
Most conventional media depend on
engaging and appealing characters.

Empty spaces and buildings would not fare well as tele-
vision or movie programming, yet virtual reality usual-
ly offers up such spaces. The problem lies in the difficulty
of creating computer-generated characters that display
real-time, engaging interaction and realistic motion.

Articulated figure motion for real-time computer
graphics offers one solution to this problem. A common
approach stores a set of motions and lets you choose one
particular motion at a time. This article describes a
process that greatly expands the range of possible
motions. Mixing motions selected from a database lets
you create a new motion to exact specifications. The syn-
thesized motion retains the original motions’ subtle
qualities, such as the realism of motion capture or the
expressive, exaggerated qualities of artistic animation.
Our method provides a new way to achieve inverse kine-
matics capability—for example, placing the hands or
feet of an articulated figure in specific positions. It proves
useful for both real-time graphics and prerendered ani-
mation production.

Character motion for virtual reality
Video production in computer-based and traditional

animation relies largely on the labor-intensive process of
keyframing.1 This does not permit creating real-time
characters with intriguingly rich varieties of motion.
Motion capture allows more rapid production of char-
acter motion, but still suffers from the inherent lack of
control of prerecorded motion data. Physical simulation
approaches offer promise, but are hampered by lack of
control, difficulty of use, instabilities, and computational
cost that usually precludes real-time operation.2

The predominant approach to real-time motion syn-
thesis, selection of one stored motion at runtime,
restricts computation to the stored motion’s display.
Unfortunately, a limited number of stored motions can
result in repetitive or incorrect motions.

The repertoire of possible motions expands greatly—
at the cost of additional computation—with interpola-
tion synthesis. This technique combines a set of motions

similar to that desired to form an exactly specified
motion. A small set of example motions then yields a
continuous multidimensional space of possible motions.
The example motions can come from keyframing, phys-
ical simulations, or motion capture. Because the inter-
polation process generally preserves the motion’s subtle
qualities, we can create reusable libraries of motion data
from a single step of laborious keyframing, iterative esti-
mation of initial conditions, or correction of errors and
dropouts, respectively.

This article focuses on real-time
interpolation synthesis of motion
based on motion capture data. This
approach works well for real-time
character motion in interactive
entertainment or for avatars in mul-
tiplayer networked games or virtual
worlds. After transmission of a
motion database, network traffic
would consist merely of a motion
specification indicating parameters
of the interpolation.

Related work
Traditional hand-drawn animation follows principles

derived from extensive study of film and live subject
motion, and uses motion data in a nonmathematical
way.1 Many motion and human animation models fea-
ture adjustable parameters. Some facial models use
anatomical and empirical data on muscle structure3 and
perception of expression.4 Parameterized gait models
employ observation-based physical simulation and kine-
matic principles,5,6 and some recent efforts focus on
manipulation and reuse of motion data.

Previous authors have described pairwise motion
interpolation and explored the use of a stored database
to create motion.7-10 One study demonstrated parame-
terized gait motion synthesis.9 One technique of com-
bining keyframed data with motion capture data allows
insertion of a specific figure pose into a recorded
sequence.7,10 These authors used joint angle interpola-
tion as well as frequency-based representations. Using
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nonuniform time scaling required aligning the starting
and ending times of motions before interpolation.7

Another work described sequencing different stored
motions over time with random inputs.8

Using intuitive parameters, we can invoke real-time
locomotion from a stored library of motions.11 Other
work has addressed the problem of storage and retrieval
of real-time motion with multiple levels of detail.6

Recent efforts have demonstrated real-time inverse
kinematics for a portion of an articulated figure body
using modified robotics formulations.12

The stability of the particular figure representation
used here allows a greater degree of interpolation than
shown previously. We can combine motions of greater
dissimilarity and subsequently increase the range of
interpolation synthesis results. We illustrate this point
by using interpolation to achieve inverse kinematics
capability, generating joint angles to place the hands or
feet of an articulated figure at any specific point in space.
Our method does this by direct computation, unlike the
more common robotics formulations, and without
defaulting redundant degrees of freedom arbitrarily.

