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Machine learning and pattern recognition algorithms have in the past years developed to become a working
horse in brain imaging and the computational neurosciences, as they are instrumental for mining vast
amounts of neural data of ever increasing measurement precision and detecting minuscule signals from an
overwhelming noise floor. They provide the means to decode and characterize task relevant brain states and
to distinguish them from non-informative brain signals. While undoubtedly this machinery has helped to gain
novel biological insights, it also holds the danger of potential unintentional abuse. Ideally machine learning
techniques should be usable for any non-expert, however, unfortunately they are typically not. Overfitting
and other pitfalls may occur and lead to spurious and nonsensical interpretation. The goal of this review is
therefore to provide an accessible and clear introduction to the strengths and also the inherent dangers of
machine learning usage in the neurosciences.

© 2010 Elsevier Inc. All rights reserved.

Introduction

The past years have seen an immense rise of interest in the decoding
of brain states as measured invasively with multi-unit arrays and
electrocorticography (ECoG) or non-invasively with functional
Magnetic Resonance Imaging (fMRI), electroencephalography (EEG),
or near-infrared spectroscopy (NIRS). Instrumental to this development
has been the use of modern machine learning and pattern recognition
algorithms (e.g. Bishop, 1995; Vapnik, 1995; Duda et al., 2001; Hastie
et al., 2001; Miiller et al., 2001; Scholkopf and Smola, 2002; Rasmussen
and Williams, 2005). Clearly, in this development the field of real-time
decoding for brain-computer interfacing (BCI) has been a technology
motor (e.g. Dornhege et al.,, 2007; Kiibler and Kotchoubey, 2007; Kiibler
and Miiller, 2007; Wolpaw, 2007; Birbaumer, 2006; Pfurtscheller et al.,
2005; Curran and Stokes, 2003; Wolpaw et al., 2002; Kiibler et al., 2001).
As a result a number of novel data driven approaches specific to
neuroscience have emerged: (a) dimension reduction and projection
methods (e.g. Hyvdrinen et al., 2001; Ziehe et al., 2000; Parra and Sajda,
2003; Morup et al.,, 2008; von Biinau et al., 2009; Blanchard et al., 2006;
BieSmann et al., 2009), (b) classification methods (e.g. Miiller et al.,
2001, 2003; Parra et al., 2002, 2003, 2008; Lal et al., 2004; Blankertz
et al., 2006a, 2008b; Miiller et al., 2008; Tomioka et al., 2007; Tomioka
and Miller, 2010), (c) spatio-temporal filtering algorithms (e.g.
Fukunaga, 1972; Koles, 1991; Ramoser et al., 2000; Lemm et al., 2005;
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Blankertz et al., 2008b; Dornhege et al., 2006, 2007; Tomioka and Miiller,
2010; Parra et al., 2008; Blankertz et al., 2007), (d) measures for
determining synchrony, coherence or causal relations in data (e.g.
Meinecke et al.,, 2005; Brunner et al., 2006; Nolte et al., 2004; Marzetti et
al., 2008; Nolte et al., 2006, 2008; Gentili et al., 2009) and (e) algorithms
for assessing and counteracting non-stationarity in data (e.g. Shenoy et
al., 2006; Sugiyama et al., 2007; von Biinau et al., 2009; Blankertz et al.,
2008; Krauledat et al., 2007). Moreover, a new generation of source
localization techniques is now in use (e.g. Haufe et al., 2008, 2009) and
has been successfully applied in BCI research (e.g. Pun et al., 2006;
Noirhomme et al.,, 2008; Grosse-Wentrup et al., 2007).

In spite of this multitude of powerful novel data analytical
methods, this review will place its focus mainly on the essentials for
decoding brain states, namely we will introduce the mathematical
concepts of classification and model selection and explicate how to
properly apply them to neurophysiological data. To this end, the paper
first reviews the mathematical and algorithmic principles starting
from a rather abstract level and regardless of the scope of application.
The subsequent discussion of the practicalities and ‘tricks’ in the spirit
of Orr and Miiller (1998) will then link to the analysis of brain imaging
data. Unlike existing reviews on this topic (cf.Wolpaw et al., 2002;
Kiibler and Miiller, 2007; Dornhege et al., 2007; Haynes and Rees,
2006; Pereira et al., 2009), we will elaborate on common pitfalls and
how to avoid them when applying machine learning to brain imaging
data.

Afinal note: while the paper introduces the main ideas of algorithms,
we do not attempt a full treatment of the available literature. Rather, we
present a somewhat biased view, mainly drawing from the authors'
work and providing - to the best of our knowledge - links and
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Fig. 1. Left: typical work flow for machine learning based classification of brain imaging data. First, brain imaging data are acquired according to the chosen neurophysiological
paradigm. Then the data are preprocessed, e.g., by artifact rejection or bandpass filtering. The machine learning based approach comprises the reduction of the dimensionality by
extraction of meaningful features and the final classification of the data in the feature space. Right: example of a linear classification of time series in the time frequency domain.
Especially, the linear classifier partitions an appropriately chosen low dimensional feature space.

references to related studies and further reading. We sincerely hope that
it will nevertheless be useful to the reader.

The paper outline is the following: After a brief introduction to the
basic machine learning principles, the section Learning to classify
features a selection of the prevailing algorithms for classification.
Subsequently, the section Dimensionality reduction provides a brief
overview of supervised and unsupervised dimensionality reduction
methods. The main contributions of this review are a detailed account
of how to validate and select models (section Cross-validation and
model selection), and the elaboration of the practical aspects of model
evaluation and most common pitfalls specific to brain imaging data in
the section Practical hints for model evaluation.

Learning to classify

Neuroscientific experiments often aim at contrasting specific brain
states. Typically, the experimenter chooses a neurophysiological
paradigm that maximizes the contrast between the brain states
(note that there may be more than two states), while controlling for
task unrelated processes. After recording brain imaging data, the goal
of analysis is to find significant differences in the spatial and the
temporal characteristics of the data contrasting the different states as
accurately as possible. While simple statistics such as grand averages
(averaging across trials and subjects) may help for model building,
more sophisticated machine learning techniques have become
increasingly popular due to their great modeling power. Note that
the methods we are going to feature in this paper are likewise
applicable to multivariate fMRI voxel time series, to single trial
responses in fMRI or EEG, and brain imaging data from any other
spatio-temporal, or spectral domain. Formally, the scenario of
discrimination of brain states can be cast into a so-called classification
problem, where in a data-driven manner a classifier is computed that
partitions a set of observations into subsets with distinct statistical

characteristics (see Fig. 1). Note, however, that not only paradigms
with known physiological connotation but also novel scenarios can be
scrutinized, where (1) a new paradigm can be explored with respect
to its neurophysiological signatures, and (2) a hypothesis about
underlying task relevant brain processes is generated automatically
by the learning machine. Feeding this information back to the
experimenter, may lead to a refinement of the initial paradigm, such
that, in principle, a better understanding of the brain processes may
follow. In this sense, machine learning may not only be the technology
of choice for a generic modeling of a neuroscientific experiment, it can
also be of great use in a semi-automatic exploration loop for testing
new neurophysiological paradigms.

