
indirect illumination happens automatically and is completely
transparent to the user and the shader author.

4. RenderMan binding for radiosity / ray
tracing

Approaching the problem from the other side, we note
that not all features of radiosity/ray tracing have obvious hooks to
the RenderMan Interface. This section will outline our binding,
i.e. how we used RenderMan to specify information needed by
the radiosity and ray tracing engines. These are implemented
using the Attribute and Option directives, the approved
methods of specifying implementation-dependent data to the
renderer.

4.1. Light Sources and Shadows

The standard RenderMan Interface allows specification of
light sources through both the LightSource and
AreaLightSource directives. Note that PRMan interprets an
AreaLightSource call by instantiating a point light source, not
an actual area light source. Both our ray tracing and radiosity
support both of these types of light sources. Area light sources
declared using the AreaLightSource directive are correctly han-
dled in the obvious way. When they are evaluated, Monte Carlo
integration over the surface geometry comprising the area light
are used to estimate the integral that represents the true light
arriving from the surface of the emitter.

We allow additional flexibility in declaring area light
sources for radiosity by adding an implementation-dependent
"emissioncolor" attribute which can be applied to any piece of
geometry in the scene using the Attribute directive. For
example,

AttributeBegin
AreaLightSource "arealight" 1 "intensity" [0.75]

 Cylinder .5 1 2 360 # declare an area light cylinder
AttributeEnd
Illuminate 1 1
AttributeBegin

Attribute "radiosity" "emissioncolor" [.5 .5 .7]
Sphere 1 -1 1 360 # this sphere is an bluish emitter

AttributeEnd
Polygon "P" [...] # this polygon does not emit

This RIB example shows the declaration of three pieces
of geometry: an area light source, an emitter, and a non-emitter,
respectively. The semantic difference between an area light

source and an emitter lies in how they are evaluated on the
second pass. Both are treated similarly for the radiosity pass.
However, as we mentioned earlier, area light sources are
reevaluated on the second (ray tracing) pass. Emitters are not.
This distinction allows us to specify that only certain area lights
should be recalculated on the second pass, which may save time.

The RenderMan interface does not specify how (or
whether) lights should cast shadows. With PRMan, if you want
a light to be shadowed, you need to use a light source shader
which explicitly references a shadow depth map to determine if
the light is shadowed from a particular point [11]. The user
needs to compute this shadow map ahead of time by rendering
the scene as a depth image from the point of view of each light
source which casts shadows.

Since a ray tracer can easily figure out if a light source is
shadowed, we needed a way to specify this on a light-by-light
basis. The Shading Language has no way to inquire about
whether an unoccluded path exists between two points. We
decided to solve this problem by adding an implementation-
dependent attribute to light sources. The following RIB fragment
illustrates our syntax:

Attribute "light" "shadows" ["on"]
LightSource "pointlight" 1 # this light casts shadows
Attribute "light" "shadows" ["off"]
LightSource "pointlight" 2 # this one does not

In addition, we also provided a mechanism for specifying
which geometry can be considered as an occluder on an object-
by-object basis. We did this using an implementation-dependent
attribute:

Attribute "render" "casts_shadows" option

In order of increasing computational cost, option is one
of: "none", indicating that the object does not occlude; "opaque"
indicating that it blocks all light; "Os", indicating that the object
has uniform opacity given by the Opacity directive (regardless of
what the shader says); or "shader", which indicates that the
surface shader should be evaluated for each shadow ray which
intersects the object. This allows shaders which specify varying
opacities for an object to determine how the object interacts with
light as an occluder (Figure 3). This effect, particularly for
partial transparency, would be difficult to achieve using shadow
maps, which compare only depth.

4.2. Radiosity Information

Radiosity is notorious for not being very automatic; often
a considerable amount of hand-tweaking is necessary to get an
efficient radiosity solution. It is essential to be able to specify
meshing rates, reflective and emissive characteristics, and other
data on an object-by-object basis. Unfortunately, no standard
mechanisms for these data exist in the RenderMan interface.
Again, we make liberal use of the Option and Attribute
directives. We have defined an attribute to specify the meshing
rate for the radiosity solution:

Attribute “radiosity” “patchsize” [ps] “elementsize” [es]
“minsize” [ms]

6

Where ps, es, and ms are floating point values representing the
approximate sizes (in world space) of emitting patches and the
maximum and minimum sizes of receiving elements,
respectively, using a hierarchical radiosity scheme as in [4].

