
Shape Modeling with Front Propagation: A Level

Set Approach �

Ravikanth Malladi,1 James A. Sethian,2 and Baba C. Vemuri1

1Department of Computer & Information Sciences

University of Florida, Gainesville, FL 32611

2Department of Mathematics

University of California, Berkeley, CA 94720

Abstract

Developing shape models is an important aspect of computer vision research. Geo-
metric and di�erential properties of the surface can be computed from shape models.
They also aid the tasks of object representation and recognition. In this paper we
present an innovative new approach for shape modeling which, while retaining im-
portant features of the existing methods, overcomes most of their limitations. Our
technique can be applied to model arbitrarily complex shapes, shapes with protru-
sions, and to situations where no a priori assumption about the object's topology can
be made. A single instance of our model, when presented with an image having more
than one object of interest, has the ability to split freely to represent each object. Our
method is based on the level set ideas developed by Osher & Sethian to follow prop-
agating solid/liquid interfaces with curvature-dependent speeds. The interface (front)
is a closed, nonintersecting, hypersurface 
owing along its gradient �eld with constant
speed or a speed that depends on the curvature. We move the interface by solving
a \Hamilton-Jacobi" type equation written for a function in which the interface is a
particular level set. A speed function synthesized from the image is used to stop the
interface in the vicinity of the object boundaries. The resulting equations of motion
are solved by numerical techniques borrowed from the technology of hyperbolic con-
servation laws. An added advantage of this scheme is that it can easily be extended
to any number of space dimensions. The e�cacy of the scheme is demonstrated with
numerical experiments on synthesized images and noisy medical images.

�Submitted for publication in the IEEE Trans. on Pattern Analysis & Machine Intelligence.
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1 Introduction

An important goal of computational vision is to recover the shapes of 2D and 3D objects

from various types of visual data. To achieve this goal, shape models that satisfy constraints

imposed by sensory data must be synthesized. Shape models aid the computation of cer-

tain geometric and di�erential properties of surfaces. They also serve the purpose of an

intermediate stage in object recognition tasks, since they provide a more stable and useful

description than the original intensity images. In this paper we present a new approach to

shape modeling which, while retaining important features of the existing methods, overcomes

most of their limitations.

Shape reconstruction typically precedes the symbolic representation of surfaces. The shape

models must recover detailed structure from noisy data using only the weakest among the

possible assumptions about the observed shape. Several variational reconstruction methods

have been proposed and there is abundant literature on the same [2, 17, 23, 3, 24, 11].

Generalized spline models with continuity constraints are well suited for ful�lling the goals of

shape reconstruction (see [3, 4, 21]). Generalized splines are the key ingredient of the dynamic

shape modeling paradigm introduced by Terzopoulos et al., [22]. Incorporating dynamics into

shape modeling enables the creation of realistic animation in computer graphics applications

and for tracking moving objects in computer vision. Following the advent of the dynamic

shape modeling paradigm, there was a 
urry of research activity in the area, with numerous

application speci�c modi�cations to the modeling primitives, and external forces derived

from data constraints [9, 25, 26, 27, 28, 6, 7]. However, the aforementioned schemes for

shape modeling have two serious limitations { the dependence of the �nal surface shape

on the initial guess made to start the numerical reconstruction procedure, and a strong

assumption on the object's topology. The �rst of these de�ciencies stems from the fact

that the nonconvex energy functionals used in the variational formulations have multiple

local minima. As a consequence of this feature, the numerical procedures, for convergence

to a satisfactory solution require an initial guess which is \reasonably" close to the desired

shape. Existing shape representation schemes have an additional shortcoming in that they
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lack the ability to dynamically sense the topological changes during the shape reconstruction

process. Our method, which we shall describe presently, makes no assumption about the

object's topology, and it leads to a numerical algorithm whose convergence to the desired

shape is completely independent of the shape initialization.

The framework of energy minimization has also been used successfully in the problem

domain of extracting salient image contours { edges and lines. Kass et al. [9] used energy-

minimizing \snakes" that are attracted to the image features such as edges points and edge

segments, whereas internal spline forces impose a smoothness constraint. The weights of

the smoothness and image force terms in the energy functional can be adjusted for di�erent

kinds of behavior. Snakes, also referred to as active contour models, are restricted examples

of the more general techniques of matching deformable models to image data by means

of energy minimization [22]. The scheme seeks to design energy functionals whose local

minima comprise the set of alternative solutions available to high-level processes. In the

absence of a well-developed high-level mechanism to make a choice among these solutions,

an interactive approach is used to explore the alternatives. By adding suitable energy terms

to the minimization, the user pushes the model out of a local minimum toward the desired

solution. In the problem area of automatic segmentation of noisy images, snakes perform

poorly unless they are placed close to the preferred shapes. In a move to make the �nal

result relatively insensitive to the initial conditions, Cohen [5] de�nes an in
ation force on

the active contour. This new force makes the model behave like an in
ating balloon. The

contour model with the above change will be stopped by a strong edge and will simply pass

through a spurious edge which is too weak relative to the ambient in
ation force.