Some theoretical background

Let us start with the general notion of the learning problems that
we consider in this paper. From an abstract point of view, a classifier is
a function which partitions a set of objects into several classes, for
instance, recordings of brain activity during either auditory, visual, or
cognitive processing into the three distinct modalities (classes).! Thus,
based on a set of observations, the machine learning task of
classification is to find a rule, which assigns an observation x to one
of several classes. Here, x denotes a vector of N-dimensional
neuroimaging data. In the simplest case there are only two different
classes. Hence, a classifier can be formalized as a decision function f:
RN—{—1,+ 1}, that assigns an observation x to one of the classes,
denoted by —1 and 1, respectively. Typically, the set of possible
decision functions fis constrained by the scientist to a (parameterized)
class of functions 7 e.g., to the class of linear functions. Note, a linear

! The classes could also correspond to complex brain states as in mind reading
paradigms (see Haynes and Rees, 2006) or brain states such as attention, workload,
emotions, etc.
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decision function f corresponds to a separating hyperplane (e.g., see
Fig. 1), that is parameterized by its normal vector w and a bias term b.
Here, the label y is predicted through

y = f(x;w,b) = sgn(wa + b). (2.1

Then, based on a set of observed input-output relation (x1,y1),...,
(Xn,Yn) ERNx{—1,+1}, learning can be formally described as the
task of selecting the parameter value (w,b) and hence selecting the
decision function f€ F such that f will correctly classify unseen
examples x. Here, the observed data (x;y;) is assumed to be
independently and identically distributed (i.i.d.) according to an
unknown distribution P(x,y) that reflects the relationship between
the objects x and the class labels y, e.g., between the recorded brain
activity and the paradigm specific mental states. However, in order to
find the optimal decision function one needs to specify a suitable loss
function that evaluates the goodness of the partitioning. One of the
most commonly used loss functions for classification is the so-called
0/1-loss (see Smola and Schélkopf, 1998 for a discussion of other loss
functions)

I(y.f(x)) = {0 y =) (22)

1 else.

Given a particular loss function, the best decision function f one
can obtain, is the one minimizing the expected risk (also often called
generalization error)

RIf] = [l(y.f(x)dP(x,y), (2.3)

under the unknown distribution P(x,y). As the underlying probability
distribution P(x,y) is unknown the expected risk cannot be minimized
directly. Therefore, we have to try to estimate the minimum of (2.3)
based on the information available, such as the training sample and
properties of the function class % A straightforward approach is to
approximate the risk in (2.3) by the empirical risk, i.e., the averaged
loss on the training sample

Renplf] = 1 2 107 x)) 24)

and minimize the empirical risk with respect to f. It is possible to give
conditions on the learning machine which ensure that asymptotically
(as the number of observations n— ) the minimum of the empirical
risk will converge towards the one of the expected risk. Consequently,
with an infinite amount of data the decision function f that minimizes
the empirical risk will also minimize the expected risk. However, for
small sample sizes this approximation is rather coarse and large
deviations are possible. As a consequence of this, overfitting might
occur, where the decision function flearns details of the sample rather
than global properties of P(x,y) (see Figs. 2 and 3).

Under such circumstances, simply minimizing the empirical error
Eq. (2.4) will not yield a small generalization error in general. One way
to avoid the overfitting dilemma is to restrict the complexity of the

] o [ ] ’

Fig. 2. lllustration of the overfitting dilemma: given only a small sample (left) either,
the solid or the dashed hypothesis might be true, the dashed one being more complex,
but also having a smaller empirical error. A larger sample better reflects the true
distribution and enables us to reveal overfitting. If the dashed hypothesis is correct the
solid would underfit (middle); if the solid were correct the dashed hypothesis would
overfit (right).

From Miiller et al. (2001).

Fig. 3. The problem of finding a maximum margin “hyper-plane” on reliable data (left),
data with outlier (middle) and with a mislabeled pattern (right). The solid line shows
the resulting decision line, whereas the dashed line marks the margin area. In the
middle and on the left the original decision line is plotted with dots. The hard margin
implies noise sensitivity, because only one pattern can spoil the whole estimation of the
decision line.

Figure from Ratsch et al. (2001).

function f (Vapnik, 1995). The intuition, which will be formalized in
the following is that a “simple” (e.g., linear) function that explains
most of the data is preferable over a complex one (Occam's razor, cf.
MacKay, 2003). This is typically realized by adding a regularization
term (e.g., Kimeldorf and Wahba, 1971; Tikhonov and Arsenin, 1977;
Poggio and Girosi, 1990; Cox and O'Sullivan, 1990) to the empirical
risk, i.e.,

Rieglf] = Remy + NITFIF. (2.5)

Here, an appropriately chosen regularization operator ||Tf|[> pena-
lizes high complexity or other unfavorable properties of f; A introduces
an additional parameter to the model (often called hyperparameter)
that needs to be estimated as well. The estimation of this parameter and
hence taking model complexity into account, raises the problem of
model selection (e.g., Akaike, 1974; Poggio and Girosi, 1990; Moody,
1992; Murata et al., 1994), i.e., how to find the optimal complexity of a
function or accordingly the appropriate function class (in the section
Cross-validation and model selection we will discuss the practical
aspects of model selection). Note that different classification methods
typically employ different regularization schemes. For instance, linear
discriminant analysis (LDA) employs regularization through shrinkage
(Stein, 1956; Friedman, 1989) while neural networks use early stopping
(Amari et al., 1997), weight decay regularization or asymptotic model
selection criteria (e.g., network information criterion (Murata et al.,
1994; Akaike, 1974), see also Bishop 1995; Orr and Miiller 1998). On the
other hand, support vector machines (SVMs) regularize according to
what kernel is being used (Smola et al., 1998) and limit their capacity
according to Vapnik-Chervonenkis (VC) theory (Vapnik, 1995).

Linear classification

For computing the parameters of a linear decision function (cf. Eq.
(2.1) and Fig. 1), namely the normal vector w and the bias b, we will in
the following discuss the different approaches: linear discriminant
analysis (LDA) including procedures for regularizing LDA, as well as
linear programming machines (LPM).

Linear discriminant analysis, Fisher's discriminant and regularization

In case of LDA the two classes are assumed to be normally
distributed with different means but identical full rank covariance
matrix. Suppose the true means ; (i=1,2) and the true covariance
matrix 3 are known, then the normal vector w of the Bayes optimal
separating hyperplane of the LDA classifier is given as

w=3""(y ).
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In order to compute w for real data, the means and covariances need
to be approximated empirically, see the section Linear discriminant
analysis with shrinkage.

A more general framework is the well-known Fisher's Discriminant
analysis (FDA), that maximizes the so-called Rayleigh coefficient

W Sw
wiS,w’

J(w (2.6)

where the within class scatter S,=_?_1S; with S;= 2 xec(x—H)
(x—pu;)" and the class means are defined as y; = nl 2 _xec;Xx and n; is
the number of patterns x; in class Ci. The between class scatter
Sp=1/2> ?—1(u—u;)(u—p;)", where u=1/2>"7?_ ;. A solution to
(6) can be found by solving the generalized Eigenvalue problem (cf.
Golub and van Loan, 1996). Considering only two classes, FDA and LDA
can be shown to yield the same classifier solution. However, both
methods can be extended for the application to multiple classes.

Although it is a common wisdom that linear methods such as LDA
and FDA are less likely to overfit, we would like to stress that they also
require careful regularization: not only for numerical reasons. Here,
the regularization procedure will be less necessary to avoid the typical
overfitting problems due to excessive complexity encountered for
nonlinear methods (see Figs. 2 and 3-right). Rather regularization will
help to limit the influence of outliers that can distort linear models
(see Fig. 3-center). However, if possible, a removal of outliers prior to
learning is to be preferred (e.g., Schélkopf et al., 2001; Harmeling et
al., 2006).