Articulated figure representation
An articulated figure has rigid limbs and joints with

one, two, or three degrees of freedom. Some motion
models use Euler angles to specify a figure’s pose, defin-
ing each limb’s position relative to its attachment point
in a hierarchy. Instead, we use a hybrid position and ori-
entation representation corresponding to data from

magnetic trackers. The center of rotation of the lower
limbs, chest, and pelvis is specified in absolute terms
(trihedral origins), as Figure 1 illustrates. A rigid lower
limb, pelvis, or chest segment is attached at the tracker
positions (solid lines), while a line between shoulder or
pelvis points and lower limb origins (dashed lines)
defines upper limb and torso sections. A quaternion
specifies the absolute orientation of each segment.13

A simple conversion between this hybrid representa-
tion and joint Euler angle forms allows the use of inter-
polation synthesis within conventional character
animation software environments. While the hybrid rep-
resentation does not ensure constant upper limb or torso
length, we can add a step of conversion to fixed limb
lengths and orientations when such accuracy is desired.
The lower arm, for example, can be adjusted along the
line between the elbow and shoulder point to the cor-
rect distance.

An articulated figure skeleton often forms part of a
more complicated character with additional muscle and
skin layers. Because the skeleton’s motion controls the
entire character, consideration of the skeletal motion
alone suffices in these cases.14

Interpolation synthesis of hand position
Interpolation synthesis produces new motions, not

directly recorded, from a mixture of data motions. Given
a desired motion’s specification, we simply find a sub-
set of the data motions that are most similar to the
desired motion and that “surround” the desired motion
in the parameter space.

We can illustrate these two concepts with the exam-
ple of single-hand inverse kinematics capability. We gen-
erate a single static pose that places one hand at a
desired point in space from a mixture of static poses that
place the hand in a variety of positions. We specify a
desired pose using three parameters: the hand’s posi-
tion in three dimensions. Interpolation synthesis of the
desired pose requires finding a subset of the data poses
with hand positions close to the desired point that form
a volume containing that point.

A lack of precision often arises from the collection of
specific motion capture data. This makes it difficult to
select the required data subset for interpolation syn-
thesis, and the best solution is often exhaustive search
of the data. Searching on one dimension at a time does
not work for data that does not lie on a regular grid (see
Figure 2a). An exhaustive search might suffice for small
data sets, but is inefficient for the hundreds of data poses
in this example. 

To address this, we resample the data set to a regular
grid of the parameter space (see Figure 2b). We can do
this on one dimension at a time or apply the entire inter-
polation synthesis process to a set of positions on a reg-
ular grid. Subsequent interpolation synthesis uses these
resampled data motions. Efficient selection of the
required data subset then doesn’t require a search, just
a division by grid point spacing in each dimension.

Now that we have found the required subset of initial
or resampled data, we form the correct mixture by mul-
tiple interpolation. Figure 3 depicts data hand positions
surrounding a desired hand position point t. We first
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apply a binary-tree progression of interpolations on each
successive dimension. We derive the interpolation coef-
ficients (mixture proportions) from the hand’s geomet-
rical position relative to the data hand positions. Each
stage of the progression independently interpolates
each position and orientation component of the pose
representation.

We use linear interpolation for each vector position
component of the representation (a, b, and result c):

(1)

We use spherical linear interpolation13 for each quater-
nion orientation component (p, q, and result r):

(2)

In general, we obtain interpolation coefficient u by
assuming linearity of the inputs with respect to the out-
puts in each dimension. Given target t lying between
grid points l and h,

(3)

We use the same interpolation coefficient for the corre-
sponding quaternion interpolations.

We first perform four interpolations along the x axis.
We use interpolation coefficient u00 (Equation 4, below)
to interpolate each of the six position and orientation
components of data poses d000 and d100, resulting in
intermediate pose i00. The points shown in Figure 3
denote hand position in space corresponding to a par-
ticular data or intermediate interpolation result pose.

(4)

We obtain Poses i01, i10, and i11 similarly. We then
interpolate these intermediate poses based on the target
y-axis position using

(5)

We make a final interpolation of the poses i0 and i1
based on the target z-axis position.

This direct computation results in a pose that, given
sufficiently dense data, closely approximates the target
goal. We can enforce limb length if necessary and can
accommodate higher accuracy or sparse data using iter-
ative optimizations.

Three degrees of freedom suffice for the simple char-
acter representation used here. Six degrees of freedom
would merely require sufficient data varying in both
position and orientation, and a higher dimensional
interpolation procedure.
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Motion Capture Technology
The most widely used full-body motion capture

technologies, wireless optical and magnetic tracking
systems, are available with and without wires running to the
performer. A third technology, less widespread, involves
mechanical sensing of joint angles directly using an
exoskeleton.