The radiosity engine needs to know the emissivity and
reflectivity of each element in the scene. The element may be
part of an object bound to a surface shader of arbitrary
complexity, and there is no mechanism in the RenderMan
Interface to query geometry for its average color, nor is there a
predefined way to specify an object’s reflectivity. We provide a
mechanisms for this as follows. In the absence of any other
information, the color given with the Color directive is assumed
to be the average reflectivity of the object. This can be
overridden by using the nonstandard "averagecolor" attribute:

Attribute "radiosity" "averagecolor" [.4 .4 .7]

Generally, object reflectivity is implicitly defined as the
surface color times the surface's Kd parameter, the renderer
checks the shader bound to an object for a variable named "Kd",
and uses the value to premultiply the average color. This allows
more flexibility and makes changes to the shader parameters (but
not the color) accurately change the reflective color that the
radiosity calculations use. Emissivity of a patch (different from
an area light source, as explained in section 3.5) is conveyed
similarly:

Attribute "radiosity" "emissivity" [.4 .4 .7]

In order to accommodate our renderer's ability to handle
specular-to-diffuse reflections, similar attributes exist for
specifying "specularcolor", "transmitcolor", and "refractionindex"
on an object-by-object basis. Note that these refer to indirect
specular reflective/refractive properties, not to the way the
surface appears to the viewer (this is handled in the surface
shader).

Other miscellaneous parameters, such as the number of
progressive refinement steps to perform or the error tolerances,
can be specified either as nonstandard options using the Option
directive, or may be specified as command-line options when
invoking the renderer.

5. Discussion

Though not often admitted by researchers, it is true that
for most rendering tasks, global illumination is unnecessary.
Particularly for large production tasks, the speed of scanline
methods is often more desirable than the accuracy of global
illumination methods. Ray tracing is much slower than scanline
methods and cannot cheaply utilize true displacements; its nature
as a point sampling method makes it more expensive to compute
area operations. However, many applications or effects do need
these capabilities (Figures 4-6), which include radiosity and
diffuse interreflection, volumetric and participating media
effects, area light sources, and accurate automatic shadows using
ray casting.

Compliance with the RI standard has been established by
extensive comparisons to PRMan (see figure 7). When rendering
scenes which use RI features common to both renderers, the
resulting output is nearly indistinguishable (in fact, the authors
of both BMRT and PRMan are sometimes unable to correctly

guess which is which)3. PRMan is typically around 5 times
faster than our software, largely due to the greater efficiency of
REYES compared to ray tracing (as well as the skillful
optimizations by PRMan’s authors). However, it is not hard to
create pathological examples that either render slightly faster
with BMRT or render 10 or more times faster with PRMan.

In the process of creating and distributing this software,
we have learned a number of important lessons about rendering
systems and users’ expectations of them. We feel many of these
are of general use to creators of rendering tools. First, some
observations about global illumination in general:

• The popular view of radiosity being prohibitively expensive
does not ring true to us. A fairly straightforward radiosity
calculation can greatly increase the visual richness of the
illumination of a scene. One must watch out for the law of
diminishing returns -- typically 90% of the quality is
generated by the first 10% of radiosity computation.
Careful pruning of the calculations can yield good results for
the radiosity pass in a fraction of the time required for the
actual scan conversion and shading of the image.

• Nevertheless, our experience with users shows that
choosing good meshing rates, convergence criteria, and
other radiosity parameters is not intuitive to users not
previously familiar with radiosity. We have found no
straightforward heuristics, nor any foolproof way to
automate choice of the parameters.

And regarding RenderMan and other high-end standards:

• Practically no noncommercial rendering packages (and very
few commercial packages) support the variety of geometric
primitives, spatial and temporal antialiasing, programmable
shading, and other advanced features that are required by
the RenderMan Interface. This explains why so few public
renderers see production-style use, and implies that
standards such as RenderMan “raise the bar” by requiring
advanced features that would be of use to professionals.

• We cannot overemphasize the importance of programmable
shading, particularly with support of antialiasing and area
operators. We are aware of no other public domain or
shareware rendering system that has as flexible a shading
system as is required by RI. This makes the task of writing
renderers more difficult by requiring understanding of
languages and compilers, but it is well worth the price.

• Our experience has been that many of our users are the
same studios who use PRMan. This implies that (1)
investment in software and tools that support RIB and SL
influence subsequent tool usage (i.e. they’re more likely to
use BMRT because it is compatible with their primary
renderer); and (2) even studios successfully using PRMan
for feature film work are interested in at least
experimenting with, and possibly actually using, global
illumination.

3 Of course, it is trivial to tell the difference when using features
not common to both packages; for example, large displacements
only work with PRMan and radiosity only works with BMRT.

7

• It is rarely possible to directly compare different rendering
algorithms on identical input. Too frequently, we see
papers comparing hand-crafted algorithm A to hacked-
together algorithm B. Results of such tests are rarely
meaningful. It would serve the entire graphics community if
algorithms could be compared to optimized, proven
packages on the same input. High-end standards such as RI
help to facilitate this.

• Comparisons between BMRT and PRMan, simple to
perform because they take the same input, have revealed
bugs in both packages. This further argues for common
formats and standards in rendering. If it were easier to
make such direct comparisons of packages, we expect that
all of the packages would see great improvements.

We would certainly like to see continued popularity and
development of the RenderMan Interface. Future revisions of the
standard could do much to accommodate non-REYES
implementations and the global illumination community. It
would be very helpful to have standard ways to communicate
meshing rates, emissivity, and reflectivity of geometry.

