
A Streaming Narrow-Band Algorithm:
Interactive Computation and Visualization

of Level Sets
Aaron E. Lefohn, Student Member, IEEE, Joe M. Kniss, Student Member, IEEE,

Charles D. Hansen, Member, IEEE, and Ross T. Whitaker, Member, IEEE

Abstract—Deformable isosurfaces, implemented with level-set methods, have demonstrated a great potential in visualization and

computer graphics for applications such as segmentation, surface processing, and physically-based modeling. Their usefulness has

been limited, however, by their high computational cost and reliance on significant parameter tuning. This paper presents a solution to

these challenges by describing graphics processor (GPU) based algorithms for solving and visualizing level-set solutions at interactive

rates. The proposed solution is based on a new, streaming implementation of the narrow-band algorithm. The new algorithm packs the

level-set isosurface data into 2D texture memory via a multidimensional virtual memory system. As the level set moves, this texture-

based representation is dynamically updated via a novel GPU-to-CPU message passing scheme. By integrating the level-set solver

with a real-time volume renderer, a user can visualize and intuitively steer the level-set surface as it evolves. We demonstrate the

capabilities of this technology for interactive volume segmentation and visualization.

Index Terms—Deformable models, image segmentation, volume visualization, GPU, level sets, streaming computation, virtual

memory.

�

1 INTRODUCTION

LEVEL-SET methods [1] rely on partial differential equa-
tions (PDEs) to model deforming isosurfaces. These

methods have applications in a wide range of fields such as
visualization, scientific computing, computer graphics, and
computer vision [2], [3]. Applications in visualization
include volume segmentation [4], surface processing [5],
and surface reconstruction [6].

The use of level sets in visualization can be problematic.
Level sets are relatively slow to compute and they typically
introduce several free parameters that control the surface
deformation and the quality of the results. Setting these free
parameters can be difficult because, inmany scenarios, a user
must wait minutes or hours to observe the results of a
parameter change. Although efforts have been made to take
advantage of the sparse nature of the computation, the most
highly optimized solvers are still far from interactive. This
paper proposes a solution to the above problems bymapping
the level-set PDE solver to a commodity graphics processor.

While the proposed technology has a wide range of uses
within visualization and elsewhere, this paper focuses on a
particular application: the analysis and visualization of
volume data. By accelerating the PDE solver to interactive
rates and coupling it to a real-time volume renderer, it is
possible to visualize and steer the computation of a level-set
surface as it moves toward interesting regions within a
volume. The volume renderer provides visual context for

the evolving level set due to the global nature of the transfer
function’s opacity and color assignment. Also, the results of
a level-set segmentation can specify a region-of-interest for
the volume renderer [7].

The main contributions of this paper are:

. An integrated system demonstrating that level-set
computations can be intuitively controlled by cou-
pling a real-time volume renderer with an inter-
active solver.

. A GPU-based 3D level-set solver that is approxi-
mately 15 times faster than previous optimized
solutions.

. A multidimensional virtual memory scheme for
GPU texture memory that supports computation
on time-dependent, sparse data.

. Real-time volume rendering directly from a packed,
2D texture format. The technique also enables
volume rendering from a data set represented as a
single set of 2D slices.

. A message passing scheme between the GPU and
CPU that uses automatic mipmap generation to
create compact, encoded messages.

. Efficient computation of a volumetric distance trans-
form on the GPU.

2 BACKGROUND AND RELATED WORK

2.1 Level Sets

This paper describes a new solver for an implicit repre-
sentation of deformable surface models called the method
of level sets [1]. The use of level sets has been widely
documented in the visualization literature and several
works give comprehensive reviews of the method and the

422 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 4, JULY/AUGUST 2004

. The authors are with the School of Computing, 50 S. Central Campus
Drive, Rm 3190 MEB, University of Utah, Salt Lake City, UT 84112.
E-mail: {lefohnae, jmk, hansen, whitaker}@cs.utah.edu.

Manuscript received 2 Oct. 2003; revised 12 Nov. 2003; accepted 18 Nov.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCGSI-01-102003.

1077-2626/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

associated numerical techniques [2], [3]. Here, we merely
review the notation and describe the particular formulation
that is relevant to this paper.

An implicit model represents a surface as the set of points
S ¼ f�xxj�ð�xxÞ ¼ 0g,where� : IR3 7!IR. Level-setmethods relate
the motion of that surface to a PDE on the volume, i.e.,

@�=@t ¼ �r� � �vv; ð1Þ

where �vv describes the motion of the surface. Note that �vv can
vary in both space and time. Within this framework one can
implement a wide range of deformations by defining an
appropriate �vv. This velocity term is often a combination of
several other terms, including data-dependent terms,
geometric terms (e.g., curvature), and others. In many
applications, these velocities introduce free parameters and
the proper tuning of those parameters is critical to making
the level-set model behave in a desirable manner.
Equation (1) is the general form of the level-set equation,
which can be tuned for a wide variety of problems and
which motivates the architecture of our solver.

The proposed solver addresses the issues surrounding
the solutions of (1). For this paper, however, we restrict the
discussion on the particular form of this equation that is
suitable for the segmentation application described in
Secttion 6.1. This special case of (1) occurs when
�vv ¼ Gð�xx; �ttÞ�nn, where �nn is the surface normal and G is a
scalar field, which we refer to as the speed of the level set. In
this case, (1) becomes

@�=@t ¼ �jr�jG: ð2Þ

Equation (2) describes a surface motion in the direction of
the surface normal and, thus, the volume enclosed by the
surface expands or contracts, depending on the sign and
magnitude of G.

Another important special case occurs when G, in (2), is
the mean curvature of the level-set surface. The mean
curvature of the level sets of � are expressed as

H ¼ 1

2
r � r�jr�j : ð3Þ

In volume segmentation and surface reconstruction, this
mean curvature term is typically combined with an
application-specific data term in order to obtain a smooth
result that reflects interesting properties in the data.

There is a special case of (1) in which the surface motion is
strictly inward or outward. In such cases, the PDE can be
solved somewhat efficiently using the fast marchingmethod [3]
and variations thereof [8]. However, this case covers only a
very small subset of interesting speed functions. In general,
we are concerned with solutions that allow the model to
expand and contract as well as include a curvature term.

Efficient algorithms for solving the more general equa-
tion rely on the observation that, at any one time step, the
only parts of the solution that are important are those
adjacent to the moving surface (near points where � ¼ 0).
This observation places level-set solvers as part of a larger
class of solvers that efficiently operate on time-dependent,
sparse computational domains—i.e., a subset of the original
problem domain (Fig. 2).

Two of the most common CPU-based level-set solver
techniques are the narrow-band [9] and sparse-field [6], [10]
methods. Both approaches limit the computation to a
narrow region near the isosurface yet store the complete
computational domain in memory. The narrow-band
approach implements the initialization and update steps
in Fig. 2 (Steps 1 and 3) by updating the embedding, �, on a
band of 10-20 pixels around the model, using a signed
distance transform implemented with the fast marching
method [3]. The band is reinitialized whenever the model
(defined as a particular level set) approaches the edge. In
contrast, the sparse-field method only traverses the com-
plete domain during the initialization step of the algorithm
in Fig. 2. The sparse-field approach keeps a linked list of
active data elements. The list is incrementally updated via a
distance transform after each iteration. Even with this very
narrow band of computation, update rates using conven-
tional processors on typical resolutions (e.g., 2563 voxels)
are not interactive. This is the motivation behind our GPU-
based solver. Although the new solver borrows ideas from
both the narrow-band and sparse-field algorithms, it
implements a new solution that conforms to the architec-
tural restrictions of GPUs.