Optical systems have their roots in medical gait analysis
systems. Most systems use passive reflective markers, as
opposed to active markers (small light sources). Numerous
small spherical reflectors are attached to the performer, and
multiple cameras record how they reflect infrared light-
emitting diode strobe lights mounted on the cameras. The
2D images are combined to form 3D data by triangulation
of the angle-of-arrival position data. These systems can
track more than 100 points simultaneously but require that
at least two cameras maintain an unobstructed view of each
marker at all times to avoid data dropouts. A required
postprocessing calculation and/or manual point
identification step prevents real-time operation.

Magnetic systems are “nonblocking,” that is, they do not
require a clear line of sight. A single transmitter broadcasts

electromagnetic signals to many small receivers that report
position as well as orientation. A cable connects the receiver
to the computer or to a small electronics enclosure on the
performer’s body containing a transmitter or recording
device. Magnetic systems typically have up to 30 receivers
and deliver real-time 3D data, allowing interactive
“puppeteering” applications. They are, however, sensitive
to metal, magnets in audio speakers, and monitor radiation
in the capture volume.

Exoskeletons, goniometers, and bend sensors represent
the first type of motion capture technology. Relatively
inexpensive mechanical devices and a computer interface
form a complete system, but designing an exoskeleton that
works for performers of widely varying body types presents
a challenging problem. Available angle sensors include
rotary optical encoders, potentiometers, and electrical
resistive and optical fiber bend sensors. Real-time 3D data
are delivered as joint angles, the same data format used in
most animation software environments. This does not
determine the performer’s position and overall orientation,
however, which necessitates some other method.



Interpolation synthesis of foot periodic
motion

The previous example constructed a pose placing one
hand in a specific position described in Cartesian coor-
dinates; we also resampled the data to a regular grid in
Cartesian coordinates. We now demonstrate inverse
kinematics capability for foot position in a cylindrical
coordinate system, resampling the pose data to a regu-
lar grid in cylindrical coordinates. The foot position
periodic angle parameter maps naturally to a bicycle
riding motion.

We gathered data from a motion capture actor per-
forming outward motions of both feet on a stationary
bicycle, shown in Figure 4a. We first resampled the pose
data to a regular grid in cylindrical coordinates by the
previously described Cartesian interpolation synthesis
using exhaustive search (see Figure 4b). We then per-
formed real-time pose synthesis by directly selecting
resampled pose data.

Because the periodic angle parameter is nonlinear,
this example uses a higher order (cubic spline) interpo-
lation, whereas the previous linear and spherical linear
interpolation suffices for the other two parameters.
Catmull-Rom cubic splines13 interpolate between the
middle pair of a four-data-point window; this requires
extending the previous notion of data points that “sur-
round” the desired foot position. We must find three
adjacent volumes where the middle volume contains
the desired foot position t (see Figure 5). We perform
eight linear and spherical linear interpolations along
the cylindrical axis x and four along the radial axis r on
the four pairs of intermediate pose results; we carry out
a final cubic interpolation in angle a on the four results
of the previous step. Interpolation coefficients result as
before from desired foot position relative to the data foot
positions. Carried out independently for each foot, this
process creates a pedaling motion using an increasing
value for angle and constant values for the other two
parameters (with an angle difference of πbetween the
two feet).

Motion interpolation synthesis
The previous example synthesized static pose instan-

taneously from a specification varied in real time. The
interpolation synthesis technique also extends to syn-
thesis of entire motions of finite duration or finite peri-
od; here we consider a motion as a time sequence of
poses. We illustrate by generalizing the principles dis-
cussed above to synthesis of a walk motion on a contin-
uously variable slope.

We recorded a motion capture actor walking up and
down five different actual slopes. Blending the data at
the ends of the walk sequence formed a seamless loop.
A single linear interpolation of the correct pair of walk
data motions generated motion. The data was taken on
a regular grid of ground slope angles, which made
resampling to a regular grid in the parameter space
unnecessary. However, the walk cycles took more time
with increasing slope, necessitating resampling in time.
This process benefits general interpolation of motions
of different lengths or periods.

