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S
tatistical meth-
ods of automat-
e d  d e c i s i o n 
m a k i n g  a n d 
modeling have 

been invented (and rein-
vented) in numerous fields 
for more than a century. 
Important problems in 
this arena include pattern 
classification, regression, 
control, system identifica-
tion, and prediction. In 
recent years, these ideas have come to be recognized as exam-
ples of a unified concept known as machine learning, which is 
concerned with 1) the development of algorithms that quantify 
relationships within existing data and 2) the use of these iden-
tified patterns to make predictions based on new data. Optical 
character recognition, in which printed characters are identi-
fied automatically based on previous examples, is a classic 
engineering example of machine learning. But this article will 
discuss very different ways of using machine learning that may 
be less familiar, and we will demonstrate through examples the 
role of these concepts in medical imaging. 

Machine learning has seen an explosion of interest in mod-
ern computing settings such as business intelligence, detec-
tion of e-mail spam, and fraud and credit scoring. The medical 
imaging field has been slower to adopt modern machine-
learning techniques to the degree seen in other fields. 

However, as computer 
power has grown, so has 
interest in employing 
advanced algorithms to 
facilitate our use of medi-
cal images and to enhance 
the information we can 
gain from them. 

Although the term 
machine learning is rela-
tively recent, the ideas of 
machine learning have 
been applied to medical 

imaging for decades, perhaps most notably in the areas of 
computer-aided diagnosis (CAD) and functional brain map-
ping. We will not attempt in this brief article to survey the rich 
literature of this field. Instead our goals will be 1) to acquaint 
the reader with some modern techniques that are now staples 
of the machine-learning field and 2) to illustrate how these 
techniques can be employed in various ways in medical imag-
ing using the following examples from our own research:

CAD■

content-based image retrieval (CBIR)■

automated assessment of image quality■

brain mapping.■

INTRODUCTION TO MACHINE LEARNING
In this brief tutorial, we will attempt to introduce a few 
basic techniques that are widely applicable and then show 
how these can be used in various medical imaging settings 
using examples from our past work in this field. For further 
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information, interested readers should consult well-known 
introductions to machine learning, such as the excellent 
treatments in [1] and [2].

SUPERVISED LEARNING
In machine learning, one often seeks to predict an output vari-
able y  based on a vector x  of input variables. To accomplish 
this, it is assumed that the input and output approximately obey 
a functional relationship y5 f 1x 2 , called the predictive model, 
as shown in Figure 1. In supervised learning, the predictive 
model is discovered with the benefit of training data consisting 
of examples for which both x  and y  are known. We will denote 
these available pairs of examples as 1x i, yi 2 , i5 1, c, N , and 
we will assume that x is composed of n  variables (called fea-
tures), so that x i [ Rn. In general, the output of the predic-
tive model can be a vector (e.g., in multiclass classifiers), but 
for simplicity we will confine our attention to the case of sca-
lar outputs.

Historically, a somewhat artificial distinction has some-
times been made between two learning problems: classifica-
tion and regression. Classification refers to decision among a 

typically small and discrete set of choices (such as identifying 
a tumor as malignant or benign), whereas regression refers to 
estimation of a possibly continuous-valued output variable 
(such as a diagnostic assessment of disease severity y 2 . If the 
choices in a classification problem are indicated by discrete 
numerical values (e.g., y511 for the class malignant and 
y521 for benign), then it is easy to see that classification 
and regression are represented equivalently by the model 
in Figure 1.

THE SUPPORT VECTOR MACHINE CLASSIFIER: 
A MAXIMUM-MARGIN APPROACH 
Let us consider the simple pattern classification problem depict-
ed in Figure 2, in which the goal is to segregate vectors 
x5 1x1, x2 2T into two classes by using a decision boundary T. 
Let us employ a linear model f 1x 2 5wTx1 b, so that T  is a line 
in this two-dimensional example. Traditionally, the model’s 
parameters (w and b in this case) have been determined using 
classical criteria such as least squares or maximum likelihood. 
Figure 2 illustrates how such an approach (in this case, a Fisher 
discriminant) can easily fail, particularly when the method’s dis-
tributional assumptions are violated. In Figure 2(a), data point 
D adversely influences the Fisher discriminant boundary, caus-
ing misclassification of point B even though point D lies very 
far from Class 1, and perhaps should not be granted this degree 
of influence. 

The support vector machine (SVM) [2], discovered by Vapnik, 
resolves this shortcoming by defining the discriminant bound-
ary only in terms of those training examples that lie dangerously 
close to the class to which they do not belong. This idea is 
understood most easily in a situation such as the one shown in 
Figure 2, in which the two classes are strictly separable by a lin-
ear decision boundary, as explored by Wernick in [3]. In this 
case, a separating line that maximizes the margin between the 
two classes can always be found as follows: 

Draw the convex hull of each class of data points (imagine 1) 
stretching a rubber band around each group of points; call 
these regions S1 and S2). 

Find the points 2) C  and E  at which regions S1 and S2 have 
their closest approach. 

Draw the perpendicular bisector of the line segment con-3) 
necting points C  and E  to obtain the decision boundary T.

Step 2 is accomplished by solving a quadratic programming 
(constrained optimization) problem using standard ap-
proaches [3]. In linear classifiers, vector w  is called the 
discriminant vector.

In the terminology of the SVM, points A,  B, and C  in 
Figure 2 are called support vectors, a term derived from an 
analogy to mechanics. If points A, B, and C  in Figure 2 were 
physical supports, they would be sufficient to provide mechan-
ical stability to slab S sandwiched between them.

It is evident that the support vectors are the only examples 
from the training data that explicitly define the model. 
Specifically, for a particular test example x, one can write the 
model in terms of the support vectors as follows:

x f (·) y

Input OutputPredictive Model

[FIG1] In supervised learning the predictive model represents 
the assumed relationship between input variables in x and 
output variabley.
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[FIG2] Fisher linear discriminant (LD) and the SVM. In this 
example, (a) the Fisher LD fails to separate two classes 
because training example D adversely influences decision 
boundary T. (b) The SVM defines the decision boundary 
using only points A, B, and C, called support vectors, and is 
not influenced at all by point D.
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 f 1x 2 5 a i[Is

ai yi x i
T x1 b, (1)

in which the summation includes only the training examples x i 
that are support vectors, and ai are coefficients determined as 
Lagrange multipliers in the optimization procedure. 