Although the in
ation force prevents the curve from getting \trapped" by isolated spurious

edges, the active contour model cannot segment complex shapes with signi�cant protrusions

like the one shown in �gure (1). Moreover, despite a good initialization, the active contour

model, due to its arc-length and curvature minimization properties, cannot be forced to

extrude through any signi�cant protrusions that a shape may posses. One possible solution

to this problem is to embed the snake model, which is an instance of a 1D thin-plate-

membrane-spline, in an adaptive environment wherein the material parameters controlling
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Figure 1: Digital subtraction angiogram of an arterial structure

the relative strengths of elasticity and rigidity are adapted (see [16]). The merits of such

an approach are suspect since it is not always possible to derive criteria upon which to

base the adaptation algorithm. So the problem is one of accurately modeling bifurcations

and protrusions in complex structures. In [22] it has been shown that multiple instances of

deformable models are required to handle shapes with several distinct parts. This can be

very cumbersome, for it involves excessive user interaction and presumes that the shape has

already been deciphered into its constituent parts. Instead, we propose a method that will

start with a single instance of the model and will sprout the branches during the evolutionary

process. Once the shape has been segmented from the image, its constituent part structure

can be inferred [10].

Most existing surface modeling techniques require that the topology of the object be known

before the reconstruction can commence. However, it is not always possible to specify the

topology of an object prior to its reconstruction. As a result, most reconstruction schemes

end up making strong assumptions about object topology. Vision systems which derive

quantitative models of complex object shapes by integrating di�erent visual modalities can-

not evade the issue of unknown and unpredictable topologies. Unknown topology is also an
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important concern in object tracking and motion detection applications where the positions

of object boundaries are tracked in an image sequence through time. During their evolution,

these closed contours may change connectivity and split, thereby undergoing a topological

transformation. A heuristic criterion for splitting and merging which is based on monitoring

deformation energies of points on the elastic curve has been discussed in [15]. More recently,

molecular dynamics has been used to model surfaces of arbitrary topology [20]. Smoothness

and continuity constraints are imposed by subjecting a particle system to interaction poten-

tials which locally prefer planar or spherical arrangement. Particles can be added and deleted

dynamically to enlarge and trim the surface respectively, while the system dynamics strive

continually to organize the particles into smooth shapes. The result is a versatile method

with applications in surface �tting to sparse data and 3D medical image segmentation.

The scheme described in this paper can be applied to situations where no a priori as-

sumption about the object's topology can be made. A single instance of our model, when

presented with an image having more than one object of interest, has the ability to split

freely to represent each object [12].

1.1 Overview

In this subsection we brie
y outline the scheme we use to model complex shapes. Our

method is inspired by ideas �rst introduced in Osher & Sethian [13, 19] to follow propagating

fronts with curvature-dependent speeds. Two such examples are 
ame propagation and

crystal growth, in which the speed of the moving interface normal to itself depends on

transport terms modi�ed by the local curvature. The challenge in these problems is to

devise numerical schemes for the equations of the propagating front which will accurately

approximate these highly unstable physical phenomena. Sethian [18] has shown that direct

parameterization of the moving front may be unstable since it relies on local properties of

the solution. In contrast, a method which preserves the global properties of the motion

is sought. Osher and Sethian [13, 19] achieve this by embedding the surface in a higher-

dimensional function. The equation of motion for this function is reminiscent of an initial

valued Hamilton-Jacobi equation with a parabolic right-hand side and is closely related to a
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viscous hyperbolic conservation law. In our work we adopt these level set techniques to the

problems of shape reconstruction. To isolate a shape from its background, we �rst consider a

closed, nonintersecting, initial hypersurface placed inside it. Following the level set approach

above, this hypersurface is then made to 
ow along its gradient �eld with some speed F (K),

where K is the curvature of the hypersurface. As in [13], we adopt a global approach and

view the (N �1) dimensional moving surface as a level set of a time-dependent function  of

N space dimensions. The equations of motion written for this higher dimensional function

are then amenable to stable entropy-satisfying numerical schemes designed to approximate

hyperbolic conservation laws. Topological changes can be handled naturally in this approach,

since a particular level set f = 0g of the function  need not be simply connected. However,

there are two problems that need to be surmounted before we can use this design for shape

reconstruction. First, it is required that we stop the hypersurface in the neighborhood

of the desired shape. We do this by synthesizing a negative speed function from the image.

Secondly, we have to construct an extension of this speed function to other level sets f = Cg

in the image (see �gure 2). In the following sections we outline a possible solution to these

problems.