2.2 Scientific Computation on Graphics Processors

Graphics processing units have been developed primarily
for the computer gaming industry, but, over the last several
years, researchers have come to recognize them as a low-

LEFOHN ET AL.: A STREAMING NARROW-BAND ALGORITHM: INTERACTIVE COMPUTATION AND VISUALIZATION OF LEVEL SETS 423

Fig. 1. Interactive level-set segmentation of a brain tumor from a 256�
256� 198 MRI with volume rendering to give context to the segmented
surface. A clipping plane shows the user the sourve data, the volume
rendering, and the segmentation simultaneously. The segmentation and
volume rendering parameters are set by the user probing data values on
the clipping plane.

Fig. 2. The three fundamental steps in a sparse-grid solver. Step 1

initializes the sparse computational domain. Step 2 executes the

computational kernel on each element in the domain. Step 3 updates

the domain if necessary. Steps 2 and 3 are repeated for each solver

iteration.

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

cost, high-performance computing platform. Two impor-
tant trends in GPU development, increased programmabi-
lity and higher precision arithmetic processing, have helped
to foster new nongaming applications.

Formanydata-parallel computations, graphics processors
outperform central processing units (CPUs) by more than an
order of magnitude because of their streaming architecture
[11] and dedicated high-speed memory. In the streaming
model of computation, arrays of input data are processed
identically by the same computation kernel to produce output
data streams. In contrast to vector architectures, the compu-
tation kernel in a streaming architecturemay consist of many
(possibly thousands) of instructions and use temporary
registers to hold intermediate values. The GPU takes
advantage of the data-level parallelism inherent in the
streaming model by having many identical processing units
execute the computation in parallel.

Currently GPUs must be programmed via graphics APIs
such as OpenGL or DirectX. Therefore, all computations
must be cast in terms of computer graphics primitives such
as vertices, textures, texture coordinates, etc. Fig. 3 depicts
the computation pipeline of a typical GPU. Vertices and
texture coordinates are first processed by the vertex
processor. The rasterizer then interpolates across the
primitives defined by the vertices and generates fragments
(i.e., pixels). The fragment processor applies textures and/
or performs computations that determine the final pixel
value. A render pass is a set of data passing completely
through this pipeline. It can also be thought of as the
complete processing of a stream by a given kernel (i.e., a
ForEach call).

Grid-based computations are solved by first transferring
the initial data into texture memory. The GPU performs the
computation by rendering graphics primitives that access
this texture. In the simplest case, a computation is
performed on all elements of a 2D texture by drawing a
quadrilateral that covers the same number of grid points
(pixels) as the texture. Memory addresses that identify each
fragment’s data value as well as the location of its neighbors
are given as texture coordinates. A fragment program (the
kernel) then uses these addresses to read data from texture
memory, perform the computation, and write the result
back to texture memory. A 3D grid is processed as a
sequence of 2D slices. This computation model has been
used by a number of researchers to map a wide variety of
computationally demanding problems to GPUs. Examples
include matrix multiplication, finite element methods,
multigrid solvers, and others [12], [13], [14]. All of these
examples demonstrate a homogeneous sequence of opera-
tions over a densely populated grid structure.

Rumpf and Strzodka [15] were the first to show that the
level-set equations could be solved using a graphics
processor. Their solver implements the two-dimensional
level-set method using a time-invariant speed function for
flood-fill-like image segmentation, without the associated
curvature. Lefohn and Whitaker demonstrate a full three
dimensional level-set solver, with curvature, running on a
graphics processor [16]. Neither of these approaches,
however, takes advantage of the sparse nature of level-set
PDEs and, therefore, they perform only marginally better
(e.g., twice as fast) than sparse or narrow band CPU
implementations.

This paper presents a GPU computational model that
supports time-dependent, sparse grid problems. These pro-
blems are difficult to solve efficiently with GPUs for two
reasons. The first is that, in order to take advantage of the
GPU’s parallelism, the streams being processed must be
large, contiguous blocks of data, and, thus, grid points near
the level-set surface model must be packed into a small
number of textures. The second difficulty is that the level set
moves with each time step and, thus, the packed repre-
sentation must readily adapt to the changing position of the
model. This requirement is in contrast to the recent sparse
matrix solvers [17], [18] and previous work on rendering
with compressed data [19], [20]. Recent work by Sherbondy
et al. [21] describes an alternative time-dependent, sparse
GPU computation model which is discussed in Section 6.3.

2.3 Hardware-Accelerated Volume Rendering

Volume rendering is a flexible and efficient technique for
creating images from 3D data [22], [23], [24]. With the
advent of dedicated hardware for rasterization and textur-
ing, interactive volume rendering has become one of the
most widely used techniques for visualizing moderately
sized 3D rectilinear data [25], [26]. In recent years, graphics
hardware has become more programmable, permitting
rendering features with an image quality that rival
sophisticated software techniques [27], [28]. In this paper,
we describe a novel volume rendering system that
leverages programmable graphics hardware to render the
packed level-set solution data.

3 A VIRTUAL MEMORY ADDRESS SCHEME FOR

SPARSE COMPUTATION

The limited computational capabilities of modern GPUs,
their data-parallel streaming architecture, and our goal of
interactive performance impose some important design
restrictions on the proposed solver. For instance, the data-
parallel computation model requires homogeneous operations
on the entire computational domain and memory con-
straints require us to process and store only the active
domain on the computational processor (i.e., the GPU).
Furthermore, GPUs do not support scatter write operations
and the communication bandwidth between the GPU and
CPU is insufficient to allow transmission of any significant
portion of the computational domain. Our new streaming,
narrow-band level-set solver works efficiently within these
restrictions and leverages GPU capabilities by packing the
active computational domain into 2D texture memory. The
GPU solves the 3D, level-set PDE directly on this packed
format and quickly updates the packed representation after
each solver iteration.

424 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 4, JULY/AUGUST 2004

Fig. 3. The modern graphics processor pipeline.

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

Remapping the computational domain (a subset of a

volume) to take advantage of the GPU’s capabilities has the

unfortunate effect of making the computational kernels

extremely complicated—that is, difficult to design, debug,

and modify. The kernel programmer must take the physical

memory layout into consideration each time the kernel

addresses memory. Other researchers have successfully

remapped computational domains to efficiently leverage

the GPU’s capabilities [12], [17], [18], [29], but they

invariably describe these complex kernels in terms of the

physical memory layout. This section presents a solution to

this problem for level-set computation that allows kernels to

access memory as if it were stored in the original,

3D domain—irrespective of the 2D physical layout used

on the GPU. Our solution is an extension to the virtual

memory systems used in modern operating systems.

3.1 Traditional Virtual Memory Overview

Nearly all modern operating systems contain a virtual

memory system [30]. The purpose of virtual memory is to

give the programmer the illusion that the application has

access to a contiguous memory address space while

allowing the operating system to allocate memory for each

process on demand, in manageable increments, from

whatever physical resources happen to be available. Note

that there are two meanings of virtual memory. The first is

the mapping from a logical address space to a physical

address space. The second is the mechanism for mapping

logical memory onto a physical memory hierarchy (e.g.,

main memory, disk, etc.). For this discussion, virtual

memory only refers to the former definition.
Virtual memory works by adding a level of indirection

between physical memory and the memory accessed by an

application. Most conventional virtual memory systems

divide physical and virtual memory into equally sized

pages. The data addressed by an application’s contiguous

virtual address space will often be stored in many,

disconnected physical memory pages. A page table tracks

the mapping from virtual to physical memory pages. When

an application requests memory, the system allocates

physical memory pages and updates the page table. Note

that the virtual and physical pages are identically sized.
When an application accesses memory via a virtual

address, the system must first perform a virtual-to-physical
address translation. The virtual address, VA, is first
converted to a virtual page number, VPN. The system uses
the page table to convert the VPN to a physical page
address, PPA. The PPA is the physical address of the first
element in a page. Finally, the memory system obtains the
physical address, PA, by adding the PPA to the offset, OFF.
The OFF is the linear distance between the virtual address
and the beginning of the virtual page which contains it. The
address computation is

VPN VA
S½P�

PPA PageTableðVPNÞ
OFF mod ðVA; S½P�Þ
PA PPAþOFF;

ð4Þ

where S[P] is the size of a memory page.