A mathematical programming formulation of regularized Fisher
discriminant analysis (RFDA) as a linear constraint, convex optimization
problem was introduced in Mika et al. (2001) as

Miny ¢ %uwu% + %uguﬁ

s.t. yir(W'x) +b)=1-¢,i=1,...,n
gi207

27)

where llwll, denotes the 2-norm (Ilwl3=w"w) and C is a model
parameter that controls for the amount of constraint violations
introduced by the slack variables &;. The constraints y;* ((w'x;) +b) =
1 —§&; ensure that the class means are projected to the corresponding
class labels + 1. Minimizing the length of w maximizes the margin
between the projected class means relative to the intra class variance.
Note that Eq. (2.7) can be the starting point for further mathematical
program formulations of classifiers such as the sparse FDA, which uses
a 1-norm regularizer: lwl; = |w,| etc. (cf. Mika et al., 2003).

Linear discriminant analysis with shrinkage

The optimality statement for LDA depends crucially on the never
fulfilled assumption, that the true class distributions are known.
Rather, means and covariance matrices of the distributions have to be
estimated from the training data.

The standard estimator for covariance matrices is the empirical
covariance which is unbiased and has under usual conditions good
properties. But for the extreme case of high-dimensional data with only
a few data points that is typically encountered in neuroimaging data, the
empirical estimation may become imprecise, because the number of
unknown parameters that have to be estimated is quadratic in the
number of dimensions. As substantiated in Blankertz et al. (2011), this
results in a systematic error: large eigenvalues of the original covariance
matrix are estimated too large, and small eigenvalues are estimated too
small. Shrinkage is a common remedy for the systematic bias (Stein,
1956) of the estimated covariance matrices (e.g., Friedman, 1989): the
empirical covariance matrix 2. is replaced by

S3(y): =(1—y)3 + 2.8)

for a tuning parameter y<[0,1] and v defined as average eigenvalue
of 3 and I being the identity matrix. Then the following holds: 3 and 3,
have the same Eigenvectors; extreme eigenvalues (large or small) are
modified (shrunk or elongated) towards the average v; y=0 yields
unregularized LDA, y=1 assumes spherical covariance matrices.

Using LDA with such a modified covariance matrix is termed
regularized LDA or LDA with shrinkage. For a long time, complex or
time-consuming methods have been used to select shrinkage
parameter v, e.g., by means of cross validation. Recently an analytic
method to calculate the optimal shrinkage parameter for certain
directions of shrinkage was found (Ledoit and Wolf, 2004; see also
Vidaurre et al., 2009 for the first application to brain imaging data)
that is surprisingly simple. The optimal value only depends on the
sample-to-sample variance of entries in the empirical covariance
matrix (and values of 3 itself). When we denote by (x;);and ([t} the
i-th element of the vector x; and [, respectively and denote by s,-}l- the
element in the i-th row and j-th column of 3 and define

zi(k) = (0= (B),) (0= (1)),
then the optimal parameter 7y for shrinkage towards identity (as

defined by Eq. (2.8)) can be calculated as (Schdfer and Strimmer,
2005)

.o S~ yvar (z,-j(k))
(n=1)% Xiysi + Zi(si—v)*

Linear programming machines

Finally, we would like to introduce the so-called linear programming
machines (LPMs, Bennett and Mangasarian (1992); Tibshirani (1994);
Tibshirani (1996); Hastie et al. (2001); Miiller et al. (2001); Ratsch et al.
(2002)). Here, slack variables § corresponding to the estimation error
incurred as well as parameters w are optimized to yield a sparse
regularized solution

min,, ;¢ %uwu1 + %ugn1

sty ((wW'x) +b)=1-¢, i=1,...,n (2.9)
£.20.

LPMs achieve sparse solutions (i.e. most values of w become zero)
by means of explicitly optimizing the 1-norm in the objective function
instead of the 2-norm, which is known to yield non-sparse solutions.
Due to this property, LPM and sparse FDA are excellent tools for
variable selection. In other words, while solving the classification
problem, the user is not only supplied with a good classifier but also
with the list of variables that are relevant for solving the classification
task (Blankertz et al., 2006a; Miiller et al., 2001; Blankertz et al., 2002;
Lal et al., 2004; Tomioka and Miiller, 2010).

Beyond linear classifiers

Kernel based learning has taken the step from linear to nonlinear
classification in a particularly interesting and efficient manner: a
linear algorithm is applied in some appropriate (kernel) feature space.
While this idea first described in Scholkopf et al. (1998) is simple, it is
yet very powerful as all beneficial properties (e.g., optimality) of
linear classification are maintained, but at the same time the overall
classification is nonlinear in input space, since feature- and input
space are nonlinearly related. A cartoon of this idea can be found in
Fig. 4, where the classification in input space requires some
complicated non-linear (multi-parameter) ellipsoid classifier. An
appropriate feature space representation, in this case polynomials of
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Fig. 4. Two dimensional classification example. Using the second order monomials
x2,V/2x1X; and x3 as features, the two classes can be separated in the feature space by a
linear hyperplane (right). In the input space this construction corresponds to a non-
linear ellipsoidal decision boundary (left).

From Miiller et al. (2001).

second order, supply a convenient basis in which the problem can be
most easily solved by a linear classifier.

However, by virtue of the kernel-trick (Vapnik, 1995) the input
space does not need to be explicitly mapped to a high dimensional
feature space by means of a non-linear function @:x— &(x). Instead,
kernel based methods take advantage from the fact that most linear
methods only require the computation of dot products. Hence, the
trick in kernel based learning is to substitute an appropriate kernel
function in the input space for the dot products in the feature space,
ie.,

k:RY x RVSR,

suchthat  k(x,x) = b(x) b(X). (2.10)

More precisely, kernel-based methods are restricted to the
particular class of kernel functions k that correspond to dot products
in feature spaces and hence only implicitly map the input space to the
corresponding feature space. Commonly used kernels are for instance:

Gaussian  k(x,x") = exp —M ,0>0 (2.11)
. ’ T/ d

Polynomial k(x,x) = (x X + c) (2.12)

Sigmoid k(x,x') = tanh(x(x'x') 4+ 0), k>0, 6 <0. (2.13)

Examples of kernel-based learning machines are among others the
support vector machines (SVMs) (Vapnik, 1995; Miiller et al., 2001),
Kernel Fisher discriminant (Mika et al.,, 2003) or Kernel principal
component analysis (Scholkopf et al., 1998).

Support vector machines

In order to illustrate the application of the kernel-trick, let us
consider the example of the SVM (Vapnik, 1995; Miiller et al., 2001).
Here, the primal optimization problem of a linear SVM is given similar
to (2.7) and (2.9) as

. 1 2 n
minyy ¢ §||W||2 +C 21 &
f=
s.t. yir(W'x) + b)=1—¢;, i=1,....n (2.14)

£,20.