We note that this work on interface motion and hyperbolic conservation laws as discussed

in [13, 18, 19], has been applied in the area of computer vision for shape characterization

by Kimia et al. [10], who unify many diverse aspects of shape by de�ning a continuum

of shapes (reaction/di�usion space), which places shapes within a neighborhood of other

similar shapes. This leads to a hierarchical description of a shape which is suitable for its

recognition. The key distinguishing feature of our work from that of Kimia et al., is that

they assume the object shape to be known, while we reconstruct it from noisy data. In other

words, they show that by evolving a known shape boundary, explicit clues can be derived

towards the goal of developing a hierarchical shape description. In contrast, we start with an

arbitrary function  and recover complex shapes by propagating it along its gradient �eld.

Shape characterization can be readily done once the object shape is extracted.

In summary, we present a novel scheme for shape modeling which can be used in both

computer vision and computer graphics applications. Given the reconstructed shape, our

6



approach can also be used for deciphering the constituent part structure. The remainder of

this paper is organized as follows: section 2 introduces the curvature-dependent front prop-

agation problem and establishes a link between Hamilton-Jacobi equations and a hyperbolic

conservation law. In section 3 we explain our level set algorithm for shape reconstruction

and section 4 presents some experimental results of applying our method to some synthe-

sized and real noisy images. We close with a discussion of advantages of our approach and

direction of future research in section 5.

2 Front propagation problem

In this section we present the level set technique due to Osher and Sethian [13]. For details

and an expository review, see Sethian [19]. As a starting point and motivation for the level

set approach, consider a closed curve moving in the plane, that is, let 
(0) be a smooth,

closed initial curve in Euclidean plane R2, and let 
(t) be the one-parameter family of curves

generated by moving 
(0) along its normal vector �eld with speed F (K), a given scalar

function of the curvature K. Let x(s; t) be the position vector which parameterizes 
(t) by

s, 0 � s � S.

One numerical approach to this problem is to take the above Lagrangian description of

the problem, produce equations of motion for the position vector x(s; t), and then discretize

the parameterization with a set of discrete marker particles laying on the moving front.

These discrete markers are updated in time by approximating the spatial derivatives in the

equations of motion, and advancing their positions one time step. However, there are several

problems with this approach, as discussed in Sethian [18]. First, small errors in the computed

particle positions are tremendously ampli�ed by the curvature term, and calculations are

prone to instability unless an extremely small time step is employed. Second, in the absence

of a smoothing curvature (viscous) term, singularities develop in the propagating front,

and an entropy condition must be observed to extract the correct weak solution. Third,

topological changes are di�cult to manage as the evolving interface breaks and merges. And

fourth, signi�cant bookkeeping problems occur in the extension of this technique to three
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Figure 2: Level set formulation of equations of motion { (a) & (b) show the curve 
 and
the surface  (x; y) at t = 0, and (c) & (d) show the curve 
 and the corresponding surface
 (x; y) at time t.

dimensions.

As an alternative, the central idea in the level set approach of Osher and Sethian [13] is to

represent the front 
(t) as the level set f = 0g of a function  . To motivate this approach,

we consider the example of an expanding circle. Suppose the initial front 
 at t = 0 is a circle

in the xy-plane (�gure 2(a)). We imagine that the circle is the level set f = 0g of an initial

surface z =  (x; y; t = 0) in R3 (see �gure 2(b)). We can then match the one-parameter

family of moving curves 
(t) with a one-parameter family of moving surfaces in such a way

that the level set f = 0g always yields the moving front (�gures 2(c) & 2(d)).

In the general case, let 
(0) be a closed, nonintersecting, (N�1) dimensional hypersurface.

Let  (x; t), x 2 RN , be the scalar function such that  (x; 0) = �d(x), where d(x) is the

signed distance from x to the hypersurface 
(0). We use the plus sign if x is outside 
(0)

and minus sign if x is inside. Each level set of  
ows along its gradient �eld with speed

F (K). The gradient r (x; t) is normal to the (N �1) dimensional level set passing through

x. Now, we derive the equation of motion for function  .

Consider the motion of some level set f = Cg. Following the derivation in [13], let x(t)
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be the trajectory of a particle located on this level set, so

 (x(t); t) = C: (1)

The particle speed @x=@t in the direction n normal to 
(t) is given by the speed function F .

Thus,

@x

@t
� n = F; (2)

where the normal vector n is given by n = r = j r j. By the chain rule we get,

 t +
@x

@t
� r = 0 (3)

and substitution yields

 t + F j r j= 0; (4)

with an initial condition  (x; 0) = �d(x). We refer to equation (4) as the level set \Hamilton-

Jacobi" formulation. Note that at any time, the moving front 
(t) is simply the level set

f (x; t) = 0g. There are several advantages to this approach. First, since the underlying

coordinate system is �xed, discrete mesh points used in the numerical update equations

do not move, resulting in a stable computation. Topological changes in the front can be

handled naturally by exploiting the property that the level surface f = 0g need not be

simply connected.  (x; t) always remains a function, even if the level surface f = 0g

corresponding to the front 
(t) changes topology, or forms sharp corners. The geometric and

di�erential properties of 
(t) are captured in the function  and can be readily extracted.

