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Shrink-Wrapped Isosurface from Cross Sectional Images

Young Kyu CHOI'®, Member and James K. HAHN'™, Nonmember

SUMMARY  This paper addresses a new surface reconstruction scheme
for approximating the isosurface from a set of tomographic cross sectional
images. Differently from the novel Marching Cubes (MC) algorithm, our
method does not extract the iso-density surface (isosurface) directly from
the voxel data but calculates the iso-density point (isopoint) first. After
building a coarse initial mesh approximating the ideal isosurface by the
cell-boundary representation, it metamorphoses the mesh into the final iso-
surface by a relaxation scheme, called shrink-wrapping process. Compared
with the MC algorithm, our method is robust and does not make any cracks
on surface. Furthermore, since it is possible to utilize lots of additional iso-
points during the surface reconstruction process by extending the adjacency
definition, theoretically the resulting surface can be better in quality than
the MC algorithm. According to experiments, it is proved to be very robust
and efficient for isosurface reconstruction from cross sectional images.

key words:  surface reconstruction, isosurface, marching cubes, cell-
boundary representation, shrink-wrapping algorithm

1. Introduction

Three-dimensional surface information is very useful in
many applications such as medical imaging and topologi-
cal modeling. In these applications the surface information
is often available as a sequence of cross-sectional images.
In the medical area, for instance, the computed tomograpy
(CT) or the magnetic resonance imaging (MRI) make it pos-
sible to obtain cross-sectional images of human body. The
problem to be addressed in this paper is that of reconstruct-
ing surface representation from tomographic cross sectional
images.

Lorensen and Cline [1] have proposed a novel method,
called the marching cubes (MC) algorithm, which can ob-
tain high resolution isosurface from 3D medical data. Since
its original conception, it has been the subject of much fur-
ther research to improve its quality of surface represen-
tation and its performance on large data sets. The qual-
ity issue includes handling the ambiguities in surface def-
inition process. After reporting the ambiguity and possi-
ble “holes” in the resulting isosurface by Durst[2], succes-
sive authors have sought to improve the topological correct-
ness and accuracy[3]-[6]. Nielson and Hanmann [3] pointed
out that there is an ambiguity in the face of a cube when
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all four edges of the face are intersected. They proposed
a strategy based on saddle point value of the bilinear in-
terpolant to dictate the edge connection on an ambiguous
face. Natarajan [4] and Chernyaev [5] independently recog-
nize that there are additional ambiguities in the representa-
tion of the trilinear interpolant in the interior of the cube, and
they tried to solve this problem by extending the concept of
the body saddle point. Recently, Lopes et al. [6] tried to cre-
ate a representation that correctly models the topology of the
trilinear interpolant within the cell and that is robust under
perturbations of the data and threshold value. To achieve
this, they identified a small number of key points in the cell
interior that are critical to the surface definition. All of the
previous efforts tried to modify the MC algorithm by remov-
ing the ambiguities, especially attempted to improve the rep-
resentation of the surface in the interior of each grid cell, but
the basic strategy of extracting the isosurface is similar to
the MC algorithm.

Recently, Joy et al. proposed a point-based method for
isosurface visualization, called iso-splatting [7]. Point sam-
ples are generated throughout the volumetric domain, and
they are projected onto the isosurface of interest. Finally the
points are rendered by a surface splatting algorithm. Even-
though it uses point primitives for representing and render-
ing the isosurface to enhance the level of interactivity, it
does not provide any type of surface mesh which is very
useful in geometric modeling applications such as volume
calculation, manipulation and so on.

In this paper, we propose a quite different approach for
extracting the isosurface model from a set of tomographic
cross sectional images. We introduce the conception of
“isopoint”, and utilize a relaxation scheme, called shrink-
wrapping process, to reconstruct the isosurface from an ini-
tial mesh representing a coarse approximation of the isosur-
face.