3.2 Multidimensional Virtual Memory for GPUs

The virtual memory system used in our solver is a
multidimensional extension of the traditional virtual mem-
ory system described in Section 3.1.

Traditional virtual memory systems use one-dimen-
sional virtual and physical address spaces. Our system
uses a 3D virtual and a 2D physical memory address space.
We use a 3D virtual memory space because the level-set
computation is inherently volumetric. The 2D physical
memory address space is motivated by the fact that GPUs
are optimized to process 2D memory regions. By using a 2D
physical address space, we are able to process the entire
active volumetric domain simultaneously. This maximizes
the benefit of the parallel, SIMD architecture of the GPU.
We also make the simplifying assumption that virtual and
physical pages are identical in dimension and size. Thus,
the virtual space is not partitioned equally in all axes:
2D pages must be stacked in 3D to populate the problem
domain as seen in Fig. 4. Our system uses pages of size
S½P� ¼ ð16; 16Þ. This size represents a good compromise
between a tight fit to the narrow computational domain and
the overhead of managing and computing pages. Empirical
results validate this choice.

We now introduce notation for the various address
spaces in our system. We notate the space of K-length
vectors of integers as ZZK . The set of all voxels in the
3D virtual address space (i.e., the problem domain) is
defined as V � ZZ3. Each of the virtual memory pages is a
set of contiguous voxels in V; the space of all virtual pages
is VP (Fig. 4). Similarly, the physical address space, G � ZZ2;
is subdivided into pages to form the physical page space,
GP. The elements within a virtual or physical page are
addressed identically using elements of P � ZZ2. We also
define a size operator for the 2D and 3D spaces described
above. For X in fV;VP;G;GP;Pg, we define S½X� to be a
2-vector or 3-vector (according to the dimension of X)
giving the number of elements along each axis of the space
X. Note that S½VP� ¼ S½V�=S½P� and S½GP� ¼ S½G�=S½P�
(using componentwise division).

Virtual-to-physical address translation in a multidimen-
sional virtual memory system works analogously to the

LEFOHN ET AL.: A STREAMING NARROW-BAND ALGORITHM: INTERACTIVE COMPUTATION AND VISUALIZATION OF LEVEL SETS 425

Fig. 4. The multidimensional virtual and physical memory spaces used in
our virtual memory system. The original problem space is V, the virtual
address space. The virtual page space, VP, is a subdivided version of V.
Virtual memory pages are mapped to the physical page space, GP, by
the page table. The inverse page table maps physical pages in GP to
virtual pages in VP. The collection of all elements in GP constitute G, the
physical memory of the hardware.

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

1D algorithm. Virtual addresses are now 3D position
vectors in V and physical addresses are 2D vectors in G.
The page table is a 3D table that returns 2D physical page
addresses. With these multidimensional definitions in
mind, (4) still applies to the vector-valued quantities. Fig. 5
shows an example multidimensional address translation.

For the level-set solver in this paper, the multidimen-
sional virtual memory system is implemented in part by the
CPU and in part by the GPU. The CPU manages the page
table, handles memory allocation/deallocation requests,
and translates VPNs to PPAs. The GPU issues memory
allocation/deallocation requests and computes physical
addresses. We further divide the GPU tasks between the
various processors on the GPU. The fragment processor
creates memory allocation/deallocation requests. The
address translation implementation uses the vertex proces-
sor and rasterizer to compute all PAs. Sections 3.3 and 3.4
describe the architectural and efficiency reasons for assign-
ing the various virtual memory tasks to specific processors.

3.3 Virtual-to-Physical Address Translation

This section explains the details of the virtual-to-physical
address scheme used in our GPU-based virtual memory
system. Because the translation algorithm is executed each
time the kernel accesses memory, its optimization is
fundamental to the success of our method.

The simplest and most general way to implement the
virtual-to-physical address translation for a GPU-based
virtual memory system is to directly implement the
computation in (4) and store the page table on the GPU as
a 3D texture. A significant benefit of this approach is that it
is completely general. Unfortunately, without dedicated
memory-management hardware to accelerate the transla-
tion, this scheme suffers from several efficiency problems.
First, the page table lookup means that a dependent texture
read is required for each memory access. A dependent
texture is defined as using the result of one texture lookup
to index into another. This may cause a significant loss in
performance on current GPUs. Second, storing the page
table on the GPU consumes limited texture memory. The
third problem is that a divide, modulus, and addition
operation are required for each memory access. This
consumes costly and limited fragment program instruc-
tions. Note that Section 3.4 discusses other problems with
storing the page table on the GPU related to the limited
capabilities of current GPU architectures.

We can avoid the memory and computational inefficien-
cies that arise from storing the page table on the GPU by
examining the pattern of virtual addresses required by the
application’s fragment program. In the case of our level-set

solver, the fragment programs only use virtual addresses
within a 3� 3� 3 neighborhood of each active data
element. This means that each active memory page will
only access adjacent virtual memory pages (Fig. 6). More-
over, we show that this simplified translation case makes it
possible to lift the entire address translation from the
fragment processor to the vertex processor and rasterizer.

Once we resolve the virtual addresses used by a
fragment program, we can determine which virtual pages
each active page will access. With this relative page informa-
tion, the GPU can perform the virtual-to-physical address
translationwithout a page table in texturememory. The CPU
makes this possible by sending the PPAs for all required
pages to the GPU as texture coordinates. The GPU can then
use the relative neighbor offset vectors to decide which
adjacent page contains the requested value (see Fig. 6a).

The GPU’s task of deciding which adjacent page contains
a specific neighbor value unfortunately requires a signifi-
cant amount of conditional logic. This logic must classify
each data element into one of nine boundary cases: one of
the four corners, one of the four edges, or an interior
element (see Fig. 6). Unfortunately, current fragment
processors do not support conditional execution. This logic
could alternatively be encoded into a texture; however, this
would again force the use of an expensive dependent
texture read. Just as statically resolving virtual addresses
allowed us to optimize the GPU computation, all active data
elements can be preclassified into the nine boundary cases.
The result is that all memory addresses used in each case
will lie on the same pages relative to each active page (see
Fig. 6). In other words, the memory-page-locating logic has
been statically resolved by preclassifying data elements into
their respective boundary cases. The data elements for these
substream cases are generated by drawing unique geometry
for each case. The corner substream cases are represented as
points, the edges as lines, and the interior regions as
quadrilaterals.

426 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 4, JULY/AUGUST 2004

Fig. 5. The virtual-to-physical address translation scheme in our
multidimensional virtual memory system. A 3D virtual address, VA, is
first translated to a virtual page number, VPN. A page table translates
the VPN to a physical page address, PPA. The PPA specifies the origin
of the physical page containing the physical address, PA. The offset is
then computed based on the virtual address and used to obtain the final
2D physical address, PA.

Fig 6. The substream boundary cases used to statically resolve the

conditionals arising from 3� 3� 3 neighbor accesses across memory

page boundaries. (a) The nine substream cases are: interior, left edge,

right edge, top edge, bottom edge, lower-left corner, lower-right corner,

upper-right corner, and upper-left corner. (b) The interior case accesses

its neighbors from only three memory pages. (c) The edge cases require

six pages and (d) the corner cases require 12 memory pages. Note that,

for reasonably large page sizes, the more cache-friendly interior case

has by far the highest number of data elements.

