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ABSTRACT

Neonatal endotracheal intubation (ETI) is a resuscitation skill and
therefore, requires an effective training regimen with acceptable
success rates. However, current training regimen faces some chal-
lenges, such as the lack of visualization inside the manikin and
quantification of performance, resulting in inaccurate guidance and
highly variable manual assessment. We present a Cross Reality (XR)
ETI simulation system which registers ETI training tools to their
virtual counterparts. Thus, our system can capture all aspects of
motions and visualize the entire procedure, offering instructors with
sufficient information for assessment. A machine learning approach
was developed to automatically evaluate the ETI performance for
standardizing assessment protocols by using the performance pa-
rameters extracted from the motions and the scores from an expert
rater. The classification accuracy of the machine learning algorithm
is 83.5%.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Mixed / augmented reality; Ma-
chine Learning—Machine Learning algorithms—Feature selection;

1 INTRODUCTION

ETT is a time-sensitive resuscitation procedure essential for the venti-
lation of newborns. Typical neonatal resuscitation training programs
mainly rely on practicing on task trainers or simulators under super-
vision so that trainees can gain some levels of proficiency before
clinic exposure [1]. However, both instructors and trainees suffer
the lack of situational awareness during training. The small sizes of
the intubation space in neonatal models do not allow instructors to
fully visualize the events occurring within the simulator to provide
feedback and accurate assessment, leading the feedback mainly re-
lies on the ETI outcome. Our ETI simulation system has potential
to improve ETI training with a see-through visualization to provide
sufficient information for guidance and an automated assessment
for ETI performance evaluation to provide interpretable feedback,
solving the resource-intensive issue in the ETI training.

2 METHODOLOGY
2.1 Cross Reality System

We developed a lightweight XR ETI simulation system that consists
of a standard neonatal resuscitation manikin with a laryngoscope and
an endotracheal tube, an Ascension trakStar electromagnetic track-
ing system, and a Hololens device. All the devices were registered
into the same coordinate using the EM sensors of the trakStar system.
In details, we used the EM sensor to select fiducials on the manikin
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Figure 1: The overview of our XR system setup in the data collection
study (left). The top right figure shows a registered sagittal cross-
section of the CT-scanned manikin in the Hololens; the bottom right

figure shows the instant feedback with performance parameters.

Lo I

to establish pairwise correspondences between the manikin and its
CT scanned counterpart. For Hololens, we attached Aruco markers
to the EM sensor to calibrate the initial pose of the Hololens by using
the predefined patterns. Compared with optical tracking methods [3],
the trakStar system allows 6 degrees of freedom motion tracking at
80Hz without occlusion issues, which is suitable for our intubation
procedure. We attached the EM sensors to the manikin and the
other components of the simulator to track their corresponding poses
during the intubation procedure, and streamed the motion sequences
back to a laptop, allowing for real-time and post-trial motion anal-
ysis. Moreover, we used UDP protocols to wirelessly transfer the
captured data to the Hololens for superimposed visualization.

The traditional 2D videolaryngoscopic [2] used in the intubation
training has difficulties in visualizing the internal anatomical struc-
ture of the manikin due to the occlusion from the tongue or the
lighting conditions, such as the shadow and the specular highlights
from the light source. This results in lower efficiency of guidance
and training performance for both instructors and trainees. In con-
trast, in our XR system, both the manikin and the laryngoscope were
displayed on the monitor and the Hololens in real-time using direct
volume rendering with the cross-sectional view to provide more
intuitive 3D information concerning the relative poses between the
laryngoscope and the glottis.

During the training process, we extracted several performance pa-
rameters to provide users situational awareness (See Sec. 2.3). The
parameters were showed in place overlaying on the manikin to avoid
interrupting the training procedures from the monitor. This can pro-
vide instant feedback to the trainees, and avoid critical mistakes such
as the over-penetration of the laryngoscope to the upper gum. An
overall score will be evaluated by our automatic assessment system
and shown to users after finishing the entire procedure. Users can
watch the 3D playback with the reported performance parameters to
improve their movements and gain proficiency.

2.2 Study Design

We collected the motions of 40 subjects including both attending
neonatologists and residents by using our system. The diversity of
subjects made the dataset contain different levels of performance
and different strategies of neonatal ETI. The subjects performed
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Figure 2: Pipeline of our automated assessment framework.
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on our system which was set up on an infant warmer in the NICU
(see Fig. 1). The study was approved by the Institutional Review
Board of the Children’s National Health Systems. Each participant
performed 5 ETI trials on the system. Only the instructor was able
to see the XR contexts during the procedure.

2.3 Performance Evaluation: A Machine Learning Ap-
proach

In this section, we describe our automated assessment system for
evaluating ETI performance in details (see Fig. 2). We aim to select
important performance parameters (features) based on which we can
build an interpretable and predictive model for the overall score of
ETI performances. Our system extracted 8 primary performance
parameters for training automated assessment model and quantifying
the performance from raw motions. These parameters were chosen
apriori based on the qualities that the expert instructor deemed as
important features so that the correlation between parameters and
training rubric can be preserved. The process of finding the optimal
model is composed of 3 steps:

Step 1: We select performance features which have statistically
significant marginal associations (P-value < 0.05) with the overall
score by fitting the multinomial regression model for the score, an
ordinal response y. Each multinomial regression model was fitted
by the multinomial generalized estimating equation method (GEE).