This paper is organized as follows. Previous works and
the motivation of our paper are listed in Sect. 2 and we gen-
eralize the concept of isopoint in Sect.3. The initial mesh
generation method is introduced in Sect.4, and in Sect. 5,
the shrink-wrapping based surface reconstruction scheme
is described. Experimental results are given in Sect. 6 and
Sect. 7 concludes this paper.

2. Motivation

The original MC identifies 256 configurations for the cube,
depending on whether each of the eight vertices is pos-
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itive (voxelDensity > densityThreshold(T;)) or negative
(voxelDensity < T;). Any edge with endpoints of opposite
sign is intersected by the isosurface and inverse linear inter-
polation yields an estimate of the intersection point. The set
of points can be triangulated to yield an approximation to
the isosurface within the cube.

Figure 1 shows the basic cases in the MC algorithm and
examples of how the points of intersection between the iso-
surface and the edge of the cube can be connected. Notice
that all of the intersection points, we call them the isopoints
(iso-density points), are only on the edges of the cube. The
key feature of our approach is the generalization of the con-
ception of the isopoints: allowing isopoints not only on the
edges but also on the faces and interior of the cube.

Figure 2 illustrates an example of extracting additional
isopoints on the faces and inside the cube ((b) and (c), re-
spectively) for the case 1 of the MC algorithm shown in
Fig. 1. In the case of the MC algorithm, the isopoints are
restricted on the edge as shown in Fig. 2 (a), but we believe
that the isopoints on the face (b) and inside the cube (c) can
also be utilized in the isosurface reconstruction. The prob-
lem is that it is not easy to find a general methodology for
triangulating the isopoints such as shown in (d), and thus
we adopted a quite different approach. Instead of triangulat-
ing directly the isopoints, we adopted the techniques for the
problem of surface reconstruction from unorganized points
(not from the voxel data (an organized data)).

A typical solution for this problem was provided by
Hoppe et al. [8]. They estimated tangent plane for each
point and introduced a signed distance function. Finally an
isosurface was extracted by a volume-based reconstruction
scheme. Kobbelt et al. [9] proposed the mesh generation al-
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Fig.1 Basic cases in the MC algorithm and examples of how the iso-
points can be connected. Positive vertices are marked.

' .
(c) (d)

Fig.2  Anexample of the case 1 of the MC algorithm. (a) 3 isopoints on
the edges, (b) additional isopoints on the face, (c) additional isopoints in
the interior the cube, and (d) total isopoints (7 points).
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gorithm based on the shrink-wrapping scheme for the first
time, and Jeong et al. extended the concept to produce a
mesh model from unorganized 3D points [10]. For a given
3D points, they make a bounding box and linearly subdivide
the 6 faces (not the volume) to get an initial cube-shaped
mesh. They repeatedly apply the projection (shrinking)
and smoothing operations to metamorphose the initial mesh
into one similar to the surface of original object. Recently,
Koo et al. [11] generalized the initial mesh to overcome the
genus-0 spherical topology restriction of [10]. We adopted
the relaxation methodology into the isosurface reconstruc-
tion from tomographical cross sectional images. But in the
case of our problem, we can utilize not only the set of iso-
points but also the original image data. Thus the initial mesh
can be extracted more robustly and accurately than in the
previous algorithms for surface extraction from unorganized
points by making full use of the cross sectional images.

In the next section, we generalize the concept of iso-
point. The initial mesh generation and the shrink-wrapping
based surface reconstruction scheme is described in Sects. 4
and 5, respectively.

3. Iso-Density Point (Isopoint) Model

In the cuberille model of 3D space proposed by
Herman [12], a cuberille is a dissection of space into equal
cubes by three orthogonal set of equally spaced parallel
planes, and each cube, a component of the cuberille, is
called voxel.

If we assume 3D space is dissected into a set of cubic
voxels, an instance of the cuberille space V is defined to be
a scene V, denoted by the tuple (g, V), where g(v) represents
the density of voxel v. A set of stacked images of a human
body obtained by CT or MRI is an example of a scene in the
cuberille space.

