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Abstract
A new information-theoretic approach is presented for finding the registration of volumetric med-
ical images of differing modalities. Registration is achieved by adjustment of the relative position
and orientation until the mutual information between the images is maximized. In our derivation of
the registration procedure, few assumptions are made about the nature of the imaging process. As a
result the algorithms are quite general and can foreseeably be used with a wide variety of imaging
devices. This approach works directly with image data; no pre-processing or segmentation is
required. This technique is, however, more flexible and robust than other intensity-based tech-
niques like correlation. Additionally, it has an efficient implementation that is based on stochastic
approximation. Experiments are presented that demonstrate the approach registering magnetic
resonance (MR) images with computed tomography (CT) images, and with positron-emission
tomography (PET) images. Surgical applications of the registration method are described.

Keywords: information theory, multi-modality volume registration, mutual information

Received October 5, 1995; revised November 22, 1995; accepted February 2, 1996

1. INTRODUCTION

Multi-modal medical image registration is an important capa-
bility for surgical applications. For example, in neurosurgery
it is currently useful to identify tumors with magnetic reso-
nance images (MRI), yet the established stereotaxy technology
uses computed tomography (CT) images. Being able to regis-
ter these two modalities allows one to transfer the coordinates
of tumors from the MR images into the CT stereotaxy. It
is similarly useful to transfer functional information from
SPECT or positron-emission tomography (PET) into MR or
CT for anatomical reference, and for stereotactic exploitation.

Consider the problem of registering two different MR
images of the same individual. When perfectly aligned these
signals should be quite similar. One simple measure of the
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quality of a hypothetical registration is the sum of squared
differences between voxel values. This measure can be
motivated with a probabilistic argument. If the noise inherent
in an MR image were Gaussian, independent and identically
distributed, then the sum of squared differences is negatively
proportional to the likelihood that the two images are correctly
registered. Unfortunately, squared difference and the closely
related operation of correlation are not effective measures for
the registration of different modalities. Even when perfectly
registered, MR and CT images taken from the same individual
are quite different. In fact MR and CT are useful in conjunction
precisely because they are different.

This is not to say the MR and CT images are completely
unrelated. They are after all both informative measures of
the properties of human tissue. Using a large corpus of data,
or some physical theory, it might be possible to construct a
function F(·) that predicts CT from the corresponding MR
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value, at least approximately. Using F we could evaluate
registrations by computing F(MR) and comparing it via sum
of squared differences (or correlation) with the CT image. If
the CT and MR images were not correctly registered, then F
would not be good at predicting one from the other. While
theoretically it might be possible to find F and use it in this
fashion, in practice prediction of CT from MR is a difficult
and under-determined problem.

Given that both MR and CT are informative of the same
underlying anatomy, there will be mutual information between
the MR image and the CT image. We propose to finesse the
problem of finding and computing F by dealing with this
mutual information directly. Such a technique would attempt
to find the registration by maximizing the information that one
volumetric image provides about the other. We will present an
algorithm that does just this. It requires no a priori model of
the relationship between the modalities, it only assumes that
one volume provides the most information about the other one
when they are correctly registered.

The paper is organized as follows. The method of regis-
tration by maximization of mutual information is described in
section 2. The formulation is defined in terms of entropies of
the image data, and an approach for estimating these entropies
is described, along with a stochastic search algorithm. Experi-
mental results involving MRI–CT and MRI–PET registration
are reported in section 3. Section 4 describes the use of our
alignment technology to assist in neurosurgical applications.
Section 5 includes an analysis of an idealized multi-modal
registration problem. In this section we also discuss issues
of robustness with respect to occlusion. The paper concludes
with a section describing related work and a summary.

2. DESCRIPTION OF METHOD

2.1. Registration by maximization of mutual information
In the following derivation we will refer to the two volumes of
image data that are to be registered as the reference volume and
the test volume. A voxel of the reference volume is denoted
u(x), where the x are the coordinates of the voxel. A voxel
of the test volume is denoted similarly as v(x). Given that T
is a transformation from the coordinate frame of the reference
volume to the test volume, v(T (x)) is the test volume voxel
associated with the reference volume voxel u(x). Note that in
order to simplify some of the subsequent equations we will use
T to denote both the transformation and its parameterization.

We seek an estimate of the transformation that registers the
reference volume u and test volume v by maximizing their
mutual information,

T̂ = arg max
T

I (u(x), v(T (x))). (1)

Here we treat x as a random variable over coordinate locations
in the reference volume. In the registration algorithm
described below, we will draw samples from x in order to
approximate I and its derivative.