The benefits of the SVM approach are that the classifier con-
centrates automatically on examples that are difficult to classify 
(points A, B, and C); and the calculation in (1) scales with the 
number of support vectors rather than the dimension of the space 
(which in some problems is very large). In addition, SVM can be 
shown to balance training error and model complexity, thereby 
avoiding overfitting, a pitfall in which the model is too finely 
tuned to the training examples and fails to perform well on new 
data. This approach is called structural risk minimization [4].

The formulation described thus far does not allow for the 
possibility that the two classes cannot be entirely separated by 
a linear boundary. However, this situation is readily addressed 
by introducing slack variables into the quadratic optimization 
problem, thus allowing a minimal number of the training data 
to be misclassified. In addition, SVM can be easily adapted to 
accomplish regression instead of classification by using a so-
called e-insensitive cost function [2]. 

NONLINEAR MODELS: THE KERNEL TRICK
An important breakthrough in machine learning has been the 
recognition of the so-called kernel trick [2], which provides a 
simple and broadly applicable means to obtain a nonlinear 
model from any linear model based on inner products. Even 
classical techniques, such as the Fisher discriminant or princi-
pal component analysis, can be turned easily into flexible non-
linear techniques via the kernel trick.

To understand the kernel trick, consider the following 
hypothetical series of steps as applied to turn the linear SVM 
into a nonlinear technique. Suppose we were to first apply a 
nonlinear transformation F to each input vector x i from the 
training set and then train a linear classifier to distinguish 
these classes of transformed vectors F 1x i 2 . Separability will be 
enhanced if the dimension of the transform space is higher 
than that of the original space, and indeed the transforma-
tion’s dimension need not be finite. 

At first glance, transforming each input vector into a space 
of high dimension might appear impractical. However, the 
kernel trick recognizes that the desired result can be obtained 
without actually performing the transformation. This can be 
seen by applying the transformation F and then applying the 
SVM model in (1). After transformation, (1) becomes

 f 1x 2 5 a i[Is

ai yiF 1x i 2TF 1x 2 1 b. (2)

Note that the transformation F appears in (2) only in the 
form of an inner product K 1x i, x 2 ! F 1x i 2TF 1x 2 , so that (2) 
can be rewritten as 

 f 1x 2 5 a i[Is

ai yi K 1xi, x 2 1 b. (3)

Therefore, we can see that it is never actually necessary to 
compute F (or even to define it explicitly). Instead it is sufficient 
simply to define the kernel function K 1 # , # 2 , and it can be 
shown that any symmetric positive semidefinite function will 
suffice. Commonly used kernel functions in machine learning 
include radial basis functions (Gaussians) and polynomials. 
Intuitively, the effect of the kernel is to measure the “similarity” 
between a test vector x  and each of the support vectors x i; these 
similarities are then used in to obtain the output result. Vectors 
belonging to one of the classes are presumably most “similar” to 
the support vectors belonging to that class, hence these similari-
ty values convey the needed information. The key point to 
remember is that these similarity comparisons are made only in 
relation to the support vectors, which are difficult examples that 
lie near the discriminant boundary. We will see visual examples 
of these support vectors later in the setting of mammography.

RELEVANCE VECTOR MACHINES: BAYESIAN 
LEARNING AND SPARSITY CONSTRAINTS
An important successor of SVM is the so-called relevance vector 
machine (RVM), developed by Tipping [5]. We have found RVM 
to perform extremely well in several medical imaging applica-
tions, usually with much lower computational cost than alter-
native methods including SVM. The RVM emphasizes sparsity 
(i.e., reduced model complexity), and thus is closely related to 
ideas of compressed sensing [6]. Like SVM, RVM uses a subset of 
the training data called relevance vectors, but usually there are 
far fewer relevance vectors than support vectors.

Like SVM, RVM starts with a kernel model

 f 1x 2 5 a
N

i51
wi K 1x, xi 2 , (4)

however, whereas SVM is based on the maximum-margin prin-
ciple, RVM instead takes a Bayesian approach. RVM assumes a 
Gaussian prior on the kernel weights wi, which are assumed to 
have zero mean and variance ai

21. RVM further assumes a 
gamma hyperprior on ai

21. The net effect of these modeling 
choices is that the overall prior on the kernel weights wi is a 
multivariate t-distribution. Because this distribution is tightly 
concentrated about the axes of the wi space, the prior encourag-
es most values of wi to be nearly zero. Thus, in the end, the 
summation in involves only a few nonzero terms, and the asso-
ciated training examples are called relevance vectors. By this 
mechanism, overfitting is generally avoided, and computation 
times for RVM are relatively low. Surprisingly, in spite of its 
advantages, RVM has been used relatively infrequently in medi-
cal imaging, particularly in comparison with the better-known 
SVM approach. 

While RVM and SVM both base their decisions entirely on a 
subset of the training data (the relevance vectors in RVM; the 
support vectors in SVM), these subsets are usually quite differ-
ent. Support vectors are always examples lying near the deci-
sion boundary, while relevance vectors are usually spread 
 throughout the distribution. We will see this difference later in 
the context of mammography. 
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Unfortunately, RVM does not 
have a simple geometrical 
interpretation as SVM does, 
therefore we will not show a 
graphical example in this arti-
cle; instead we refer the reader 
to [5], which contains several 
nice illustrations.

STATISTICAL RESAMPLING FOR 
ROBUSTNESS AND EVALUATION
Statistical resampling [7] refers to a family of techniques that are 
used to evaluate performance and improve robustness of machine 
learning models and to estimate statistical significance levels. 
Although resampling receives less attention than predictive mod-
els, it is at least as important. 

Machine learning differs from classical decision and esti-
mation theory principally in its emphasis on problems where 
one’s only knowledge of the data’s underlying distributions 
comes from the data themselves. In this setting, statistical sig-
nificance testing cannot be approached in the traditional way 
because the null distribution is unknown. Fortunately, an 
empirical estimate of the null distribution can be readily 
obtained by permutation resampling.

To understand permutation resampling, consider a situation 
in which there are two sets of data, v1 and v2, and we wish to test 
some hypothesis, such as that their means are identical. Since we 
do not know in truth whether v1 and v2 obey the same distribu-
tion (or even the form of their distributions), we cannot directly 
assess significance. However, we can create an empirical null dis-
tribution by permuting the labels on the data, i.e., deliberately 
creating two data sets in which the data from v1 and v2 are 
mixed. Note that it is often important that just the labels and not 
the data themselves be permuted (e.g., in time series problems). 
By permuting the data in every possible way (or at least in some 
reasonably large number of random ways), we can obtain example 
data in which we know that the two groups obey identical distri-
butions, thus characterizing the null hypothesis. 