For a given scene V, a binary scene V, can be defined
by the tuple (g;, V), where g, is a segmentation function of
V. Lots of region segmentation algorithms have been devel-
oped especially in the field of medical imaging [13]. In this
paper, we only consider the simple density threshold func-
tion denoted as g(v).

In a binary scene, each voxel can be classified into two
groups: the inner (positive) voxel v! and the outer (negative)
voxel V0.

W e Ny(V) = {v e Vg,(v) = 0) )
v e U(V) = {ve Vigi) = 1}

Generally, Uy(V) represents the structure of interest
(the interior of the object), and Ny (V) indicates the empty
null space. The neighbors of a voxel v, denoted as n(s), are
assumed to be the voxels which are adjacent to v. Udupa et
al. used the term O(1)-adjacent when a pair of voxels share a
face [14]. In O(2)-adjacency, two voxels sharing an edge are
also defined to be adjacent, and the voxel sharing a vertex
with v is also included in n(v) in O(3)-adjacency. Figure 3
illustrates the neighbors (solid line) of a voxel (dotted line)
in O(1)-adjacency (a) and O(3)-adjacency (c), respectively.
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(a)

Fig.3 (a) O(l)-adjacenct neighbor voxels (6 neighbors), (b) O(3)-
adjacent neighbor voxels (26 neighbors).

Assume that a scene V is given as the form of cross sec-
tional images. We want to extract all the points (isopoints)
supposed to have the same voxel density of T,;. After seg-
menting V into a binary scene V with Ty, they can be ac-
quired between a pair of adjacent voxels by linearly interpo-
lating their densities as follows.

Definition 1: Assume that a pair of adjacent voxels,
u and v, and a density threshold 7 is given. If u is positive
and v is negative, the iso-density point (or isopoint), denoted
as pr,(u,v), is defined as follows:

T —_
Pt ) = p(v) + (p(a) — plry)—L—EW) @)
gu) —g(v)

where, p(v) is the 3D coordinates of the center of v.

Consequently, the iso-density point model is defined as
follows.

Definition 2: The iso-density point model of a scene
V under the density threshold 7, denoted as p;s,(Ty), is de-
fined to be the set of all possible isopoints:

Piso(Ta) = ¥pr,0°, VO € (), WO W e Vi) (3)

The definition of the voxel adjacency described above
affects the generation of isopoints. Let’s denote n;(v), na(v)
and n3(v) as the neighbor voxels of v in O(1), O(2), and
0O(3)-adjacency, respectively. In the case of n;(v), the maxi-
mum number of isopoints related to a voxel v is limited to six
because n1(v) has 6 voxels. In the same way, maximum 26
isopoints can be interpolated for a voxel in O(3)-adjacenct
neighbor definition.

In the viewpoint of a cell as shown in Fig.2, there
are at most 12 isopoints in a cell in O(1)-adjaceny since a
cell has 12 edges (case 13 of Fig. 1). In the case of O(2)-
adjacency, maximum /2 additional points can be extracted
because each face of a cell has two diagonals (a cell has 6
faces). The voxels on the end of a diagonal of a cell are also
defined to be adjacent by extending the voxel adjacency into
0O(3), and thus no more than 4 additional points can be ex-
tracted.

In the MC algorithm, the isopoints are always limited
to the O(1)-adjacency, and thus less than 12 isopoints can
be participated in the isosurface of a cell. Our method over-
comes this restriction by adopting n,(v) or n3(v) rather than
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ni(v). It can utilize lots of extra isopoints which are very
useful in isosurface reconstruction. Consequently, better
quality in resulting surface can be expected than the MC
algorithm.