However, in order to apply the kernel trick we rather use the dual
formulation of (2.14), i.e.,

‘1 n
max,, Igl OL,—ZJZ ai(xjy,»yj'(xl xj)
s.t. Czo;=0, i=1,...n, (2.15)

To construct a nonlinear SVM in the input space, one (implicitly)
maps the inputs x to the feature space by a non-linear feature map &(x)
and computes an optimal hyperplane (with threshold) in feature space.
To this end, one substitutes ¢>(x;) for each training example x; in (2.15).
As x; only occurs in dot products, one can apply the kernel trick and
substitute a kernel k for the dot products, i.e., k(x;,x;) = P(x;) "P(x;) (cf.
Boser et al,, 1992; Guyon et al., 1993). Hence, the non-linear formulation
of the SVM is identical to (2.15), with the exception that a kernel k(x;,x;)
substitutes for the dot product (x/x;) in the objective function.
Advantageously, many of the o; will be vanishing; the samples
associated with these non-zero coefficients are referred to as support
vectors (SV). As the weight vector w in the primal formulation reads
w=_;y;o;dP(x;), we obtain the nonlinear decision function as

f(x) sgn(w' d(x) + b)

= sgn <i§¢0%ai' (P(x) b)) + b> (2.16)

- sgn(z vk + b)

iroy #

Here, the sum in (2.16) is a sparse expansion as it only runs over
the set of SVs. Note, while the ¢; is determined from the quadratic
optimization problem (2.15), the threshold b can be computed by
exploiting the fact that for all support vectors x; with C>¢;>0, the
slack variable §; is zero, and hence

n
> yjaj'k(xi,xj> + b=y, (2.17)
j=1

If one uses an optimizer? that works with the double dual (see, e.g.,
Vanderbei and Shanno, 1997; Boyd and Vandenberghe, 2004), one can
also recover the value of the primal variable b directly from the
corresponding double dual variable.

Note that recently Braun et al. (2008) has observed that the
excellent generalization that is typically observed when using SVMs in
high dimensional applications with few samples is due to its very
economic representation in Kernel Hilbert space. Given the appro-
priate kernel, only a very low dimensional subspace is task relevant.

K-nearest neighbors

A further well-known non-linear algorithm for classification is the
so-called k-nearest neighbor method. Here, every unseen point x is
compared through a distance function dist(x,x;) to all points x; (i=1,
...,n) of the training set. The k minimal distances are computed and
the majority over the corresponding labels y; is taken as the resulting
label for x (note that this simple rule also holds for multiclass
problems). This strategy provides a very simple local approximation
of the conditional density function. The k-nearest neighbor method is
known to work well, if a reasonable distance (typically the Euclidean
one) is available and if the number of data points in the training set is

2 A selection of Open Source software for SVMs can be found on www.kernel-
machines.org.
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not huge. The hyperparameter k can be selected, e.g., by cross-
validation. Note that in general data with a low signal-to-noise ratio
requires larger values of k.

Application to brain imaging data

The predominant methods both for fMRI and EEG/MEG analysis
are so far mostly linear, however, nonlinear methods can easily be
included in the analysis by including these model classes into the
model selection loop, as we will discuss in a later section in detail. For
a brief discussion of linear versus nonlinear methods see, e.g., Miiller
et al. (2003).

In EEG studies mainly LDA, shrinkage/regularized LDA, sparse
Fisher, and linear programs are in use (e.g., Dornhege et al., 2007).
Here, it was observed that through a proper preprocessing the class
conditional distributions become Gaussian with a very similar
covariance structure (cf. Blankertz et al., 2002, 2006a; Dornhege et
al., 2007). Under such circumstances, theory suggests that LDA would
be the optimal classifier. However, changes in the underlying
distribution, the use of multimodal features (e.g., Dornhege et al.,
2004), or the presence of outliers may require to proceed to nonlinear
methods (see the discussion in Miiller et al., 2003).

The driving insight in fMRI analysis was to go from univariate
analysis tools that correlate single voxels with behavior to a full
multivariate correlation analysis (e.g., Hansen et al., 1999; Haxby et
al., 2001; Strother et al., 2002; Cox and Savoy, 2003; Kamitani and
Tong, 2005; Haynes and Rees, 2006; Kriegeskorte et al., 2006; Mitchell
et al., 2008). A main argument for using especially SVMs and LPMs
was their well-known benign properties in the case where the
number of input dimensions in x is high while the number of samples
is low (e.g., Vapnik, 1995; Miiller et al., 2001; Braun et al., 2008). This
particular very unbalanced situation is an important issue in fMRI,
since the number of voxels is of the order ten-thousands while the
number of samples rarely exceeds a few hundreds (e.g., Hansen et al.,
1999; Strother et al., 2002; Cox and Savoy, 2003). Physiological priors
that allow, e.g., to define regions of interest, have led to further
specialized analysis tools such as the search-light method. Here, the
signal to noise ratio is improved by discarding some potentially noisy
and task unrelated areas while enhancing the interesting bit of
information spatially (e.g., Kriegeskorte et al., 2006). In some cases
improvements through the use of nonlinear kernel functions have
been reported, e.g., LaConte et al. (2005) studied the use of
polynomial kernels. Other priors have been derived from the
paradigm. For example, for understanding the neural basis of word
representation, Mitchell et al. (2008) used word co-occurrences in
language inferred from a large scale document corpus, to derive a
codebook of fMRI patterns corresponding to brain activity for
representing words. These patterns could be superimposed for out
of sample forecasting, thus predicting the most probable way a certain
novel word is represented in the fMRI pattern.

Dimensionality reduction

So far, we did not much concern about the domain of the input data
and solely assumed the classifiers to be applicable to the data (x,y). In
practice and particularly in the domain of computational neuroscience,
the input data x often exhibit an adverse ratio between its dimension-
ality and the number of samples. For example, a typical task for
EEG-based Brain-Computer Interfaces (BCI) requires the classification
of one second intervals of brain activity, recorded at sampling
frequencies up to 1kHz, from possibly 128 electrodes. Hence, the
dimensionality of the input data x amounts approximately to 10°, while
the number of training samples is typically rather small, up to a few
hundred samples. Moreover, the data is contaminated by various
sources of interfering noise, while the discriminative information that is
the task relevant part of the data is often concentrated in a low

dimensional subspace. Consequently, in order to make the classification
task feasible the dimensionality of the data needs to be significantly
reduced, and informative features have to be extracted (see also Fig. 1).

Typically, feature extraction likewise involves spatial, spectral, and
temporal preprocessing of the input and is a highly paradigm specific
task that differs for the various recording techniques due to their
temporal and spatial resolutions. Accordingly, we will not elaborate
on specific feature extraction methods. Instead, we would like to
stress that feature extraction has to be considered not just as a data
analytical but rather as a heavily interdisciplinary endeavor. On the
one hand side, the extraction of task relevant features should be
facilitated by incorporating prior neurophysiological knowledge, e.g.,
about the cognitive processes underlying a specific paradigm. In
return, purely data driven feature extraction methods can potentially
provide new findings about the involved cognitive processing and
might therefore contribute to the generation of neurophysiological
hypotheses (Blankertz et al., 2006a).

The common approaches for dimensionality reduction can be
subdivided into two main categories. On the one hand side there are
variants of factor models, such as the well-known principle component
analysis (PCA), independent component analysis (ICA) (cf. Comon, 1994;
Bell and Sejnowski, 1995; Ziehe and Miiller, 1998; Hyvdrinen et al.,
2001), non-negative matrix factorization, archetypal analysis, sparse PCA
(Lee and Seung, 2000; Zou et al., 2004; Scholkopf et al., 1998) or non-
Gaussian component analysis (Blanchard et al., 2006) that perform a
factorization of the input data x in a purely unsupervised manner, i.e.,
without using the class information. The application of these methods
serves several purposes (a) dimensionality reduction by projecting onto
a few (meaningful) factors, (b) removal of interfering noise from the data
to increase the signal-to-noise ratio of the signals of interest, (c) removal
of nonstationary effects in data or (d) grouping of effects. Notwith-
standing their general applicability, unsupervised factor analysis often
requires manual identification of the factors of interest.

