To appear in:Journal of Visualization and Computer Animatid®95 (in press).

Genetic Programming for Articulated Figure Motion
L. GRITZ and J. K. HAHN

Department of EE & CS, The George Washington University, 801 22nd Street NW,
Room T-624, Washington, DC 20052, U.S.A. email: gritz@seas.gwu.edu

SUMMARY

We present an approach to articulated figure mation in which motion tasks are defined in terms of goals and ratings.
The agents are dynamically-controlled robots whose behavior is determined by robotic controller programs. The
controller programs for the robots are evaluated at each time step to yield torque values which drive the dynamic
simulation of the motion. We use the Al technique of Genetic Programming (GP) to automatically derive control
programs for the agents which achieve the goals. This type of motion specification is an alternative to key framing
which allows a highly automated, learning-based approach to generation of motion. This method of motion control is
very general (it can be applied to any type of mation), yet it allows for specifications of the types of specific motion
which aredesired for a high quality animation. We show that complex, specific, physically plausible, and aesthetically
appealing motion can be generated using these methods.

KEY WORDS: Computer animation Genetic Programming Evolutionary Computation Learning Robotics

INTRODUCTION

The tradeoffbetweencontrol andautomaion is a well known problemin computerassisteccharater
animation. It hasbeenthe goal of manyresearcherso allow automationof agentswhile still maintaining
control. Despitethis, most professionalsstill use key framing becausemost of the automaticmotion
control scheme$avenot allowedfor sufficiently specifc control overthe agents.This is a laboriousand
tedious process for those fessionals, and high quality motion is often difficult to achieve eveskitied
animators. We proposea new techniquefor animatingarticuated figures which highly automateghe
animdion proaess,is extremelygeneral(canbe usedfor a variety of motiontasks),yet allowsthe userto
be quite specific about what motion is to be getest.

We find thathumansgmay not know how to specifygoodmotion, but we caneasilyrecognizegoodor
bad motion when we see it. Our tajue is well adaptetb thesestrengthsandweaknesses.The guiding
principleis: let the systengeneratethe maion, andlet the humanprovidethe deteminationof whatis
“good.” Our method employs the Al techniqgue®&netic ProgrammingGP). Our GRechniquecanbe
thought of from several perspees:

1. Ouragentsaredynamicrobotswhoseactionsare determineddy controller programs. GP allows

us to find a controller pgram for the asdbn we want the agent to perform.

2. Theanimatordoesnot needto providethe cortroller programs,only a metric of what motion is
good. We suspectedhatit may be easierto quantify (rate) motion after the fact thanto generate
the descrigiion of the motionitself. This turnedout to often be the case particularly for people
who are not professional animators.

3. The processof developingcontroller programscould be thoughtof as a learning processor a
planning process.

A surprisingnumberof interestingmotion control problemscan be statedas problemsof programin-
dudion. Thatis, we know that the solutionto the problemis an appropriateformula or computer pro-
gram,but we arenot surehow to write the program. GP allows us to find the appropriatecontroller pro-
gram for our agents to achieve their goals.

RELATED WORK

Witkin andKass[1] proposedhe spacetimeconstraints methodof automaticallygeneratingmotion
(later enhanced bgohen[2]). Their goalwasto seehow manyof the principlesof animationoutlinedby
Lasseter[3] could be derived automatically from first principles. Spacetimecorstraints generates
kinematic motion which both gafies high levefoals(e.g.“jump from hereto there”) andalsoappearso
be physically plausible. The resultingmotion alsotendedto exhibit manyof the principlesof traditional
animation (e.g. squash and stretch, goaitton, follow-through).

The methodinvolves optimizing the kinematicpostions of the articulatedfigure, using energycon-
sumptionas an objective function and corstraining the solution in order to ensurethat the motion is
physically plausible. Unfortunately,this methodsuffersfrom severaldrawbacks:it can be numerically
unstable and its sdion depends on the initiajuessprovidedto the optimizer,the solutioncaneasilybea
local minimum, energymay not be the bestcriteria to optimize, and the methodappearso needa sig-
nificant amount of hard-coding and matieical sophistication to use.

