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Abstract—Visualization can provide valuable assistance for data analysis and decision making tasks. However, how people perceive

and interact with a visualization tool can strongly influence their understanding of the data as well as the system’s usefulness. Human

factors therefore contribute significantly to the visualization process and should play an important role in the design and evaluation of

visualization tools. Several research initiatives have begun to explore human factors in visualization, particularly in perception-based

design. Nonetheless, visualization work involving human factors is in its infancy, and many potentially promising areas have yet to be

explored. Therefore, this paper aims to 1) review known methodology for doing human factors research, with specific emphasis on

visualization, 2) review current human factors research in visualization to provide a basis for future investigation, and 3) identify

promising areas for future research.

Index Terms—Human factors, visualization, perception, cognitive support, methodology.
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1 INTRODUCTION

MODERN technology provides access to large quantities
of data in many application domains, such as medical

imaging, fluid flow simulation, and geographic information
systems (GIS). The complexity of the data can make analysis
a challenging cognitive activity. Ware defines visualization
as “a graphical representation of data or concepts,” which is
either an “internal construct of the mind” or an “external
artifact supporting decision making.”1 In other words,
visualizations assist humans with data analysis by repre-
senting information visually. This assistance may be called
cognitive support. Visualizations can provide cognitive
support through a number of mechanisms, as summarized
in Table 1. These mechanisms can exploit advantages of
human perception, such as parallel visual processing, and
compensate for cognitive deficiencies, such as limited
working memory.

1.1 Terminology: Continuous and Discrete Model
Visualization

Visualization can be valuable in a wide variety of applica-

tion domains. Visualization techniques have been tradition-

ally categorized into two major areas:

. “scientific visualization,” which involves scientific
data with an inherent physical component, and

. “information visualization,” which involves abstract,
nonspatial data.

This terminology is somewhat ambiguous. For example,

mathematical functions (e.g., fðxÞ ¼ x3) are scientific, mean-

ing they should belong under “scientific visualization,” but

not necessarily physically based, so they also belong under

“information visualization.” We introduce new terminology
that is more precise. Continuous model visualization encom-
passes all visualization algorithms that use a continuous
model of the data (i.e., the algorithm assumes that the
phenomenon being studied is continuous, even if the data
values are discrete) and is roughly analogous to “scientific
visualization.” Discrete model visualization includes visuali-
zation algorithms that use discrete data models and roughly
corresponds to “information visualization.” A complete
description and justification of this terminology is beyond
the scope of this paper. Refer to Tory and Möller [74] for
details.

1.2 History of Human Factors in Visualization
Research

Simply finding a graphic technique to display all the data
may not provide adequate support for a user’s task. Fig. 1
shows how users are an integral part of the visualization
process, especially when the visualization tool is interactive.

Furthermore, Rheingans suggests that interaction should
not be simply a “means to the end of finding a good
representation” [62]. Interaction itself can be valuable since
exploration may reveal insight that a set of fixed images
cannot.

Human factors-based design involves designing artifacts
to be usable and useful for the people who are intended to
benefit from them. Unfortunately, this principle is some-
times neglected in visualization systems, particularly in
continuous model visualization. The focus of most contin-
uous model visualization research is on creating new and
faster techniques for displaying data. We believe that more
attention should be paid to users who must view and
manipulate the data because how humans perceive, think
about, and interact with images will affect their under-
standing of information presented visually. As a result,
there is a strong need to study human factors as a basis for
visualization design.

Over the last several years, interest in human factors
within the visualization research community has been
increasing. For example, Fig. 2 shows a slightly increasing
trend within the IEEE Transactions on Visualization and
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Computer Graphics (TVCG) journal to incorporate human

factors ideas.
To generate this data, we reviewed all the titles and

abstracts of articles over the journal’s history and evaluated

whether or not the article had a human factors component.

Human factors contributions included utilizing theories of

perception and cognition, designing a system to fit a

particular task or human capability, and incorporating

end users into the design and evaluation process.
Despite increasing interest in human factors, major

contributions in this area are limited. Fig. 2 illustrates that,

on average, only 23 percent of TVCG papers include a human

factors component. In papers that include human factors, this

component is often a small, minor part of the paper. Only six

out of 217 abstracts (i.e., 2.8 percent) mentioned a user study.

Studies involving humans are usually confined to the field of
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How Visualization Can Support Cognition

Fig. 1. The visualization process.

Fig. 2. Percent of TVCG papers judged to have a human factors

component, plotted by year of publication.
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human-computer-interaction (HCI) andstudies that consider
specific problems of visual data presentation are rare.

This paper provides a basis for studying human factors-
based design in visualization. We focus on continuous
model visualization (e.g., volume and vector visualization),
but ideas and examples will also be drawn from discrete
model visualization and computer graphics. The remainder
of the paper is organized as follows: Section 2 outlines HCI
methodology to provide possible approaches for human
factors-based design. Section 3 then summarizes current
human factors research in visualization and Section 4
concludes by identifying research areas and methods that
merit further investigation.

2 HUMAN FACTORS RESEARCH APPROACHES

The effectiveness of a visualization depends on perception,

cognition, and the users’ specific tasks and goals. How a

viewer perceives an item in a visualization display depends

on many factors, including lighting conditions, visual

acuity, surrounding items, color scales, culture, and

previous experience [81]. Important information may be

overlooked if the user is in a hurry or cannot allocate their

full attention to the visual display due to other task

demands. Additionally, interactive systems will not achieve

their full potential if users cannot easily interact with them.
How, then, can we determine what a user’s goals are and

whether a system meets them? What design guidelines

should we follow? How can we evaluate whether a design

succeeds? This section provides a brief summary of HCI

methods that may be useful for designing and evaluating

visualization systems.

