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Abstract

Techniques from the image and signal processing domain can be
successfully applied to designing, modifying, and adapting ani-
mated motion. For this purpose, we introduce multiresolution mo-
tion filtering, multitarget motion interpolation with dynamic time-
warping, waveshaping and motion displacement mapping. The
techniques are well-suited for reuse and adaptation of existing mo-
tion data such as joint angles, joint coordinates or higher level
motion parameters of articulated figures with many degrees of free-
dom. Existing motions can be modified and combined interactively
and at a higher level of abstraction than conventional systems sup-
port. This general approach is thus complementary to keyframing,
motion capture, and procedural animation.

Keywords: human animation, motion control, digital signal
processing.

1 Introduction

Motion control of articulated figures such as humans has been a
challenging task in computer animation. Using traditional key-
framing [27], it is relatively straightforward to define and modify
the motion of rigid objects through translational and rotational tra-
jectory curves. However, manipulating and coordinating the limbs
of an articulated figure via keyframes or the spline curves they de-
fine is a complex task that draws on highly developed human skills.
More general, global control of the character of an animated motion
would be useful in fine-tuning keyframed sequences. Such global
control would make predefinedsequencesmore useful, and libraries
of animated motion more valuable.

Much of the recent research in motion control of articulated
figures has been directed towards reducing the amount of motion
specification to simplify the task of the animator. The idea is to
build some knowledge about motion and the articulated structure
into the system so that it can execute certain aspects of movement
autonomously. This has lead to the development of higher level
control schemes [5, 6, 15, 22, 33] where the knowledge is fre-
quently specified in terms of rules, and physically-based modeling
techniques [8, 12, 18, 30, 31] in which knowledge is embedded in
the equations of motion, constraints and possibly an optimization
expression. Both approaches often suffer from lack of interactiv-
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ity: they don’t always produce the motion which the animator had
in mind, and complex models have a slow interactive cycle. To
increase the expressive power of such models, more control param-
eters can be introduced. Once again, higher-level editing tools for
the trajectories of such control parameters would ease animators’
burdens and generalize their results.

An alternative method to obtain movements of articulated fig-
ures is performance animation where the motion is captured from
live subjects. Although a variety of technologies have been de-
veloped to fairly reliably measure performance data [19], the com-
puter graphics literature makes scant mention of editing techniques
for recorded motion. In the absence of effective editing tools, a
recorded movement that is not quite “right” requires the whole data
capture process to be repeated.

Because of the complexity of articulated movements and the
limitations of current motion control systems as outlined above,
we believe that it is desirable to develop tools that make it easy
to reuse and adapt existing motion data. For this purpose, we
adopt techniques from the image and signal processing domain
which provide new and useful ways to edit, modify, blend and
align motion parameters of articulated figures. These techniques
represent a pragmatic approach to signal processing by providing
analytic solutions at interactive speeds, and lend themselves to
higher level control by acting on several or all degrees of freedom
of an articulated figure at the same time.

In this paper, we treat a motion parameter as a sampled signal.
A signal contains the values at each frame1 for a particular degree of
freedom. These values could come from evaluating a spline curve
in a keyframing system, or be derived from the tracked markers in
a motion capture system. In animating articulated figures we are
often concerned with signals defining joint angles or positions of
joints, but the signal-processing techniques we have implemented
also apply to higher level parameters like the trajectory of an end-
effector or the varying speed of a walking sequence.

In Section 2, we present the method of multiresolution filtering
and its application to parameters of motion. Section 3 discusses
multitarget interpolation, while pinpointing a severe problem of
this technique when used for motion blending — the absence of
an automatic alignment or registration of movements. A solution
to this problem is given based on the principle of dynamic time-
warping. Section 4 introduces waveshaping as a rapid nonlinear
signal modification method useful for tasks such as mapping joint
limits of articulated figures. Section 5 concludes the editing tech-
niques we have developed with motion displacement mapping, an
extremely general tool which permits editing of densely-sampled
motion data with the ease of keyframing. Each of these sections
provides illustrative examples. Finally, conclusions are given in
section 6.