Another central role played by resampling is in solving the 
following problem of model validation: If we train our model on 
all our available data, then there are no data left for testing the 
model or optimizing its parameters. The predominant resam-
pling methods used in this regard, which both require indepen-
dent, identically distributed (i.i.d.) resampling objects, are cross 
validation and bootstrap methods. In k-fold cross validation, 
the data set is divided randomly into k groups; 1k2 1 2  of these 
groups are used to train the model, and one is reserved for test-
ing. This process is performed k times (once for each held out 
group), then the results are combined, often by averaging. In 
the basic bootstrap, the data are instead trained on a set of N  
data examples obtained by sampling randomly with replacement 
from the entire data set of N. By chance, some examples will 
not be selected into the training set, and these are reserved for 
testing. As in cross validation, the process is repeated and the 
results combined by averaging. 

The basic bootstrap is 
known to reduce the variance 
of estimated prediction accu-
racy at the expense of down-
ward bias (i .e. ,  the basic 
bootstrap provides pessimis-
tic performance estimates). 
This is remedied by the .632 
bootstrap, which utilizes a 

bias correction term, and the more modern .6321 bootstrap 
[8], which additionally attempts to account for bias due to 
overfitting. In problems where an empirical null distribu-
tion is obtained using permutations, the empirical distribu-
tion of the alternative hypothesis can often be obtained 
using the bootstrap.

Statistical resampling is widely used not only to test predic-
tive models, but also to improve their performance. Examples of 
this are bootstrap aggregation (bagging) techniques and the 
nonparametric, prediction, activation, influence, reproducibility, 
resampling (NPAIRS) framework in neuroimaging [9], which is 
explained later in this article.

CAD FOR MAMMOGRAPHY
CAD has been an active research area for decades, so we will not 
attempt to provide a comprehensive survey of the literature. 
Interested readers should consult basic reviews of CAD for 
mammography, such as [10] and [11]. 

Perhaps CAD’s greatest success is in breast imaging. 
Studies have shown that having two radiologists read the same 
mammogram can lead to significantly higher sensitivity in 
cancer screening, but at the expense of increased workload and 
cost. CAD software can serve as a surrogate “second reader,” 
with the aim of improving radiologists’ diagnostic accuracy at 
lower cost. 

CAD encompasses computer-aided detection (CADe), in 
which the computer alerts the radiologist to potential lesions; 
and computer-aided diagnosis (CADx), in which the computer 
predicts the likelihood that a lesion is malignant.

CAD schemes typically consist of the following key steps: 1) 
apply automated image analysis to extract a vector of quantita-
tive features to characterize the relevant image content and 2) 
apply a pattern classifier to determine the category to which the 
extracted feature vector may belong. 

Automatically extracted image features can include image 
contrast, and features based on geometry, morphology, and tex-
ture. In addition, there may be other forms of available informa-
tion about the patient. Machine-learning methods that have 
been employed range from linear discriminant (LD) analysis, 
fuzzy logic techniques, neural networks, and committee 
machines, to the more recent kernel-based methods (e.g., SVM 
and RVM) explained earlier in this article. 

In the following, we describe two examples of machine learn-
ing for CAD in digital mammography drawn from our own 
research: detection (CADe) and classification (CADx) of clus-
tered microcalicifications.

MACHINE LEARNING HAS SEEN AN 
EXPLOSION OF INTEREST IN MODERN 

COMPUTING SETTINGS SUCH AS 
BUSINESS INTELLIGENCE, DETECTION 

OF E-MAIL SPAM AND FRAUD, 
AND CREDIT SCORING.
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CADe: MICROCALCIFICATION DETECTION
Microcalcifications (MCs) are tiny deposits of calcium that 
appear as bright spots in mammograms (see Figure 3). 
Clustered MCs can be an important indicator of breast can-
cer, appearing in 30–50% of cases. Individual MCs are some-
times difficult to detect due to their variation in shape, 
orientation, brightness and size (typically, 0.05–1 mm), and 
because of the confounding texture of surrounding breast tis-
sue. Microcalcification  detection has been an intensive target 
of investigation (e.g., [12]). Modern machine-learning 
approaches have proven very effective in this application, as 
we explain next.

SVM Detector
In [13], we trained an SVM to decide at each location within a 
mammogram whether an MC was present (“MC present” 
class) or absent (“MC absent” class) based on a small region 
of interest (ROI) surrounding that point. The SVM was 
trained using “MC present” ROIs identified by expert radiolo-
gists (see Figure 4). 

The MCs typically occupy only a small fraction of a mam-
mogram, so there are more ROIs with “MC absent” than 
with “MC present.” To take advantage of this, we developed 
a successive enhancement learning (SEL) procedure that 
improves the predictive power of the SVM classifier. In SEL, 
SVM training is adjusted iteratively by selecting the most 
representative “MC absent” examples from all the available 
training images while keeping the total number of training 
examples small.

Based on a set of test mammograms, we demonstrated the 
SEL-SVM method to achieve the best performance among sev-
eral leading methods in the literature as measured by the free-
response receiver operating characteristic (FROC) curve, a plot 
of detection probability versus the average number of false posi-
tives (FPs) per image (Figure 5). Figure 3 shows a portion of an 
example image and the corresponding SVM output. 

RVM Detector 
Computation time can be a critical issue in mammography, 
where the image can contain as many as 3,000 3 5,000 pixels 
that must be evaluated. While the SVM achieves outstanding 
detection performance, it can be very time consuming because 
the number of support vectors can be large. To address this 
issue, in [14] we developed an approach based on the RVM 
(explained earlier), which yields a very sparse decision func-
tion, leading to significant computational savings, while yield-
ing similar detection performance to the SVM. 

To further accelerate the algorithm, we explored a two-
stage classification approach in which we used a computation-
ally inexpensive linear RVM classifier as an initial triage step 
to quickly eliminate non-MC pixels, then a nonlinear RVM 
classifier to detect MCs among the remaining pixels. Our re-
sults demonstrated that the RVM approach achieved nearly 
identical detection accuracy to the SVM at 35 times less com-
putational cost.