2.1 User Motivated Design

At its most minimal level, human factors research is

research that is motivated by users. For example, users

may approach a visualization expert with a data set they

want visualized; the visualization designer is then moti-

vated to consider that specific problem. A second common

example of user-motivated design involves speed issues.

Visualization research frequently focuses on creating algo-

rithms with faster frame rates so users can interactively

explore visualizations.
Although the user-motivated approach can be useful for

some research purposes and does consider users to some
extent, the main research focus is on algorithm design,
rather than human factors, and users are generally not
consulted throughout the design process. For these reasons,
user-motivated examples will not be considered in this
review unless they additionally make use of other human
factors knowledge or techniques.

2.2 User and Task-Based Design

User and task analysis determines system requirements
based on tasks users need and want the system to support.
For example, Springmeyer et al. conducted an extensive
task analysis to find a common set of tasks in scientific data
analysis [72]. Task analysis typically investigates a wide
range of factors, as described by Hackos and Redish [23]:

. personal, social, and cultural characteristics of users,

. user preferences and values,

. goals (both general and specific) and how users
achieve them,

. user knowledge, experience, and thought processes,

. physical environment,

. tasks to be performed with the system,

. problems users would like to see the system solve,
and

. other tasks that must be performed while using the
system (to give an idea of the user’s cognitive load).

Task analysis allows designers to define detailed func-

tional specifications and user interface limitations. For

example, surgeons in an operating room may not be able

to interact with a surgery planning tool using hand-based

input devices since their hands may be busy doing other

tasks. Furthermore, surgery likely imposes a large cognitive

load, limiting the cognitive resources surgeons can devote

to the visualization.
Structured task analysis methods include observation,

interviews, and surveys of potential users. Because users

may not notice what they do, may not know how to

articulate what they do, and may misrepresent reality, user

and task analysis methods are best carried out in the context

of real work [23]. System designers can use the results of

task analysis (guidelines, requirements, and constraints) to

design useable and useful systems.

2.3 Perception and Cognition-Based Design

Cognition and perception theories can help designers find

faults in current systems and develop new ideas that should

be effective [80, Chapter 2]. An exhaustive list of these

theories and design guidelines is beyond the scope of this

review. Many perception-based design guidelines are

described by Ware [81]. The following set of visualization-

specific guidelines is based on Nigay and Vernier [54].

These generalized guidelines were developed mainly for

discrete model visualization, but we believe they are also

applicable to continuous model visualization:

. Since users’ information needs are domain and task
dependent, design must either

1. be domain and task specific or
2. look at domain-independent subtasks such as

those defined by Shneiderman [71, Chapter 15]:
overview, zoom, filter, details-on-demand, re-
late, history, and extract.

. To support users with different tasks and require-
ments, multiple visual representations of the data
should be available. Several representations may be
visible at once using multiple view windows. If it is
not possible to render a global view of the data set in
which every element is precisely represented, it is
possible to combine detailed, partial representa-
tion(s) with vague, global representation(s). For
example, in a medical imaging data set, slices and
subvolumes of specific areas could be combined
with a volume rendered overview of the entire
volume.
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- Changing between representations and views
should be easy.

- Using multiple views is not always appropriate.
Baldonado et al. describe a set of guidelines for
when and how to utilize multiple views for
visualization tasks [2].

- Continuity should be maintained so the user
does not get lost when switching between
representations. Woods provides several design
guidelines to help provide such continuity or
“visual momentum” [82]. (For example, use
graceful transitions such as animation, maintain
formatting consistency across views, and pro-
vide features that are easily discernible in all
views and thus act as perceptual landmarks.)

. The following variables should always be visible:

- The set of data elements (an overview). With
volume or fluid flow data, the overview contains
the entire object or space being visualized.

- Relationships between data elements. Relation-
ships may be either explicit (e.g., links between
web pages) or implicit (e.g., relative positions of
objects in a scene).

- Method of locomotion. In other words, cues
should be present to help the user understand
how to navigate through the display and modify
display parameters.

- Details at the current location (e.g., the value of a
voxel in volume data).

- Details of the local neighborhood.
- Navigation history. In other words, a list of

previously explored display parameters, such as
transfer functions in direct volume rendering
(for details of this example, see Section 3.4).

. Data at the focus of interaction should be undis-
torted and represented at the highest possible
resolution.

. Navigation tools should be reused to maintain
consistent interaction metaphors throughout the
system.

Design guidelines are not meant as absolute rules for all
data types and applications and this list is not meant to be
exhaustive. Nonetheless, design guidelines can provide
guidance and suggestions for visualization developers in
many application areas.

2.4 Prototype Implementation

Following system design, a prototype or complete system
can be implemented and tested. Rapid prototyping techni-
ques reduce implementation time so more designs can be
tested when time and resources are limited. In HCI, rapid
prototyping techniques include video prototypes, paper-
based designs, story boards, and software mock-ups. For
visualization, rapid prototyping techniques have not been
greatly explored and certain challenges present themselves.
For example, three-dimensional (3D) visualizations may be
difficult to represent with paper drawings or video. None-
theless, rapid prototyping techniques could allow users and
designers to explore initial design ideas before investing
time and resources to build a more complicated prototype.
Furthermore, development of graphics and visualization

libraries (e.g., the Visualization Toolkit [69]) is enabling
designers to develop initial prototypes quicker and easier
than before.