As an example, if x 2 R2, the curvature is given by

K =
( yy 

2
x � 2 x y xy +  xx 

2
y)

( 2
x +  2

y)
3=2

: (5)

This approach can also be easily extended to higher dimensions and appropriate expressions

can be obtained for the mean curvature and the Gaussian curvature [13].

By substituting F (K) = 1 � "K as a typical speed function in equation (4), the equation

of motion becomes

 t+ j r j= "K j r j : (6)
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Equation (6) resembles a Hamilton-Jacobi equation with viscosity, where \viscosity" refers

to the second-order parabolic right-hand side. This equation can be solved using the sta-

ble, entropy-satisfying �nite di�erence schemes, borrowed from the literature on hyperbolic

conservation laws (see [13]).

3 Shape reconstruction with front propagation

In this section, we describe how the level set formulation for the front propagation problem

discussed in the previous section can be used for shape reconstruction. There is a fundamen-

tal di�erence between the problems of front propagation and shape reconstruction. In the

former, the front represents a solid/liquid interface (crystal growth) or a boundary separat-

ing burnt and unburnt regions (
ame propagation). In these cases the computation is alive

as long as there remains a physical domain into which the front can be moved. For example,

the 
ame front can be moved as long as there is a region to be burnt and it hasn't crossed the

physical domain in which the solution is sought. On the contrary, in shape reconstruction

the front represents the boundary of an evolving shape. Since the idea is to extract object

shapes from a given image, the front should be forced to stop in the vicinity of the desired

object boundaries. This is analogous to the force criterion used to push the active contour

model towards desired shapes. We de�ne the �nal shape to be the con�guration when all

the points on the front come to a stop, thereby bringing the computation to an end.

Our goal now is to de�ne a speed function from the image data that can be applied

on the propagating front as a stopping criterion. In general the function F can be split

into two components: F = FA + FG. The term FA, referred to as the advection term, is

independent of the moving front's geometry. The front uniformly expands or contracts with

speed FA depending on its sign and is analogous to the in
ation force de�ned in [5]. The

second term FG, is the part which depends on the geometry of the front, such as its local

curvature. This (di�usion) term smooths out the high curvature regions of the front and

has the same regularizing e�ect on the front as the internal deformation energy term in
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thin-plate-membrane splines [9]. We rewrite equation (6) by splitting the in
uence of F as

 t + FA j r j +FG j r j= 0: (7)

First consider the case when the front moves with a constant speed, i.e. F = FA. To this if

we add a negative speed term synthesized from the image, such that their sum tends to zero

near large image gradient locations, we will achieve our goal of bringing the front to a stop

in the neighborhood of object boundaries. To this end, we de�ne a negative speed FI to be

FI(x; y) =
�FA

(M1 �M2)
fj rG� � I(x; y) j �M2g ; (8)

whereM1 andM2 are the maximumand minimumvalues of the magnitude of image gradient

j rG� � I(x; y) j, (x; y) 2 
. The expression G� � I denotes the image convolved with a

Gaussian smoothing �lter whose characteristic width is �. Alternately, we could use a

smoothed zero-crossing image to synthesize the negative speed function. The zero-crossing

image is produced by detecting zero-crossings in the function r2G� � I, which is the original

image convolved with a Laplacian-of-Gaussian �lter whose characteristic width is �. The

equation of motion with the addition of image-based speed is

 t + (FA + F̂I) j r j= 0: (9)

F̂I is called an extension of FI to points away from the boundary 
(t), i.e. at points (x; y) 2

(
 � 
(t)), and is equal to FI on 
(t). We shall return to the issue of extension shortly.

The value of FI lies in the range [�FA; 0] as the value of image gradient varies between M1

and M2. From this argument it is clear that the front gradually attains zero speed as it gets

closer to the object boundaries and eventually comes to a stop.

In the case when the front moves with a speed that is a function of local curvature, i.e.

FG 6= 0, it is not possible to �nd an additive speed term from the image that will cause the

net speed of the front to approach zero in the neighborhood of a desired shape. Instead, we

multiply the speed function F = FA+FG with a quantity kI . The term kI , which is de�ned

as

kI (x; y) =
1

1+ j rG� � I(x; y) j
; (10)
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has values that are closer to zero in regions of high image gradient and values that are closer

to unity in regions with relatively constant intensity. The modi�ed equation of motion is

given by

 t + k̂I(FA + FG) j r j= 0: (11)

We now come to an important juncture in our discussion. The image-based speed term,

be it FI or kI , has meaning only on the boundary 
(t), i.e. on the level set f = 0g. This

follows from the fact that they were designed to force the propagating level set f = 0g

to a complete stop in the neighborhood of an object boundary. However, the equation of

motion (9) is written for the function  , which is made up of in�nitely many level curves. In

other words, equations (9) & (11) control the evolution of a family of level sets. Therefore,

it is imperative that the net speed used in the evolution equation has a consistent physical

meaning for all the level sets, i.e. at every point (x; y) 2 
. Speed functions such as FG which

are functions of geometric properties of the surface z =  (x; y), can be readily computed

at any (x; y) 2 
. However, FI is not such a function. It derives its meaning not from the

geometry of  but from the con�guration of the level set f = 0g in the image plane. Thus,

our goal is to construct an image-based speed function F̂I that is globally de�ned. We call

it an extension of FI o� the level set f = 0g because it extends the meaning of FI to other

level sets. Note that the level set f = 0g lies in the image plane and therefore F̂I must

equal FI on f = 0g. The same argument applies to the coe�cient kI .