The second class of methods, namely supervised methods, make
explicit use of the class labels in order to find a transformation of the
input data to a reduced set of features with high task relevance. For
example, the common spatial pattern (CSP) (cf. Fukunaga, 1972;
Koles, 1991; Ramoser et al., 2000) algorithm and derivatives thereof
Blankertz et al. (2008); Lemm et al. (2005); Dornhege et al. (2006);
Tomioka and Miiller (2010) are widely used to extract discriminative
oscillatory features.

In the following, we will briefly describe two frequently used
dimensionality reduction methods. First we will briefly introduce the
unsupervised Independent component analysis, and subsequently
discuss the supervised CSP algorithm.

Independent component analysis

Under the often valid assumption that the electric fields of

different bioelectric current sources superimpose linearly, the
measured neurophysiological data can be modeled as a linear
combination of component vectors, which coincides with the basic
assumption of independent component analysis (ICA). In particular,
for the application of ICA it is assumed that the observed signals x(t)
are a linear mixture of M <N mutually independent sources s(t), i.e.,
data are modeled as a linear combination of component vectors:
x(t) = As(t), (3.18)
where A€ RN*M denotes the linear mixing matrix. In this case Eq.
(3.18) is invertible and ICA decomposes the observed data x(t) into
independent components y(t) by estimating the inverse decomposi-
tion matrix W=A"1, such that y(t) = Wx(t).

Note that typically neither the source signals nor the mixing
matrix are known. Nevertheless, there exist a vast number of ICA
algorithms that can solve the task of estimating the mixing matrix A.



S. Lemm et al. / Neurolmage 56 (2011) 387-399 393

Fig. 5. Essential difference between PCA and ICA. The left panel shows a mixture of two
super-Gaussian signals in the observation coordinates, along with the estimated PCA
axes (green) and ICA axes (red). Projecting the observed data to these axes reveals, that
PCA did not properly identify the original independent variables (center), while ICA has
well identified the original independent data variables (right).

They only differ in the particular choice of a so-called index function
and the respective numerical procedures to optimize this function. In
general, the index function employs a statistical property that takes
on its extreme values if the projected sources are independent. Most
research conducted in the field of ICA uses higher-order statistics for
the estimation of the independent components (Comon, 1994;
Hyvdrinen et al., 2001). For instance, the Jade algorithm (Cardoso
and Souloumiac, 1993) is based on the joint diagonalization of
matrices obtained from “parallel slices” of the 4th-order cumulant
tensor. Although this algorithm performs very efficiently on low
dimensional data, it becomes computational infeasible for high
dimensional problems, as the effort for storing and processing the
4th-order cumulants is O(m?) in the number of sources. As a remedy
for this problem Hyvarinen and Oja (1997) developed a general fix-
point iteration algorithm termed FastICA, that optimizes a contrast
function measuring the distance of the source probability distribu-
tions from a Gaussian distribution.

Note that ICA can recover the original sources s(t) only up to
scaling and permutation. Fig. 5 sketches the essential difference
between ICA and the well known PCA method.

Common spatial pattern

Unlike unsupervised methods such as PCA and ICA, the common
spatial pattern (CSP) algorithm (Fukunaga, 1972) makes explicit use
of the label information in order to calculate discriminative spatial
filters that emphasize differences in signal power of oscillatory
processes (Koles and Soong, 1998). To illustrate the basic idea of
CSP: suppose we observe two class distributions in a high-dimen-
sional space, the CSP algorithm finds directions (spatial filters) that
maximize the signal variance for one class, while simultaneously
minimizing the signal variance for the opposite class.

To be more precise, let 3, and 3, denote the two class conditional
signal covariance matrices. The spatial CSP filters w are obtained as
the generalized Eigenvectors of the following system

3w = \3,w. (3.19)

Fig. 6. Essential steps of CSP: the blue and green ellipsoids refer to the two class
conditional covariance matrices along with the principal axes, while the mutual
covariance matrix is depicted in gray. Left: original data. Center: data distribution after
whitening. Right: after a final rotation the variance along the horizontal direction is
maximal for the green class, while it is minimal for the blue class and vice versa along
the vertical direction.
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Fig. 7. Schematic illustration of the model selection. The solid line represents the
empirical error, the dashed line the expected error. With higher complexity, the ability
of the model to overfit the sample data increases, visible from a low empirical and an
increasing expected error. The task of model selection is to determine the model with
the smallest generalization error.

A solution to (3.19) is typically derived in two steps: first the data
are whitened with respect to the mutual covariance matrix 3; + 35;
secondly a terminal rotation aligns the principal axes with the
coordinate axes (see Fig. 6). However, the interpretation of the filter
matrix W is two-fold, the rows of W are the spatial filters, whereas the
columns of W can be seen as the common spatial patterns, i.e., the
time-invariant coupling coefficients of each source with the different
sensors. For a detailed discussion on the relation between spatial
patterns and spatial filters see Blankertz et al. (2011).

Originally the CSP algorithm was conceived for discriminating
between two classes, but has also been extended to multi-class
problems (Dornhege et al., 2004; Grosse-Wentrup and Buss, 2008).
Further extension of CSP were proposed in Lemm et al. (2005);
Dornhege et al. (2006); Tomioka and Miiller (2010); Farquhar (2009);
and Li and Guan (2006) with the goal of simultaneously optimizing
discriminative spatial and spectral filters. For a comprehensive
overview of optimizing spatial filters we refer to Blankertz et al.
(2008).

Cross-validation and model selection

Given the data sample, the task of the model selection is to choose
a statistical model from a set of potential models (the function class),
which may have produced the data with maximum likelihood, i.e., to
choose the model which resembles the underlying functional
relationship best. The set of potential models is in general not
restricted, although in practice limitations are imposed by the
preselection of a model class by the scientists. A typical setting may,
for example, comprise models from distinct classes, such as linear and
non-linear models; but may also solely consist of non-linear models
that differ in the employed kernel function which needs to be
selected. On the other hand, model selection is also frequently used to
determine the optimal value of model hyperparameters.’ However, in
all these cases the general task remains the same: the expected out-
of-sample performance of the different models needs to be evaluated
on the common basis of the given data sample.

As discussed previously, complex models can potentially better
adapt to details of the data. On the other hand an excessively complex
model will tend to overfit, i.e., will rather fit to the noise than to the
underlying functional relationship. Accordingly, its out-of-sample
performance is deteriorated, while it perfectly performs in-sample
(see Fig. 7 for an illustration). Note that overfitting not only occurs
when a model has too many degrees of freedom, in relation to the
amount of data available. Also simple models tend to overfit, if the
influence of outliers is not treated appropriately (see Fig. 3). However,

3 This might simultaneously be the regularization strength C of a SVM and kernel
width o of say a Gaussian kernel.
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in any case the training error does not provide an unbiased estimate of
the model performance and hence cannot be used to select the best
model.