2.5 Testing

Both functionality and ease of interaction for visualization
systems can be tested. Several evaluation methods are
possible, as described in the following sections.

2.5.1 User Studies

User studies involve real users and allow designers to
obtain both qualitative and quantitative data. Quantitative
data typically measures task performance (e.g., time to
complete a specific task) or accuracy (e.g., number of
mistakes). User ratings on questions such as task difficulty
or preference also provide quantitative data. Qualitative
data may be obtained through questionnaires, interviews,
or observation of subjects using the system.

Walenstein describes several challenges with formal user
studies [80, Chapter 2]. They can be time-consuming,
expensive, and difficult to design. Although they quickly
highlight problems in interfaces (e.g., it is easy to see
whether a user can find the button to perform a task), user
studies do not always identify problems and benefits of
visualization ideas. Benefits of the tool may be useful only
to experts (who can be difficult to find or may not have time
to participate in lengthy studies) or following a long
practice period. Comparison of tools may produce results
confounded by the many differences between the tools.
Missing or inappropriate features in the test tool or
problems in the interface can easily dominate the results
and hide benefits of the ideas we really want to test. Thus, it
seems that user studies can only be useful with an
extremely polished tool so that huge amounts of time must
be invested to test simple ideas that may not turn out to be
useful.

One solution to this problem is to have user studies focus
on design ideas rather than complete visualization tools and
to test specific hypotheses [80, Chapter 2]. We should first
use perceptual and cognitive theories to develop a design
idea that is predicted to have a specific benefit. For example,
we might predict that ordering data values by time will
decrease time to find time trends. This translates easily into
a hypothesis that can be tested. We can then develop a
simple tool designed to test only this hypothesis. Our test
should attempt to validate 1) whether the idea is effective
and 2) why it is or is not effective. Of course, this may not be
as easy as it sounds. Taking the idea out of context may
render it useless or may limit our ability to generalize the
results. Moreover, choosing an appropriate level of tool
complexity may be a difficult decision involving many
trade offs.

2.5.2 Usability Inspections

Additional evaluation methods established in HCI include
cognitive walk-throughs (where an expert “walks through” a
specific task using a prototype system, thinking carefully
about potential problems that could occur at each step) and
heuristic evaluations (where an expert evaluates an interface
with respect to several predefined heuristics) [50]. Similarly,
Blackwell et al. describe cognitive dimensions, a set of
heuristics for evaluating cognitive aspects of a system [5],
and Baldonado et al. designed a set of heuristics specific to
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multiple view visualizations [2]. These usability inspection
methods avoid many of the problems with user studies and
may be beneficial for evaluating visualizations. However,
because these techniques are (for the most part) designed
for user interface testing, it is not clear how well they will
evaluate visualization ideas. For example, many visualiza-
tion tasks are ill-defined. Walking through a complex
cognitive task is very different from walking through a
well-defined interface manipulation task. Furthermore, by
leaving end users out of the evaluation process, usability
inspection methods limit our ability to find unexpected
errors.

2.5.3 Summary of Evaluation Methods

Each evaluation method will find different types of
problems in a visualization system and has different
benefits and drawbacks. Different tests may be appropriate
at different stages of the design/development process.
Hence, a good evaluation process will likely include a
variety of tests and incorporate testing throughout the
design cycle.

For example, usability inspections may be useful early in
the design process to evaluate whether design ideas adhere
to general visualization and user interface design principles.
Usability inspections may also be useful prior to a user
study to identify interface problems that could affect the
study results. A pilot user study could then be run to test
study procedures and the system interface. Finally, a user
study could be run to formally compare two or more
visualization ideas, or to test specific hypotheses.

2.6 User-Centered Design

User-centered design is an iterative process involving task
analysis, design, prototype implementation, and testing, as
illustrated in Fig. 3. Users are involved as much as possible
at each design phase. Development may start at any
position in the cycle, but would typically start with an
analysis of the tasks the system should perform or testing of
an existing system to determine its faults and limitations.

User-centered design is more a philosophy than a
specific method. Although it is generally accepted in human
computer interaction, we believe this approach is not
currently well-known in visualization and could support
better visualization design.

Various aspects of human factors-based design have
been incorporated into visualization research and develop-
ment. We provide examples of these contributions through-
out the next section.

3 RESEARCH EXAMPLES

Adoption of human factors methodology and stringent
evaluation techniques by the visualization community is in
its infancy. A number of research groups have begun to
consider these ideas and incorporate them into the design
process to greater or lesser extents. This section will
summarize these human factors contributions.

3.1 Improving Perception in Visualization Systems

Several papers have looked at how our knowledge of
perception can be used to improve visualization designs.
For example, depth of focus is the range of distances in which
objects appear sharp for a particular position of the eye’s
lens. Objects outside this range will appear blurry. Focusing
effects can be used to highlight information by blurring
everything except the highlighted objects [42]. For example,
in a GIS application, all routes between two cities except for
the shortest one could be blurred to highlight the best route.
Similarly, Fig. 4 illustrates a chess tutoring system that can
highlight pieces that threaten or cover a target. Here, the
goal of blurring is to highlight information, not to focus on
objects in the center of a user’s field of view. Hence, the
blurred objects are not necessarily at similar depths, a
difference from traditional “depth of focus” effects.