If the level curves are moving with a constant speed, i.e. FG = 0, then at any time t, a

typical level set f = Cg, C 2 R, is a distance C away from the level set f = 0g (see �gure

3). Observe that the above statement is a rephrased version of Huygen's principle which,

from a geometrical standpoint, stipulates that the position of a front propagating with unit

speed at a given time t should consist of only the set of points located a distance t away

from the initial front. On the other hand, if FG 6= 0, the level sets will violate the property

that they are a constant distance away from each other. However, they will never collide

and cross each other if the speed function F = FA + FG is continuous (see [8]). With the

above remarks in mind we state the following:
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Property 1 Any external (image-based) speed function that is used in the equation of motion

written for the function  should not cause the level sets to collide and cross each other during

the evolutionary process.

Recall that the function  (x; t) has been initialized to d(x), where d(x) is the signed

distance from a point x 2 
 to the boundary 
(0). Since we cannot attribute any geometric

meaning to the function FI (kI) at points away from the level set f = 0g, we look for a

meaning that is consistent with property (1). Therefore, the question to ask is: what is the

value of F̂I (or k̂I) at a point (x; y) lying on a level set f = Cg? We answer this question

in the following construction (see �gure 4).

Construction 1 The value of F̂I (k̂I) at a point P lying on a level set f = Cg is exactly

the value of FI (kI) at a point Q, such that point Q is a distance C away from P and lies

on the level set f = 0g.

It is easy to see that F̂I reduces to FI on f = 0g. We use the same construction to

determine the value of k̂I at a point (x; y) lying on some level set f = Cg. Note that if

the de�nition of a speed function adheres to construction 1, then it will also be consistent

with the property 1. Thus, having ascribed the intent of pseudodi�erential equations (9) &

(11) in the context of shape modeling, we can use �nite di�erence schemes to solve them
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numerically. Since  can develop corners and sharp gradients, numerical schemes borrowed

from hyperbolic conservation laws are used to produce stable upwind schemes. Moreover,

the equations of motion can be solved on a uniform mesh and the level sets can be moved

without their explicit construction.

4 Numerical solution and experimental results

In this section, almost without a change, we present the arguments discussed in Sethian [19].

For complete details of the following scheme, we refer the reader to Osher & Sethian [13, 19].

The equation (6) poses an initial valued problem. It is rewritten here as

 t + ( 2

x +  2

y)
1=2 = "r �

 
r 

j r j

!
(12)

with  (x; y; t = 0) = � distance from (x; y) to 
(0). As shown in Sethian [18], for " > 0,

the parabolic right-hand side di�uses sharp gradients and forces  to stay smooth at all

values of t. For " = 0, the boundary moves with unit speed, and a corner must develop

from smooth initial data. Once a corner develops, it is not clear how to propagate the

front in the normal direction, since the derivative is not de�ned at the corner. A variety

of \weak" solutions which propagate the curve beyond the occurrence of a singularity are

possible. Of all such weak solutions, one is interested in the one that is the limit of smooth

solutions as " ! 0. This particular weak solution can be selected with the help of a so-

called \entropy condition", see [18]: If the front is viewed as a burning 
ame, then once a

particle is burnt it stays burnt. Thus, approximations to the spatial derivative are sought

that do not arti�cially smooth sharp corners and which pick out the correct entropy solution

when singularities develop. The schemes given in [13, 19] are motivated by the fact that the

entropy condition for propagating fronts is identical to the one for hyperbolic conservation

laws, where stable, consistent, entropy-satisfying algorithms have a rich history.

First, consider the one-dimensional version of the level set equation, with constant normal

velocity FA = 1. Then the equation (6) becomes a standard Hamilton-Jacobi equation

�t +H(�x) = 0; (13)
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Figure 4: Extension of image-based speed terms to other level sets

where H(�x) = �(�2x)
1=2, and with a given initial value of �. Let u = �x. Taking the

derivative with respect to x, equation (13) becomes

ut + [H(u)]x = 0; (14)

where H(u) = �(u2)1=2. Equation (14) is a scalar hyperbolic conservation law in one space

variable. Solutions can develop discontinuous jumps, known as shocks, even with smooth

initial data. In order to make sense of the solution after shocks form, an integral version of

the conservation law which admits discontinuous solutions is studied. Both sides of equation

(14) are integrated in an arbitrary interval [a; b] to produce

d

dt

Z b

a
u(x; t)dt = H[u(a; t)]�H[u(b; t)]: (15)

u is known as a weak solution of the conservation law if it satis�es the above integral equation.