1Sampled signals have values defined at regular intervals which,in a good animation
system, should be completely decoupled from the nominal “frame rate” of the final
product. We will speak of “frames” at the sample rate without intending any loss of
generality.
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2 Multiresolution Filtering

In the motion capture realm, most systems have provision for non-
linear impulse-noise removal filters (Tukey filters) as well as linear
smoothing filters for noise reduction in digitized data. There has
been less published discussion of the use of signal processing oper-
ations to edit or modify captured motion for creative purposes. The
“lag, drag, and wiggle” recursive filters in Inkwell [17] represent
more relevant previous work in the application of signal process-
ing to keyframed 2D animated motion. These filters were used to
stylize motion by invoking linear systems behavior without a more
structured physical model, and permitted lively animated effects
without unduly taxing the animator. In another related approach,
Unuma et al. [28] apply Fourier transformations to data on human
walking for animation purposes. Based on frequency analysis of
the joint angles, a basic ‘walking’ factor and a ‘qualitative’ factor
like “brisk” or “fast” are extracted. These factors are then used to
generate new movements by interpolation and extrapolation in the
frequency domain, such that now a walk can be changed continu-
ously from normal to brisk walking.

“Multiresolution filtering” describes a range of digital filter-
bank techniques which typically pass a signal through a cascade
of lowpass filters to produce a set of short-time bandpass or low-
pass signal components. By applying filtering recursively to the
output of successive filter bank stages, and downsampling lowpass
components as appropriate, these filter banks can be quite efficient;
they can produce short-time spectra at roughly the same n log(n)
expense as the Fast Fourier Transform.

The method of multiresolution filtering has been extensively
exercised by Burt et al. [4, 20] as an image representation method
advantageous for certain kinds of operations, such as seamless
merging of image mosaics and intra-image interpolation (noise re-
moval). It has also been applied to temporal dissolves between
images [26]. Images may be stored as lowpass (Gaussian) or band-
pass (Laplacian) pyramids of spatial filterbands, where each level
represents a different octave band of spatial frequencies. Opera-
tions like merging two images are then performed band-by-band
before reconstructing the image by adding up the resulting bands.
In this way, the fine detail of an image corresponding to the higher
frequencies can be treated separately from the coarse image features
encoded by the low frequencies.

In the currently popular wavelet parlance [7], Burt’s Gaussian
pyramid is a multiresolution analysis in terms of a cubic B-spline
scaling function. The corresponding Laplacian pyramid is simply
a bandpass counterpart, where each successively higher level of
detail has an interpolated copy of the level beneath subtracted from
it. The Laplacian pyramid can be computed directly in this way, or
via a modified wavelet transform. Burt’s method is more efficient
for signals of more than one dimension [29]. As a general obser-
vation, for synthesis and modification (as well as many analysis
tasks for computer vision), oversampled filter banks like Burt’s are
more useful than strict subband decompositions (where the num-
ber of coefficients does not exceed the number of samples in the
original signal). A direct contrast is in the way small translations
of an image are projected: sparse decompositions change radically
with small offsets of the input image, whereas the Burt pyramids
change smoothly. The reduction in coefficients attendant on a sub-
band filterbank may speed numerical solution of some problems; a
recent effort in the animation domain is the wavelet formulation of
spacetime interpolation for physically- based keyframing by Liu et
al. [18]. They did not use the the frequency decomposition to pro-
vide direct manipulation of motion, and we believe Burt’s method
is more appropriate for this purpose.