3.1.1 Preattentive Processing in Visualization

Certain visual features (color, orientation, lightness, posi-
tion, length, etc.) “pop-out” of an image, so that searching
for them is very fast [7, Chapter 6], [81, Chapter 5]. Healey
et al. take advantage of this phenomenon, called pre-
attentive processing, to improve glyph-based multivariate
data displays [26], [27], as illustrated in Fig. 5. Each data
variable is mapped to a preattentive feature of a glyph so
that it may be processed using preattentive visual search.
Care is taken to ensure there is no interference between
different preattentive features in the same display. Simi-
larly, Ebert et al. developed procedural methods for
designing preattentively distinct shapes [15] and Interrante
considered how visual textures can be used for multivariate
visualization [32]. An interesting future study could directly
compare these approaches (either empirically or through
case studies) to provide additional insight into when each is
most valuable.
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Dense multivariate data displays such as Healey’s
glyphs represent a large amount of data in limited space.
With careful design, they may allow independent features
in the data to be perceived preattentively. However, in most
cases, we are interested in combinations of features. For
example, an ore prospector may wish to find regions where
ore is plentiful, has high quality, and is easily accessible.
Searches like this are usually conjunctive, that is, the target
has no unique features. For example, we could represent
ore quality by color (red for high quality, blue for low
quality) and ore quantity by shape (circle for high quantity,
square for low quantity). If we are looking for both high
quality and high quantity, we must search for red circles
among blue circles, blue squares, and red squares. This
search is conjunctive since neither the color nor the shape is
unique to the target. Research has shown that conjunctive
search is rarely preattentive [77]; thus, the utility of dense
multivariate data encoding may be limited.

3.1.2 Encoding Data With Color

Visualization systems often encode ordinal and quantitative
data using intensity or color gradients. For example,
topographic maps often represent elevation using a color
scale and medical images use a gray-level or color gradient
to distinguish tissues with different properties. However,
not all mathematically linear gradients are perceptually
linear (e.g., neither the mathematically linear grayscale nor
the rainbow (hue) scale are perceptually linear). For this
reason, several perceptually linear gradients have been
developed, as described by Levkowitz and Herman [46]
and Rheingans [64]. Most of these gradients are based on
variations in color value and/or saturation.

Similarly, many visualizations use colors to segregate or
highlight objects. For example, a medical visualization may
show different organs in different colors and an air traffic
control display may use color to highlight potential
collisions between aircraft. Choosing colors for such dis-
plays is not easy because not all colors are equally
distinguishable by observers. For this reason, Healey has
developed a procedure for designing sets of easily
distinguishable colors [25].

Bergman et al. generalized these ideas in a taxonomy
based on principles of perception, visualization tasks, and
data types [3]. Their taxonomy can be used to develop and
choose effective color scales for specific data types and goals.

3.1.3 Shape Perception

For visualization with isosurfaces, understanding the
3D shape of the surface can be difficult. Surfaces are often
irregularly shaped, so we have no similar shapes to
compare to and depth cues from parallel lines and right
angles are lacking. Three-dimensional shape perception is
particularly difficult when the isosurface is semitranspar-
ent. Semitransparent isosurfaces are useful when we want
to show one isosurface inside another (e.g., a physician may
want to determine whether a planned radiation treatment
area encloses a cancerous region while minimally affecting
surrounding tissue). Texturing the surface with partially
transparent textures (especially those that highlight curva-
ture) can address this problem [31], [63] (see Fig. 6). In
addition, Lum et al. show that moving particles on a surface
provide similar shape enhancements [49]. An interesting
future study could compare these two methods empirically
to determine when each is most appropriate.

Irani et al. considered how to improve interpretation of
node-link diagrams used in software design (i.e., Unified
Modeling Language or UML diagrams) [33]. They replaced
nodes and links with 3D primitives (geons) to take
advantage of humans’ ability to remember and distinguish
3D shapes and hypothesized that 3D shape diagrams would
be easier to interpret. Fig. 7 compares a geon diagram to the
equivalent UML diagram.

Irani et al. also tested how to best represent object types
and relationships such as dependency and aggregation. In a
user study testing identification of relationship types, error
rates were much lower for geon diagrams than for
UML diagrams. Because this idea was motivated by a
real-world problem, the design was based on perceptual
and cognitive theories, and the idea was tested through a
carefully designed study with real users, this work provides
an excellent example of how human factors methodology
and ideas can be incorporated into visualization research.

Since contours play an important role in shape percep-
tion [58], 3D shape may be more easily interpreted from
cartoon-style drawings than from photorealistic images. For
this reason, there is current interest in developing non-
photorealistic rendering (NPR) styles for continuous model
visualization. For volume data, contour rendering [13], pen-
and-ink style rendering [75], and volume rendering with
NPR effects [48], [65] have been explored. For example,
Fig. 8 illustrates how the addition of NPR effects can
enhance edges in direct volume rendering. Note that the
concept of photorealism here is a little obscure. Since some
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of the data we visualize cannot be seen in reality (e.g., flow
vectors), it is impossible for this data to appear “realistic.”
However, the field of NPR also encompasses other ideas,
such as specific artistic styles, the process of production
being mimicked, and “the freedom not to have to reproduce
the appearance of objects precisely as they are” [73].