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

Kapasi et al. [31] describe an efficient solution to
conditional execution in streaming architectures. Their
solution is to route stream elements to different processing
elements based on the code branch. Substreams are merely
a static implementation of this data routing solution to
conditional execution. The advantage is that the computa-
tion kernel run on each substream contains no conditional
logic and is optimized specifically for that case. Our
solution additionally gains from optimized cache behavior
for the most common, interior, case (77 percent of the data
points in a 16� 16 page). The interior data elements require
only three memory pages to access all neighbors (Fig. 6b). In
comparison, reading all neighbors for an edge element
requires loading six pages (Fig. 6c). The corner cases require
12 pages from disparate regions of physical memory
(Fig. 6d). The corner cases account for less than 2 percent
of the active data elements.

With the use of substreams, the GPU can additionally
optimize the address computation by computing physical
addresses with the vertex processor rather than the
fragment processor. Because all data elements (i.e., frag-
ments) use exactly the same relative memory addresses, the
offset and physical address computation steps of (4) can be
generated by interpolating between substream vertex
locations. The vertex processor and rasterizer can thus
perform the entire address translation. This optimization
distributes computational load to underutilized processing
units and reduces the number of limited and expensive
fragment instructions.

3.4 Bootstrapping the Virtual Memory System

This section describes the steps required to initialize the
GPU virtual memory system. To begin, the application
specifies the page size, S[P], the virtual page space size,
S½VP�, and the fundamental data type to use (i.e., 32-bit
floating-point, 16-bit fixed-point, etc.). The virtual memory
system then allocates an initial physical memory buffer on
the GPU. It also creates a page table, an inverse page table, a
geometry engine, and a stack of free pages on the CPU. The
decision to place the aforementioned data structures on the
CPU is based on the efficiency concerns described in
Section 3.3 as well as GPU architectural restrictions. These
restrictions include: the GPU’s lack of random write access
to memory, lack of writable 3D textures, lack of dynamically
sized output buffers, and limited GPU memory.

The page table is defined to store a MemoryPage object
that contains the vertices and texture coordinates required
by the GPU to access the physical memory page. The
inverse page table is designed to store a VPN vector for
each active physical page. Fig. 5 shows these mappings.
Note that the page table and inverse page table were
referred to as the unpacked map and packed map, respectively.
in Lefohn et al. [32].

The vertices and texture coordinates stored in the
MemoryPage object are actually pointers into the geometry
engine. The geometry engine has the capability of quickly
rendering (i.e., processing) any portion of the physical
memory domain. Thus, the geometry engine must generate
the substreams for the set of active physical pages. The last
initialization step is the creation of the free-page stack. The
virtual memory system simply pushes all physical pages
(i.e., pointers to MemoryPage objects) defined by the
geometry engine onto a stack.

The application issues GPU physical memory allocation
and deallocation requests to the virtual memory system.
Upon receiving a virtual page request, the system pops a

physical page from the free-page stack, updates the page
tables, and returns a MemoryPage pointer to the applica-
tion. The reverse process occurs when the application
deallocates a virtual memory page.

The level-set solver generates memory page allocation
and deallocation requests after each solver iteration based
on the form of the current solution. Section 4.4 describes
how the solver uses the GPU to efficiently create these
memory requests.

4 SPARSE GPU LEVEL-SET SOLVER

This section now explains our GPU level-set solver
implementation using the virtual memory system and
level-set equations presented in Section 3 and Section 2.1.
Note that the details of the level-set discretization are found
in Lefohn et al. [33].

4.1 Initialization of Computational Domain

The solver begins by initializing the sparse computational
domain (Step 1 in Fig. 2). An initial level-set volume is
passed to the level-set solver by the host application. The
sparse domain initialization involves identifying active
memory pages in the input volume, allocating GPU
memory for each active page, then sending the initial data
to the GPU.

The solver identifies active virtual pages by checking
each data element for a nonzero derivative value in any of
the six cardinal directions. If any element in a page contains
nonzero derivatives, the entire page is activated. The
initialization code then requests a GPU memory page from
the virtual memory system for each active page. The level-
set data is then drawn into GPU memory using the vertex
locations in each MemoryPage object (see Fig. 7).

This scheme is effective only because the input level-set
volume is assumed to be a clamped distance transform—-
meaning that regions on or near the isosurface have nonzero
gradients while regions outside or inside the surface have
gradients of zero. The outside voxels have a value of zero
(black) and the insideoneshaveavalueofone (white). Section
4.2 explains how the distance transform embedding is
maintained throughout the level-set computation.

The inactive virtual pages do not need to be represented
in physical memory. If an active data element queries an
inactive value, however, an appropriate value needs to be
returned. Because all inactive regions are either uniformly
black or white, we solve this boundary condition problem
by defining a special, inactive page state. A virtual page in
this state is mapped to one of two static physical pages. One
of these static pages is black, representing regions outside of
the level-set surface. The other static page is white and
represents regions inside the level-set surface. The page
table contains these many-to-one mappings, but the inverse
page table does not store a valid entry for the static pages
(see Fig. 7). Note that we could have alternatively solved
this boundary problem using single pixels instead of entire
pages. We also could have solved the problem by creating
substreams for the active elements on the boundary of the
active set.

4.2 Distance Transform on the GPU

In order to take advantage of the sparse nature of level-set
solutions, algorithms must maintain a somewhat consistent
level-set density, which is defined as the number of level sets
per unit volume. If the level-set density becomes too low
(spread out) it can become difficult to efficiently isolate the

LEFOHN ET AL.: A STREAMING NARROW-BAND ALGORITHM: INTERACTIVE COMPUTATION AND VISUALIZATION OF LEVEL SETS 427

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

computation to the desired interface. Alternatively, a level-
set density that becomes too high (close together) can cause
aliasing and numerical problems. The most common way of
maintaining a desired level-set density is to keep the
embedding, �, resembling a distance transform [6], [9], [34].

The new streaming level-set solver maintains the
distance transform by introducing an additional speed
term, Gr, to the level-set PDE (1) that controls the surface
motion. This speed term pushes the level sets of �, either
closer together or farther apart, so that they resemble a
clamped distance transform (CDT). The CDT has a constant
level-set density within a predefined band and ensures that
voxels near the isosurface have finite derivatives while
those farther away have gradient magnitudes of zero. As
described in Sections 4.1 and 4.4, the identification of zero-
derivative regions is critical for an efficient solver imple-
mentation. This rescaling speed term, Gr, is computed as

Gr ¼ �g� � �jr�j; ð5Þ

where g� is the target gradient magnitude within the
computational domain and jr�j is the gradient magnitude
in the direction of the level-set model isosurface. The target
parameter, g�, can be set based on the numerical precision
of the level-set data. By setting g� sufficiently high,
numerical errors caused by underflow can easily be
avoided. It is important to note that Gr is strictly a
numerical construct; it does not affect the movement of
the zero level set, i.e., the surface model. Also note that the
solver can be used to compute only the distance transform
(i.e., no surface movement) by setting g� to one and making
Gr the only speed term.

4.3 Level-Set Computation

The GPU next performs the level-set computation (Step 2
of the sparse algorithm in Fig. 2). The details of the level-
set discretization used by our solver are given in Lefohn
et al. [33]. This section gives a high-level overview of the
computation. The level-set update proceeds in the
following steps:

A. Compute 1st and 2nd partial derivatives.
B. Compute N level-set speed terms.
C. Update level-set PDE.

The derivative computation in Step A above uses the
substream-based, virtual-to-physical address scheme de-
scribed in Section 3.3. The derivatives are computed in nine
substream render passes, each of which outputs to the same
four, 4-tuple buffers. The speed function computations in
Step B are application-dependent. Example speed terms

include the curvature computation described in (3), the
rescaling term described in (5), and the thresholding term
described in (7). There will be zero or more render passes
for each speed function. The level-set update (Step C) is the
upwind scheme described in Lefohn et al. [33]. This is
computed in a single pass. Note that additional GPU
memory must be allocated to store the intermediate results
accumulated in Steps A and B before they are consumed in
Step C. Our solver performs register allocation of temporary
buffers to minimize GPU memory usage.