Mutual information is defined in terms of entropy in the
following way (see Papoulis, 1991, for example):

I (u(x), v(T (x))) ≡
h(u(x)) + h(v(T (x))) − h(u(x), v(T (x))). (2)

h(·) is the entropy of a random variable, and is de-
fined as h(x) ≡ − ∫

p(x) ln p(x)dx , while the joint en-
tropy of two random variables x and y is h(x, y) ≡
− ∫

p(x, y) ln p(x, y)dx dy. Entropy can be interpreted as
a measure of uncertainty, variability, or complexity.

The mutual information defined in Equation (2) has three
components. The first term on the right is the entropy in the
reference volume, and is not a function of T . The second
term is the entropy of the part of the test volume into which
the reference volume projects. It encourages transformations
that project u into complex parts of v. The third term, the
(negative) joint entropy of u and v, contributes when u and v

are functionally related. This term is discussed in relation to
an idealized example in section 5. The negative joint entropy
encourages transformations where u explains v well. Together
the last two terms identify transformations that find complexity
and explain it well. This is the essence of mutual information.

2.2. Estimating entropies and their derivatives
The entropies described above are defined in terms of integrals
over the probability densities associated with the random
variables u(x) and v(T (x)). When registering medical image
data we will not have direct access to these densities. In this
section we describe a differentiable estimate of the entropy of
a random variable that is calculated from a sample.

Our first step in estimating entropy from a sample is to
approximate the underlying probability density p(z) by a
superposition of functions centered on the elements of a
sample A drawn from z:

p(z) ≈ P∗(z) ≡ 1

NA

∑
z j ∈A

R(z − z j ) (3)

where NA is the number of trials in the sample A and R is a
window function which integrates to 1. P∗(z) is widely known
as the Parzen window density estimate. It is described in Duda
and Hart (1973).

In our subsequent analysis we will assume that the window
function is a Gaussian density function. This will simplify
some of our subsequent analysis, but it is not necessary. Any
differentiable function could be used. Another good choice is
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the Cauchy density. The Gaussian density function is

Gψ(z) ≡ (2π)
−n
2 |ψ | −1

2 exp(− 1
2 zTψ−1z) ,

where ψ is the (co-)variance of the Gaussian. The Parzen
density estimate and the Parzen window functions can be
defined over either scalar or vector data. When z is a vector
ψ is the covariance matrix of a multi-dimensional Gaussian
density.

Unfortunately, evaluating the entropy integral

h(z) ≈ −Ez[ln P∗(z)] = −
∫ ∞

−∞
P∗(z) ln P∗(z) dz

is difficult if not impossible. This integral can, however, be
approximated as a sample mean:

h(z) ≈ − 1

NB

∑
zi ∈B

ln P∗(zi ) , (4)

where NB is the size of a second sample B. The sample mean
converges toward the true expectation at a rate proportional to
1/

√
NB.

We may now write an approximation for the entropy of a
random variable z as follows,

h(z) ≈ h∗(z) ≡ −1

NB

∑
zi ∈B

ln
1

NA

∑
z j ∈A

Gψ(zi − z j ) . (5)

To reiterate, two samples can be used to estimate the entropy
of a density: the first is used to estimate the density, the second
is used to estimate the entropya.

Next we examine the entropy of v(T (x)), which is a
function of the transformation T . In order to find a maxi-
mum of entropy or mutual information, we may ascend the
gradient with respect to the transformation T . After some
manipulation, the derivative of the entropy may be written as
follows,

d

dT
h∗(v(T (x)))

= 1

NB

∑
xi ∈B

∑
x j ∈A

Wv(vi , v j )(vi − v j )
Tψ−1 d

dT
(vi − v j ) ,

(6)

using the following definitions:

vi ≡ v(T (xi )), v j ≡ v(T (x j )), vk ≡ v(T (xk)),

and

Wv(vi , v j ) ≡ Gψv
(vi − v j )∑

xk∈A Gψv
(vi − vk)

.

aUsing a procedure akin to leave-one-out cross-validation a single sample can
be used for both purposes.

The weighting factor Wv(vi , v j ) takes on values between
zero and one. It will approach one if vi is significantly
closer to v j than it is to any other element of A. It will
be near zero if some vk is significantly closer to vi than
v j . Distance is interpreted with respect to the squared
Mahalanobis distance (see Duda and Hart, 1973) Dψv

(v) ≡
vTψ−1

v v. Thus, Wv(vi , v j ) is an indicator of the degree of
match between its arguments, in a ‘soft’ sense. It is equivalent
to using the ‘softmax’ function of neural networks (Bridle,
1989) on the negative of the Mahalanobis distance to indicate
correspondence between vi and elements of A.

The summand in Equation (6) may also be written as:

Wv(vi , v j )
d

dT

1

2
Dψv

(vi − v j ) .