NPR effects have also been applied to vector and tensor
data, with two purposes in mind: 1) Images rendered with
NPR effects, such as line drawings, may be “simpler” than
photorealistic imagesand, thus, easier to interpret and2)NPR
effects may be able to render complicated multivariate data
better than existing techniques. Salisbury et al. use oriented
line-drawn textures to illustrate the direction of 2D flow
vectors [67]. Healey and Enns use “paint strokes” to visualize
multivalueddatabymappingeachdata value to apropertyof
the stroke (e.g., size, color, orientation, etc.) [28]. Similarly,
Kirby et al. use layered “painting” strokes to visualize
multivalued data [39]. For example, in a flow data set, a
scientist may want to visualize velocity, vorticity, rate of a
strain tensor, etc. We can break the data into components,
map each component to a stroke, and then layer the strokes in
a “painting,” as shown in Fig. 8. Laidlaw et al. use a similar
approach to visualize tensor data from diffusion weighted
magnetic resonance imaging [44].

Using NPR styles to improve perception may hold
promise, but it is still unclear how to best apply these
ideas. Are all NPR styles equally effective? Are NPR styles
perceived the way we expect? When are they more effective
than other rendering styles? How should we choose a
rendering style for a particular data set and task? Careful
evaluation, possibly through user studies and heuristic

evaluations, must be done before we can answer these
questions and make effective use of NPR ideas for data
analysis.

3.2 Interaction Metaphors

Interacting with 3D visualizations can be challenging
because mapping movements of a 2D mouse to actions in
3D space is not straightforward. Research has shown that
manipulating objects relative to each other is easier than
using absolute coordinates [29]. In addition, interaction may
be easier when the interface is directly related to the task
through task-specific props. Examples of task-specific props
for visualization are: a physical model head and clip plane
that aid interaction with volumetric brain data [30] and the
“Cubic Mouse,” a 3D input device for volume data that
allows users to navigate along major axes by moving three
perpendicular rods in a physical box [19]. Development of
task-specific input devices for other visualization applica-
tions (e.g., flow visualization) could make interaction easier
and thereby enhance data analysis.

In addition, visualization tasks often require significant
maneuvering (i.e., manipulating windows and widgets,
navigating around interfaces, and managing data). For
example, a scientist examining gas flow within a fuel cell
may begin by examining several visual images. Generating
these images may require manipulation of several windows
and widgets within the visualization tool. If the scientist
then decides to examine the data quantitatively, he or she
may need to return to the original data files to look up
values and/or switch to a different computer program in
order to perform a mathematical analysis or generate
statistics. Maneuvering operations can be time consuming
and distract users from their ultimate goals; thus, Spring-
meyer et al. suggest minimizing unnecessary navigation
and integrating all the necessary tools for a task [72].

3.3 Perceptual Models for Computer Graphics

Numerous mathematical models of visual perception exist.
Typical models approximate contrast sensitivity, amplitude
nonlinearity (sensitivity changes with varying light level),
and masking effects of human vision. Two examples are the
Daly Visual Differences Predictor [14] and the Sarnoff
Visual Discrimination Model [47].

Variations on these models have been used for realistic
image synthesis. Researchers have developed mappings
between the range of luminances in the real world and
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those that can be replicated in computer displays and have
used perception models to determine the mapping quality.
(For example, see Greenberg et al. [22]. Other references are
provided by Bolin and Meyer [6] and Pattanaik et al. [55].)
Similarly, Pellacini et al. developed a perceptually mean-
ingful model of surface gloss [57] and Ferwerda et al. [17]
and Pattanaik et al. [55] developed models that simulate
visual adaptation to changing light levels.

Improving realism is not too relevant to visualization
because the goal is to represent data, not to display a
realistic image of the world. Applications more relevant to
visualization include increasing rendering speed (to enable
interactive data exploration) and reducing image artifacts
(to enhance perception and prevent incorrect interpreta-
tions of data). Reddy removed imperceptible details to
reduce scene complexity and improve rendering speed [60].
Two possibilities were: 1) reduce detail in the periphery
where vision is less sharp and 2) track the user’s gaze and
modify the resolution accordingly. Ferwerda et al. used
perceptual knowledge to visually mask graphics artifacts
(e.g., texture patterns can mask flat shading artifacts) [18].
Bolin and Meyer combined both ideas, using an adaptive
rendering process that finds and fixes visible artifacts but
stops increasing image quality when improvements are no
longer expected to be visible [6].

3.4 Transfer Functions

In direct volume rendering, each voxel (sample in a
3D volume grid) is first classified as belonging to a

particular category based on its intensity and/or spatial
gradient value(s). Voxels are then assigned a color and
transparency level based on this classification. The function
that does this is called a transfer function. One example in
Computed Tomography (CT) data would be to make skin
semitransparent and bones opaque so the bones could be
seen beneath the skin. In this case, transfer function design
is quite easy since bones and skin have very different
intensity values in CT data and can be easily distinguished.
However, in general, finding good transfer functions is
difficult and is therefore a major research area in volume
visualization.

3.4.1 User Exploration of Transfer Functions

One option for finding transfer functions is to leave it up to
the user. This requires an effective interface for the user to
specify the function and the user must either 1) know what
function is useful or 2) be able to easily experiment with
different parameters. Searching for a good set of parameters
can be time-consuming and frustrating because the para-
meter space is large, rerendering a scene after specifying
new parameters can take several seconds, and user
interfaces to specify parameters are not always carefully
designed or tested. For example, Kniss et al. attempted to
create intuitive user interface widgets for transfer function
specification [40]; however, they do no user testing and do
not include any users in their design process. Providing
users with more information about the data, such as
histograms and similar metrics [1], [40], may help them to
choose good transfer functions, but no user studies have
been done to verify this.