SVM Versus RVM 
As explained earlier, SVM and RVM are both kernel methods, and 
both base the decision on only a subset of the training data—the 
support vectors in SVM and relevance vectors in RVM—that 
characterize the respective classes. However, SVM and RVM tend 

Mammogram

Region

SVM Output Detected

Lesion Positions

(a) (b) (c)

[FIG3] (a) Example mammogram containing microcalcifications. 
(b) Output y of SVM detector. (c) Detected MC positions 
obtained by thresholding y.

Support Vectors

(a)

(b)

Relevance Vectors

MC Present MC Absent

MC Present MC Absent

[FIG4] (a) Comparison of support vectors from SVM and 
(b) relevance vectors from RVM for detection of MCs. SVM 
automatically chooses the support vectors to be examples lying 
near the decision boundary (hence the “MC absent” and “MC 
present” support vectors look very similar), while the relevance 
vectors chosen by RVM tend to be more prototypical of the two 
classes (hence the two groups of relevance vectors look very 
different).
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to select very different vectors 
to represent the classes. SVM 
chooses support vectors that lie 
very close to the decision 
 boundary, while RVM tends to 
choose relevance vectors that 
are more prototypical of the two classes. Examples of support 
vectors and relevance vectors are shown in Figure 4. Note that 
the “MC present” and “MC absent” support vectors are very diffi-
cult to distinguish, as they all lie near the decision boundary, 
while the “MC present” and “MC absent” relevance vectors are 
clear examples of lesion and background regions, respectively. 

CADx: DIAGNOSIS OF 
CLUSTERED MICROCALCIFICATIONS
A great deal of research has been directed toward computerized 
CADx methods designed to assist radiologists in the difficult 
decision of differentiating benign from malignant MCs. In [15], 
a CADx scheme was demonstrated to classify clustered MCs even 
more accurately than radiologists. This method used a feedfor-
ward neural network (FFNN), which was trained using metrics 
extracted automatically from the clustered MC images. 

Motivated by recent developments in machine learning, we 
sought in [16] to determine whether state-of-the-art machine-
learning methods [SVM, kernel Fisher discriminant (KFD), 
RVM, and committee machines (including ensemble averaging 
and Adaboost, a well-known boosting method)] would further 
improve classification of MC clusters as malignant or benign, 
as compared with prior methods such as FFNN. We used the 
features defined in [15] that are based on both the shape and 
size of individual MCs as well as their overall distribution as a 
cluster, that are known to correlate qualitatively to features 
used by radiologists. 

The evaluation study dem-
onstrated that the kernel meth-
ods (SVM, KFD, and RVM) are 
similar in performance to one 
another (in terms of the area 
under the receiver-operating 

characteristic (ROC) curve), but all demonstrated statistically 
significant improvement over FFNN or AdaBoost. 

CBIR FOR CADx
Though promising, CADx has met with resistance to adoption in 
clinical practice, in part because radiologists are trained to 
interpret visual data and rarely deal with quantitative mammo-
graphic information, such as the likelihood of malignancy. 
Thus, when presented with a numerical value, but without addi-
tional supporting evidence, it may be difficult for a radiologist 
optimally to incorporate this number into the diagnostic deci-
sion. As such, traditional CADx classifiers are often criticized for 
being a “black box” approach. 

To avoid this pitfall, an alternative approach we have advo-
cated is to employ CBIR [17], [18], in which an image search 
engine is used to inform the radiologist’s diagnosis in difficult 
cases by presenting relevant information from past cases. The 
retrieved example lesions allow the radiologist to explicitly com-
pare known cases to the unknown case. A key advantage of this 
approach is that it provides case-based evidence to support case-
based reasoning by the radiologist, rather than acting as a sup-
plemental decision maker. 

For a retrieval system to be useful as a diagnostic aid, the 
retrieved images must be truly relevant to the query image 
as perceived by the radiologist, who otherwise may simply 
dismiss them. In 2000 [17], we proposed a supervised learn-
ing approach for modeling the radiologists’ notion of image 
similarity for use in CBIR. Our rationale is that mathemati-
cal distance metrics designed for general-purpose image 
retrieval may not adequately characterize clinical notions of 
image relevance, which are complex assessments made by 
expert observers.

In our approach, the perceptual similarity between two 
lesion images is modeled by a nonlinear regression model 
applied to the image features. The model is determined by 
using supervised learning from examples collected either in 
human observer studies or from online user feedback (acquired 
during use of the system). Specifically, we first characterize a 
lesion by vector u containing its key relevant features. Next, 
feature vector u is compared to the corresponding feature vec-
tor v of a database entry by way of predictive model f 1u, v 2  to 
produce a similarity coefficient (SC). The images with the 
highest SC values are retrieved from the database and dis-
played for the user. In our studies, we have modeled f 1u, v 2  
using a nonlinear regression SVM and a general regression 
neural network (GRNN). Our learning metric has proven to be 
much more effective than alternative measures [17], [18].

To illustrate perceptual similarity, Figure 6 is a plot created 
using a multidimensional scaling (MDS) algorithm showing 30 

ALTHOUGH RESAMPLING RECEIVES 
LESS ATTENTION THAN PREDICTIVE 

MODELS, IT IS AT LEAST AS IMPORTANT.
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[FIG5] Detection performance of various methods of detecting 
MCs in mammograms. The best performance was obtained by a 
successive learning SVM classifier, which achieves around 94% 
detection rate (TP fraction) at a cost of one FP cluster per image, 
where a classical technique (DoG) achieves a detection rate of 
only about 68%. 
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microcalcification clusters. 
MDS is a family of techniques 
that aim to map high-dimen-
sional data into a lower-dimen-
sional representation in such 
as a way as to preserve relative 
distances (i.e., if two points are 
close to one another in the 
high-dimensional space, then 
MDS attempts to place them 
near one another in the low-dimensional space). 

In Figure 6, each microcalcification cluster is represent-
ed by a marker (square or circle) in the scatter plot. MDS 
attempts to place the points so that visually similar micro-
calcification clusters (as judged by human observers) are 
placed close to one another in the scatter plot. Examples of 
the microcalcfication clusters corresponding to these data 
points are shown as collections of plus (1) signs. Visual 
inspection of these examples suggests that the vertical axis 
of the plot is associated roughly with density of the micro-
calcifications, while the horizontal axis reflects the shape of 
the cluster. Note that there is a reasonable, but not perfect, 
separation between malignant and benign lesion classes in 
this space.