Interpolation between poses at different points in time
lets us generate a consistent pose at any time. This per-
mits resampling a motion to a greater or lesser number
of poses. We can resample each walk cycle to a uniform
(longest of set) number of samples (as shown in Figure
6), and then interpolate between two walk cycles pose
by pose, at each point in (adjusted) time. We also calcu-
late an interpolated time duration to preserve dynamical
realism, resampling the interpolation of two walk cycles
to this interpolated duration. Walk cycle interpolation
using an interpolation coefficient of zero or one then
recovers the data’s original durations, and in practice
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appears correct at intermediate values as well.
We obtain the interpolation coefficient from the

desired slope relative to the data slope values just above
and below the desired slope. A walk cycle for any desired
slope in the range of the data slopes results, with con-
sistent duration.

Reach motion interpolation synthesis
Interpolation synthesis can be specified by a value that

occurs over the entire motion (for example, walk) or at
a specific point in time. That point in time may also vary
between data motions, as in the next example of a reach
motion. The figure stands at rest, arms at its sides, then
reaches out to a target point, then returns to the original
position. Given a target point, we wish to generate a
sequence of poses that produce the appropriate reach.

We divide the reach motion into two segments:
motion from rest to the target point, and return to rest.
This ensures phase alignment of the data for interpola-
tion and accounts for the two segments’ data-dependent
time durations. Each segment is handled independent-
ly according to the motion interpolation procedure (of
different durations) described earlier.

The reach synthesis problem is very similar to single-
hand inverse kinematics static pose synthesis. A single
pose forms the boundary of the two segments of each
data motion to control the process. We obtain the
required data subset and interpolation coefficients from
the hand position (point that was “reached to”) at these
boundary poses. We apply the same multiple interpo-
lation at every other time point of the time-resampled
uniform duration motions. Finally, we resample the uni-
form duration result segments in time to their respec-
tive interpolated durations.

Implementation specifics
All examples ran in real time on a 100-MHz R4400

processor workstation. We entered interpolation syn-
thesis parameters interactively. The inverse kinematics
examples produced smooth, continuous motion in
response to continually varying parameters.

The single-hand inverse kinematics example
employed four vertical planes of data consisting of nine
lines traced out by the motion capture actor. We first
resampled the data along each line in the figure’s left-to-
right direction on a regular grid, then connected the
results vertically and resampled them at a regular grid
in height, yielding four planes of data on a regular grid
in width and height but not depth. Finally, we formed
and resampled lines connecting grid
points in each plane at a regular grid
in depth. We then demonstrated
real-time figure positioning by tri-
linear interpolation with interactive
goal point input. Convincing sub-
tleties such as knee bending, back
bending, and motion of the other
arm occur during operation,
increasing the realism of the figure’s
motion. We observed no apparent
inaccuracy in positioning in this
demonstration because we used

approximately 100 data points in each plane. The result-
ing motion looks convincingly like direct motion cap-
ture due to the data’s motion capture origin. Synthesis
using expressive and exaggerated motion from keyfram-
ing would conceivably retain these qualities as well.

We resampled foot position data to three rows of three
concentric rings for each foot, with eight samples in each
ring. We used cubic interpolation to follow a circular
path. No additional delay in real-time performance
resulted in spite of roughly twice as much computation
compared to linear interpolation.

The variable slope walk example used a single step of
motion interpolation. We altered slope interactively, and
both gait and gait cycle duration changed continuously
in real time (see Figure 7). The resulting realism would
be difficult to generate by keyframing or conventional
robotics inverse kinematic techniques.

We also synthesized real-time reach with interactive
goal point positioning by recording reach motion data
for two planes of nine goal points (Figure 8a) and stor-
ing uniform duration reach sequences as the data for
multiple interpolation. We used no spatial resampling
since only four possible interpolation windows existed.
We generated reach motion using limb length enforce-
ment and iterative accuracy optimization (Figure 8b).

Using the reach point for inverse kinematics, we cre-
ated another demonstration, this time specifying a heli-
cal path with a reach to the initial position and return
to rest from the end position. Using limb length enforce-
ment, we deformed the helix to a “D” shape, as shown in
Figure 8c. Chalkboard writing uses a variation of static
pose generation. A motion capture actor wrote the entire
alphabet in a single plane of space at a single position,
and we recorded only the hand position. We used the
alphabet hand trajectory to drive the figure pose, pro-
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ducing any sequence of letters starting at any position
in space upon interactive keyboard entry (Figure 9).