The first step in applying Burt’s multiresolution analysis is to
obtain the lowpass pyramid by successively convolving the image
with a B-spline filter kernel (e.g. 5 � 5), while the image is sub-
sampled by a factor of 2 at each iteration (as shown at the left of
9

Figure 1, where G0 is the original image). This process is repeated
until the image size is reduced to one pixel, which is the average
intensity, or DC value. The bandpass pyramid is then calculated
by repeatedly differencing 2 successive lowpass images, with the
subtrahend image being expanded first in each case (right of Fig-
ure 1, where L0 is the highest frequency band). The image can be
reconstructed without manipulation by adding up all the bandpass
bands plus the DC. The same procedure can be performed on two
or more images at the same time, whereby operations like merging
are executed band by band before reconstructing the final result.

G0

G1

G2

L0

L1

L2

Gn Ln−1

G0 = L0  + L1 + L2 +  . . .   + Ln−1 + Gn

Figure 1: Left: lowpass pyramid; right: bandpass pyramid.

2.1 Motion Multiresolution Filtering

The principles of image multiresolution filtering are now applied
to motion parameters of an articulated figure, motivated by the
following intuition: low frequencies contain general, gross motion
patterns, whereas high frequencies contain detail, subtleties, and
(in the case of digitized motion) most of the noise. Each motion
parameter is treated as a one-dimensional signal from which the
lowpass (G) and bandpass (L) levels are calculated. An example is
illustrated in Figure 2 based on the signal of the sagittal knee angle
of two walking cycles generated with GAITOR [2].
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Figure 2: Left: lowpassG0 (solid) and G3 (dashed; B-spline
kernel of width 5); right: bandpassL0 (solid) and L2 (dashed) of

the sagittal knee angle for two walking cycles.
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2.1.1 Filtering Algorithm
The length m (number of frames) of each signal determines how
many frequency bands (fb) are being computed:

let 2n � m � 2n+1, then fb = n:

Instead of constructing a pyramid of lowpass and bandpass
sequences where each successive sequence is reduced by a factor
of two, alternatively the sequences are kept the same length and the
filter kernel (w) is expandedat each level by inserting zeros between
the values of the filter kernel (a, b, c below) [3]. For example, with
a kernel of width 5,

w1 = [c b a b c];

w2 = [c 0 b 0 a 0 b 0 c];

w3 = [c 0 0 0 b 0 0 0 a 0 0 0 b 0 0 0 c]; etc.,

where a = 3=8, b = 1=4 and c = 1=16. Since we are dealing
with signals rather than images, the storage penalty compared to a
true pyramid is not as significant ( fb � i versus 4=3 � i, where
i = number of data points in original signal), while reconstruction
is faster since the signal does not have to be expanded at each level.
We now state the motion multiresolution algorithm in detail. Steps
1 to 5 are performed simultaneously for each motion parameter
signal:

1. calculate lowpass sequenceof all fb signals (0 � k < fb) by
successively convolving the signal with the expanded kernels,
where G0 is the original motion signal andGfb is the DC:

Gk+1 = wk+1 � Gk ;

This can be calculated efficiently by keeping the kernel con-
stant and skipping signal data points (i ranges over all data
points of a signal)2:

Gk+1(i) =

2X

m=�2

w1(m)Gk(i+ 2km);

2. obtain the bandpass filter bands (0 � k < fb):

Lk = Gk �Gk+1;

3. adjust gains for each band and multiply Lk ’s by their current
gain values (see example below).

4. blend bands of different motions (optional, see multitarget
interpolation below).

5. reconstruct motion signal:

G0 = Gfb +

fb�1X

k=0

Lk :

2We implemented several treatments of the boundary of the signal, that is when
i + 2km lies outside the domain of the signal. The two most promising approaches
have proved to be reflecting the signal, and keeping the signal values constant (i.e.
equal to the first/last data point) outside its boundaries.
9

band0   band1  band2   band3  band4  band5  band6

band0   band1  band2   band3  band4  band5  band6

band0   band1  band2   band3  band4  band5  band6

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00

1.73 1.732.70

2.30 3.01

3.013.71 −3.711.46

Figure 3: Adjusting gains of bands for joint angles; top:
increasing middle frequencies; middle: increasing low

frequencies; bottom: using negative gain value.