Note that u need not be di�erentiable to satisfy the integral form of the conservation law.

When will a numerical algorithm approximate the correct, entropy-satisfying solution to

equation (15)? The answer is found in the following de�nition:

De�nition 1 Let uni be the value of u at a mesh point i�x at time n�t. A three-point

di�erence scheme is said to be in conservation form if there exists a function g(u1; u2) such

that the scheme can be written in the form

un+1i � uni
�t

= �
g(uni ; u

n
i+1)� g(uni�1; u

n
i )

�x
; (16)
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where g(u; u) = H(u).

This de�nition is natural; the scheme must approximate the hyperbolic conservation law,

subject to the consistency requirement g(u; u) = H(u). In order to guarantee that the

scheme picks out the correct entropy-satisfying weak solution, monotonicity is required, i.e.,

that un+1i be an increasing function of the arguments uni�1, u
n
i , and u

n
i+1. The main fact is:

A conservative, monotone scheme produces a solution that satis�es the entropy condition.

Equation (16) is a scheme for the slope u, which must be converted into a scheme for � itself.

First write equation (13) with a forward di�erence in time as,

�n+1i = �ni ��tH(u): (17)

Since the numerical 
ux function g approximates H, the solution to equation (17) may be

approximated by

�n+1i = �ni ��tg(ui�1=2; ui+1=2)

= �ni ��tg(D�x �i;D
+

x �i); (18)

where g is an appropriate numerical 
ux function and the standard de�nitions of the forward

and the backward di�erence operators have been used, namely,

D�x �i =
�ni � �ni�1

�x
;

D+

x �i =
�ni+1 � �ni

�x
: (19)

Finally, an appropriate numerical 
ux function g is required. In the special case where

H(u) may be written as a function of u2, i.e., H(u) = f(u2) for some function f , one can

use the Hamilton-Jacobi 
ux function given in [13]:

g(ui�1=2; ui+1=2) = g(D�x �i;D
+

x �i)

= f((max(D�x �; 0))
2 + (min(D+

x �; 0))
2): (20)

This conservative monotone scheme is upwind method in that it di�erences in the direction of

propagating characteristics. This is important, since it imposes boundary conditions on the
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walls of a �nite-sized computational box. An upwind scheme automatically di�erences in the

outward-
owing direction at the box walls if the boundary is expanding, thus information


ows out. In the case when FA = 1, so that f(u2) = �(u2)1=2, equation (18) reduces to

�n+1i = �ni ��tf(max(D�x �; 0))
2 + (min(D+

x �; 0))
2g1=2: (21)

This algorithm produces the correct entropy-satisfying weak solution to the propagating

front problem.

The above discussion can be extended to problems in more than one space dimension (see

Osher & Sethian [13]). Recall that the original intent was to solve equations (9) and (11).

In two dimensions, the scheme given in equation (21) is extended by di�erencing in each

direction to produce the following numerical scheme for equation (9):

 n+1
i;j =  n

i;j ��t[FA + (F̂I)i;j]f(max(D�x  i;j; 0))
2 + (min(D+

x  i;j; 0))
2

+(max(D�y  i;j; 0))
2 + (min(D+

y  i;j; 0))
2g1=2: (22)

Similarly, the numerical scheme for equation (11) is,

 n+1
i;j =  n

i;j ��tFA(k̂I)i;jf(max(D�x  i;j; 0))
2 + (min(D+

x  i;j; 0))
2

+(max(D�y  i;j; 0))
2 + (min(D+

y  i;j; 0))
2g1=2 ��tFGk̂I j r j : (23)

The second term FGk̂I j r j is not approximated in the above equation; one may use a

straightforward central di�erence approximation to this term.

4.1 Experimental results

In this section we present several shape reconstruction results that were obtained by applying

the level set algorithm to image data. We also outline some of the implementation details of

our algorithm. Given an image, our method requires the user to provide an initial contour


(0). As we shall see, there is absolutely no restriction on where the initial contour can be

placed in the image plane as long as it is inside a desired shape or encloses all the constituent

shapes. This feature is of paramount importance in the context of automatic shape recovery.

Our front seeks the object boundaries by either propagating outward in the normal direction
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or propagating inward in the negative normal direction. This choice is made at the time of

initialization. Note that after the speci�cation of initial shape of 
(0), our algorithm does

not require any further user interaction.

The initial value of the function  i.e.,  (x; 0) is computed from 
(0). We �rst discretize

the level set function  on the image plane and denote  i;j as the value of  at a grid

point (i�x; j�y), where �x and �y are step sizes in either coordinate directions. In our

implementation, since we usually work with 2kX2k images, the computational domain is a

square one with �x = �y = h. We de�ne the distance from a point (i; j) to the initial

curve to be the shortest distance from (i; j) to 
(0). The magnitude of  i;j is set to this

value. We use the plus sign if (i; j) is outside 
(0) and minus sign if (i; j) is inside. Once the

value of  i;j is computed at time t = 0 by following the above procedure, we use the update

equations from the previous section to move the front.