4. Initial Mesh by the Cell-Boundary Representation

Basically, our reconstruction scheme follows the shrink-
wrapped boundary face (SWBF) algorithm [11], which pro-
duces a surface mesh from unorganized 3D points cloud.
SWBF makes a coarse initial mesh using the boundary
faces, and applies an iterative relaxation scheme, called
shrink-wrapping process, to approximate the fine surface
representing the 3D points cloud. In our case, the isopoints
extracted in O(3)-adjacency can be utilized as the target 3D
points: actual 3D points assumed to be sampled from the
ideal isosurfaces. The problem is how to generate the ini-
tial mesh from the original voxel data. In this section, our
scheme of generating the initial mesh from the input cross-
sectional images is introduced.

In our observation, a desirable initial mesh should have
the following properties:

e Correctness. Although the initial mesh is a coarse rep-
resentation of the underlying isosurface, the method
should be able to approximate the ideal isosurface as
correctly as possible. It is an essential property and
can minimize the complexity of the following relax-
ation process.

e Uniqueness. The initial mesh should be always the
same for the same input data. In some algorithm such
as the PVP method [15] proposed by Yun et al., the se-
lection of the normal estimation algorithm can affect
the resulting surface shape, and thus can not guaran-
tees the uniqueness of the resulting mesh.

e Robustness. Any ambiguity is not permitted in defining
the initial mesh at any cell configuration. For example,
the case 10 of the MC algorithm shown in Fig. 1 yields
an ambiguity of triangulating the isopoints, and thus it
is not easy to avoid some holes on surface. Thus, a
desirable initial mesh should be robust in any cases of
cell configuration.

e Simplicity. The simplicity is needed to reduce the
complexity of the resulting surface. Generally the
MC algorithm produces highly detailed surface, and
consequently generates so many triangular isosurface
patches. A desirable initial mesh should be simple in
surface complexity than the MC algorithm.

From these considerations, the cell-boundary represen-
tation (CBR) [16] proposed by Lee et al. was adopted to gen-
erate the initial mesh from the cross sectional images. The
CBR does not give an accurate surface like MC, but is a ro-
bust method for approximating surface from voxel data in
that it provides a unique representation without having any
ambiguity in surface definition with simplified surface com-
plexity than the MC algorithm.

Let V be a scene in a cuberille of 3D space. The cell



CHOI and HAHN: SHRINK-WRAPPED ISOSURFACE FROM CROSS SECTIONAL IMAGES

5 e

lteration = 1

Iteration = 2

Iteration = 3

Iteration = 4

Fig.4 11 volumetric group of the modeling primitives in CBR [16].

space C is an infinite collection of closed cubes, where the
eight vertices of each cube correspond to eight adjacent vox-
els, called supporting voxels, in the cuberille V. Each com-
ponent of the cell space, a cube as shown in Figs. 1 and 2, is
a cell and denoted by c. The cell space can be interpreted as
a transformed space or shifted space of the cuberille space.
A boundary cell in CBR is defined by a cell which contains
at least one ¥ and at least one v' as the supporting voxels.
The all cases in Fig. 1 except the case O are typical exam-
ples of the boundary cell. The set of boundary cells can be
denoted as

BC ={clce C,gs(v) =1,g4u)=0
for some v, u € ny(c)}

“)

where n,(c) represents the eight supporting voxels of c.

Definition 3: A cell-boundary of a scene V in a cu-
berille of 3D space is a tuple (BC, A), where BC is the set of
boundary cells and A, called the encoding function, assigns
the configuration of eight supporting voxels to each com-
ponent of BC. The voxel configuration of a cell ¢, denoted
as 0(c) € A, is an 8-bit configuration code which represent
whether each of the eight supporting voxels of the cell is
positive (inner voxel) or not.

With the notion of the cell-boundary representation,
they provided 19 modeling primitives (MP) and the relation
between the resulting surface and the modeling primitive as
the surface patch table. Figure 4 illustrates the 11 volumetric
groups of the modeling primitives, and Fig. 5 describes their
algorithm to extract the surface mesh from the cell-boundary
representation.