In this form it is apparent that to reduce entropy, the transfor-
mation T should be adjusted such that there is a reduction in
the average squared distance between those values of v which
W indicates are nearby, i.e. clusters should be tightened.

2.3. Estimation of the derivatives of mutual information
The entropy approximation described in Equation (5) may
now be used to evaluate the mutual information between the
reference volume and the test volume [Equation (2)]. In
order to seek a maximum of the mutual information, we will
calculate an approximation to its derivative,

d

dT
I (T ) ≈ d

dT
h∗(u(x)) + d

dT
h∗(v(T (x)))

− d

dT
h∗(u(x), v(T (x))).

Recall that the reference volume is not a function of the
transformation. As a result its derivative is zero. The
remaining two terms are computed using Equation (6). The
entropy of the test volume is dependent on the variance of the
window functions, ψv

b. The joint entropy of the reference
and test volumes is computed using the multi-dimensional
generalization of the entropy estimate. In general the joint
entropy of two random variables, h(u(x), v(T (x))), can be
evaluated by constructing the vector random variable, w =
[u(x), v(T (x))]T and evaluating h(w). The estimate of this
entropy will be dependent on the covariance ψw of the multi-
dimensional Parzen window functions that are used in the
density estimator for w. We will assume that this covariance
matrix is diagonal: ψw = DIAG(ψuu, ψvv).

bNote: this is not variance of the signal, v(T (x)), but the chosen width of the
Parzen window functions. A principled scheme for selecting these widths is
described in a later section.



      

38 W. M. Wells III et al.

Given these definitions we can obtain an estimate for the
derivative of the mutual information as follows:

d̂I

dT
= 1

NB

∑
xi ∈B

∑
x j ∈A

(vi − v j )
T

× [
Wv(vi , v j )ψ

−1
v − Ww(wi , w j )ψ

−1
vv

] d

dT
(vi − v j ).

The weighting factors are defined as

Wv(vi , v j ) ≡ Gψv
(vi − v j )∑

xk∈A Gψv
(vi − vk)

and

Ww(wi , w j ) ≡ Gψw
(wi − w j )∑

xk∈A Gψw
(wi − wk)

,

using the following notation (and similarly for indices j and
k),

ui ≡ u(xi ), vi ≡ v(T (xi )), wi ≡ [ui , vi ]
T .

If we are to increase the mutual information, then the first
term in the brackets may be interpreted as acting to increase
the squared distance between pairs of samples that are nearby
in test volume intensity, while the second term acts to
decrease the squared distance between pairs of samples whose
intensities are nearby in both volumes. It is important to
emphasize that these distances are in the space of intensities,
rather than coordinate locations.

The term d
dT (vi − v j ) will generally involve gradients of

the test volume intensities, and the derivative of transformed
coordinates with respect to the transformation.

2.4. Stochastic maximization of mutual information
We seek a local maximum of mutual information by using a
stochastic analog of gradient descent. Steps are repeatedly
taken that are proportional to the approximation of the
derivative of the mutual information with respect to the
transformation:

Repeat:

A ← {sample of size NA drawn from x}
B ← {sample of size NB drawn from x}

T ← T + λ
d̂I

dT

The parameter λ is called the learning rate. The above
procedure is repeated a fixed number of times or until con-
vergence is detected. When using this procedure, some care

must be taken to ensure that the parameters of transformation
remain valid. For example, we may wish to find the best
rotation transformation using a matrix representation for T .
If the derivatives are with respect to the matrix entries then
T + λ d̂I

dT may no longer be a rotation matrix (for discussions
of such issues see Paul, 1981; Ayache, 1991).

A good estimate of the derivative of the mutual information
could be obtained by exhaustively sampling the data. This
approach has serious drawbacks because the algorithm’s cost
is quadratic in the sample size. For smaller sample sizes, less
effort is expended, but additional noise is introduced into the
derivative estimates.

Stochastic approximation is a scheme that uses noisy
derivative estimates instead of the true derivative for op-
timizing a function (see Widrow and Hoff, 1960; Ljung
and Söderström, 1983; Haykin, 1994). Convergence can
be proven for particular linear systems, provided that the
derivative estimates are unbiased, and the learning rate is
annealed (decreased over time). In practice, we have found
that successful registration may be obtained using relatively
small sample sizes, for example NA = NB = 50. We
have proven that the technique will always converge to a
transformation estimate that is close to locally optimal (Viola,
1995).

It has been observed that the noise introduced by the
sampling can effectively penetrate small local minima. Such
local minima are often characteristic of continuous registration
schemes, and we have found that local minima can be
overcome in this manner in these applications as well. We
believe that stochastic estimates for the gradient usefully
combine efficiency with effective escape from local minima.