More recently,otherresearcherproposednethodsof automaticallygeneratingvalking mation using
searchand optimization techniqueg4,5]. Both gave impressiveresults, yielding physically plausible
motion andautanatically finding a numberof walking methods. However,the resultingmotion had high
specialization(i.e. they madewalking gaits,not generalmation), but low specificity(i.e. they both simply
walked forward, rather than having more @fie instructions, like “walk to posion X”).

Both of thesemethodswere optimizing structuresof fixed complexity (a network of fixed topology
anda stimulus-responstble,respectively). We believethatthis is a disadvantage We chosea different
represention, namely a mathematicadescription(computerprogram) describinghow the joint forces
vary with time andchangesn the stateof the simuation. We believethatthis representatioffers many
advantages. Such a repentabn is appre@riately optimized using the GP technique.

It is alsointerestingto notethe work of Karl Sims,who useda GP-like procesdo evolve procedural
textures, where the fithess metric was human evaludjor§ims also wrote a paper describing the use of
evolutionaryprogrammingo designentirecreatureg7], in which eventhe creaturetopologywasevolved
for walking, swimming, etc. In contrast,our work dealswith figures of fixed topology and geometric
structure, as one would expect for character animation.

GENETIC PROGRAMMING

Genetic Programming(GP)[8] is an evolutionary metaphorsimilar to Genetic Algorithms (GA)
[9,210,11]. Themajordifferenceis thatGA'’s usuallyoperateon fixed lengthbinary strings,while GP op-
erates on computer programs of varying complexity. One advantage toptoseps that oftenthe com-
plexity of anoptimalsolutionto a problemis notknowna priori. With GA, the complexity (lengthof the
binary strings) must be specifiedat the start. On the other hand, GP can evolve a conplexity level
appropriate to the problem.

ThebasicGP algorithmis simpleand may be explainedvery briefly. We havea particularoptimiza-
tion problem, the solution of which is a computerprogram. Thoughwe could operateon any pro-
gramminglanguagerepresentatiorfor simplicity we operateon programparsetrees Theseparsetrees
canberepresentethy LISP S-expressiongl2]. Figurel showsa typical parsetreeandits associateds-

expression. The parse tree and S-expressionsparme to the following formula in algebraic notatiorf
+(y-3.27)

OB OROMEY

(+(* xx) (-y 3.27)

Figure 1: A parse tree and corresponding S-expression.

Note thatthe parsetree consistsof a root node(which may optionally be a specialfunctionsuchasa
list), functionswith oneor more argumentsandterminals (leavesof the tree) which are eithernumercal
corstants, named variables, or functions which take no arguments.

The GP paradigm requires the following problem-dependent inputs:

1. A setof terminals(constants&indnamedvariables)anda setof functions,out of which the parse

trees can be generated.

2. A fitnessfunction, which returnsa measureof the performanceof an arbitrary individual pro-

gram.

3. A terminationcriteria, which recognizesvhenit hascomeacrossan individual program which

adequately solves the problem at hand.

4. The number of individuals in the populatidv)(the maximum number @fenerationso calculate

(G), and other miscellaneous \ales which control the workings of the GP run.

For the first generation, we start witlpapulationof randomly generateiddividuals(programs)and
use the fitness function to rate their performance. We should expectthat the fitness valuesof these
randomindividualswill be quite low, sincethe chancesare slim that a random computerprogramwill
solve our problem exactly.

We form the populations of subsequent geti@ma usinggenetic operators

a) Reproductionyhich copies(without alteraion) individualsfrom the previousgeneratiorthat had
high fitness values.

b) Crossoverwhich combinestwo individuals from the previousgeneratiorto yield two new indi-
viduals. This is typically doneby swapping randomly chosernsubtreesof the two programs(see
figure 2).

c) Mutation, which replaces a randomly selected subtree with a new randomly generated subtree.