The cell-boundary representation could not produce
highly detailed isosurface since it does not include any sub-
voxel interpolation as in the MC algorithm. But it guaran-
tees the uniqueness of the mesh for the same input data. It is
also very robust since there is not any ambiguity in surface
definition and does not make any cracks on surface. Fur-
thermore, it is very efficient in time and space since it only
uses pre-defined look-up table with simple scan line algo-
rithm, and reduces the number of surface patches by 40 ~
50% than in the MC algorithm. Thus it is a perfect scheme
for generating the initial surface mesh, and we adopted this
method to acquire the coarse initial representation of the iso-
surface from the input cross-sectional images.

2073

Procedure GenCBoundary

Input: 2 slices of scenes at adjacent level with a proper segmentation
function g .

Output: A cell-boundary C = (BC,A).

Begin

[1] Generate binary scenes for each scenes using g .

[2] Scan two slices of binary scenes and create a cube from supporting

voxels: 4 neighbors on one slice and 4 neighbors on the next slice.

[3] Calculate the number of 1-voxel 7, in the cube.

[4]If 2< n <& then
[4.1] Compute the 1-voxel contiguration A for the cell.
[4.2] Insert the cell into C .

[5] If scanning is not over, goto 2.

[6] Return the cell-boundary C .

End

Fig.5  The surface generation algorithm [16].

5. Isosurface Reconstruction by the Shrink-Wrapping
Process

Assume that an isopoint model p;;,(7T;) and the initial mesh
M are given. M! is a crude approximation of the isosur-
face of the input cross-sectional images, and p;s,(T;) can
be regarded as the isopoints sampled from the ideal isosur-
face with voxel density T,. In our method, M is iteratively
metamorphosed into p;,(T,) by the shrinking and smooth-
ing operations. For these processes, we adopted the same
procedures used in SWBF[11].

5.1 Shrinking

A shrinking step is applying an attracting force to each ver-
tex, that is, a vector between M and p;,,(T). For a vertex g;
of M', there is a boundary cell ¢, containing it. We search
for the nearest isopoint p; in p;s(7T;) minimizing the Eu-
clidean distance between g; and p;. After finding the nearest
isopoint p;, the attracting force vector f,, = g; — p; pushes
the mesh vertex g; toward p; as follows.

qi < qi +afy &)

The weight (0.0 to 1.0) controls the amount of the at-
tracting force. Since there is a possibility of sharing the
same point by more than two mesh vertices, the full attrac-
tion force (= 1) may cause a non-manifold region in the
surface. To avoid this, we provided a weight of less than 1.0
and experimentally chose to be 0.5.

Unlike in the method of [10] requiring a global search
for finding the nearest point, our method can be done in a
local manner to obtain the same result. Since the nearest
isopoint from ¢; should always be inside of ¢, and its O(3)-
adjacent neighbors, it is sufficient to search the 27 cells for
the optimal p;. It greatly reduces the processing time for
the shrinking process compared with [10]. Furthermore,
our method overcomes the surface duplication problem of
SWBEF. If the unorganized points are acquired only from
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the surface (not the volume) of an object, it is impossible
to determine whether a non-boundary cell is inside of the
object or not, and consequently, the surface mesh by SWBF
may contain two layers of surface of opposite orientation.
In our method, we can avoid this problem because the input
volumetric data makes it possible to specify a cell is inside
or not.