4.4 Update of Computational Domain

After each level-set update, the solver determines which
virtual pages need to be added to or removed from the
active domain. The solver accomplishes this by aggregating
gradient information from all elements in each active page.
In our solver, the GPU must compute this information
because the level-set solution exists only in physical
memory. The active set must be updated by the CPU,
however, because the page table and geometry engine exist
in CPU main memory. In addition, the amount of
information passed from the GPU to the CPU must be kept
to a minimum because of the limited bandwidth between
the two processors. This section gives an overview of an
algorithm that works within these constraints. Lefohn et al.
[33] explains the full details of the algorithm.

The GPU creates a memory allocation/deallocation
request by producing a small image (of size {S½GP�) with
a single-byte pixel per physical page. The value of each
pixel is a bit code that encapsulates the activation or
deactivation state of each page and its six adjacent
neighbors (in VP). The CPU reads this small (< 64kB)
message, decodes it, and submits the allocation/dealloca-
tion requests to the virtual memory system (Fig. 8).

The GPU creates the bit-code image by first computing
two, four-component neighbor information buffers of size
S½G� (Step A of Fig. 8). This computation uses the
previously computed, one-sided derivatives of � to identify
the required active pages. A page must be activated if it
contains elements with nonzero gradient magnitudes. The
automatic mipmapping GPU feature is then used to
downsample the resulting buffers (i.e., aggregate data
samples) to the page-space image (Step B in Fig. 8). The
final GPU operation combines the active page information
into the bit code (Step C in Fig. 8). A fragment program

428 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 4, JULY/AUGUST 2004

Fig. 7. The level-set solver’s use of the paged virtual memory system.
(a) All active pages (i.e., those that contain nonzero derivatives) in the
virtual page space (b) are mapped to unique pages of physical memory.
The inactive virtual pages are mapped to the static inside or outside
physical page. Note that the only data stored on the GPU is that
represented by (b).

Fig. 8. The GPU’s creation of a memory allocation/deallocation request.
Step A uses solver-specific data to create two buffers containing the
active state of each data element and its adjacent neighbors. Step B
uses automatic mipmapping to reduce the buffers from size S½G� to the
physical page space size, S½GP�. Step C combines the information from
the two downsampled state buffers into an eight-bit code for each pixel.
This code encapsulates whether or not each active virtual memory page
and its adjacent neighbors should be enabled. In Step D, the CPU reads
the bit-code buffer, decodes it, and allocates/deallocates pages as
requested.

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

performs this step by emulating a bit-wise OR operation via
conditional addition of powers of two. Finally, in Step D of
Fig. 8, the CPU reads this message from the GPU.

Note that the use of automatic mipmapping places some
restrictions on the maximum memory page size due to
quantization rounding errors that arisewhen downsampling
8-bit values. This limitation can be relaxed by using a 16-bit
fixed-pointdata type.Alternatively, floating-point values can
be used if the downsampling is performed with fragment
program passes instead of automatic mipmapping.

4.5 GPU Implementation Details

The level-set solver and volume renderer are implemented
in programmable graphics hardware using vertex and
fragment programs on the ATI Radeon 9800 GPU. The
programs are written in the OpenGL ARB_vertex_program
and ARB_fragment_program assembly languages.

There are several details related to render pass output
buffers that are critical to the performance of the level-set
solver. First is the ability to output multiple, high-precision
4-tuple results from a fragment program. Writing 16 scalar
outputs from a single render pass enables us to perform the
expensive 3D neighborhood reconstruction only once and
use the gathered data to compute the derivatives in a single
pass. Second, we avoid the expensive change between
render targets [35] (i.e., pixel buffers) by allocating a single
pixel buffer with many render surfaces (front, back, aux0,
etc.) and using each surface as a separate output buffer.

Last, there is a subtle speed-versus-memory trade off
that must be carefully considered. Because the physical-
memory texture can be as large as 2; 0482, storing inter-
mediate results (e.g., derivatives, speed values, etc.) during
the computation can require a large amount of GPU
memory. This memory requirement can be minimized by
performing the level-set computation in subregions. The
intermediate buffers must then be only the size of the
subregion. This partitioning does reduce computational
efficiency, however, and, so, the subregions are made as
large as possible. We currently use 5122 subregions when
the level-set texture is 2; 0482 and use a single region when
it is smaller.

5 VOLUME RENDERING OF PACKED DATA

The direct visualization of the level-set evolution is
important for a variety of level-set applications. For
instance, in the context of segmentation, direct visualization
allows a user to immediately assess the quality and
accuracy of the pending segmentation and steer the
evolution toward the desired result. Volume rendering is
a natural choice for visualizing the level-set surface model
because it does not require an intermediate geometric
extraction, which would severely limit interactivity. If one
were to use marching cubes, for instance, a distinct triangle
mesh would need to be created (and rendered) for each
iteration of the level-set solver. The proposed solver,
therefore, includes a volume renderer, which produces a
full 3D (transfer-function based) volume rendering of the
evolving level set on the GPU [28].

For rendering the evolving level-set model, we use a
variant of traditional 2D texture-based volume rendering
[25]. We modify the conventional approach to render the
level-set solution directly from the packed physical memory
layout, which is physically stored in a single 2D texture.
Because the level-set data and physical page configuration

are dynamic, it would be inefficient to precompute and
store three separate versions of the data, sliced along
cardinal views, as is typically done with 2D texture
approaches. Instead, we reconstruct these views each time
the volume is rendered. This new technique is thus
applicable both to rendering compressed data as well as
traditional texture-based volume rendering from a single
set of 2D slices.

The volume rendering algorithm utilizes a two pass
approach for reconstruction and rendering. Fig. 9 illustrates
the steps involved. An additional off-screen buffer caches
two reconstructed neighboring slices containing the level-
set solution and its gradient (Fig. 9A). During the rendering
phase arbitrary slices along the preferred slice direction are
interpolated from these neighboring slices (Fig. 9B). Once
all interpolated slices between slice i and i� 1 are rendered
and composited, the next slice (iþ 1) is reconstructed. This
newly reconstructed slice replaces the cached slice, i� 1.
The GPU then renders and composites the next set of
interpolated slices (i.e., those between slice iþ 1 and i). This
pattern continues until all slices have been reconstructed
and rendered.

When the preferred slice axis, based on the viewing
angle, is orthogonal to the virtual memory page layout, we
reconstruct 2D slices of the level-set solution and its
gradient using a textured quadrilateral for each page, as
shown in Fig. 10A. On the other hand, if the preferred slice
direction is parallel to the virtual page layout, we render a
row or column from each page using textured line
primitives, as in Fig. 10B. In both cases, slices are
reconstructed into a pixel buffer which is bound as a
texture in the rendering pass. These slices are reconstructed
at the same resolution as level-set solution.

In the rendering phase, we leverage the hardware’s
bilinear filtering for in-plane interpolation of the recon-
structed level-set slice. Trilinear interpolation of an arbi-
trary slice between two adjacent reconstructed slices is
accomplished by combining them, i.e., performing linear
interpolation along the preferred slice direction, in the
fragment program. This same fragment program also
evaluates the transfer function and lighting for the inter-
polated data. For efficiency, we also reuse data wherever
possible. For instance, lighting for the level-set surface,
evaluated in the rendering phase, uses gradient vectors
computed during the level-set update stage.

LEFOHN ET AL.: A STREAMING NARROW-BAND ALGORITHM: INTERACTIVE COMPUTATION AND VISUALIZATION OF LEVEL SETS 429

Fig. 9. Two pass rendering of packed volume data. In Step A, a 2D slice
(i) is reconstructed from the physical page (packed) layout, GP. In Step
B, one or more intermediate slices between i and i� 1 are interpolated,
transformed into optical properties (via the transfer function), lit, and
rendered for the current view. The next iteration begins by reconstruct-
ing slice iþ 1, replacing i� 1, and so on.