Recently, we proposed to use CBIR to boost the perfor-
mance of a traditional CADx classifier [18]. Specifically, data-
base images similar to the image being evaluated by the 
radiologist are used to improve the SVM classifier, thus 
improving its accuracy in analyzing the present case. We are 
currently investigating the impact of CBIR on the diagnostic 
performance of radiologists. 

AUTOMATED ASSESSMENT OF IMAGE QUALITY 
BY PREDICTION OF DIAGNOSTIC PERFORMANCE
Diagnostic imaging can be thought of as a pipeline consisting of 
an imaging device, an image processor (e.g., image reconstruc-
tion algorithm and display), and a human observer (e.g., a radi-
ologist). Principled methods are needed to assess the impact of 
design choices in the image acquisition and processing stages 
on the final interpretation stage.

It has been common traditionally to evaluate imaging 
devices and image reconstruction software using only basic 
fidelity metrics, such as signal-to-noise ratio (SNR), mean-
square error, and bias and variance. However, such metrics 
have limitations when comparing images affected by statisti-
cally different types of blur, noise, and artifacts [19]. This was 
recognized in the 1970s in the context of radiographic imag-
ing by Lusted [20], who pointed out that the image can repro-
duce the shape and texture of tissues faithfully from a physical 
standpoint, while failing to contain useful diagnostic informa-
tion. In a highly influential article in Science [20], Lusted pos-
tulated that, to measure the worth of a diagnostic imaging 
test, one must assess the observer’s performance when using 
the imaging test. In other words, if an image is to be used for 
lesion detection, then image quality should ideally be judged 

by the ability of an observer to 
detect  les ions .  Such an 
approach has become known 
as task-based assessment of 
image quality. 

Lusted further argued that 
the ROC curve from classical 
detection theory is an ideal 
means to characterize diagnos-
tic performance, and thus 

image quality. This approach has led to the wide use of ROC 
analysis in medical imaging, as implemented, for example, in 
the ROCKIT software distributed by Metz et al. [21].

Figure 7 shows an example of how the human observer’s 
performance is affected by the type of images that are present-
ed. In this case, the observer is shown a perfusion image of the 
myocardium (heart wall), obtained using single-photon emis-
sion computed tomography (SPECT). The observer is asked to 
judge whether there is a dark region indicating deficient per-
fusion, based on images reconstructed in different ways from 
the very same data set. Figure 7 shows 12 different recon-
structions obtained by using either one or five iterations of 
the ordered-subset expectation-maximization algorithm 
(OS-EM), and with Gaussian filters having varying full width 
at half-maximum (FWHM). 

Along the top and bottom of Figure 7 are values of an 
observer’s stated confidence in the presence of a lesion at a loca-
tion indicated by arrows (on a scale of one to six, with six indi-
cating high confidence). Note that the observer’s  confidence 
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[FIG6] Statistical tool for visualizing relationships among 
abnormalities seen in various mammograms, in which distances 
reflect the relative similarities of abnormalities, as judged by 
human experts. MC clusters are represented in this two-
dimensional diagram by using multidimensional scaling, a 
statistical technique that seeks to represent high-dimensional 
data in a lower-dimensional plot that can be readily visualized, 
while aiming to maintain the relative distances (similarities) 
among the data points. Each group of red plus signs (+) depicts 
the actual MC cluster associated with a given point in the scatter 
plot. This shows that the vertical axis of the plot is roughly 
associated with the density of each cluster, while the horizontal 
axis is related to its shape. 

FOR A RETRIEVAL SYSTEM 
TO BE USEFUL AS A DIAGNOSTIC AID, 

THE RETRIEVED IMAGES MUST BE TRULY 
RELEVANT TO THE QUERY IMAGE 

AS PERCEIVED BY THE RADIOLOGIST, 
WHO OTHERWISE MAY SIMPLY 

DISMISS THEM.
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that a lesion is present increases, then decreases, as the images 
are made smoother. Selection of the optimal smoothing level is 
an example of a goal in which a quantitative image-quality 
metric is needed.

MACHINE-LEARNING MODEL OF HUMAN OBSERVERS
In diagnostic imaging, the gold standard for measuring 
image quality is a statistical study that measures observers’ 
(e.g., radiologists’) diagnostic performance when using a 
given set of images. Unfortunately, the expense and complexi-
ty of such studies precludes their routine use. Therefore, 
numerical observers—algorithms that emulate human 
observer performance—are now widely used as surrogates for 
human observers. 

One particular numerical observer, known as the chan-
nelized Hotelling observer (CHO) [22], has come to be widely 
used, particularly in nuclear medicine imaging. The CHO is 
a Fisher LD applied to input features obtained by applying 
band-pass (channel) filters to the image. These channels are 
inspired by the notion of receptive fields in the human visual 
system. Because of its principled approach to image quality 
evaluation, the CHO has justifiably had a major and positive 
impact on the field and has enjoyed tremendous popularity. 

However, the CHO does not perfectly capture human-ob-
server performance; therefore, we have proposed a new 
approach in which the problem of task-based image-quality 
assessment is viewed as a supervised-learning or system-
identification problem [23]. That is, the goal is to identify the 
unknown human observer mapping, f 1x 2 , between the image 
features in x and an observer score y that reflects the human 
observer’s confidence in the presence of an abnormality in 
the image. This relationship is learned from example data 
obtained from human observers; the model is then used to 

make predictions in new situations where no human-observer 
data are available. 

In our work, we have thus far retained the channels used in 
the CHO, contained in vector x, but we feed these as inputs to a 
SVM f 1x 2 , which we train to predict observer score y based on 
training examples 1x i, yi 2 , i5 1, c, N . The resulting algo-
rithm is called a channelized SVM (CSVM).

RESULTS
In [23], we compared the CSVM to the CHO for assessment of 
image quality in cardiac SPECT imaging. In this experiment, 
two medical physicists evaluated the defect visibility in 100 
noisy images and scored their confidence of a lesion being pres-
ent on a six-point scale, following a training session involving 
an additional 60 images. The human observers performed this 
task for six different choices of the smoothing filter and two dif-
ferent choices of the number of iterations in the OS-EM recon-
struction algorithm (see Figure 7).