The processing time of the shrinking operator is pro-
portional to the number of vertices of the initial mesh M’.
As described above, it is sufficient to consider the isopoints
inside only 27 cells to find the nearest point p; from a mesh
vertex: for a mesh vertex ¢;, the distance calculation from
g; to the points can be done only for those isopoints em-
braced in the cell ¢, containing ¢; and 26 O(3)-adjacent
neighbors of ¢;. In the viewpoint of a cell, the maximum
number of possible isopoints inside the cell is 28: 12 in the
edges of a cell (O(1)-adjacent), 12 in the diagonals of the
six faces (O(2)-adjacent), and 4 in the diagonals of the cell
(O(3)-adjacent). Thus, the number of candidate isopoints in
Piso(Tq) for finding p; can not exceed 756 (= 27 x 28). The
calculation of the attracting force can be done in a constant
time C. Consequently, the time complexity for the shrink-
ing step becomes O((756 + C)n) = O(n), where n is the total
number of the vertices in M.

5.2 Surface Smoothing

The smoothing step tries to relax the shrink-wrapped surface
to achieve a uniform vertex sampling. We have adopted the
same method used in SWBF, which is employing the ap-
proximation of Laplacian L. This is the average vector of /-
neighbor edge vectors of a given vertex, and thus a surface
shrinkage effect may occur. Thus the tangential component
L, of L, which is perpendicular to the vertex normal 77, was
utilized as follows.

1
Lag)=— > (@-a (6)
jel—nbr(i)
Lig) = L(g) - (L(gy) - ) (7
qi < qi + AL(qi) @)

The weight A determines the amount of the smoothing
operator. If we apply a big A value, we can get uniformly
sampled mesh, but our shrink wrapping procedure can fail to
capture big convex or concave region because mesh can be
shrink even though we apply tangential motion only. In the
case of a small 4, it is not easy to get uniformly distributed
mesh. We chose 0.4 as the proper 4 value by experiments.

The processing time of the smoothing step is also pro-
portional to the number of vertices in the initial mesh M’
since for a mesh vertex g; there are at most six neighboring
vertices, O(6n) = O(n).

6. Experiments

Our algorithm was implemented in C and C++ under Win-
dows XP. For the experiment, we used the human head, the
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plastic skull, and the head aneuyrism data. The human head
consists of 30 slices and each slice is 128 X 128. We assume
that the CT images are stacked along z-direction and x, y-
direction is defined within each image plane. Figure 6 shows
10 slices of the input data. Using the density thresholding
(T4 = 128), we segmented the input data for extracting the
isosurface.

Figure 7 illustrates the isopoints extracted in O(1)
and O(3)-adjacency, respectively, and we used the O(3)-
adjacency in our method. In the case of the MC algorithm,
only 26,788 points are utilized in surface reconstruction as
shown in (a). By adopting the O(3)-adjacency, our method
is able to make use of additional isopoints from the faces
and the diagonals of each boundary cell. The total number
of the isopoints (132,260) is much larger than that of the
MC algorithm (26,788), and theoretically better quality in
resulting surface can be expected.

Figure 8 shows the initial mesh produced by the cell-
boundary representation. After applying 4 iterations of
shrink-wrapping process as shown in Fig.9, the crude ini-
tial mesh was metamorphosed into the smooth surface rep-
resenting the isosurfaces as shown Fig. 10. Compared with
the surface by the MC algorithm as shown in Fig. 11, our
method produces more smooth surface (less jagged sur-

00009
LS00

Fig.6  The human head data. (10 slices of overall 30 sections)

: Ol(l)-adjacency \ '(ﬁ)(3)-a(lia'c¢11c3'
Fig.7 The isopoint model (Ty; = 128): 26,788 isopoints in O(1)-
adjacency (left) and 132,260 points ispoints in O(3)-adjacency (right).

Fig.8 The initial mesh by CBR. (T; = 128)
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Iteration = 3 Iteration = 4

Fig.9  Shrink-wrapping process. (4 iterations)

Fig.10  Isosurface reconstructed by our method (O(3)-adj).

Fig.11  Surface reconstructed by MC algorithm with some cracks and
jagged surface. (T; = 128)

Our Method

Marching Cubes
Fig.12  Skull data. (128 x 128 x 60 slices, Ty = 80)

faces) without having any cracks on surface. The complex-
ity of the surface was also simplified about 42%.