Sincethe individualsinvolved in theseoperationsare typically selectedn sometype of fithess-pro-
portiorate manner,unfit individuals will tend not to make it to the next generationwhile highly fit
individuals will tend to survive. The alterationsresulting from crossoverwill sometimesresult in
individual praggrams which are more fit than any programs seen in previous generations.

@ ©
> O oo 2 i
oo e
oRo oD
o"oe GO GB

(*3.14 (+y8)) (*+ x (- x (absy))) (* (absy) (+y 8)) (+x(-x3.14))

Figure 2 (a) Parse trees before crossover (left side). The bold regions denote the subtrees selected for crossover.
(b) The resulting parse trees after crossover (right side).

This cycleis repeatedor eachgeneratioruntil a maximumnumberof generationss reachedpr until
anindividual is found which adequatelysolvesthe problemat hand (i.e. meetsthe terminationcriteria).
Eachgererationtendsto haveindividuals with higherfitnessthanthe previousgeneréion, andthis often
results in findng optimal individuals which could not have beeurfd by blind random search.

The highest level of the GP algorithm can berfalized as below:
let M = population size;
let G = maximum number of generations to run;
createM random programs for generation 1;
for gen=1to G do:
for i = 1to M do:
f, = fitness of individuai;

if individuali solves the problem adequately,
then terminate;
endfor;
construct generatiogent1 using reproduction, crossover, mutation;
endfor;
report the best individual found.

Since the Genetic Programmingparadigmis driven by stochasticprocessessuch as the initial
population of random programsand the probabilstic selection of individuals for reproductionand
crossover,it is not guaraneed that a solution to our problem will be solved in any particular run.
However,we can peiform multiple independentuns (with different ranrdom numberseedson eachrun)
until we find a soltion that is adequate.

SYSTEM OVERVIEW

The conceptualayoutof our systemis shownin Figure3. From the perspectiveof the animator,the
GP and dynamics subsystems may be treated as black boxes.

Output
controller program

Articulated figure | System
GP System dynamics simulatiog . (black box)
,,,,,,,,,,,,,,,,,, o~
| fitness metric | | figure model | Input

(supplied by user)
Input/Output of System Figure 3: Structure of the syste

For any given animation,the systemneedsto understandthe dynamicsof any articulatedfigures or
other agentsinvolved in the simulation. This information must be supplied for the dynamicsto be
computedproperly. The figure modelincludesconnectivityof the figure; geometry,massesandinertias
of the various links; and descriptionsof the capabilitiesof the figure (e.g.,joint limits, force andtorque
ranges for the “muscles”, p#re sensors). This infortan generally does not change over the course of
an entire animation.

For each motiosequencethe animatormustsupplya fithessmetric;in otherwords,a formulawhich
will ratea motionsequence.Therating shouldbe a low numberif a prospectivemotion sequencés close
to thatwantedby the user,a highernumberif it deviatesfrom the goals. The natureof the fithessmetric
is discussed in later in this paper.

When a GP run has finished, the final output of the GP subsystem is a single controller piidgsam.
cortroller programis the onewhich, whenusedto governthe actionsof a simulatedagent,resultedin the
bestratedagentaccordingto the user-supplieditnessmetric. This controllerprogrammay thenbe used
to generate the motion control needed for the animation.

Dynamics Subsystem

The dynamic systemsimulatesthe physicsof articulated bodies. We use the dynamicsmethods
outlined in [L3,14,15] to model articulated figures as trees of rigid links. Each jeiobntrolledintemally
by a dampedangularspring. The joint hasa “neutral” (or desired)orientation. The spring pusheshe
joint toward the desired orientationwith a torquepropotional to the anglebetweerthe actualanddesired
orientations (figure 4). This is called a proportionaidgive (PD) controllerand is acommontecmique
used in both computer amation and robotic control.

T,= k6, + k,0,

Rigid Linki+1
(actual position)
Rigid Link i
0% - " gesired position

of link i+1
Jointj (3 deg. of freedom)

Figure 4: Torque at a joint is proportional to the angular difference between actual and desired orientations of
the links (desired angle is the output of the controller program).