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

6 APPLICATION AND RESULTS

This section describes an application for interactive volume
segmentation and visualization, which uses the level-set
solver and volume renderer described previously. We show
pictures from the system and present timing results relative
to our current benchmark for level-set deformations, which
is a highly optimized CPU solution [36].

6.1 Volume Segmentation with Level Sets

For segmenting volume data with level sets, the speed
functions usually consists of a combination of two terms
[37], [4]

@�

@t
¼ jr�j �Dð�xxÞ þ ð1� �Þr � r�jr�j

� �
; ð6Þ

where D is a data term that forces the model to expand or
contract toward desirable features in the input data (which
we also call the source data), the term r � ðr�=jr�jÞ is the
mean curvature H of the surface, which forces the surface to
have less area (and remain smooth) and �in½0; 1� is a free
parameter that controls the degree of smoothness in the
solution.

This combination of a data-fitting speed function with
the curvature term is critical to the application of level sets
to volume segmentation. Most level-set data terms D from
the segmentation literature are equivalent to well-known
algorithms such as isosurfaces, flood fill, or edge detection
when used without the smoothing term (i.e., � ¼ 1). The
smoothing term alleviates the effects of noise and small
imperfections in the data and can prevent the model from
leaking into unwanted areas. Thus, the level-set surface
models provide several capabilities that complement
volume rendering: local, user-defined control; smooth
surface normals for better rendering of noisy data; and a
closed surface model which can be used in subsequent
processing or for quantitative shape analysis.

For the work in this paper we have chosen a simple
speed function to demonstrate the effectiveness of inter-
activity and real-time visualization in level-set solvers. The
speed function we use in this work depends solely on the
grayscale value input data I at the point �xx:

DðIÞ ¼ �� jI � T j; ð7Þ

where T controls the brightness of the region to be
segmented and � controls the range of grayscale values
around T that could be considered inside the object. In this
way, a model situated on voxels with grayscale values in
the interval T � �will expand to enclose that voxel, whereas
a model situated on grayscale values outside that interval
will contract to exclude that voxel. The speed term is
gradual, as shown in Fig. 11, and, thus, the effects of D
diminish as the model approaches the boundaries of
regions with grayscale levels within the T � � range. This
makes the effects of the curvature term relatively larger.
This choice of D corresponds to a simple, one-dimensional
statistical classifier on the volume intensity [38].

To control the model, a user specifies three free
parameters, T , �, and �, as well as an initialization. The
user generally draws a spherical initialization inside the
region to be segmented. Note that the user can alternatively
initialize the solver with a preprocessed (thresholded, flood
filled, etc.) version of the source data.

6.2 Interface and Usage

The application in this paper consists of a graphical user
interface that presents the user with two slice viewing
windows, a volume renderer, and a control panel. (Fig. 12).
Many of the controls are duplicated throughout the
windows to allow the user to interact with the data and
solver through these various views. Two and three-
dimensional representations of the level-set surface are
displayed in real time as it evolves.

The first 2D window displays the current segmentation
as a yellow line overlaid on top of the source data. The
second 2D window displays a visualization of the level-set
speed function that clearly delineates the positive and
negative regions. The first window can be probed with the
mouse to accomplish three tasks: set the level-set speed
function, set the volume rendering transfer function, and
draw 3D spherical initializations for the level-set solver. The
first two tasks are accomplished by accumulating an
average and variance for values probed with the cursor.
In the case of the speed function, the T is set to the average
and � is set to the standard deviation. Users can modify
these values, via the GUI, while the level set deforms. The
spherical drawing tool is used to initialize and/or edit the
level-set surface. The user can add to or subtract from the
model by drawing white or black spheres, respectively. This
feature gives the user “3D paint” and “3D eraser” tools with
which to interactively edit the level-set solution.

The volume renderer displays a 3D reconstruction of the
current level set isosurface (see Section 5) as well as the
input data. In addition, an arbitrary clipping plane, with
texture-mapped source data, can be enabled via the GUI

430 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 4, JULY/AUGUST 2004

Fig. 10. Reconstruction of a slice for volume rendering the packed level-
set model: (a) When the preferred slicing direction is orthogonal to the
virtual memory page layout, the pages (shown in alternating colors) are
draw into a pixel buffer as quadrilaterals. (b) For slicing directions
parallel to the virtual page layout, the pages are drawn onto a pixel buffer
as either vertical or horizontal lines.

Fig. 11. A speed function based on image intesity causes the model to

expand over regions with grayscale values within the specified (positive)

range and contract otherwise.

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

(Fig. 1). Just as in the slice viewer, the speed function,
transfer function, and level-set initialization can be set
through probing on this clipping plane. The crossing of the
level-set isosurface with the clipping plane is also shown in
bright yellow.

The volume renderer uses a 2D transfer function to
render the level-set surface and a 3D transfer function to
render the source data. The level-set transfer function axes
are intensity and distance from the clipping plane (if
enabled). The transfer function for rendering the original
data is based on the source data value, gradient magnitude,
and the level-set data value. The latter is included so that
the level-set model can function as a region-of-interest
specifier. All of the transfer functions are evaluated on-the-
fly in fragment programs rather than in lookup tables. This
approach permits the use of arbitrarily high dimensional
transfer functions, allows runtime flexibility, and reduces
memory requirements [39].

We demonstrate our interactive level-set solver and
volume rendering system with the following three data sets:
a brain tumor MRI (Fig. 1), an MRI scan of a mouse (Fig. 13),
and transmission electron tomography data of a gap
junction (Fig. 14). In all of these examples, a user
interactively controls the level-set surface evolution and
volume rendering via the multiview interface. The initi-
alizations for the tumor and mouse were drawn via the user
interface. The initialization for Fig. 14 was seeded with a
thresholded version of the source data.

6.3 Performance Analysis

Our GPU-based level-set solver achieves a speedup of 10 to
15 times over a highly optimized, sparse-field, CPU-based
implementation [36]. All benchmarks were run on an Intel
Xeon 1.7 GHz processor with 1 GB of RAM and an ATI
Radeon 9800 Pro GPU. All timings include the complete
computation, i.e., both the virtual memory system update
and the level-set computation are included. For a 256�
256� 175 volume, the level-set solver runs at rates varying
from 70 steps per second for the tumor segmentation (Fig. 1)
to 3.5 steps per second for the final stages of the cortex
segmentation from the same data set. In contrast, the CPU-
based, sparse field implementation ran at seven steps per
second for the tumor and 0.25 steps per second for the
cortex segmentation.

The speed of our solver is bound almost entirely by the
fragment stage of the GPU. In addition, the speed of our
solver scales linearly with the number of active voxels in the
computation. Creation of the bit vector message consumes
approximately 15 percent of the GPU arithmetic and texture
instructions, but, for most applications, the speedup over a
dense GPU-based implementation far eclipses this addi-
tional overhead.

The amount of texture memory required for the level-set
computation isproportional to the surface areaof the level-set
surface—i.e., the number of active pages. Our tests have
shown that, for many applications, only 10-30 percent of the
volume is active. To take full advantage of this savings, the
total size of physical memory, S½G�, must increase when the
number of allocated pages grows beyond the physical
memory’s capacity. Our current implementation performs
only static allocation of the maximum physical memory
space, but future versions could easily realize the above
memory savings. Section 7 discusses changes to GPUdisplay
drivers that will facilitate the implementation of this feature.