2.1.2 Examples
An application of motion multiresolution filtering is illustrated in
Figure 3. Displayed like an equalizer in an audio amplifier, this is a
kind of graphic equalizer for motion, where the amplitude (gain) of
each frequency band can be individually adjusted via a slider before
summing all the bands together again to obtain the final motion. A
step function shows the range and effect of changing frequency
gains. We applied this approach successfully to the joint angles
(70 degrees of freedom) of a human figure. The same frequency
band gains were used for all degrees of freedom. In the example
illustrated at the top of Figure 3, increasing the middle frequen-
cies (bands 2, 3, 4) of a walking sequence resulted in a smoothed
but exaggerated walk. By contrast, increasing the high frequency
band (band 0) added a nervous twitch to the movement (not shown
in Figure 3), whereas increasing the low frequencies (bands 5, 6)
generated an attenuated, constrained walk with reduced joint move-
ment (Figure 3 middle). Note that the gains do not have to lie in the
interval [0;1]. This is shown at the bottom of Figure 3, where band
5 is negative for a motion-captured sequenceof a figure knocking at
the door, resulting in exaggerated anticipation and follow-through
for the knock. We also applied the same filtering to the joint posi-
tions (147 degrees of freedom) of a human figure. Increasing the
gains for the middle frequency bands of a walking sequence pro-
duced a slight scaling effect of the end effectors, and resulted in a
squash-and-stretch cartoon walk (Figure 4).

From the examples, it becomes apparent that some constraints
such as joint limits or non-intersection with the floor can be violated
in the filtering process. Our motion-editing philosophy is to employ
constraints or optimization after the general character of the motion
has been defined (see displacementmapping in section 5 below; or a
9



band0   band1  band2   band3  band4  band5  band6

1.00 1.00 1.00 1.001.60 1.603.24

Figure 4: Adjusting gains of bands for joint positions.

more general optimization method [13]). Whereas being trapped in
local minima is the bane of global optimization for most problems,
animated motion is a good example of an underconstrainedproblem
where the closest solution to the animator’s original specification
is likely the best. Of course, many animators disdain consistent
physics, which is another good reason to decouple motion editing
from constraint satisfaction.

Finally, we suggest that a multiresolution approach could also
be quite useful in defining motion sequences, rather than simply
modifying them. Much like an artist creating a picture blocks out
the background first with a big brush, then adds more and more
detail with finer and finer brushes, a generic motion pattern could
be defined first by low frequencies, and then “finetuned” by adding
in higher frequency refinements3.

3 Multitarget Interpolation

Multitarget interpolation refers to a process widely used in com-
puter animation to blend between different models. The technique
was originally applied in facial animation [1, 21]. We might have a
detailed model of a happy face, which corresponds parametrically
to similar models of a sad face, quizzical face, angry face, etc. The
control parameters to the model might be high level (like “raise left
eyebrow by 0.7”), very high level (like “be happy”), or they might
simply be the coordinates of the points on a surface mesh defining
the shape of part of the face. By blending the corresponding pa-
rameters of the different models to varying degrees, we can control
the expression of the face.

blend

Figure 5: Example of multitarget motion interpolation.

3.1 Multitarget Motion Interpolation
We can apply the same technique to motion. Now we might have a
happy walk, a sad walk, angry walk, etc., that can be blended freely
to provide a new result. Figure 5 shows an example of blending two

3Personal communication, Ken Perlin, New York University, 1994.
1

different motions of a human figure, a drumming sequence and a
“swaying arm sideways” sequence. In this case, the blend is linear,
i.e. add 0.4 of the drum and 0.6 of the arm-sway. In general, the
blend can be animated by “following” any trajectory in time. Guo
et al. [11] give a good discussion of this approach which they term
parametric frame space interpolation. Our approach generalizes
on theirs in that the motion parameters such as joint angles to be
blended are completely decoupled from one another, and have no
implicit range limits. Each component of an arbitrary ensemble
of input parameters can have an independent blending coefficient
assigned to it.