A facility should be added to the Shading Language to
ask for light visibility information in the absence of shadow
maps, as well as to inquire at run time which of the optional
capabilities of the standard are available. Surface and light
shaders could be modified to allow for specification of physical
units, and to give general BRDF’s. It may also be desirable to
have a means of enforcing physically realistic behaviors of light
and surface shaders (for example, ensuring energy conservation).

Both access to global illumination renderers and common
formats for rendering systems are sorely lacking. The global
illumination community would do well to establish such
standards. This would serve both to widen use of such renderers
and to provide a basis to compare renderers to each other for
research purposes. We have shown that the RenderMan
Interface Standard is quite capable for global illumination
applications, and conversely that ray tracing and radiosity are
viable implementation methods for the RenderMan Interface.

Software Availability

A home page for the software described in this paper is available
from http://www.seas.gwu.edu/student/gritz/bmrt.html. Binaries
are available for a variety of Unix platforms and may be found at
ftp://ftp.seas.gwu.edu/pub/graphics/BMRT.

Acknowledgments

The authors wish to thank the many users of BMRT, especially
the students at GWU who were among the first guinea pigs. The
first author would like to single out Michael B. Johnson and
Tony Apodaca for being particularly helpful in our effort to make
BMRT available to the world. Rudy Poat and Steve May
graciously allowed us to use their images. RenderMan and
PhotoRealistic RenderMan are registered trademarks of Pixar.

References

[1] Apodaca, Anthony A., ed. SIGGRAPH ’90 course notes
#18 (The RenderMan Interface and Shading Language),
1990.

[2] Apodaca, Anthony A., ed. SIGGRAPH ’92 course notes
#21 (Writing RenderMan Shaders), 1992.

[3] Blinn, Jim. Simulation of Wrinkled Surfaces. Computer
Graphics 12(3):286-292, 1978.

[4] Cohen, Michael F., Donald P. Greenberg, Dave S. Immel,
and Philip J. Brock. An efficient radiosity approach for
realistic image synthesis. IEEE Computer Graphics and
Applications, 6(3):75-84, March 1986.

[5] Cohen, Michael F., Shenchang Eric Chen, John R.
Wallace, and Donald P. Greenberg. A progressive
refinement approach to fast radiosity image generation.
Computer Graphics, 22(3):75-84, 1988.

[6] Cook, Robert L., Loren Carpenter, and Edwin Catmull.
The Reyes Image Rendering Architecture. Computer
Graphics, 21(4):95-102, 1987.

[7] Cook, Robert L., Thomas Porter, and Loren Carpenter.
Distributed ray tracing. Computer Graphics, 18(3):137-
145, 1984.

[8] Gritz, Larry. Computing Specular-to-Diffuse Illumination
for Two-Pass Rendering. Master’s Thesis, Dept. of
EE&CS, The George Washington University, Washington
DC 20052, May 1993.

[9] Hanrahan, Pat and Jim Lawson. A language for shading
and lighting calculations. Computer Graphics, 24(4):289-
298, August 1990.

[10] Pixar. The RenderMan Interface, version 3.1 specification,
September 1989.

[11] Reeves, William T., David H. Salesin, and Robert L.
Cook. Rendering antialiased shadows with depth maps.
Computer Graphics, 21(4):283-291, July 1987.

[12] Shirley, Peter S. Physically Based Lighting Calculations
for Computer Graphics. Ph.D. Thesis, University of
Illinois at Urbana-Champaign, 1991.

[13] Slusallek, Philipp, Thomas Pflaum, and Hans-Peter Seidel.
Implementing RenderManPractice, Problems and
Enhancements. Computer Graphics Forum 13(3):443-454
(Proceedings of Eurographics ’94, Oslo, Norway, Sep. 12-
16, 1994), Blackwell Publishers, Oxford (1994).

[14] Upstill, Steve. The RenderMan Companion, Addison-
Wesley, 1989.

[15] Wallace, John R. and Michael F. Cohen. A two-pass
solution to the rendering equation: A synthesis of ray
tracing and radiosity methods. Computer Graphics,
21(4):311-320, 1987.

[16] Wallace, John R., K. A. Elmquist, and Eric A. Haines. A
ray tracing algorithm for progressive radiosity. Computer
Graphics, 23(3):315-324, July 1989.

8

Captions for the color plates:

 Figure 2: “Fake” displacement shading, use of the trace function, and automatic shadows.

 Figure 3: Ray tracing allows for partially transparent shadowing that would be difficult to achieve with
shadow depth maps. Image courtesy of Steve May, Ohio State University ACCAD.

 Figure 4: “Kitchen Scene” combines radiosity and ray tracing.

 Figure 5: “Dresser” shows radiosity, procedural textures, specular-to-diffuse illumination.

 Figure 6: Volumetric and participating media effects using volume shaders and global illumination.

Figure 7: Comparison of images from PRMan (left) and BMRT (right) using identical input. The PRMan
image used shadow depth and reflection maps, while the BMRT image used automatic shadows and
reflections.