In comparison to the depth-culling-based sparse volume
computation presented by Sherbondy et al. [21], our
packing scheme guarantees that very few wasted fragments
are generated by the rasterization stage. This is especially
important for sparse computations on large volumes—
where the rasterization and culling of unused fragments
could consume a significant portion of the execution time.
In addition, the packing strategy allows us to process the
entire active data set simultaneously, rather than slice-by-
slice. This improves the computationally efficiency by
taking advantage of the GPU’s deep pipelines and parallel
execution. Our algorithm should also be able to process
larger volumes, due to the memory savings discussed
above. Our algorithm, however, does incur overhead
associated with maintaining the packed tiles and more
experimentation is necessary to understand the circum-
stances under which each approach is advantageous.
Furthermore, they are not mutually exclusive and Section 7
discusses the possibility of using depth culling in combina-
tion with our packed representation.

LEFOHN ET AL.: A STREAMING NARROW-BAND ALGORITHM: INTERACTIVE COMPUTATION AND VISUALIZATION OF LEVEL SETS 431

Fig. 12. A depiction of the user interface for the volume analysis

application. Users interact via slice views, a 3D rendering, and a control

panel.

Fig. 13. (top) Volume rendering of a 2563 MRI scan of a mouse thorax.
Note the level-set surface, which is deformed to segment the liver.
(Bottom) Volume rendering of the vasculature inside the liver using the
same transfer function as in (top) with the level-set surface is being used
as a region-of-interest specifier.

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

As with any sparse algorithm, it will be advantageous to
simply compute the entire (original) domain if the active
domain becomes sufficiently large. Our experience with
segmentation thus far, however, has shown that the the
computation remains sufficiently sparse even for large
structures such as a cerebral cortex segmentation. The
sparseness is due to the fact that only the surface needs to
represented and the interior regions need not be repre-
sented or computed.

7 CONCLUSIONS AND FUTURE WORK

This paper demonstrates a new tool for interactive volume
exploration and analysis that combines the quantitative
capabilities of deformable isosurfaces with the qualitative
power of volume rendering. By relying on graphics
hardware, the level-set solver operates at interactive rates
(approximately 15 times faster than previous solutions).
This mapping relies on an efficient multidimensional
virtual memory system to implement a time-dependent,
sparse computation scheme. The memory mappings are
updated via a novel GPU-to-CPU message passing algo-
rithm. The GPU renders the level-set surface model directly
from a sparse, compressed texture format. Future exten-
sions and applications of the level-set solver include the
processing of multivariate data as well as surface recon-
struction and surface processing. Most of these only involve
changing only the speed functions.

There are a couple of ways in which the memory and
computational efficiency of our solver can be improved.
First, it may be worth achieving an even narrower band of
computation around the level-set model. This is possible by
using depth culling to avoid computation on inactive
elements within each active page [21]. Implementing this
depth culling requires a memory model in which an
arbitrary number of data buffers can access a single depth
buffer. The second optimization is to allow the total amount
of physical memory to change at runtime and grow to the
limits of GPU memory. This requires spreading physical
memory across multiple 2D textures (i.e., creating a
3D physical memory space). The proposed super buffer [40]
OpenGL extension supports both of these proposed
optimizations.

The GPU virtual memory abstraction also indicates
promising future research. We are currently beginning
work on a more general virtual memory implementation
that fully abstracts N-dimensional GPU memory. The goal
is to provide an API that allows a GPU application
programmer to specify an optimal physical and virtual
memory layout for their problem, then write the computa-
tional kernels irrespective of the physical layout. The
kernels will specify memory accesses via abstract memory
access interfaces and an operating-system-like layer will
replace these memory access calls with the appropriate
address translation code.

ACKNOWLEDGMENTS

Thanks to Evan Hart, Mark Segal, Jeff Royal and Jason
Mitchell at ATI for donating technical advice and hardware
to this project. Gordon Kindlmann’s nrrd toolkit was used
for data set manipulation (http://teem.sourceforge.net).
Milan Ikits’ GLEW library was used for OpenGL extension
management (http://glew.sourceforge.net). Steve Lamont
and Gina Sosinsky at the National Center for Microscopy
and Imaging Research at the University of California at San
Diego provided the tomography data. Simon Warfield,
Michael Kaus, Ron Kikinis, Peter Black, and Ferenc Jolesz
provided the MRI head data. The mouse data was supplied
by the Center for In Vivo Microscopy at Duke University.
This work was supported by grants ACI0089915 and
CCR0092065 from the US National Scienc Foundation and
US Office of Naval Research N000140110033. The authors
also thank John Owens and the anonymous reviewers for
their input on the manuscript.

REFERENCES

[1] S. Osher and J. Sethian, “Fronts Propagating with Curvature-
Dependent Speed: Algorithms Based on Hamilton-Jacobi For-
mulations,” J. Computational Physics, vol. 79, pp. 12-49, 1988.

[2] R. Fedkiw and S. Osher, Level Set Methods and Dynamic Implicit
Surfaces. Springer, 2002.

[3] J.A. Sethian, Level Set Methods and Fast Marching Methods Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer
Vision, and Materials Science. Cambridge Univ. Press, 1999.

[4] R.T. Whitaker, “Volumetric Deformable Models: Active Blobs,”
Proc. Visualization in Biomedical Computing 1994, R.A. Robb, ed.,
pp. 122-134, 1994.

[5] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher, “Geometric
Surface Smoothing via Anisotropic Diffusion of Normals,” Proc.
IEEE Visualization, pp. 125-132, Oct. 2002.

[6] R. Whitaker, “A Level-Set Approach to 3D Reconstruction from
Range Data,” Int’l J. Computer Vision, pp. 203-231, Oct. 1998

[7] T. Yoo, U. Neumann, H. Fuchs, S. Pizer, T. Cullip, J. Rhoades, and
R. Whitaker, “Direct Visualization of Volume Data,” IEEE
Computer Graphics and Applications, vol. 12, pp. 63-71, 1992.

[8] M. Droske, B. Meyer, M. Rumpf, and C. Schaller, “An Adaptive
Level Set Method for Medical Image Segmentation,” Proc. Ann.
Symp. Information Processing in Medical Imaging, R. Leahy and
M. Insana, eds. 2001.

[9] D. Adalsteinson and J.A. Sethian, “A Fast Level Set Method for
Propogating Interfaces,” J. Computational Physics, pp. 269-277,
1995.

[10] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A PDE
Based Fast Local Level Set Method,” J. Computational Physics,
vol. 155, pp. 410-438, 1999.

[11] J. Owens, “Computer Graphics on a Stream Architecture,” PhD
thesis, Stanford Univ., Nov. 2002.

[12] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G.
Humphreys, “A Multigrid Solver for Boundary Value Problems
Using Programmable Graphics Hardware,” Proc. Graphics Hard-
ware 2003, pp. 102-111, July 2003.

432 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 4, JULY/AUGUST 2004

Fig. 14. Segmentation and volume rendering of 512� 512� 61 3D
transmission electron tomography data. The picture shows cytoskeletal
membrane extensions and connexins (pink surfaces extracted with the
level-set models) near the gap junction between two cells (volume
rendered in cyan).

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

[13] E.S. Larsen and D. McAllister, “Fast Matrix Multiplies Using
Graphics Hardware,” Proc. Super Computing 2001, Nov. 2001.

[14] R. Strzodka and M. Rumpf, “Using Graphics Cards for Quantized
FEM Computations,” Proc. VIIP Conf. Visualization and Image
Processing, 2001.

[15] M. Rumpf and R. Strzodka, “Level Set Segmentation in Graphics
Hardware,” Proc. Int’l Conf. Image Processing, pp. 1103-1106, 2001.

[16] A.E. Lefohn and R.T. Whitaker, “A GPU-Based, Three-Dimen-
sional Level Set Solver with Curvature Flow,” Tech Report UUCS-
02-017, Univ. of Utah, Dec. 2002.

[17] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder, “Sparse Matrix
Solvers on the GPU: Conjugate Gradients and Multigrid,” ACM
Trans. Graphics, vol. 22, pp. 917-924, July 2003.