It should be observed that by updating the level set function on a grid, we are moving

the level sets without constructing them explicitly. To �nd the position of the front and

to compute the image-based speed terms, at each time step we need to �nd the level set

f = 0g. We construct a piecewise linear approximation for 
(t) as follows. Given a cell

(i; j), if max( i;j;  i+1;j;  i;j+1;  i+1;j+1) < 0 or min( i;j;  i+1;j;  i;j+1;  i+1;j+1) > 0, then that

cell cannot contain 
(t), so we ignore that cell. Otherwise, we �nd the entrance and exit

points where  = 0 by linear interpolation. This provides two nodes on 
(t) and thus one

of the line segments which form our approximation to 
(t). The collection of all such line

segments constitutes our approximation to the level set f = 0g, which is used for future

evaluation of the image-based speed term in the update equation (23). These line segments

are also used to display the current position of the front in the image plane.

The stability requirement for the explicit method for solving our level set equation is

�t = O(�x2) for the equation (23). If FG = 0, then the stability requirement is �t = O(�x).

This could potentially force a very small time step for �ne grids making the computation

excruciatingly slow. Since the algorithm to extend the image-based speed terms to other

level sets is relativelymore expensive than the front propagation algorithm, we could improve

the performance by evaluating the extension only once every k iterations. In other words,

18



we take k steps in time without recomputing the force �eld (k̂I)i;j. Alternately, we could

down-sample the image and perform our calculations at a lower resolution. In this approach

we run the risk of losing accuracy. However, we show that the results obtained with down-

sampled images are very promising. We can get the best of both worlds by embedding our

level set algorithm in a multiresolution framework. We refrain from continuing this line of

discussion any further since the details of such schemes are beyond the scope of this paper.

We now present our shape reconstruction results in 2D. We �rst consider a 256 X 256 image

with a single shape. The function  has been discretized on a 64 X 64 mesh, i.e. calculations

are performed at every fourth pixel. In �gure 5(a), we show the closed contour that the

user places around the shape at time t = 0. The function  is then made to propagate

in the negative normal direction. Figures 5(b) & 5(c) depict the con�guration of the level

set f = 0g at two intermediate time instants. The �nal result is achieved after 80 time

iterations and is shown in �gure 5(d). It should be noted that our method does not require

that the initial contour be placed close to the object boundary. In order to quantize the loss

in accuracy which results at lower resolutions, we perform the same reconstruction on a 256

X 256 mesh. The result is shown in 5(e). In �gure 5(e), we also plot the level sets f = �Cg

to verify that the image-based speed term does not violate the property 1.

In our second experiment we recover the complicated structure of an arterial tree. The real

image has been obtained by clipping a portion of a digital subtraction angiogram. This is an

example of a shape with branches and signi�cant protrusions. In this experiment we compare

the performance of our scheme with the active contour model and bring its limitations into

focus. We �rst attempt to reconstruct the complex arterial structure using a snake model

with in
ation forces. In �gures 6(a) through 6(i), we show a sequence of pictures depicting

the snake con�guration in the image. We present the �nal equilibrium state of the snake

in �gures 6(c), 6(f), & 6(i) corresponding to three distinct initializations, one better than

the preceding. In all three cases the active contour model, even after 1000 time iterations,

barely recovers the main stem of the artery and completely fails to account for the branches.

Two prominent limitations of the snake model immediately come into light. The �rst is the

dependence of �nal result on the initial con�guration. This is due to the existence of multiple
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local minima in the (nonconvex) energy functional which the numerical procedure explicitly

minimizes. The second feature is the inability of snake model to attain a stable shape with

protrusions. Observe how in the third case, despite a good initialization (�gure 6(g)), the

snake \snaps" back into a relatively \bumpless" con�guration in �gure 6(h). This inadequacy

stems from snake's arc-length (elasticity) and curvature (rigidity) minimizing nature. Snake

prefers regular shapes because shapes with protrusions have very high deformation energies.

Now, we apply our level set algorithm to reconstruct the same shape. After initialization in

�gure 7(a), the front is made to propagate in the normal direction. It can be seen that in

subsequent frames the front literally \
ows" into the branches and �nally in 7(f) it completely

reconstructs the complex tree structure. The advantages of our scheme are quite apparent

from this example. Since our front advancement process does not involve optimization of

any quantity, the shape reconstruction results we obtain are independent of initialization.

In addition, a single instance of our shape model \sprouts" branches and recovers all the

connected components of a given shape. In �gures 8(a)-(i) we plot the other level sets to

elucidate the process of extending the image-based speed function to points away from the

zero set. All calculations were carried out on a 64 X 64 grid and the time step �t is set to

0.001.