At this point we would like to stress, that an unbiased estimation of
the model performance is one of the most fundamental issues in
statistical data analysis, as it provides the answer to: how well did the
model generalize and hence how accurately it will perform in practice
on new previously unseen data? In terms of machine learning this
capability of a model is quantified by the generalization error or
expected risk (cf. Eq. (2.3)), which applies likewise to a regression or
classification model. So model selection in essence reduces to reliably
estimating the ability of a model to generalize well to new unseen data
and to pick the model with the smallest expected error (see Fig. 7).

Estimation of the generalization error

In order to present a universally applicable conceptual framework
for estimating the generalization error, let D = {(x1,¥1), ..., (X0, Yn)}
represents the original sample set of n labeled instances. Moreover, let
f('|D) be the model that has been learned on the sample set and
correspondingly f (x| D) denotes the model prediction at the instance x.
Suppose further that the error of the model at an instance (x,y) from the
sample space is measured by a given loss function err = I(y,f (x| D)),
e.g., by the mean squared error, or the 0/1-loss as it is commonly used for
classification. Based on this notation, we will introduce the prevalent
concepts for assessing the generalization error of a statistical model
given a sample set D. What all of the following concepts have in
common is that they are based on a holdout strategy.

A holdout strategy generally splits the sample set in two indepen-
dent, complementary subsets. One subset, commonly referred to as
training set, is solely used for fitting the model, i.e., to estimate the model
parameters, such as, the normal vector of the separating hyperplane of
an SVM. In contrast, the second subset is exclusively used for the
purpose of validating the estimated model on an independent data set
and is therefore termed validation set. Formally, let D,CD denote the
holdout validation set of size n,, and define D; = D\D, as the
complementary sample set for training. The estimated validation error
is defined as

e, = = ¥ Iy, f(x /D).

v IiED,

(4.20)

Note, the learned model as well as the accuracy of the estimated
generalization error depends on the particularly chosen partition of
the original sample into training and validation set and especially on
the size of these sets. For example, the more instances we leave for
validation, the less samples remain for training and hence the model
becomes less accurate. Consequently, a bias is introduced to the
estimated model error. On the contrary, using fewer instances for
validating the model will increase the variance of the estimated model
error.

Cross-validation

To trade off between bias and variance several approaches have
been proposed. On the one hand side, there is a multitude of cross-
validation (CV) schemes, where the process of splitting the sample in
two is repeated several times using different partitions of the sample
data. Subsequently, the resulting validation errors are averaged across
the multiple rounds of CV. The miscellaneous CV schemes differ by the
way they split up the sample data. The most widely used method is
K-fold CV. Here, the sample data is randomly divided into K disjoint
subsets Dy, ...,Dx of approximately equal size. The model is then
trained K times, using all of the data subsamples except for one, which
is left out as validation set. In particular, in the Kth run Dy is selected as
validation set, while the union of the remaining K-1 subsamples, i.e.,
D\Dy serves as the training set. The K-fold CV-error is then the

averaged error of the K estimated models, where each model is
evaluated separately on its corresponding validation set

K
ey = 13 XUy, fox [ D\DY). (421)

k=1 i€ED,

Note that the cross-validation error is still a random number that
depends on the particular partition of the data into the K folds.
Therefore, it would be highly desirable to perform a complete K-fold CV
to estimate its mean and variance by averaging across all possible
partitions of the data into K folds. In practice this is computationally
intractable even for small samples. Nevertheless, repeating the K-fold
cross-validation several times can additionally reduce the variance of
the estimator at lower computational costs.

An alternative cross-validation scheme is the so-called leave-one-
out cross-validation (LOO-CV). As the name already indicates, LOO-CV
uses all but a single data point of the original sample for training the
model. The estimated model is then validated on the single
observation left out. This procedure is repeated, until each data
point once served as validation set. In particular, in the i-th run the
validation set corresponds to D; = (x;,Y;), while the model is trained
on the complement D\D;. The LOO-CV estimator is defined as the
averaged error

‘1 n
€00 = Eigl [y, f(%;| D\Dy)). (4.22)

Note that LOO-CV actually performs a complete n-fold CV. However,
since the model has to be trained n times, LOO-CV is computational
demanding. On the other hand, it leads to an almost unbiased estimate
of the generalization error, but at the expense of an increased variance of
the estimator. In general, cross-validation schemes provide a nearly
unbiased estimate of the generalization error, at the cost of significant
variability, particularly for discontinuous loss functions (Efron and
Tibshirani, 1997). In order to achieve a good compromise between bias
and variance the use of 10-fold or 5-fold CV are often recommended.

Bootstrapping

In case of discontinuous error functions bootstrap methods (Efron and
Tibshirani, 1993) may smooth over possible discontinuity. A bootstrap
sample b is created by sampling n instances with replacement from the
original sample D. The bootstrap sample b is then used for training,
while the set left out that is D\b serves as the validation set. Using a
sampling procedure with replacement, the expected size of the

n
validation set is n (1 — %) =~0.368n. Correspondingly, the training set,

which is of size n, has =~ 0.632n unique observations which lead to an
overestimation of the prediction error. The .632 bootstrap estimator
(Efron and Tibshirani, 1993) corrects for this, by adding the under-
estimated resubstitution error,

MMy = =3 0.632° X 10y, f(x;[b)) + 0.368" - 1(y,,£(x,|D)).
B*g izh i=1
(4.23)

However, the standard bootstrap estimate is an upwardly biased
estimator of the model accuracy. In particular, it can become overly
optimistic for excessively complex models that are capable of highly
overfitting the data.

In the context of a feature subset selection experiment for regression,
a comprehensive comparison of the different schemes for estimating the
generalization error has been conducted in Breiman and Spector (1992).
Among other schemes, they compared leave-one-out cross-validation,
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K-fold cross-validation for various K, stratified version of cross-
validation and bias corrected bootstrap on artificially generated data.
For the task of model selection they concluded ten-fold cross-validation
to outperform the other methods.

Practical hints for model evaluation
Models with hyperparameters

Many preprocessing and classification methods have one or more
hyperparameters that need to be adjusted to the data by means of
model selection. Examples are the kernel width of a Gaussian kernel,
the regularization parameter A of the regularized LDA, but also the
number of neighbors in a k-nearest neighbor approach, or the number
of principal components to be selected. According to the previously
introduced general concept of model selection, those hyperparameters
have to be selected by means of an unbiased estimate of the
generalization performance, i.e., have to be evaluated on a validation
set that is independent of data used for training. At this point we would
like to stress that the selection of any hyperparameter of a model, e.g.,
by means of CV is an integral part of training the overall method.
Hence, the cross-validation error that has been used for adjusting the
hyperparameter becomes a biased estimate of the overall model
performance, as it has been directly minimized by the model selection.
Consequently, to estimate the generalization error of the entire model
(including the hyperparameter selection) another independent data
set is required.

To emphasize the severeness of this issue, let us consider the
following illustrative example. Given a fixed data set the classification
performance of linear discriminant analysis (without hyperpara-
meters) needs to be compared with the performance of an SVM with
a Gaussian kernel. Cross-validation is performed for LDA and also for
an SVM using a Gaussian kernel for various combinations of the
hyperparameters, i.e., the kernel width and the regularization
parameter. One can expect the SVM to yield better results than LDA
for some combinations, while it will perform worse for others.
However, just on the basis of these CV-errors of the various models
we cannot conclude that a SVM with optimally selected hyperpara-
meters will outperform LDA. Obviously, as it has been minimized by
the model selection procedure, the CV-error of the selected SVM is too
optimistic about the model performance. Remember that the CV-error
is a random number that exhibits a certain degree of variability.
Accordingly, repeated sampling from the distribution of the CV error
will favor models with a larger set of parameter combinations (here,
the SVM model). In principle, the smaller CV error for some parameter
combinations of the SVM could just be a lucky coincidence induced by
repeatedly evaluating the SVM model. The severeness of biasing the
results depends on several factors, e.g., the leverage on the model
complexity that is governed by the parameters, the dimensionality of
the features, and the employed selection scheme.