Analysis and discussion
Interpolation synthesis is limited to small numbers of

parameters, on the order of ten. The examples present-
ed here involved one or three parameters. The amount
of data required at least doubles for every additional
parameter, since the entire previous data set is repeat-
ed for at least two values of the additional parameter.
In general, for p parameters, 2p – 1 interpolations are
performed with a window of 2p data samples. The inter-
polations are performed for every time step of the
motion and for each component of the character (12 in
the representation used here). Motion segment dura-
tions are also interpolated 2p – 1 times. A final time

rescaling occurs for each component of the result. The
interpolation window and blending coefficients occur
only once in synthesis of an entire motion, as the same
window and coefficients are used at each time step.
Preprocessing (performed only once) consists of resam-
pling the data to uniform length to a regular grid in the
synthesis parameters.

All examples presented here involved interpolation
of the pose or the entire body’s motion to achieve max-
imum realism. Allowing interpolation synthesis over a
subset of the body’s degrees of freedom would allow one
or more separate interpolation synthesis processes to
operate at once, affording many more synthesis para-
meters than described here.

Storage, interpolation requirements, and final time
rescaling calculations scale linearly with both the char-
acter’s number of degrees of freedom and the data’s time
sample rate. This is important for extending the work to
more detailed representations and more complicated
figures, a straightforward process that could use a com-
bination of fixed segments with implicitly defined seg-
ments constrained by length enforcement.

A trade-off exists between density of the data in the
parameter space and storage requirements. Higher data
density leads to greater accuracy, stability, and conti-
nuity between adjacent parameter set values. The data
can be resampled at varying grid spacing as well, again
trading off accuracy for storage.

The interpolation process is not guaranteed to pro-
duce physically possible motions because certain
regions of the parameter space may not represent valid
motions. If necessary, those regions can be identified
and avoided for intermediate or final interpolation
results. In general, interpolation between points close
together in the parameter space is less likely to produce
impossible results. We can apply explicit checks and
enforcement (for example, upper limb length enforce-
ment, described earlier) to any constraints that may
potentially be violated. Joint angle limits could also be
enforced if necessary, and angular and translational
velocities of joints and limbs could be enforced to phys-
ically possible values. The application will dictate the
necessity of explicit constraint enforcement—a fast-
moving game character presents completely different
requirements than an ergonomic manufacturing assem-
bly study simulation.

The benefits of the two-stage process outweigh the
drawbacks. Motion capture data that requires extensive
manual correction of errors and dropouts can be cor-
rected just once, with subsequent interpolation synthe-
sis based on the corrected data. The trial and error
involved in keyframing could also be reused by inter-
polation synthesis from keyframed data. The process
also greatly decreases the accuracy requirements of
motion capture recording sessions or simulation runs
since just a representative sample set is needed, as
opposed to the exact motion that will be used.

Conclusions
The interpolation synthesis process using posi-

tion/quaternion representation yields stable multiple
interpolation with surprisingly sparse data, as the reach
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Applications of Interpolation Synthesis
Interpolation synthesis creates a new motion from a mixture of

prerecorded motions. This method can be useful for interactive
real-time applications and prerendered animation.

Interactive real-time applications
Interpolation synthesis permits generating motion in real time in

response to the situation or user. Specific sets of motion data can
be prerecorded for the kinds of motions that typify that
application.

Markets include computer and console games, CD-ROM titles,
virtual set characters, 3D Internet avatars, and location-based and
theme park entertainment.

Prerendered animation
Interpolation synthesis also proves useful for postprocessing of

motion data. Recording multiple “takes” of a desired motion gives
a director the freedom to choose a motion not recorded directly
but which can be constructed from the data motions.

Markets include feature films, television and video special effects,
and character animation.



example shows. Iterative optimization can improve
accuracy as needed, but adequately dense data with
direct computation should suffice for many interactive
entertainment applications. The spatial ordering and
resampling techniques prove useful even if motions are
used exactly as stored because they provide a direct
search and choice of sampling density for stored motion.
The emergence of low-cost, powerful processors and 3D
graphics hardware should make interpolation calcula-
tions more feasible in future consumer graphics and
networked virtual reality, however.

This approach offers a unique combination of realism
and controllability for real-time motion synthesis. While
limited to a small number of parameters, the technique
provides a far richer range of motions than the use of
prestored motions. The combination of motion capture
and interpolation synthesis has the potential to animate
the characters needed in currently empty virtual reali-
ty environments and add a rich variety of motion to
avatars in networked virtual worlds. ■
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