As indicated in step (4) of the multiresolution algorithm above,
we can mix multitarget interpolation and multiresolution filtering
to blend the frequency bands of two or more movements separately.
This is illustrated in Figure 6 for the same two motions (a drum
and an arm-sway) as in Figure 5. Adjusting the gains of each band
for each motion and then blending the bands provides finer con-
trol while generating visually much more pleasing and convincing
motion.

blend

1.00 1.00 1.00 1.00

1.00 1.00 1.00

5.00

5.00

2.54

1.55 −1.25

Figure 6: Multitarget interpolation between frequency bands.

However, there is a potential problem when applying multitar-
get interpolation to motion which relates to the notion of parametric
correspondence as stated above: for all our face models to “cor-
respond parametrically” implies that the parameters of each of the
models has a similar effect, so that if a parameter raises the left eye-
brow of face number one, a corresponding parameter raises the left
eyebrow in face number two. If our parameters are simply surface
coordinates, it means that the points on each surface correspond,
so if the point at U;V coordinates U1, V 1 is at the tip of the left
eyebrow, the point at the same coordinates in any other face will
also be at the tip of the left eyebrow.

In motion, parametric correspondence means much the same
thing, except that now a correspondence with respect to time is
required. If we are blending walk cycles, the steps must coincide
so that the feet strike the ground at the same time for corresponding
parameter values. If the sad walk is at a slower pace than the happy
walk, and we simply blend them together without first establishing a
correspondencebetween the steps, the blend will be a curious dance
of uncoordinated motions, and the feet will no longer strike the
ground at regular intervals; indeed, they are no longer guaranteed
to strike the ground at all (see Figure 7). Thus, multitarget motion
interpolation must include both a distortion (remapping a function
in time) and a blend (interpolating among different mapped values).
In the visual domain a transformation like this is termed a “morph.”

Another example is illustrated in Figure 8; here the motion
sequences of two human figures waving at different rates and in-
tensities (a “neutral” and a “pronounced” wave) were first blended
without timewarping. This resulted in a new wave with undesirable
00



blend

timewarp + blend

Figure 7: Blending two walks without (top) and with (bottom)
correspondence in time.

secondary waving movements superimposed. After timewarping
the neutral to the pronounced wave, the blend produced the neutral
wave at the pronounced rate. In the following section we describe an
automatic method for establishing correspondence between signals
to make multitarget motion interpolation meaningful and useful.

timewarp + blend

blend

Figure 8: Blending two waves without (top) and with (bottom)
correspondence in time.

3.2 Dynamic Timewarping
The field of speech recognition has long relied on a nonlinear signal
matching procedure called “dynamic timewarping” to compare tem-
plates (for phonemes, syllables or words) with input utterances [9].
Apart from being subject to the usual random error, each acoustic
input signal also shows variations in speed from one portion to an-
other with respect to the template signal. The timewarp procedure
identifies a combination of expansion and compression which can
best “warp” the two signals together.

In our case, timewarping is applied in the discrete time domain
to register the corresponding motion parameter signals such as joint
angles. In Figures 7 and 8, the timewarping was done simultane-
ously for all 70 rotational degrees of freedom of the human figure
for the duration of the movement sequences. If we have a military
march and a drunken stagger, two new gaits can immediately be
defined from the timewarp alone: the military march at the drunken
pace, and the drunken stagger at the military pace. Figure 9 shows
an example for one degree of freedom (knee angle) for the two
walks warped in Figure 7. However, we are not limited to these
two extreme warps, but may freely interpolate between the map-
pings of the two walks, and between the amplitudes of the signals
through these mappings independently.
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Figure 9: Top: sagittal knee angles curves of two walks;
middle: red = blue curve warped to match green;

bottom: red = green curve warped to match blue.