Nested cross-validation

In order to obtain an unbiased estimate of the generalization
performance of the complete model (including selection of the
hyperparameter), an additional data set is required which is indepen-
dent from both, the training and the validation data. To this end, a nested
cross-validation scheme is most appropriate. Algorithmically, it can be
described as two nested loops of cross-validation. In the inner loop, the
hyperparameter as part of the model has to be selected according to
inner CV error, while in the outer loop, the selected models are
evaluated with respect to their generalization ability on an independent
validation set. The outer loop CV-error is similar to (4.21)

ZK: > l(.yiafCV (Xi \DV())

k=1 i€D;

S

errqy = (5.24)

Here, Dy denotes the k™ validation set of the outer CV-loop, while
we use the short hand notation D'¥ for the corresponding outer loop
training set D\ D,.. However, the main difference in the above equation
compared to the ordinary K-fold CV is that the model fcy g | D) refers
to the model that has been selected via the inner K-fold CV over the
data set D\¥, i.e.,

fcv('|D\k) C = arg;nin i ) l(J/iyf(Xi\D\’<\D}"))7

€F1=1 ieD)"

(5.25)

with 7 denoting the set of models corresponding to different values
of the hyperparameter and D,\k denoting the I' validation set of the
inner CV loop. In order to distinguish more easily between the
different layers of cross-validation, one often refers to the holdout set
Dy, of the outer loop as test sets. Note, in each run of the outer CV loop
the model fey (| D'¥) and hence the hyperparameter that is selected
can be different. Consequently, nested CV will provide a probability
distribution on how often a hyperparameter had been selected by the
model selection scheme rather than a particular value. On the other
hand nested CV gives an unbiased estimate of the generalization
performance of the complete model (including selection of the
hyperparameters).

Revisiting the introductory example, nested CV allows for a fair
comparison of the LDA model and the non-linear SVM in combination
with the specific model selection scheme for tuning the hyperparameter.

Cross-validation for dependent data

Another practical issue in estimating the generalization error of a
model is the validity of the assumption about the independence of the
training and the validation data. Obviously, if all instances are
distributed independently and identically then arbitrary splits into
training and validation set will yield stochastically independent
samples and the prerequisite is trivially fulfilled. However, often the
experimental design induces dependencies between samples. In such
a case, special care is required when splitting the sample in order to
ensure the aforementioned independence assumption.

For example, a frequently used paradigm in human brain research
divides the course of an experiment into blocks of different experimen-
tal conditions. We say that an experiment has a block design, if each
block comprises several single-trials all belonging to the same condition,
see Fig. 8-a.

In such a setting, special care has to be taken in validating the
classification of single-trials according to the experimental conditions.
Typically, samples within such a block are likely to be stochastically
dependent, while stochastic independence can be generally assumed
for samples belonging to different blocks. To illustrate this, let us

block #1 block #2 block #3 block #4 block #5 block #6 block #7
cond #1 cond #2 cond #1  cond #2 cond #1 cond #2  cond #1
Training set
L] | —a
Test set

Fig. 8. Schema of a block design experiment. (a) Alternation between the two
conditions that are to be discriminated is on a longer time scale, compared to shorter
segments for which classification is evaluated. This setting requires special treatment
for validation. (b) Applying cross validation on the epochs violates the assumption that
samples in the training set are independent from the ones in the test set. Due to slowly
changing nonstationarities in the brain signals, a trial in the test set is very likely to be
classified correctly, if trials from the same block are in the training set.
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consider a neuroimaging recording. Here, typically many slowly
varying processes of background activity exist, and hence neighboring
trials within a single block are dependent with respect to the
information they share about the state of these slow cortical processes.
Consequently, applying simple holdout strategies as they are conven-
tionally employed by generic LOO or K-fold CV to block design data will
most likely violate the assumption of independence between the
training and validation data, see Fig. 8-b.

Consequently, the application of a standard CV scheme to block-
wise data may result in a severe underestimation of the generalization
performance. For this reason, we will formally introduce cross-
validation schemes that are tailored to the particular needs of block-
wise data.

Block cross-validation

As indicated, data within a single block are likely to be
stochastically dependent, while stochastic independence can be
assumed for data across blocks. Consequently, the simplest form
of a cross-validation scheme for block-wise data employs a leave-one-
block-out cross-validation. As with LOO-CV, a single block is left out
for validation and the model is trained on the remaining data.
For most of the experimental paradigms such a CV scheme will be
appropriate.

However, in order to introduce a more general block-wise CV
method, we will assume that for some pre-defined constant hEN the
covariance matrices Cov((X;, i), (Xi + j,¥i + j)) (measured in a suit-
able norm) are of negligible magnitude for all [j|>h. That is, samples
that are further apart than h samples are assumed to be at least
uncorrelated. A so-called h-block cross-validation scheme is a
modification of the LOO-CV scheme. Similar to LOO-CV it uses each
instance (X;,y;) once as a validation set, but unlike LOO-CV it leaves an
h-block (of size 2h + 1) of the neighboring h samples from each side of
the ith sample out of the training set. Following the notation in Racine
(2000), we denote the h-block by (xm) .Yii:ny)» thus the training set of
the ith iteration corresponds to D(_ip : = D\(Xjn), V(i) The
generalization error of the model is hence obtained by the cross
validation function

n
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(5.26)

Although the latter policy resolves the problem of dependencies,
it still has one major drawback. As it was shown in Shao (1993) for the
particular choice of the mean squared error as loss function, due
to the small size of the validation sets the h-block cross-validation is
inconsistent for the important model class of linear functions.
This means, even asymptotically (i.e., for n— ) h-block cross-
validation does not reliably select the true model f from a class of
linear models.

As worked out in Racine (2000), a way out of this pitfall is a
technique called hv-cross validation. Heuristically spoken, hv-cross
validation enlarges the validation sets sufficiently. To this end, for a
“sufficiently large” v each validation set is expanded by v additional
observations from either side, yielding D; = (X;.,,i.v). Hence, each
validation set D; is of size n, = 2v + 1. Moreover, in order to take care
of the dependencies, h observations on either side of (X., i) are
additionally removed to form the training data. Hence, the training
data of the ith iteration is D_in + v)) : = D\(Xii:h + v)»Y(isth + v)))-
Now, the cross-validation function

n—v
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is an appropriate measure of the generalization error. For asymptotic
consistency it is necessary that lim, _, «n,/n=1, thus choosing v such

that v=(n—n®—2h—1)/2 for a constant 0<6<1 is sufficient to
achieve consistency (Shao, 1993).