At eachtime stepin the integration,the robotic cortroller programis evaluated. The cortroller
programis interpretedas a list of the desiredoriertation anglesfor the joints. The differencesbetween
thesedesiredanglesandthe actualanglesyield the torquesandforceswhich drive thefigure. Becausehe

systemis basedon dynamicsand performscollision detectionand responsewe are guaranteedo have
resulting motion which appears physically [denle.

Simulation of a motion sequence for controfler

t=0;

whilet < time_limitdo:
evaluate controlleC, yielding desired joint angles;...a,,
integrate dynamics forwaraf time dt;
t=t+at;

endwhile;

GP Subsystem

The GP subsystemunsthe basicGP algorithmdescribedearlier. Wheneveiit is time to evaluatethe
fitnessof anindividual, the dynamicssubsystems invokedto simulatethe situation,giventhe paticular
individual asthe robot controlling program. Whenthe simulationis over, the user-supplieditnessevalu-
ation fundion rates the p&rmance based on staits collected by the dyn&aos progran.

Earlier we alluded to the notion that the GP system needs an appropraithisetionsandterminals
(parsetree leaves)out of which it corstructs the controller programs. To a large extent this is
customizablebut requiressomecarefuljudgment. We do not wantterminalsandfunctions which are not
neededo solvethe problem,sincethey will only slow down our searchfor the correctsoluion. On the
otherhand,if a particularproblem’sunknownsoluion requiresa functionwhich is notin our set,we will
neverfind the comrect solution. In short,we wanta minimal setof basisfunctionswhich will allow the
controller to perform its duties.

The functionsin the parsetreesshouldminimally consistof basicarithmeticfunctions(+, -, *, %).l
We alsofoundit critical to includethe operatorifltz, which takesthreesubtreesasargumentsif the first
evaluatego a valuelessthan0, thenevaluateandreturnthe secondsubtree glseevaluateandreturnthe
third suliree.

We consider thisetof primitivesto be minimal, but sufficient. For certainmodelsor motiontasks,it
may be advantageout add more mathematicafunctions(suchas cos, which could aid in generatiorof
internal oscillators,or abs), control functions(suchaswhile), functionsspecificto the modelor task at
hand (such as distance-to-near est-obstacle), or functions which produceside effects when evaluated
(suchasreease-grip). Which functionsto add dependslargely uponwhat functionality is built into the
mockls being cotmolled and the intuition of the dggner when considering the particular motion tasks.

Theterminalsin the controllerprogramscorrespondto the internalstatevariablesof the agentandthe
outputs of any sensorsaccessibldo the agent. For example,theremay be terminals(namedvariables)
which correspondto the agent’'sposition, velocity, joint angles,externalforceson its limbs, etc. The
terminalslook up the sensoroutputsor statevariableswhen they are evallated. In other words, the
variablesare cortinually updatedby the dynamicssubsystenthereforethey containdifferent valueswhen
the controlleris evaluatedat eachintegrationstep. It is alsopossibleto havevariablescontainthe status
of subgoalqe.g.onevariablemay becomenonzerowhena subgoalis met, allowing if-then statementin
the controller program to switch behaviors at that point).

In addition to named variables, it is usefuhtvenumericalconstants.Sincewe do not know before-
handwhat constantsnight be useful,we simply sprinkle the initial randompopulation'sparsetreeswith
randomlychosenfloating point values. This is a well known GP techniquecalled use of the epheneral
random constan@nd is dscribed in detail ing].

Yo indicatesprotected divisiorwhich is identical td but does not cause an exception upon division by zero.