Step 2: We construct a classification tree for the overall perfor-
mance score on the selected features from Step 1. The classification
tree can identify predictive features hierarchically - the closer to
the root, the more predictive - and their optimal splits. The feature
candidate set for finding the optimal model comprises of linear terms
(the marginally significant features which did not appear in the clas-
sification tree), piecewise linear terms (the predictive features in the
classification tree), and their two-way interaction terms.

Step 3: Multinomial regression was applied in the forward se-
lection algorithm to find the candidate models for predicting the
overall score. In detail, we first initialized the model candidate set
M = ¢ which is the candidate set for choosing the optimal model.
The reference model m; is defined for the feature selection in each
iteration i, which was initialized to a model with intercept terms
only. The loop for feature selection was executed after initializa-
tion. The number of loops was determined by the size of the feature
candidate set. We did the following substeps in each iteration i :
1) We constructed the model ¢; by adding one additional candidate
feature term that not included in m;. 2) We evaluated P-value by
the Wald test between c¢; and m;. 3) We determined the optimal
model ¢} in the current step, which has the minimum P-value of
the Wald test among all possible ¢; models. 4) If the P-value of
the optimal model was larger than 0.05 or the model introduced
numerical errors, then we broke this loop procedure. Otherwise, we
set the new reference model ;1 as the optimal model ¢} of current
step and added ¢ to the selected model set M. Note that we selected
the optimal model ¢} with the minimal P-value in the Wald test as
the new reference model. Eventually, we found the optimal model
that has the highest classification accuracy in the model candidate
set M from Leave-One-Subject-Out-Cross-Validation (LOOCV).
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Based on the coefficient estimates obtained from Eq. (1), the proba-
bility P(OverallScore =y), j=1,2,3, for a new trial can be derived
from the fitted values of y;, and the predicted overall score corre-
sponds to the one with the largest probability. The classification
accuracy of our automated scoring system is 83.5%. The optimal
multinomial regression model obtained from the forward selection
algorithm in Step 3 is given as follows: For j = 1,2,
- P(OverallScore< j) (1)

yj=10g 1—P(OverallScore<j)
=B0j+ﬁl Fo 4B Fa+ B3 “Fpp 'I(Fpp > 6.5)
+B4 - Fpr - 1(Fpr > 4.7) + Bs - F - I(F; < 14.0)
+B¢-F - 1(14.0 < F, < 40.0) + B7 - F; - I(F; > 40.0)
+Bs - Fpp - 1(Fpp > 6.5) - F -1(F; > 40.0)
+Bo - Fpp - 1(Fpp > 6.5)-F - 1(14.0 < F;, < 40.0)
+B10 . Fpr 'I(Fl)r > 47) 'Fd7

Table 1: The coefficients of the optimal feature set that can predict the
overall performance score.

Coefficient [P B B [P [P [P_[P [P [P [P [P [P
Estimate [-18366 | -12.203 | I.417 | 0.128 | 0.224 | 0.256 | 0.165 | 0.253 | 0.088 | 0.013 | -0.007 | -0.003
Standard Deviation | 5.129 | 4567 | 0.696 | 0.054 | 0.115 | 0444 | 0.186 | 0.097 | 0.047 | 0.009 | 0.004 | 0.007

P-Value <0001 0008 0042 | 0,018 | 0.050 | 0.560 | 0374 0.009 | 0.060 | 0.165 | 0.114 | 0.682

where Fy, Fy, Fpp and F), represent the feature “Attempts”,
“Depth”, “Pitch peaks”, and “Pitch rocking”, respectively. I(+) is the
indicator function needed to incorporate piecewise linear terms, fBy;
(j = 1,2) are the category-specific intercepts and B, j=1,...,10
are coefficients. Note that P(OverallScore < j) =e’i /(1+¢€Y7) is
an increasing function of y;, so a larger fitted y; indicates a higher
probability of achieving a lower overall score. The coefficient esti-
mates are given in Table 1. With considering the significant terms,
we can conclude that 1) The overall score is generally negatively
associated with a subject’s attempts and depth; 2) Subjects’ pitch
peaks feature is also generally negatively associated with the overall
score if they are beyond 6.5; 3) The overall performance score is in
general better with a shorter time, but it is significantly negatively
associated with the overall score when the time is between 14.0 sec-
onds and 40.0 seconds. This coincides with our assumption that the
selected performance features in the optimal assessment model are
correlated with the motion characteristics that instructors consider
important in training assessment.

4 CONCLUSION

We proposed an XR ETI system that provides complete visualization
and automated scoring for training pediatric trainees. In the future,
the machine learning approach will learn from a panel of expert
instructors and larger dataset to yield a more robust model.
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