One promising idea is to provide a history tool so that
users do not have to remember which transfer functions
they have tried. Patten and Ma describe an example of this
approach [56]. They use a graph-based display to show
transfer function relationships between thumbnail views of
previously rendered images. Similarly, the spreadsheet-
style interface developed by Jankun-Kelly and Ma [34]
allows users to explore a range of parameter combinations
at the same time and compare the resulting images (see
Fig. 9). These approaches satisfy several of the criteria
described in Section 2.3, including 1) ease of switching
between representations, 2) continuity between representa-
tions, and 3) visibility of the current location, the local
neighborhood, links between elements, and navigation
history. However, additional screen space is required. Also,
in the graph case, the graph could grow very large in a short
amount of time, making navigation more difficult and
decreasing continuity when switching between representa-
tions. By contrast, the spreadsheet will not grow excessively
large, but navigation history is not well represented.

3.4.2 Transfer Function Parameters

Part of the difficulty in defining transfer functions is
deciding what parameters should be involved in the first
place. Most systems assign opacity and color based on voxel
intensity values alone. In some cases, the first derivative
(also known as the spatial gradient) [38], and sometimes the
second derivative [38], are used to locate and highlight
boundaries. Occasionally, transfer functions also consider
spatial location, allowing users to specify spatial regions of
interest (ROIs) [11], [40]. For example, Cohen et al. allow
users to increase the opacity around ROIs (e.g., around a
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Fig. 8. NPR effects in visualization. (a) NPR enhancements highlight
contours in volume data [65]. (b) Multivariate data visualization using
concepts from painting [39] (Key: velocity = arrow direction, speed =
arrow area, vorticity = underpainting/ellipse color (blue = clockwise,
yellow = counterclockwise) and ellipse texture contrast, rate of strain =
log (ellipse radii), divergence = ellipse area, shear = ellipse eccentricity).
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vortex in a flow data set). In general, adding more
parameters increases transfer function flexibility, but also
increases the size of the search space, making it harder for
users to find good parameter combinations.

3.4.3 Automatic and Semi-Automatic Transfer Function

Generation

Transfer functions can be generated automatically or with
minimal user input. These algorithms typically find and
highlight boundaries in the data set [16], [20], [38]. Fully
automatic methods are extremely simple for the user, but
the transfer functions they can generate are limited because
they can only utilize 1) the original data and 2) user
knowledge that can be communicated to the program prior
to rendering. They cannot take advantage of user intuition
and insight during the rendering process or any user
knowledge that cannot be captured through predefined
interaction metaphors. It is also potentially dangerous to
remove the user entirely since the data exploration process
may play an important role in understanding the images.
Semi-automatic methods address these issues by allowing
limited user control. For example, Kindlmann and Durkin
[38] constrain transfer functions to those that display
boundaries, but allow users to modify a “boundary
emphasis function” to explore the data set. Thus, user
input is easier because of constraints on parameters, but
exploring the entire parameter space is no longer possible.

3.4.4 Visual Search for Transfer Functions

Another alternative is to have the computer generate many
different transfer functions and sample images and allow
the user to select useful ones [52] or direct future searches
based on images close to the desired image [24]. This
effectively changes the user’s search from an abstract
mathematical one to a visual one. However, this strategy
depends heavily on human visual search strategies and
thus requires substantial user testing that has not yet been
done. It is also possible to automatically choose good results
based on user-specified evaluation criteria [24]. However,
like fully automatic methods, this removal of the user from
the data exploration process may be counterproductive.

3.4.5 Input Constraints

Bergman et al. use rules based on the data structure, the
visualization goals, and perceptual knowledge to help users

define good transfer functions, specifically color maps [3].
As the user selects parameters, the system imposes
constraints on other parameters to avoid useless combina-
tions. For example, once the user selects a color map, colors
of contour lines are restricted to those that have sufficient
luminance contrast to be visible on top of the color map.
The rule-based approach also considers a user’s visualiza-
tion goals, as advocated in Section 2.2, by suggesting color
scales that match the current task. For example, tasks that
require faithful representation of values of a continuous
variable (e.g., viewing a medical image to gain an
impression of the overall structure) are best performed
with perceptually linear color gradients such as those
described in Section 3.1.2. By contrast, tasks that require
separating data into distinct categories (e.g., dividing a
landscape into promising and nonpromising areas for crop
growth) are best suited by a discrete set of perceptually
distinguishable colors (also mentioned in Section 3.1.2).

3.5 Detail and Context Displays

Data sets are often very large; for example, a typical medical
scan might generate a volume with 5123 voxels. However,
only a limited number of graphic items with limited
resolution can be concurrently displayed on a computer
monitor. Thus, displaying more items often means display-
ing less detail about each item. If all items are displayed,
few details can be read, but if only a few items are shown,
we can lose track of their global location. This requires users
to retain large amounts of either detail or context informa-
tion in working memory, producing an extra cognitive load
that may affect performance.

One way to increase the amount of information dis-
played is to make the display larger. However, large
displays still have limited space. Furthermore, imagine
creating a display large enough to show every detail in a
company’s sales database. Such a display would be too
large for us to see all parts of it concurrently and
information overload could result from the sheer amount
of visible information. Thus, increasing the screen size will
not always solve this problem. Although some studies have
compared display sizes for visualization tasks (e.g., Kasik
et al. [35]), additional work could investigate the topic in
more detail. Specifically, studies could consider when, if,
and how increasing display size and resolution (indepen-
dently and together) affects visualization task performance.