The structureof the controller programnaturally reflects the model and task at hand. In the case
wherewe wanttorquevaluesat all joints, the root nodesof the parsetreeswill all be lists whoselengthis
the numberof degreesf freedomcortrollable by the agent. Eachelementin thelist is a controller pro-
gramfor that particulardegreeof freedom(figure 5). Whenthis is the case the treesare corstrainedto
have this topology—the original rdam trees are all lists, aride crossoveoperationis guaranteeahot to
disturb this structure. Thus, each evolved program actually consists of mini-prdgrarostrollingeach
joint.

Controller = 1 dof
Gist
(exprl) / 1 dof
(expr2)
(expr3)
(expr4)
(exprb))

3 dof

Figure 5: Controller programs are lists giving mini-control programs for each degree of freedom in t
agent.

Thesemini-programsfor the joints are evaluatedndependentlybut sincethey are built of primitives
which may consistof statevariablesof the agentthe controllerprogramsfor differentjoints may produce
coupled actions. The naturetbe GP paradigmtendsto producecoupledmotionwhenadvantageouand
independeniotion whenthat approachis more productive. This is why the lack of externallyimposed
structureon the cortroller solution works to our advantage—thé&P will naturally evolve a soluion
structure appropriate to the problem being solved.

CONSTRUCTING FITNESS MEASURES

Oncethe systemunderstandghe dynamicsand capdilities of the agent,it can run the dynamics
simuldions. The GP subsystengeneratesontroler programswhich are potentialsolutionsto the motion
control problem at hand. These controller programs are passeda time to the fithessfunction, which
is respondble for generatinga rating for thatcortroller. Thefitnessfunction usesthe dynamicssystemto
simulatethe motionusingthat particularcontrollerprogram,thenusesstatigics suppliedby the dynamcs
system to compute a fitness rating.

Evaluate fitness of controllé:

Simulate the motion using controll€f
fit = main_goal + style_points;
returnfit;

Whengeneratingactualmotion, a goodfitnessmetric that resultsin the motion we are seekng can
be specfied using an astonishinglysmall amountof code. Conceptuallywe divide the fithessmeasire
into a main goal and style points.

The main goal should be a simple metric of whether the primary tdsktohotion sequencéasbeen
fulfilled. Forexamplejf the point of the motion sequences to movethe figure to the“X”, thenthe main
goal should simply be the distancebetweenthe figure and the “X” at the end of the time allotment
(remember that lower numbers cespond to better performance).

Sincethe motion is so grosslyunderconstrainedhe GP systemcan often find outrageouswvays of
meetingsucha simple fitnessrequirementFor example,it might somersaulto the goal point insteadof
hopping. Becauseof this, we find it usefulto add style points which can be thoughtof as additional
rewards or penalties granted to the individual’s performance. Examples of style points include:

1. Penalties for hitting obstacles or violating safety rules (“don’t hit your head on the floor”).

2. Rewards for performing the action quickly, or slowly.

3. Penaltiedor inefficient behavior(suchastaking the long way aroundan obstacleor sitting for a
long time, then rushing when it gets close to the time limit).

4. Rewardsfor endingin “neutral positions” and remainingin control (you don’t want the actor
tangled up or laid across the floor when he plates his action).

5. Rewardgor minimizing energyconsumptiorare usefulat times. Most of the time, however,we
found that this did not improvethe quality of mation in any significantway. Evenwhenerergy
consideréions wereusetl, the effectstendedto be very subtle,andnot asimportantasthe other
style considertgons.

6. Problem-dependent terms (e.g., whethetaoeisubgoals were met).

The following sectionwill clarify therole of thesetermsin the fitnessfunction by discussingspecific
examples.

RESULTS

Luxo revisited

Ouir first examplereturnsus to the desklamp. This seemsappropriatesincethe film Luxo, Jr. [16],
though completely key framed (thus dependent on thauesting labor of a highly skilledhamator),is still
consideredhe pinnacleof computeranimationquaity. We wantedto teachthe lamp to be ableto move
about. It would not havebeenconsidereca succesgo simply move forward—wewantedto generatea
cortroller programto bring it to reston a paticular spot, to show that we could perform any intricate
scripted motion we desired.