3.2.1 Timewarp Algorithm
The problem can be decomposed and solved in two steps: finding
the optimal sample correspondences between the two signals, and
applying the warp. The vertex correspondence problem is defined
as finding the globally optimal correspondencebetween the vertices
(samples) of the two signals: to each vertex of one signal, assign
(at least) a vertex in the other signal such that a global cost func-
tion measuring the “difference” of the two signals is minimized.
In this sense, the problem is related to contour triangulation [10]
and shape blending [24], and is solved by dynamic programming
optimization techniques. The solution space can be represented as a
two-dimensional grid, where each node corresponds to one possible
vertex assignment (see Figure 10). The optimal vertex correspon-
dence solution is illustrated in the grid by a path from (0; 0) to (9; 9).
In general, there are O(nn=n!) such possible paths4.

When applying timewarping to recognition, the best fit to a
canon of signals is computed; no subsequent use is made of a
warped signal. The algorithms which perform the warp typically
do so by forming a discrete, point-sampled correspondence[9]. For
synthetic purposes, more continuous transformations and cost func-
tions are appropriate [32, 25]. We adopted Sederberg’s shape blend-
ing algorithm [24] which guarantees a globally optimal solution by
visiting every node in the grid once (O(n2) with constant amount
of work per node). Upon reaching node (n;n), the optimal solu-
tion is recovered by backtracking through the graph. Sederberg’s
“physically-based” approach measures the difference in “shape” of
the two signals by calculating how much work it takes to deform
one signal into the other. The cost function consists of the sum
of local stretching and bending work terms, the former involving
two, the latter three adjacent vertices of each signal. Intuitively, the
larger the difference in distance between two adjacent vertices of

4This holds for the vertex correspondence problem,where we favor a diagonal move
in the graph over a south-followed-by-east-move or an east-followed-by-a-south-move.
For contour triangulation [10], where diagonal moves are denied, the complexity is
O((2n)!=(n!n!)).
01



0    1    2    3    4     5    6     7     8     9

cost function terms:

− stretching work between 2 adjacent vertices in signal (difference in segment lengths ).
− bending work between 3 adjacent vertices in signal (difference in angles ).

Bj

Ai

signal B

signal A

0  1  2  3  4  5  6  7  8  9
0  
1  
2  
3  
4  
5 
6  
7  
8  
9

Figure 10: Vertex correspondence problem and cost functions.

one signal and the two vertices of the other (given by two adjacent
nodes in the graph), the bigger the cost. Similarly, the larger the
difference in angles between three adjacent vertices of one signal
and the three vertices of the other (given by three adjacent nodes in
the graph), the bigger the cost (for details, see [24]; an illustration is
given in Figure 10). One additional check was introduced to make
sure that we are really comparing corresponding angles in the two
signals: if the middle of the three vertices used to calculate the angle
is a local minimum in one signal and a local maximum in the other
signal, then one of the angles (�) is inverted before calculating the
cost term (� = 360 deg��).

The second part of the problem is to apply the warp given
the optimal vertex correspondences. As in speech recognition [9],
three cases are distinguished: substitution, deletion and insertion.
This is indicated in the optimal path by a diagonal, horizontal and
vertical line, respectively, between two nodes. For the following
explanations, we assume that signalB is warped intoA as shown in
Figure 11, and the warped signal is denoted byBw . Then if Bj and
Ai are related by a substitution it follows that Bwi

= Bj . In case
of a deletion, where multiple samples ofB, (Bj ;Bj+1; : : : ;Bj+k ),
correspond to oneAi,Bwi

=mean(Bj;Bj+1; : : : ;Bj+k). Finally,
an insertion implies that one sample of B, Bj , maps to multiple
samples of A, (Ai;Ai+1; : : : ;Ai+k). In this case, the values for
Bwi

;Bwi+1 ; : : : ;Bwi+k
are determined by calculating a cubic B-

spline distribution around the original valueBj .