Lastly, in �gure (9) we depict a situation when the front undergoes a topological trans-

formation to reconstruct the constituent shapes in an image. The image consists of three

distinct shapes. Initial curve is placed in such a way that it envelops all the objects. The

front is then advanced in the direction of negative normal. The level set f = 0g �rst wraps

itself tightly around the objects (see �gures 9(c) & 9(d)) and subsequently splits into four

separate closed curves (�gure 9(e)). While the �rst three closed segments of f = 0g recover

the three distinct shapes, the one in the middle (see �gure 9(e)), since it does not enclose

any object, eventually disappears. Figure 9(f) shows the �nal result. Again it should be

noted that a single instance of our shape model dynamically splits into three instances to

represent each object. Again, to show the working of our algorithm, in �gures 10(a)-(i) we

show the level sets f = �iCg, i 2 [�5::+5], with C = 0:05. The function  was discretized

on a 64 X 64 grid and �t is set to 0.001.
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5 Concluding remarks

In this paper we presented a novel shape modeling scheme. Our approach while retaining

the desirable features of existing methods for shape modeling, overcomes most of their de-

�ciencies. We adopt the level set techniques �rst introduced in Osher & Sethian [13] to

the problem of shape recovery. With this approach, complex shapes can be reconstructed.

Unlike the variational formulations for shape reconstruction which rely on energy minimiza-

tion, the �nal result in our method is completely independent of the initial state. This is a

very desirable feature to have, specially if the problem is to recover object shapes from noisy

images. Moreover, our scheme makes no a priori assumption about the object's topology.

Other salient features of our shape modeling scheme include its ability to split and merge

freely without any additional bookkeeping during the evolutionary process and its easy ex-

tendibility to higher dimensions. The equations of motion governing our evolutionary system

resemble an initial valued Hamilton-Jacobi equation with a parabolic right-hand side and

are amenable to stable entropy-satisfying numerical solution schemes. Thus, the result is a

very general shape modeling algorithm which we believe will �nd numerous applications in

the areas of computer vision and computer graphics.

In the context of 2D shape reconstruction, we force our front to come to a stop in the

neighborhood of object boundaries by synthesizing a negative speed term from noisy images.

It is easy to envision a similar scheme to reconstruct the surface structures of 3D objects

from 3D medical image data. However, it is not clear how to adapt the level set formulation

in its present form to reconstruct surface shapes from sparse range data. The other issue is

one of time complexity. We have seen in the previous section that the stability requirement

for solving the level set equations forces a very small time step for �ne grids. On the other

hand, shape reconstruction results on a coarse grid su�er from loss of accuracy. To salvage

this situation we propose to embed out level set algorithm in a multiresolution framework,

where the loss of accuracy at rapidly-converging coarse grid computation is compensated

by highly accurate slowly-converging �ne grid calculation. We are currently working on one

such scheme.
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(a) Initialization (b) After 22 iterations

(c) After 49 iterations (d) After 80 iterations

(e) Fine grid computation

Figure 5: Shape reconstruction results at di�erent resolutions: mesh size for parts (a), (b),
(c), & (d) is 64 X 64 and the time step �t = 0:008. Computation in part (e) was performed on
a 256 X 256 mesh with a step size �t = 0:00005. The other level sets shown are f = �0:05g.
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(a) Initialization 1 (b) 500 iterations (c) 1000 iterations

(d) Initialization 2 (e) 500 iterations (f) 1000 iterations

(g) Initialization 3 (h) 500 iterations (i) 1000 iterations

Figure 6: An unsuccessful attempt to reconstruct a complex shape with \signi�cant" pro-
trusions using an active contour model. Three di�erent (poor) results are shown in parts (c),
(f), & (i) corresponding to three distinct initializations in parts (a), (d), & (g) respectively.
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(a) Initialization (b) After 60 iterations

(c) After 123 iterations (d) After 200 iterations

(e) After 275 iterations (f) After 391 iterations

Figure 7: Reconstruction of a shape with \signi�cant" protrusions: an arterial tree structure.
Computation was done on a 64 X 64 grid with a time step �t = 0:001.
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(a) Initialization (b) 60 iterations (c) 123 iterations

(d) 170 iterations (e) 200 iterations (f) 275 iterations

(g) 320 iterations (h) 350 iterations (i) 390 iterations

Figure 8: Reconstruction of a shape with protrusions: �gure shows the level sets f = �iCg,
i 2 [�5::+ 5], and C = 0:05.
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(a) Initialization (b) After 30 iterations

(c) After 60 iterations (d) After 100 iterations

(e) After 125 iterations (f) After 140 iterations

Figure 9: Topological split: a single instance of the shape model splits into three instances
to reconstruct the individual shapes. Computation was done on a 64 X 64 mesh with a time
step �t = 0:001.
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(a) Initialization (b) 60 iterations (c) 89 iterations

(d) 100 iterations (e) 120 iterations (f) 130 iterations

(g) 154 iterations (h) 170 iterations (i) 185 iterations

Figure 10: Topological split example: level sets shown are f = �iCg, i 2 [�5::+ 5], with
C = 0:05.
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