Caveats in applying cross-validation

Preprocessing the data prior to the application of cross-validation
also requires particular care to avoid biasing the generalization error
of the model. Here, in order to adhere to the independence
assumption of training and validation set, any parameters of the
preprocessing needs to be estimated solely on the training set and
not on the test set. This holds likewise for the estimation of principle
and independent component analysis, but also for simpler pre-
processing strategies, such as normalization of the data. If cross-
validation is used, the parameters of the preprocessing has to be
estimated within the cross-validation loop on each training set
separately. Subsequently, the corresponding test and validation data
can be preprocessed according to those parameters. In order to
achieve a stringently sound validation, it is for example inappropri-
ate to first perform ICA on the entire data, then select favorable
components and extract features from these components as input to
a classifier, and finally evaluate the classifiers' performance by
means of cross-validation. Although the bias induced by unsuper-
vised preprocessing techniques is usually rather small, it can result
in an improper model selection and overoptimistic results. In
contrast, strong overfitting may occur, if a preprocessing method
which uses class label information (e.g., CSP) is performed on the
whole data set.

Model evaluation allowing for feature selection

Feature selection is widely used in order to decrease the
dimensionality of the feature vectors and thus to facilitate classifi-
cation. Typically, feature selection methods are supervised, i.e., they
exploit the label information of the data. A simple strategy is, e.g., to
select those features that have a large separability index, e.g., a high
Fisher score (Miiller et al., 2004). A more sophisticated strategy is to
use classifiers for feature selection, as, e.g., in Miiller et al. (2004); Lal
et al. (2004); Blankertz et al. (2006a); and Tomioka and Miiller
(2010). For the same reasons as laid out in the section Caveats in
applying cross-validation it is vital for a sound validation that such
feature selection methods are not performed on the whole data.
Again, cross-validation has to be used to evaluate the overall model,
i.e., in combination with the particular feature selection scheme,
rather than just cross validating the final classifier. More specifically,
the feature extraction has to be reiterated for each training set within
the CV loop.

Model evaluation allowing for outlier rejection

It requires a prudent approach to fairly evaluate the performance of
models which employ outlier rejection schemes. While the rejection of
outliers from the training data set is unproblematic, their exclusion
from the test set is rather not. Here, two issues have to be considered.
(1) The rejection criterion is not allowed to rely on label information, as
this is not available for test data. Moreover, all parameters (such as
thresholds) have to be estimated on the training data. (2) The measure
for evaluation has to take into account the rejection of trials. Obviously,
the rejection of test samples in a classification task means a reduced
amount of information compared to a method that obtains the same
classification accuracy on all test samples. See Ferrez and Millan (2005)
for an example of an adjusted performance measure based on
Shannon's information theory that was used to evaluate the perfor-
mance of a detector of error-related brain response.

An outlier rejection method may implicitly use label information
(e.g., when using class-conditional Mahalanobis distances), however,
only training data is allowed to be used for the determination of any
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parameter of such a method, as in the estimation of the covariance
matrix for the Mahalanobis distance.

Loss functions allowing for unbalanced classes

The classification performance is always evaluated by some loss
function, see the section Estimation of the generalization
error. Typical examples are the 0/1-loss (i.e., average number of
misclassified samples) and the area under the receiver operator
characteristic (ROC) curve (Fawcett, 2006). When using misclassifi-
cation rate, it must be assured that the classes have approximately
the same number of samples. Otherwise, the employed performance
measure has to consider the different class prior probabilities.
For instance, in oddball paradigms the task is to discriminate
brain responses to an attended rare stimulus from responses to a
frequent stimulus. A typical ratio of frequent-to-rare stimuli is
85:15. In such a setting, an uninformative classifier which
always predicts the majority class would obtain an accuracy of 85%.
Accordingly, a different loss function needs to be employed. Denoting
the number of samples in class i by n;, the normalized error can be
calculated as weighted average, where errors committed on samples
of class i are weighted by N/n; with N = >, n;.

Regarding nonstationarities

It is worth to note that any cross-validation scheme implicitly
relies on the assumption that the samples are identically distributed.
In the context of neurophysiological data this is intimately connected
with the assumption of stationarity. Unfortunately, nonstationarities
are ubiquitous in neuroimaging data (e.g. Shenoy et al, 2006).
Accordingly, the characteristics of brain signals and, in particular, the
feature distributions often change slowly with time. Therefore, a
model fitted to data from the beginning of an experiment may not
generalize well on data towards the end of the experiment. This
detrimental effect is obscured, when estimating the generalization
performance by cross validation, since training samples are drawn
from the full time course of the experiment. Accordingly, the classifier
is, so to speak, prepared for the nonstationarities. In order to test for
such non-stationary effects, it is advisable to compare the results of
cross-validation with a so called chronological validation, in which the
(chronologically) first half of the data is used for training and the
second half for testing. If the data comprises nonstationarities, which
have a substantial effect on the classification performance, then the
chronological validation would yield significantly worse results than
CV. Such indications may imply that the method will also suffer from
nonstationarity during online operation. In general, one can alleviate
the effect of nonstationarity by (a) constructing invariant features
(e.g. Blankertz et al., 2008), (b) tracking nonstationarity (e.g. Schlogl
et al., 2010; Vidaurre and Blankertz, 2010; Vidaurre et al., 2011), (c)
modeling nonstationarity and adapting CV schemes (Sugiyama et
al., 2007), or by (d) projecting to stationary subspaces (von Biinau
et al.,, 2009).

Table 1

Conclusion

Decoding brain states is a difficult data analytic endeavor, e.g., due
to the unfavorable signal to noise ratio, the vast dimensionality of the
data, the high trial-to-trial variability etc. In the past, machine
learning and pattern recognition have provided significant contribu-
tions to alleviate these issues and thus have had their share in many of
the recent exciting developments in the neurosciences. In this work,
we have introduced some of the most common algorithmic concepts,
first from a theoretical viewpoint and then from a practical
neuroscience data analyst's perspective. Our main original contribu-
tion in this review is a clear account for the typical pitfalls for the
application of machine learning techniques, see Table 1.

Due to space constraints, the level of mathematical sophistication
and the number of algorithms described are limited. However, a
detailed account was given for the problems of hyper-parameter
choice and model selection, where a proper cross-validation proce-
dure is essential for obtaining realistic results that maintain their
validity out-of-sample. Moreover, it should be highly emphasized that
the proper inclusion of physiological a-priori knowledge is helpful as
it can provide the learning machines with representations that are
more useful for prediction than if operating on raw data itself. We
consider such a close interdisciplinary interaction between paradigm
and computational model as essential.

We would like to end by adding the remark that an unforeseen
progress in algorithmic development has been caused by the
availability of high quality data with a clear task description. This
has allowed a number of interested scientists from the fields of signal
processing and machine learning to develop new methods and to
study experimental data even without having access to expensive
measurement technology (Sajda et al., 2003; Blankertz et al., 2004;
Blankertz et al., 2006b). The authors express their hope that this
development will also extend beyond EEG data.
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Hall of pitfalls. The table presents a (incomplete) list of the most prominent sources of error that one needs to take into consideration, when applying machine learning methods to

brain imaging data.

Potential pitfall

See (section)

Preprocessing the data based on global statistics of the entire data (e.g., normalization using the global mean and variance) Caveats in applying cross-validation

Global rejection of artifacts or outliers prior to the analysis (resulting in a simplified test set)
Global extraction or selection of features (illegitimate use of information about the test data)
Simultaneously selecting model parameters and estimating the model performance by cross validation on the same data

(yielding a too optimistic estimate of the generalization error)
Insufficient model evaluation for paradigms with block design
Neglecting unbalanced class frequencies
Disregarding effects of non-stationarity

Model evaluation allowing for outlier rejection
Model evaluation allowing for feature selection
Models with hyperparameters

Cross-validation for dependent data
Loss functions allowing for unbalanced classes
Regarding nonstationarities
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