To demonstrate the generalization power of this approach, 
we trained both the CHO and CSVM on a broad range of imag-
es, then tested both on a different, but equally broad, range of 
images. Specifically, we trained both numerical observers using 
images for every value of the filter FWHM and five iterations of 
OS-EM and then tested the observers using all the images for 
every value of the filter FWHM with one iteration of OS-EM. 
The parameters of the CHO and CSVM were fully optimized to 
minimize generalization error measured using five-fold cross 
validation based on the training images only. Therefore, no test 
images were used in any way in the choices of the model 
parameters for either numerical observer. The numerical 
observers’ predictions of human observers’ area under the ROC 
curve (AUC) are compared in Figure 8 to human observers’ 
actual performance. In this situation, the CHO performed 
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[FIG7] A human observer’s judgment as to the presence of an abnormality (in this case a cardiac perfusion defect) depends on the 
parameters of the reconstruction algorithm used to create the image (here, the parameters are number of iterations and width 
(FWHM) of the post-reconstruction smoothing kernel). All of the images above have a defect at the location indicated by the arrow, 
but persons asked to judge whether there is a defect varied in their opinions from a value of three, meaning “defect is possibly not 
present,” to a value of six, meaning “defect is definitely present.” Our algorithm’s ability to predict this behavior permits us to optimize 
a given algorithm for this specific diagnostic task.
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 relatively poorly, failing to match either the shape or amplitude 
of the human-observer AUC curves, while the CSVM was able 
to produce reasonably accurate predictions of AUC in both 
cases. Each error bar represents the standard deviation calcu-
lated using five-fold cross validation on the testing data. 

This experiment demonstrates the potential benefit of using 
machine learning to make predictions rather than fixed models. 
Owing to the generality of its approach, machine learning can 
be used to make predictions of human-observer performance in 
many clinical tasks other than lesion detection, while CHO is 
specifically designed for lesion detection and is therefore less 
amenable to generalization. 

MAPPING OF BRAIN FUNCTION
Brain mapping is concerned with the creation of spatial repre-
sentations (maps) of the brain, shedding light on the roles of 
various brain regions in normal and disease processes. Brain 
mapping is an area of application that differs significantly 
from those we have discussed thus far in the following two 
principal respects: 1) in many situations, brain mapping is 
concerned less with the prediction outputs y than with the 
model f 1x 2  itself, from which brain maps are obtained; and 2) 
owing to the relatively small number of data examples avail-
able in brain mapping, nonlinear models are not always pre-
ferred over simpler linear methods. 

Brain mapping has been a rapidly growing field of imaging 
for at least 25 years. It is impossible to give a balanced survey of 
this field and its use of machine learning in the space available, 
so we will give only a brief overview.

In the 1980s, brain mapping was dominated by positron 
emission tomography (PET) and SPECT. The first machine-
learning approaches to the analysis of functional brain imag-
es applied artificial neural networks (ANNs) to PET images of 
glucose metabolism [24]. However, following the discovery of 
the blood oxygenation level dependent (BOLD) signal in 1990 
that allows regional neuronal activity to be measured indi-
rectly, there has been explosive growth in the use of func-
tional magnetic resonance imaging (fMRI) and related 
techniques [25]. 

The prevailing experimental and analysis paradigm in brain 
mapping is still based on simple, univariate general linear 
models (GLM) with inferential statistical tests [26], and in 
some instances their predictive, machine-learning equivalent, 
Gaussian Naïve Bayes [27]. There has been a recent surge of 
papers and interest in using related multivariate classification 
approaches, dubbed “mind reading” by some in the field. For 
recent reviews including a historical perspective see [28], and 
for an overview of the often overlooked power of simple multi-
variate approaches, e.g., principal component analysis and LD, 
applied to PET scans of disease groups, see [29], which reflects 
the results of more than 20 years of work on measuring cova-
riance structures that reflect brain networks. This network 
theme has gained considerable momentum in the more recent 
fMRI brain mapping literature with a focus on measuring the 
so-called “default mode” brain network using pair-wise, voxel 

correlations [30], or seed-voxel/behavioral partial least squares 
(PLS) [31], independent component analysis (ICA) [32], [33], 
and most recently nonlinear dynamics [34] and graph theory 
coupled with structural scans of white-matter networks [35].

Much of our own work has focused on the question of how 
to evaluate and optimize performance, and how to select the 
best signal detector from the broad repertoire of machine 
learning tools available. We have particularly focused on the 
impact of smaller sample sizes where analytic asymptotic the-
ory for multivariate machine learning models, if it exists, does 
not provide much, if any, guidance. Analysis of brain images 
is a highly ill-posed problem, in which there are typically tens 
or hundreds of thousands of voxels, but only tens or hundreds 
of brain scans. Therefore, this small sample limit is the most 
likely to be important for medical use in brain mapping.

DISCRIMINANT IMAGES AS BRAIN MAPS
To illustrate the use of machine learning in brain mapping, let 
us consider one type of study in which we wish to produce an 
image showing the regional effects of a new drug on brain 
function (two of the authors of this article, Wernick and 
Strother, conduct such analyses commercially for the pharma-
ceutical industry). To accomplish this, one can scan a group of 
N  research subjects twice, once after the subject is given the 
new drug and once after administration of placebo. One can 
then analyze these 2 N  images to obtain an image that 
describes the drug’s effect. It is hoped that this finding will 
describe not only this particular group of subjects but will also 
generalize to some broader population.

The basic idea underlying many machine-learning approach-
es to this problem is to treat each image as a vector in a high-
dimensional space, with each component representing the value 
of one voxel in a scan. In this example, our data can be viewed as 
consisting of two classes of images: drug and placebo. To reduce 
dimensionality to a manageable level, and to mitigate noise, it is 

[FIG8] Predictions of human-observer performance (AUC) by 
machine learning approach (CSVM) compared with conventional 
numerical observer (CHO). The CHO does not recognize the 
degree to which diagnostic performance declines at low and 
high levels of smoothing, an effect seen in scores along the top 
and bottom of Figure 7.
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common to transform the data using singular value decomposi-
tion (SVD). Next, a classifier is trained to discriminate drug 
images from placebo images based on the dimensionality-
reduced data.

In traditional pattern classification applications, the purpose 
of training the classifier is to make decisions about new data. 
Indeed, there are a growing number of examples of this in neu-
roimaging, for example in lie detection, or in diagnosis of dis-
ease in an individual patient. However, in many studies, the goal 
is simply to understand what intrinsically is different about the 
brain in, say, a drug and a placebo condition. In such instances, 
the desired information is encoded in the predictive model f 1x 2
itself. When a linear model is used, then the desired brain map 
is encoded in the components of discriminant vector w, which 
(after projecting back from SVD space to image space) describes 
the salience of voxels in the brain for discrimination of drug and 
placebo conditions.