3.5.1 Detail and Context for 2D Graphics

For 2D displays, fitting large amounts of information into a
small space is called the screen real-estate problem. Several
techniques have addressed this problem by providing
details for areas of interest while still showing where they
fit into a global context. Detail + overview techniques show
both a global overview and details of a selected area, but in
separate windows. An icon in the global view indicates the
location of details currently shown in the detail view [8,
p. 634]. In a GIS system, the overview might consist of a
simplified city map with a box around the currently
displayed neighborhood.

For some users and applications, integrating the detail
and overview displays may impose a cognitive overhead.
For this reason, focus + context (also known as detail-in-
context) methods keep the focus view spatially located
within the global overview or context. This increases
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Fig. 9. Spreadsheet-like interface for exploring transfer function

parameters [34].
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continuity between the global and local representations, as
suggested in Section 2.3. For example, image sequences
(e.g., consecutive slices of volume data) can be arranged in a
2D pattern and then can shift around and change their
relative sizes depending on which images are most
interesting to the viewer [4], [78].

Most other focus + context displays use image distortion,
such as perspective distortion (e.g., the “perspective wall”
[51]) or fish-eye lenses. Fish-eye lenses magnify the center of
the field of view, with a continuous fall-off in magnification
toward the edges. Degree-of-interest values determine the
level of detail to be displayed for each item and are assigned
through user interaction [36]. Lens techniques were
originally proposed for text [21], but have also been applied
to images (and other 2D visualizations), where the image is
modeled as a pliable surface that can be stretched in specific
areas [10], [36], [68].

3.5.2 Detail and Context for 3D Graphics

In 2.5D displays (where 3D graphics are projected onto a
2D screen), the screen real-estate problem is just as
prevalent, with the added complication that objects can
occlude each other. To address this problem, Ritter et al.
developed an overview + detail method to integrate a
3D graphic overview with textual detail [66]. Several
researchers have used a 3D extension of the fish-eye lens
distortion to display discrete 3D data sets [12], [37], [59].
This distortion method is most effective when the data set
has a regular structure and contains objects with straight
lines, but can be effective for other data types by drawing a
3D grid along with the data set. Bends in the grid provide
perceptual cues to help the user understand what type of
distortion has occurred (see Fig. 10a).

Volume data sets (e.g., medical images) often contain
irregular shapes. In addition, it can be difficult to draw a
3D grid that will not be occluded by the volume data; thus,
distortion is more difficult to understand. In general, detail
and context displays for volume data have not been
explored in much detail. LaMar et al. integrated a
3D distortion lens with a texture-based volume renderer
[45] (see Fig. 10b and Fig. 10c). Kurzion and Yagel
developed a 3D distortion method that could be used to
provide focus + context [43]; however, it was not evaluated
for this purpose. Interacting with distortion lenses may help
make the distortion clearer to the viewer; a future user
study could verify or refute this idea.

Clip planes show slice detail within a 3D spatial context,
but remove data between the clip plane and the viewer.
This violates the criteria (from Section 2.3) that the set of all
data elements and the local neighborhood should always be
visible. An alternative is to open the volume up along a clip
plane, using a book or cutting metaphor [9], [12], [43] so that
context information is pushed aside but not removed. In the
“Corner Cube” [61], three orthogonal slices of a medical
data set are projected to the sides of a cube, allowing them
to be viewed in their relative orientations. Volumes of
interest (VOI) are drawn as isosurfaces in the center of the
cube, with outlines projected to the cube walls; thus, the
walls provide anatomical context for the VOIs. However,
context information in the corner cube is limited to three
slices in fixed orientations and few details of the VOIs are
displayed.

In direct volume rendering, transfer functions reduce
occlusion by making voxels semitransparent so that voxels
behind them may be seen. Thus, a transfer function
determines how much each voxel contributes to the image.
Cohen et al. developed a method to highlight spatial areas
of interest by increasing the opacity [11]; this makes the area
more visible, but does not increase the screen space allotted
to areas of interest.

A number of groups propose to increase context
information by projecting a volume from multiple direc-
tions at once. Treavett et al. warp the view plane to produce
an image containing two points of view [76]. Similarly, in
the “magic mirrors” approach, virtual mirrors are placed
around a volume so the viewer can see parts of the volume
that would be otherwise occluded [41]. Magic mirrors can
also display the data using different transfer functions or
rendering styles (e.g., a flow vector data set could be
displayed using volume rendering, streamlines, and glyphs,
each on a different mirror). In similar work by Shaw et al.,
users can render regions of interest in various styles by
moving 2D lenses or “plates” through the data set [70]. Data
under the plate is rendered with that plate’s style, while the
remainder of the data is rendered normally. Although many
of these ideas show promise, work in this area is in its
infancy and (like transfer functions) these techniques only
change the rendering style of a region of interest, not its
relative magnification.

3.6 Human-Computer Cooperation

Most visualization systems are designed so that humans
and computers can cooperate, each performing the tasks
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Fig. 10. 3D distortion lenses. (a) The regular grid structure of the graph provides perceptual cues to help users understand the distortion applied to

the data set [12]. (b) Volume data set of a skull with no distortion [45]. (c) Skull data set with a spherical distortion lens [45].
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they do best. Computers can easily store and display data,
but humans are better at interpreting data and making
decisions. Although this idea is very useful, it is possible for
computers to play a more active role in the visualization
process than simply presenting data and providing an
interface for data manipulation.