0    1    2    3    4     5    6     7     8     9

warped B

substitution : 1:1 correspondence of successive samples.
deletion : multiple samples of B map to a sample of A.
insertion : a sample of B maps to multiple samples of A.

B

A Ai

Bj
0  1  2  3  4  5  6  7  8  9

0  
1  
2  
3  
4  
5 
6  
7  
8  
9

Figure 11: Application of timewarp (warp B into A).

4 Waveshaping

The transformations discussed so far are operations on the time
history of a signal. Operations which are evaluated at each point
in the signal without reference to its past or future trajectory are
occasionally termed point processes. Such operations include scal-
ing or offsetting the signal, but are more generally described as a
functional composition. Familiar uses of functional composition
in graphics include gamma correction and color-lookup, as well as
tabular warping functions for images.
10
“Digital waveshaping” is the term applied to functional compo-
sition in computer sound synthesis. In this domain, a normalized
input signal x (e.g. scaled to the range from �1 to +1) is directed
through a discrete shaping function f (or waveshaping table) to
synthesize steady-state or time-varying harmonic sound spectra.
Although waveshaping is in general a nonlinear operation, its ef-
fects when applied to an input sine wave can be easily character-
ized [16]. In practical terms, if f is defined as the identity function
f(x) = x, the signal will pass through unchanged. If f is slightly
changed, say, to having a subtle bump near 0, then the signal xwill
be altered in that it will have slightly positive values where, and
around where, it was zero before, thus x has now some bumps as
well. If f is defined as a partial cycle of a cosine function going
from minimum to maximum over the [�1;+1] range, the values of
x will be exaggerated in the middle and attenuated at the extremes.
If f is a step function, x will be quantized to two values.

4.1 Motion Waveshaping

An example of how this idea can be adopted for animation is illus-
trated in Figure 12. Here the default identity shaping function has
been modified to limit the joint angles for a motion sequence of an
articulated figure waving. In the figure, “hard” limits are imposed:
values of x greater than a limit value simply map to that value. An
alternative is a “soft” limit: as values exceed the limit, they are
mapped to values that gradually approach it. The implementation
of our shaping function is based on interpolating cubic splines [14];
a user can add, delete and drag control points to define the function
and then apply it to all or some degrees of freedom of an articulated
figure.

1.0-1.0

1.0

-1.0

Figure 12: Capping of joint angles via a shape function.

Another application of waveshaping is to map the shape of input
motions to a “characteristic” function. The shaping function in Fig-
ure 13 applied to the motion-captured data of a human figure sitting
and drinking introduced extra undulations to the original monotonic
reaching motion. In this way, it is possible to build up a library of
shaping functions which will permit rapid experimentation with
different styles of movement.

1.0-1.0

1.0

-1.0

Figure 13: Adding undulations to motion via waveshaping.
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5 Motion Displacement Mapping

Displacement mapping provides a means to change the shape of a
signal locally through a displacement map while maintaining con-
tinuity and preserving the global shape of the signal. To alter a
movement, the animator just changes the pose of an articulated fig-
ure at a few keyframes. A spline curve is then fitted through these
displacements for each degree of freedom involved, and added to
the original movement to obtain new, smoothly modified motion.
The basic approach is illustrated in Figure 14. Step 1 is to define the
desired displacements (indicated by the three vertical arrows) with
respect to the motion signal; in step 2, the system then fits an inter-
polating cubic spline [14] through the values of the displacements
(note that the first and last data points are always displacement
points). The user can then adjust the spline parameters in step 3
before the system calculates the displaced motion satisfying the
displacement points (step 4).
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Figure 14: Steps in displacement mapping.