Figure 9 shows an example of such an image (which we will 
refer to as a spatial activation pattern) after it is thresholded 
and overlaid on a template structural image used to bring mul-
tiple subjects’ brains into an approximate common space. The 
value of each colored voxel in this image expresses the degree to 
which that voxel contributes to the discrimination of drug ver-
sus placebo, and this image thereby depicts the spatial distribu-
tion of effect. 

Note that, in this basic introduction, we have refrained from 
describing a significant series of preprocessing steps that must 
be applied before the machine learning algorithms can be used. 
These are discussed at length in [36].

COMPARING MODELS, SAMPLE SIZE, AND SNR
Evaluations of data-analysis techniques have clearly illustrated 
that optimal tool selection depends critically on the signal and 
noise structure of the data at hand, and the sample size [37],  
[38]. For example, Figure 10 (adapted from [38]) illustrates that 
a simple linear model can outperform a flexible nonlinear model 
(in this case an ANN) until there are enough data examples to 
support estimation of the greater number of parameters inher-
ent in the nonlinear model. Nevertheless, these issues are fre-
quently ignored in the current brain mapping literature when 
discussing or comparing different analysis techniques.

We have addressed the question of choosing optimal analysis 
procedures using simulations in [39] based on the simple phan-
tom shown in Figure 11, assuming an experimental design simi-
lar to the drug-placebo study described earlier. We varied 
numerous parameters of the simulation, including number of 
examples per condition (from 20 to 100), and the amplitude of 
the activation “blobs” in the phantom (either 3% or 5% above 
baseline). We added spatially colored, temporally white, 
Gaussian noise with a standard deviation of 5% of the mean 
baseline value. We created three spatially distributed “networks” 
of blobs, and varied the correlation coefficient r (rho) between 
them (r 5 0.0, 0.5, or 0.9) and the ratio V  of their amplitude 
variance to the noise variance. This ratio can be thought of in 
analogy to dynamic range in audio, as the blob variance is a 

44 42 40

[FIG9] Spatial activation pattern in the brain, showing effect 
of the anxiolytic/antidespressant drug buspirone (Buspar) 
obtained using Fisher LD and NPAIRS split-half resampling 
applied to FDG-PET images for 12 subjects (data courtesy of 
Abiant, Inc.; analysis by Predictek, Inc.). The results show 
striatal activation (upper orange regions), likely due to the 
drug’s behavior as a dopamine D2 receptor antagonist. 
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[FIG10] These crossed learning curves (plots of classifier 
performance versus training set size) show that a nonlinear 
classifier (a neural network in this example) can be beaten by a 
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resisting the temptation for researchers to use high-complexity 
models in every circumstance.
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[FIG11] Simulated phantom used for testing signal detection.
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source of signal in this application, which 
is of particular relevance for the field’s 
recent focus on network detection in 
brain mapping. In [39], we showed that 
SVD by itself or followed by a LD that 
adapts the subspace on which it is esti-
mated is much more sensitive to network 
interactions than thresholding of pair-
wise correlation coefficients [40].

We have repeated and extended the 
earlier work of Lukic et al. using the same 
phantom (results shown in Figure 12). 
Simulations included 3% Gaussian ampli-
tudes, with 30 baseline and 30 activation 
scans. The models tested include 1) sin-
gle-voxel t-tests using both local (GLM-S) 
and spatially pooled (GLM-P) variance 
estimates, and classification techniques 
including a 2) two-class Fisher LD, 3) nor-
malized LD (NLD), and 4) quadratic dis-
criminant (QD). All  multivariate 
techniques were estimated on an SVD 
subspace with dimension determined 
using optimization of Bayes’ evidence 
[41], as estimated in the software package 
MELODIC [42]. For LD and QD, the SVD 
basis components had length equal to 
their eigenvalues, and for NLD they were 
normalized to unit length.

Using the area under the ROC curve for false positives 
between [0.0, 0.1], signal detection was measured across the 16 
voxels at the peaks of the Gaussian blobs. Even when the t-test 
with local variance estimates (GLM-S) was the “correct” model 
(i.e., V  5 0.1) better detection performance was obtained using 
a t-test with a pooled variance estimate or adaptive, multivariate 
covariance-based detectors. In addition, GLM-S showed a signif-
icant drop in performance as the equal variance assumption was 
violated with increasing V. Variance estimation by spatially 
pooling (GLM-P) significantly improved signal detection and 
largely removed this source of model violation.

The multivariate equivalent of the GLM-S model violation is 
shown by the LD results where the assumption of equal within-
class covariances (i.e., a common network structure for baseline 
and activation scans) is violated with increasing V ; only the 
activation scans have an off-diagonal, within-class covariance 
structure that increases with V . However, LD still outperforms 
GLM-S for all but the strongest violations of the equal covari-
ance assumption for large rho and V  [Figure 12(c)]. In the NLD 
method, the standard machine-learning trick of normalizing 
input feature variances (i.e., unit SVD basis vectors) significantly 
improves signal detection performance to always better than 
GLM-P, and largely removes the LD drop with increasing V. 
Finally, using the correct multivariate model that assumes dif-
ferent within-class covariances, a QD, further significantly 
improves performance to close to perfect (partial ROC area 

approaches 0.1). QD, as used here, represents an alternative to 
SVM as a solution to the problem of unequal class distributions 
shown in Figure 2. 

The relative performance of LDs and SVM remains contro-
versial in brain mapping with some papers claiming SVM is 
superior [43] and others that they are approximately equal [44], 
but that they respond to different input SNR structures differ-
ently as suggested by the analysis of Figure 2. Moreover, our 
most recent simulation results show that signal detection per-
formance is a very strong function of the SVD basis set size and 
performance may be improved even further than shown in 
Figure 11 by using a resampled estimate of the optimal SVD 
subspace based on the reproducibility metric outlined below.