As viewers look at images, they compare the image with
their existing mental model (a collection of hypotheses
about a system’s properties and functions [80, p. 284]) of the
data and presentation method and adjust either their
mental model or their understanding of the image if the
two conflict [79], [80, p. 284]. For example, an operator
trying to identify a problem in a nuclear power plant may
begin with a particular suspicion about the cause of the
problem and then change that diagnosis to several other
possibilities as features in the visualization provide contra-
dictory evidence. For complex data, constructing a mental
model requires interaction and time since all the data
cannot be seen in a single view. This process can be aided or
inhibited by perceptual and cognitive factors such as those
described in Section 2.3.

Visualization systems need not be limited to concrete
data sets. Allowing users to write down and manipulate
their mental models, ideas, and insight (e.g., as mind maps)
could reduce demands on human memory and help users
identify new patterns or relationships, as described in
Table 1. Going one step further, visualization tools could
automatically recognize errors and limitations in mental
models and help users to update and refine their mental
models to more closely match the real world. This idea has
been explored for software visualization; for example,
Murphy and Notkin developed a tool that allows software
developers to visually describe how they believe software
modules are related. The system then identifies errors in the
user’s model and visually communicates those errors to the
user [53].

Murphy and Notkin’s tool has two advantages over most
visualization systems: 1) It knows the answers to the
questions asked by its users because the questions involve
only simple queries about code structure and 2) users can
communicate their knowledge about the code structure
through a strict, well-defined language. In many other
cases, these two criteria will not be met and the system is
likely to fail if it tries to assume too much knowledge about
the data or the user. For instance, a surgeon might want to
determine how much tissue should be removed during
surgery. This is a more complicated question than a simple
query, no well-defined language exists for surgeons to
communicate their expert knowledge of similar cases and a
patient’s particular history, and complex expert systems
would be required for the computer to be able to effectively
evaluate a physician’s decision.

Similar ideas for cognitive support were introduced by

Springmeyer et al. [72], who observed scientists doing data

analysis in several disciplines. (Note also that this is one of

the few visualization papers devoted to task analysis.) One

of their conclusions was that current computer-based tools

did not support “integration of insight,” an important data

analysis task involving taking notes, recording and organiz-

ing ideas and images, keeping track of the data analysis

history, and sharing ideas with others.
Overall, visualization systems could play several roles:

1. visually represent data to enhance data analysis,
2. visually display users’ mental models, interpreta-

tions of the data, ideas, hypotheses, and insight,
3. help users to improve their mental models by

finding supporting and contradictory evidence for
their hypotheses, and

4. help users organize and share ideas.

Current research in visualization is almost exclusively
devoted to the first objective. Research into the others has
not been greatly explored and could make a valuable
addition to data analysis tools.

4 CONCLUSION

Recent work in perception and cognition-based design has
produced interesting new ideas for data visualization.
Specific examples include ways to improve perception of
3D shape, techniques to more easily distinguish and
highlight objects, new interaction methods and input
devices (e.g., real-world props), faster rendering for better
interactivity, interfaces to make transfer function specifica-
tion easier, and methods of reducing memory load (e.g.,
detail and context displays).

Since many areas of perception and cognition research
are likely not utilized to their full potential, further work in
this area is promising. Thus, we should continue to develop
and apply the techniques mentioned throughout the paper.
Examples include finding new applications for depth-of-
focus techniques and further exploring NPR ideas. In
addition, in Section 3, we identified several specific
directions for future work, including:

. Determining when, if, and how increasing display
size and resolution (independently and together)
affects performance at visualization tasks,

. Empirically comparing techniques (detail and con-
text methods, transfer function specification meth-
ods, multivariate data visualization techniques,
shape enhancement methods, NPR methods, etc.)
to determine when each method should be chosen
over comparable methods,

. Performing user studies to consider whether histo-
grams (and similar data) support transfer function
specification and which data is most useful,

. Developing and evaluating task-specific input de-
vices to aid interaction,

. Reducing unnecessary navigation within and be-
tween tools (through better display design and
integration of tools based on task requirements),

. Developing tools that provide cognitive support for
insight and organization of ideas, and

. Exploiting perception and cognition theories that
have not yet been considered in visualization design.

Furthermore, many topics in human factors-based design
have not been explored by the visualization community in
much depth.Much of the currentmethodology for designing
visualization tools and interfaces is adhoc and informal.Only
a few visualization designs utilize perceptual and cognitive
theories. Even fewer research groups do iterative user-
centered design or structured task analysis. Rapid prototyp-
ing is not widely adopted and could facilitate this process.
Developing rapid prototyping methods specifically for
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visualization could greatly decrease the time and effort
invested in ineffective designs and thus speed up progress
in visualization research. Stringent evaluation is lacking in
many visualization research programs, making it difficult
to choose promising ideas for further study. Empirical
comparisons of visualization and interaction techniques
could provide valuable insight into whether, when, and
why techniques provide effective cognitive support. Of
course, since many of these methods were designed for
HCI research rather than visualization, they may not be
ideal. New methodology must be developed specifically
for visual data presentation, but this will only happen
once current methods have been adopted and evaluated to
determine their inadequacies.
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