The displacement process can be applied iteratively until a de-
sired result is achieved. Since the operation is cheap, a fast feedback
loop is guaranteed. In the top part of Figure 15, we took the output
of a multiresolution filtering operation on joint angles of a human
walking figure, where some of the joint limits were violated and the
feet did not make consistent contact with the ground, and read it
into LifeForms [5], a system to animate articulated figures. There
we adjusted some of the joints and translated the figure at a few
keyframes for which displacement curves were quickly generated
and applied to the motion of the figure as described above. To
refine the resulting motion, a second loop was executed; a frame of
the final result is shown on the top right of Figure 15. The same
technique was used in modifying the rotoscoped motion of a hu-
man figure sitting and drinking (Figure 15, middle). Here, three
out of the 600 motion-captured frames were modified to include
some additional gestures of the arms and legs. In Figure 15, bot-
tom, the joint angles for the arm and neck of a motion-captured
knocking-at-a-door-sequence were changed for one frame via mo-
tion displacement mapping to obtain a knock at a higher impact
point.

6 Conclusions

In this paper we have assembled a simple library of signal process-
ing techniques applicable to animated motion. A prototype system
has been implemented in the programming language C using the
1

Figure 15: Examples of applying displacement curves.

Khoros application development environment [23]. The immedi-
ate goals of our motion-editing experiments have been fulfilled:
the motion signal processing techniques provide a rapid interactive
loop, and facilitate reuse and adaptation of motion data. By au-
tomating some aspects of motion editing such as time-registration
of signals or increasing the middle frequencies for several degrees
of freedom at the same time, these techniques lend themselves to
higher level motion control and can serve as building blocks for
high-level motion processing.

Of all the techniques introduced here, perhaps motion displace-
ment mapping will prove to be the most useful; it provides a means
by which a basic movement such as grasping an object from one
place on a table can be easily modified to grasping an object any-
where else on the table. This allows simple and straightforward
modification of motion-capture data through a standard keyframing
interface. Timewarping as a non-linear method to speed up or slow
down motion is useful in blending different movements. It could
also play an important role in synchronizing various movements
in an animation as well as in synchronizing animation with sound.
Multiresolution filtering has been demonstrated as an easy tool to
change the quality of a motion. Waveshaping represents a simple
but efficient way to introduce subtle effects to all or some degrees
of freedom. As the use of motion capture is becoming increasingly
popular and libraries of motions are increasingly available, provid-
ing alternate methods for modifying and tweaking movement for
reuse can be of great value to animators.

We believe that a wide range of animation tasks can be addressed
with these techniques at a high level which is complimentary to and
extends conventional spline tweaking tools:

� blending of motions is straightforward by using multitarget
interpolation with automatic time registration of movements.
This is a convenient way to build up more complex motions
from elementary ones. For more fine-control, the frequency
bands can first be computed for each motion before blending
band-by-band while adjusting the frequency gains.

� concatenating motions is another practical application of mul-
titarget interpolation, giving the user control over blending
interval (transition zone) and blending coefficient. Multires-
olution can be applied to concatenate band-by-band.
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� cappingof joint angles is a task easily accomplishedby wave-
shaping. This tool is also well suited to apply user-defined
undulations to all or some degrees of freedom to make a
“bland” motion more expressive.

� some animation tasks which can be achieved with multires-
olution analysis include “toning down” a motion by increas-
ing the low frequency gains, “exaggerating” a movement
by increasing the middle frequencies, producing a “nervous
twitch” by increasing the higher frequencies, and generating
“anticipation and follow-through” by assigning negative gain
values. Because of immediate feedback, the user can quickly
experiment with different combinations of gain values for
specific movement qualities.

� editing of motion-captured data is very desirable yet very
tedious in current systems. As mentioned above, displace-
ment mapping provides an interface through which the ani-
mator can conveniently change such data at a few selected
“keyframes” while preserving the distinctive “signature” of
the captured motion.
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