Figure 12 shows experimental result for the plastic
skull data (60 slices of 128 x 128 x 8 bit image). Although it
does not contain any cracks on surface, the mesh around
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Our Method

Marching Cubes
Fig.13  Head aneurysm data. (256 X 256 x 256 slices, Ty = 60)

Table1  Comparison with the MC algorithm.

Our Marching

method Cubes
Adjacency 0@3) o(1)

Number of isopoints 132,260 26,788
Head Number of vertices 16,345 26,788
Number of triangles 32,259 55,536
Number of isopoints | 248,165 49,201
Skull Number of vertices 28,841 49,201
Number of triangles 57,843 98,072
Head Number of isopoints | 193,954 34,058
aneurysm Number of vertices 17,661 34,058
data Number of triangles 34,985 66,864

Table 2  Comparison of execution time for the head data (msec).

Adjacency o) | 0(2) | 03)

Initial Mesh by CBM 78 78 78

Our Isopoint Extraction 37 62 94
Method Shrinking Operator 47 91 109

Smoothing Operator 16 16 16

Overall (4 iterations) 367 568 672

Marching Overall 121 - -
Cubes

the teeth seems to be not satisfactory compared with the
MC algorithm. Since our initial meshing algorithm does
not provide highly detailed surface patches (less than 41%
compared with MC), it can miss some regions of high cur-
vature. The surface subdivision scheme [10], [17] could be
appended to our method to enhance the mesh quality in high
curvature regions.

Figure 13 illustrates comparisons of our method with
MC for the head aneurysm data (256 X256 X256 slices). Itis
rotational angiography scans of a head with an aneurysm ob-
tained from http://www.volvis.org. In this data, our method
produces only 53% of triangles with similar mesh quality of
blood vessels compared with MC algorithm.

Table 1 provides the surface reconstruction summary
for all data sets used in our experiments. Table 2 summa-
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rizes the actual computation times for the head data. Since
we adopt a relaxation scheme, the shrink-wrapping process
takes most of the computation time. The number of the iso-
points also affects the computation cost. According to our
implementation, the overall computation time of our method
in O(3)-adjacency is less than a second (about 6 times of the
MC algorithm) in the case of applying 4 iterations of shrink-
wrapping process for human head data.

7. Conclusion

Our method surmounts the O(1)-adjacency limitation of the
MC algorithm by generalizing the concept of isopoints, and
it can exploit more information in surface reconstruction
than the MC algorithm. By adopting the cell-boundary rep-
resentation, it also can avoid any ambiguity in defining the
initial mesh, and produces the final isosurface without any
cracks by iteratively applying the shrink-wrapping process.
According to experiments, our method is proved to be very
robust and efficient in isosurface reconstruction from tomo-
graphic cross sectional images.

We believe that our method opens up some new top-
ics for future work. Our relaxation based isosurfacing tech-
nique can be combined with the surface subdivision ap-
proaches to produce higher quality surface. It is also valu-
able to confirm the effectiveness of using O(3)-adjacency in
isosurface reconstruction.

In the future, we also intend to apply the O(3)-adjacent
isopoints to the view-dependent approaches. The point-
based rendering schemes such as the iso-splitting technique
can be a good candidate for further study.

We also expect that our method can be successfully
applied to the problem of surface reconstruction from var-
ious kinds of non-orthogonal volumes data (non-cubic vox-
els such as parallelepiped or hexagonal prism). Conven-
tional techniques producing the isosurface at a time such as
MC looks more difficult to generalize than the relaxation
scheme. Our method does not extract the isosurface directly
from the voxel data. All componets of our method, gen-
erating a crude initial mesh, acquiring O(3) isopoints, and
metamorphosing the initial mesh using a relaxation scheme,
seem to be easier to extend to a non-cubic voxel data. Thus
our method can be a good solution to reconstruct the isosur-
face from the non-orthogonal volumes.
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