Our lamp modelwasa fully 3-dimensionahrticdatedbody with 4 links and 3 internally controllable
degrees of freedomAll dynamicsweresimulatedn 3-D. The geometrymassesinertias,andsoonwere
givento the sygem. The lamp hadaccesdo its positionreldive to the goal point, its velocity, and the
amountof force beingimpartedto its basethroughcontactwith thefloor. The setof terminals consisted
of thosestatevariablesdescribedabove,time, and a random selectionof floating point constants.The
function setconsistednly of { +, -, *, %, ifltz}. Thesechoiceswere suggestedby prior GP research,
especially §].

We experimentedvith severalfitnessmeasurments. The onethat we found most successfuivas a
blend of the following constraints:

1. Main goal: distance between base center and goal point “X” at the end of the timerdllot

2. Style points: a weighted sum of the following:

a) bonus for completing the motion early (how much time did it take to get to the “X”).

b) penalty for excess movement after goal was met (this was to keep it still after it got done).
c) penalty for hitting its head or falling over.

d) bonus for ending with joints at neutral angles.

The formulawhich computedhis fitnessmetric (given accesgo statisticscomputedoy the dynamics
subsystem) was surprisingly small—about a half dozen lines of C code.

We found that immediatelyplacingall of the style consideration®n the motion did not give the GP
processhe bestopportunityto discoverfit individuals, simply becauset was so restrictive. We solved
this problem by rating controller programs based on the main goal orihyeffarst few gererations. Then

we slowly phasedn the style considerationsgenerdéion by generation. The effectwasto teachit how to
getto the*X” first, without regardto whetherit fell over afterwardor whetherit endedin a neutralposi-
tion. Onceit hadmasteredhattask,thenwe placedmoreandmorerestrictionsonit. By thetime we got
to the 50th generationthe motionincludedthefull setof style considerations.In this mannerwe allowed
the motion to start crudely and gebgressivelynorestableover severalgenerations.This waseasierfor
the system than requiring optimal motion at the very start.

In this examplewe ran the GP systemfor 50 gererationsusinga populationof 250 individuals. For
eachnew generation90% of the new individual programswere generatedusing crossoverand the re-
maining 10% weregeneratedisingrepradudion. We did not usemutationfor the examplesdescribedn
this paperbecausat wasfound not to be significantcomparedo crossover. Theseparametersare sug-
gestedin [8], and our experimentsindicatethat the resultswere not particuarly sensitiveto changesn
these vales.

The resulting catmoller programproduceda hopping motionwhich broughtthe lampto the exactspot
we desired(seeFigure 6). The motion appearedsmooth,physically realistic, efficient, and surprisingly
organic. Note that the solutioninvolved two hops. A solutionwith suchseverediscontinuities(suchas
collisions) would not be found by a local gradient-basedoptimization method such as spacetime
constraints. Figure 7 showsa samplecontroller programwhich madea successfujump. The controller
programsareusuallyopaqueto humaninterpretationput we are gererally not concernedvith the robot’s
internal mechanisms for movement.

i

Figure 6: Lamp’s Jumping motion. The primary task is to locomote to the target point, shown by the >
Note that the resulting motion brings the lamp to the specific target point desired, illustrating a high le
control.

(list
(- (ifltz a0 pz a2) (% alt))

(ifltz (- (- (ifltz a0 pz a2) (% alt)) (ifltz (+ a2 15.4963)(ifltz a0 pz a2) (% ala2)))(ifltz (% (- sOvx) (+ a2s0)) (% (- sO
vX) (+ a2 s0)) (+ (-al al) (- a1l t))) (% (+ al vz) (ifltz (* pz al) (% a0 pz) (% px a0))))

(- (ifltz sO (ifltz (- (% vx a0) (% vx vx)) (- (% vx a0) (- (28.4382 t) (% alt))) (* 16.5266 s0)) vz) (+ al vz)))

Figure 7: Samplesuccessfutontroller program. Thenamedvariablescorrespondo angle,force, position,and
velocity sensors. The resulting programs are generally not easy for humans to interpret.