Our final simulation results relate to a comparison of 
Bayesian kernel methods with a generalized likelihood ratio test 
for estimating local activation in functional neuroimages. In 
[45], we compared spatial signal detection using the superposi-
tion of spatial Gaussian kernels with their parameters estimated 
from the data using a maximum a posteriori (MAP) technique 
based on a reversible-jump Markov-chain Monte Carlo 
(RJMCMC) algorithm and a RVM. RVM and RJMCMC were bet-
ter signal detectors than all of the other techniques tried in [39] 
and achieved values of 0.80 and 0.82 for the partial area under 
the ROC curve. These performance values cannot be directly 
compared to Figure 11 as the simulation parameters were quite 
different. However, the RJMCMC took tens of hours to compute, 
even in our simple phantom, while the RVM was computed in 
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only minutes. The relative utility of SVM, RVM, and other kernel 
techniques in brain mapping (e.g., kernel PCA, [28]; kernel 
canonical correlation analysis [46]) remains to be established. 

DATA-DRIVEN PERFORMANCE METRICS
In brain mapping, as in general machine-learning applications, 
it is very important to optimize and evaluate predictive models 
and to select their most salient features. These tasks must be 
guided by a quantitative metric of performance. Prediction 
accuracy often plays this role, for example to guide a greedy 
search procedure to select the most salient subset of voxels [26]. 
Some tradeoffs of such purely prediction-driven analysis 
approaches are discussed in [4] and [27].

Although prediction accuracy alone can be an effective met-
ric for general machine-learning problems, neuroimaging also 
demands that the spatial pattern (encoded by the predictive 
model) be reproducibile between different groups of subjects or 
different scans of the same subject. Together with prediction 
accuracy, reproducibility turns out to be an important metric 
that is a very effective data-driven substitute for ROC analysis. 

Strother et al. [9] proposed a novel split-half resampling 
framework dubbed NPAIRS, which simultaneously assesses 
prediction accuracy and reproducibility. The tradeoff between 
achievable prediction accuracy and reproducibility of the 
model is related to the classic tradeoff of bias and variance in 
estimation theory. In this application, prediction accuracy is 
generally gained at the expense of decreased reproducibility of 
the spatial patterns, and vice versa. By plotting prediction 

accuracy versus reproducibility as a function of some parame-
ter (such as number of SVD basis vectors), we are able to 
assess the gamut of this tradeoff, in close analogy to the ROC 
curve, the precision-recall curve from the information retriev-
al field, or the bias-variance curve from statistics. We call this 
type of plot produced by the NPAIRS analysis a ( p, r) curve.

To compute a (p, r) curve using NPAIRS, the independent 
observations of the data set are split into two independent halves 
(e.g., across subjects): training and test sets. Prediction accuracy 
is obtained by applying the spatial patterns estimated in one 
split-half set (i.e., training) to estimate scan class labels in the 
other split-half set (i.e., test). The roles of the two split-half sets 
are then reversed so that the each set has been used once as a 
training set (to produce a spatial activation pattern) and once as 
a test set. From these results, two prediction accuracy estimates 
(p) are computed and averaged to obtain the overall prediction 
accuracy. Next, the reproducibility of the two independent spa-
tial activation patterns is computed as the correlation (r) 
between all pairs of spatially aligned voxels in the two patterns. 
This correlation value r is directly related to the available SNR 
in each extracted pair of split-half patterns. If one forms a scat-
ter plot consisting of the voxel values in one spatial pattern ver-
sus corresponding values in the other, one obtains a distribution 
in which the principal, or signal, axis has associated eigenvalue 
111 r 2 , and the uncorrelated minor, or noise, axis has eigen-
value 112 r 2 . Therefore, one can define a global data set SNR 
metric gSNR as

  gSNR5"1 111 r 2 2 112 r 2 2 / 112 r 2 5"2r/ 112 r 2 .

In NPAIRS, many split-half resamplings are performed and 
the average, or median, of the resulting p and r distributions 
are recorded. This resampling approach has the benefits of 
smooth robust metrics obtained with the 0.6321 bootstrap [8]. 
Finally, a robust consensus technique is used to combine the 
many split-half spatial patterns into a single pattern described 
on a Z-score (standard normal) scale, providing a robust 
Z-scoring mechanism for any prediction model that produces 
voxel-based parameter estimates.

In [29], NPAIRS was applied to PET, and it has been also 
been applied to fMRI [47]–[49]. While NPAIRS may be applied 
to any analysis model, we have particularly focused on LDs, 
and more recently QDs, both built on an SVD basis. This 
allows us to 1) regularize the model by choosing soft (e.g., 
ridge) or hard thresholds on an SVD or other basis set [50], 2) 
maintain the link to covariance decomposition that has proven 
so useful in PET for elucidating network structures, and 3) 
produce whole-brain activation maps that enhance the likeli-
hood of discovering new features of brain function and disease.

Figure 13 shows an example of how NPAIRS can be used to 
study the influence of the key parameters of an image analysis 
procedure, and thus permit one to make an optimal selection of 
these parameters. In this example, two parameters of an fMRI 
image analysis procedure are examined, the number of SVD 
basis vectors (defining model complexity) and the number of 
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[FIG13] In the NPAIRS framework, a prediction-reproducibility 
(p,r) curve shows the tradeoff between prediction accuracy 
(vertical axis) and reproducibility of the resulting brain map 
(horizontal axis). Optimal performance is achieved when the 
curve comes closest to the ideal point (1,1), achieving the 
smallest distance M. This provides a basis for optimizing image 
analysis procedures, in this example specifying the best 
parameters in a particular fMRI data analysis problem (number 
of SVD components and number of cycles in a particular cosine 
detrending step). 
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half cosines used for detrending [36]. (We will not elaborate 
here on details of the SVD and detrending techniques; we show 
this example only to illustrate how NPAIRS can in general be 
used to select optimal model parameters.)

In a (p, r ) plot, ideal performance is achieved by reaching 
the upper right corner of the space, where prediction accuracy 
(described as posterior probability in Figure 13) reaches 1.0 and 
reproducibility also achieves 1.0. Thus, one approach to defining 
the optimal choice of parameters is to determine the point at 
which the (p, r) curve attains the least Euclidean distance ( M) 
to the point (1,1). In this example, we see that performance [dis-
tance to (1,1)] improves, then worsens, as the number of SVD 
components increases. The effect of the cosine detrending 
parameter is weaker, but indicates that one and a half cycles is a 
somewhat better choice than two cycles. In this graph, the 
hook-shaped portion between five and ten SVD components rep-
resents reproducible artifacts that are commonplace in fMRI.

The NPAIRS analysis framework provides a very useful way 
to understand and optimize model performance in the challeng-
ing problem of brain mapping, and perhaps in other applica-
tions in which one is interested not only in making accurate 
predictions but also in producing reliable information on the 
factors driving these predictions.
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