[18] J. Krüger and R. Westermann, “Linear Algebra Operators for GPU
Implementation of Numerical Algorithms,” ACM Trans. Graphics,
vol. 22, pp. 908-916, July 2003.

[19] A.C. Beers, M. Agrawala, and N. Chaddha, “Rendering from
Compressed Textures,” Proc. SIGGRAPH ’96, Computer Graphics
Proc., Ann. Conf. Series, pp. 373-378, Aug. 1996.

[20] M. Kraus and T. Ertl, “Adaptive Texture Maps,” Proc. Graphics
Hardware 2002, pp. 7-16, Sept. 2002.

[21] A. Sherbondy, M. Houston, and S. Nepal, “Fast Volume
Segmentation with Simultaneous Visualization Using Program-
mable Graphics Hardware,” Proc. IEEE Visualization, pp. 171-176,
Oct. 2003.

[22] R.A. Drebin, L. Carpenter, and P. Hanrahan, “Volume Render-
ing,” Computer Graphics (Proc. SIGGRAPH ’88), vol. 22, pp. 65-74,
Aug. 1988.

[23] M. Levoy, “Display of Surfaces from Volume Data,” IEEE
Computer Graphics and Applications, vol. 8, pp. 29-37, 1988.

[24] P. Sabella, “A Rendering Algorithm for Visualizing 3D Scalar
Fields,” Computer Graphics (Proc. SIGGRAPH ’88), vol. 22, pp. 51-
58, Aug. 1988.

[25] B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering
and Tomographic Reconstruction Using Texture Mapping Hard-
ware,” Proc. ACM Symp. Volume Visualization, pp. 91-98, Oct. 1994.

[26] O. Wilson, A.V. Gelder, and J. Wilhelms, “Direct Volume
Rendering via 3D Textures,” Technical Report UCSC-CRL-94-19,
Univ. of California at Santa Cruz, June 1994.

[27] K. Engel, M. Kraus, and T. Ertl, “High-Quality Pre-Integrated
Volume Rendering Using Hardware-Accelerated Pixel Shading,”
Proc. Graphics Hardware 2001, 2001.

[28] J. Kniss, G. Kindlmann, and C. Hansen, “Multi-Dimensional
Transfer Functions for Interactive Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 8, no. 3, pp. 270-
285, July-Sept. 2002.

[29] T.J. Purcell, I. Buck, W.R. Mark, and P. Hanrahan, “Ray Tracing on
Programmable Graphics Hardware,” ACM Trans. Graphics, vol. 21,
pp. 703-712, July 2002.

[30] A. Silberschatz and P. Galvin, Operating System Concepts. Addison-
Wesley, 1998.

[31] U. Kapasi, W. Dally, S. Rixner, P. Mattson, J. Owens, and B.
Khailany, “Efficient Conditional Operations for Data-Parallel
Architectures,” Proc. 33rd Ann. Int’l Symp. Microarchitecture,
pp. 159-170, 2000.

[32] A.E. Lefohn, J. Kniss, C. Hansen, and R. Whitaker, “Interactive
Deformation and Visualization of Level Set Surfaces Using
Graphics Hardware,” Proc. IEEE Visualization, pp. 75-82, Oct. 2003.

[33] A.E. Lefohn, J. Kniss, C. Hansen, and R. Whitaker, “A Streaming
Narrow-Band Algorithm: Supplemental Information,” http://
computer.org/tvcg/archives.htm, 2004.

[34] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A Non-
Oscillatory Eulerian Approach to Interfaces in Multimaterial
Flows (the Ghost Fluid Method),” J. Computational Physics,
vol. 152, pp. 457-492, 1999.

[35] J. Kniss, S. Premoze, C. Hansen, P. Shirley, and A. McPherson, “A
Model for Volume Lighting and Modeling,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 9, no. 2, pp. 150-162, Apr.-June
2003.

[36] “The Insight Toolkit,” http://www.itk.org, 2003.
[37] R. Malladi, J.A. Sethian, and B.C. Vemuri, “Shape Modeling with

Front Propagation: A Level Set Approach,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 17, pp. 158-175, 1995.

[38] A.E. Lefohn, J. Cates, and R. Whitaker, “Interactive, GPU-Based
Level Sets for 3D Brain Tumor Segmentation,” Medical Image
Computing and Computer Assisted Intervention, pp. 564-572, 2003.

[39] J. Kniss, S. Premoze, M. Ikits, A.E. Lefohn, and C. Hansen,
“Gaussian Transfer Functions for Multi-Field Volume Visualiza-
tion,” Proc. IEEE Visualization, pp. 497-504, Oct. 2003.

[40] J. Percy and R. Mace, “OpenGL Extensions: Siggraph 2003,”
http://mirror.ati.com/developer/techpapers.html, 2003.

[41] R. Whitaker and X. Xue, “Variable-Conductance, Level-Set
Curvature for Image Denoising,” Proc. IEEE Int’l Conf. Image
Processing, pp. 142-145, Oct. 2001.

Aaron E. Lefohn is a PhD student in the
Computer Science Department at the University
of California at Davis and a graphics software
engineer at Pixar Animation Studios. He re-
ceived the MS degree in computer science from
the University of Utah in 2003, the MS degree in
theoretical chemistry from the University of Utah
in 2001, and the BA degree in chemistry from
Whitman College in 1997. His research interests
include general computation with graphics hard-

ware, physically-based animation, and photorealistic rendering. He is a
US National Science Foundation graduate fellow in computer science
and a student member of the IEEE.

Joe M. Kniss is a PhD student at the University
of Utah and a member of the Scientific Comput-
ing and Imaging Institute. He received the BS
degree in computer science from Idaho State
University in 1999 and the MS degree in
computer science from the University of Utah
in 2002. He has conducted research in volume
rendering, light transport, human computer
interaction, and data classification. He is a
recipient of the US Department of Energy’s High

Performance Computer Science (HPCS) graduate fellowship and is a
student member of the IEEE.

Charles D. Hansen received the BS degree in
computer science from Memphis State Univer-
sity in 1981 and the PhD degree in computer
science from the University of Utah in 1987. He
is an associate professor of computer science at
the University of Utah. From 1997 to 1999, he
was a research associate professor in computer
science at Utah. From 1989 to 1997, he was a
technical staff member in the Advanced Com-
puting Laboratory (ACL) located at Los Alamos

National Laboratory, where he formed and directed the visualization
efforts in the ACL. He was a Bourse de Chateaubriand PostDoc Fellow
at INRIA, Rocquencourt, France, in 1987 and 1988. His research
interests include large-scale scientific visualization and computer
graphics. He is a member of the IEEE.

Ross T. Whitaker received the BS degree in
electrical engineering and computer science
from Princeton University in 1986 summa cum
laude. From 1986 to 1988, he worked for the
Boston Consulting Group, entering the Univer-
sity of North Carolina at Chapel Hill (UNC) in
1989. At UNC, he received the Alumni Scholar-
ship Award, and received the PhD degree in
computer science in 1994. From 1994-1996, he
worked at the European Computer-Industry

Research Centre in Munich, Germany, as a research scientist in the
User Interaction and Visualization Group. From 1996-2000, he was an
assistant professor in the Department of Electrical Engineering at the
University of Tennessee. Since 2000, he has been at the University of
Utah, where he is an associate professor in the College of Computing
and a faculty member of the Scientific Computing and Imaging Institute.
He is a member of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

LEFOHN ET AL.: A STREAMING NARROW-BAND ALGORITHM: INTERACTIVE COMPUTATION AND VISUALIZATION OF LEVEL SETS 433

Authorized licensed use limited to: The George Washington University. Downloaded on January 26, 2010 at 13:07 from IEEE Xplore. Restrictions apply.