It is particularly enlighteningto view the progressheingmadein the learningprocessgenerationboy
gereration. If oneviewsthe motion sequencesf the bestindividual of eachgenerationjt is easyto be-
lieve that a single lamp is actualsarning how to locanote by trial and error.

After we evolvedcontrollerprogramsto enablethe lamp to locomote, we wantedto seehow well the
systemcould handleobstaclesand other severelyconstrainingconditions. We decidedto teachthe lamp
howto limbo. Usingthe geneticsystemwith a singleadditionalstyle term—alarge penaltyfor hitting his
head on the limbo pole—we were able to produce a serrestainsfor variousheightsof thelimbo pole.
These motions were used to makeahematedshortfilm, “L*xo Learnsto Limbo.” Theresuling motion
was very convincing. Becausdahe motion had slight imperfectionsand at times incorporated seemingly
“clever” strategies, it appearedgamnic rather than robotic (see figures 8 and 10).

Figure 8: The lamp can learn to avoid obstacles when additional constraints are added to the system.

Humanoid Figure

The next test was intendéalseeif this paradigmcould scaleup to modelswith manydegreesf free-
dom. We modeled an articulated humanoid figure and taught itdwalieety of simpletasks. Thefigure
had a total of 28 degrees freedom. Betweend and10 degree®f freedomwerecortrolled by the genetic
controllers at any one time, depending on the motion task (the others were under simple dynamic control).
For the geneticprogrammingstep, we left the function setas before:{ +, -, *, %, ifltz }. The
terminal setvasexpandedo includeall internaljoint anglesforce sensorsandpositionsof endeffectors.
Dependingon the motiontask, we usedgeneticrunsof betweer20 and50 generationseachcomprisedof
between 100 and 400 individual controller programs.

Figure9: Herman learns a variety of tasks. (a) touching/grasping targets; (b) gesturing/touching his nose

Using similar goalsand style points as describedbefore, we were ableto train the humanoidto per-
form a numberof simple,but nontrivial, motion tasks. Theseincludedpointing, gesturing,and touching
objects or parts of its body. Figure 9 shows someesgces of these learned motions.

DISCUSSION
We propose the following guidelines for determgqwhether our system is successful:

1. Can it generate complex, general motion?

10

2. Does the animator retain enough control talgaenerate motion for specific tasks?
3. Is the motion physically plausible? (Physically implausible motion distracts the viewer.)
4. Does the motion have appeal? (e.g. does it look organic? Can one imagine emotional content?)

We believethat our techniquesatisfiesall of thesecriteriain generatinga variety of motiontasks. In
no way is it hard coded for a particular type of motiget,t is ableto generatenotionwhich matchesour
specificgoals. All of the motionis both physically basedand biologically believable for the construction
of our agents. Finally, the resultingmotion sequencepassthe hardesttest:it is entertainingto watch.
The “L*x0 Learnsto Limbo” videois a prime example. The motion is fluid and believable,and was
constructedusing a fithess metric of lessthan a dozenlines of C code. We feel that this was a more
efficient method (for this task) than key framing.

While the developmenbf goodfitnessmetricsis a skill in itself, we found that it wasa much easier
skill to developthanmotionspecification. While thefirst fithessmetricswe usedwere developedhrough
trial anderror, we found that subsequerifitnessmetricsfor different tasksand modelswere substantially
similar, and neededvery little tweakingfor different motion tasks. We admit that the choicesfor fitness
metricsandthe function andterminal setswere somewhatad-hoc. Our continuingresearchaddressethe
issueof exactly which fithess measuresre best, which membersof the function and terminal setsare
essential, and how the choice of these parameters affects the efficiency of the learning.

The learning processtakes time proportional to the number of generations(G) and number of
individuals per generation(M), the amountof time to simulatefor eachtrial, and the accuracyof the
integration. This is becauseeachindividual cortroller programmustbe evaluatedoy simulationof the
dynamics. Evenif the simulationcan be calcuated fasterthanreal time, it still mustbe performed for
roughly MxG different individuals. For our examples,computationtime was on the order of a few
minutes per generation on a MIPS R4000 procesBboughthis may not be a particularlyfasttechnique
in termsof CPUtime, it wasquite efficientin humananimatortime. In addition,the GP algorithmeasily
lends itself to masive MIMD paralelization, since the simulation and evaluationof eachindividual
controller programcan be performedindependently. We are currently exploring sucha parallelization
scheme.

A clear deficiency irthe schemas the “brittleness”of the resultingcontrollerprograms. The learning
processproducesa controller for a particular task, rather than a generalskill, and the controller is
sensitive to initial conditions. We are currently exploring ways to make more “robust” controllers.

We havejust begunwork in this promisingarea. Thereare many possibleextensiongo this work,
including putting an intuitive interface aroundthe packagewhich will allow autanatic constructionand
tuning of fitnessmetrics,evolvingmorerobustcontroller programsfor complextaskssuchaswalking on
uneventerrain with obstaclesand building libraries and hierarchiesof controller programs. We also
would like to explorethe relationshipbetweerkey framing andautomaticmotion generation. Clearly it is
not an either-or situation. Key framesmay be usedas hints or constraintsfor the automaticmotion
generation, or automatic motion may be used as a starting point for key framing. In addition, we suspect it
will be advantageou® havesomedegreesf freedomfor a figure generatecautomatically while others
are key framed.

ACKNOWLEDGMENTS

This work was partially supportedoy NASA GSFC(NCC 5-43). We would alsolike to thankthe
other members of the GWU Graphics Lab for their helpful discussions and reviews.

REFERENCES
[1] Witkin, Andrew and Michael Kass. SpacetimeConstraints,ComputerGraphics,22(4):159-168,August
1988.

11

(2]
(3]
[4]
(5]

(6]
[7]

(8]
[9]

[10]

(11
[12]
[13]

(14
[15]

[16]

CohenMichaelF. “Interactivespacetimeontrol for animation,” ComputerGraphics 26(2):293-302,July
1992.

Lasseter,John. “Principles of traditional animation applied to 3D computeranimation.” Computer
Graphics21 (Proceedings of Siggraph '87), pp. 35-44.

Ngo, J. ThomasandJoeMarks. “SpacetimeConstraintsRevisited,”Proceeding®f Siggraph’93, pp. 343-
350.

van de Panne Michiel and EugeneFiume. “Sensor-actuatonetworks,” Proceedigs of Siggraph’93, pp.
335-342.

Sims, Karl. Artificial evolution for computer graphic€omputer Graphigs25(4):319-328, 1991.

Sims,Karl. Evolving Virtual CreaturesComputerGraphicsProceedingsAnnual ConferenceSeries1994
(Proceedings of SIGGRAPH '94), pp. 15-22.

Koza, John RGenetic Programming MIT Press, 1992.

Goldberg,David E. GeneticAlgorithmsin Search,Optimization,and Machine Learning Addison-
Wesley, 1989.

Davidor, Yuval.Genetic Algorithms and Robotics: A Heuristic Strategy for Optimizatiéforld Scientific,
1991.

Davis, Lawrence, edHandbook of Genetic AlgorithmsVan Nostrand Reinhold, 1991.
SteeleG. Common Lisp, The LanguageDigital Press, 1984.

Armstrong, William W. and Mark W. Green. “The dynamicsof articulatedrigid bodiesfor purposesof
animation,”Visual ComputeSpringer-Verlag, 1985, pp. 231-240.

Hahn, James K. “Realistic animation of rigid bodie€gmputer Graphics22(4):299-308, August 1988.

Wilhelms, Jane. “Dynamics for ComputerGraphics:a Tutorial,” Siggraph'90 Coursenotes#8 (Human
Figure Animation: Approaches and Applications), pp. 85-115.

Pixar. Luxo, Jr.(computer animated film), 1986.

Figure 10: L*xo Learns to Limbo

12