2.5. Estimating the covariance
In addition to the learning rate λ, the covariance matrices of
the Parzen window functions are important parameters of this
technique. We have found that it is not difficult to determine
suitable values for these parameters by empirical adjustment,
and that is the method we usually use.

An automated method for determining these parameters
has been described (Viola, 1995); we outline that approach
here. Referring back to Equation (3), ψ should be chosen
so that P∗(z) provides the best estimate for p(z). In other
words ψ is chosen so that a sample B has the maximum
possible likelihood. Assuming that the trials in B are chosen
independently, the log likelihood of ψ is:

ln
∏
zi ∈B

P∗(zi ) =
∑
zi ∈B

ln P∗(zi ) . (7)

This equation bears a striking resemblance to Equation (4),
and in fact the log likelihood of ψ is maximized precisely
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Figure 1. An initial condition for MR–CT registration by maximization of mutual information displayed as a checkerboard composite of the
three orthogonal central slices.

when the entropy estimator h∗(z) is minimized.
For simplicity, we assume that the covariance matrices are

diagonal,
ψ = DIAG(σ 2

1 , σ 2
2 , . . .) . (8)

Following a derivation almost identical to the one described
above we can derive an equation analogous to Equation (6),

d

dσk
h∗(z) = 1

Nb

∑
zb∈b

∑
za∈a

Wz(zb, za)

(
1

σk

) (
[z]2

k

σ 2
k

− 1

)
(9)

where [z]k is the zth component of the vector z. In practice both
the transformation T and the covariance ψ can be adjusted
simultaneously; so while T is adjusted to maximize the mutual
information, I (u(x), v(T (x))), ψ is adjusted to minimize
h∗(v(T (x))).

3. EXPERIMENTS

3.1. MRI–CT registrationa

In this section we describe a series of experiments where the
method was used to register MR images and CT images from
the same person. Figures 1, 2 and 3 illustrate the data, initial
configuration and final configuration for a representative MR–
CT registration.

The MRI data consisted of 24 proton-density cross sections
of 256×256 pixels each. The pixel dimensions were 1.25 mm
squared and the slice spacing was 4 mm. The CT data were

aThe images were provided as part of the project, ‘Evaluation of Retrospec-
tive Image Registration’, National Institutes of Health, Project Number 1
R01 NS33926-01, Principal Investigator J. Michael Fitzpatrick, Vanderbilt
University, Nashville, TN.
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Figure 2. The three orthogonal central slices of the CT data used in the MR–CT experiments.

29 slices of 512 × 512, the pixel dimensions were 0.65 mm
square, while the slice spacing was 4 mm. The MR data served
as the reference volume, while the CT data served as the test
volume. Since in theory, mutual information is a symmetrical
measure, the assignment of test and reference volumes should
be of little importance. However, in our implementation the
details of the sampling are not symmetrical. While we do
not believe this is an important factor here, we have not fully
explored this issue experimentally.

The registration was performed in a coarse-to-fine fashion
on a hierarchy of data volumes that had been generated by
successive smoothing and reduction. This strategy was used
to increase the capture range of the method, at the lower
resolutions there is less tendency to become trapped in local
minima, but the resulting accuracy is reduced.

Smoothing was performed by convolving with the binomial
kernel {1,4,6,4,1}, and subsequent reduction was accom-
plished by deleting alternating samples. This scheme gener-
ates an approximation to a ‘Gaussian Pyramid’ representation
of the data (Burt and Adelson, 1983).

Rigid transformations were used; they were represented
by displacement vectors and quaternions. At each iteration an
incremental change in position and orientation was computed.
The incremental rotation was represented by a small-angle
approximation of a rotation quaternion that is linear in three
parameters. At each iteration the quaternions were normalized
in order to avoid numerical drift in their magnitude.

The reference volume data voxels were sampled uniformly,
and tri-linear interpolation was used to sample the test volume
at non-integral coordinates. The test volume gradient was
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Figure 3. A final configuration for MR–CT registration by maximization of mutual information. The three orthogonal central slices of the MRI
data are shown with the edges from the registered and reformatted CT data overlaid.

approximated (without interpolation) by the first differences
of the data surrounding the location. If the transformation of
a reference volume coordinate projected outside of the test
volume, the value zero was used for the test volume intensity.

The parameter settings used in the registration experiments
are listed in Table 1. The two signal intensities are both scalars,
so we have listed standard deviations for the Parzen kernels
rather than covariances. Different learning rates were used
for rotations and translations, they are λR and λT respectively.
These parameters were determined empirically in an effort to
obtain good capture range and final accuracy.

Table 2 summarizes a series of randomized experiments
that were performed to gain an indication of the reliability,
accuracy and repeatability of the registration. Running

time for each full registration was approximately 6 min on
a Digital Equipment Corporation Alpha 3000/600. Video
clip 1 illustrates a coarse-to-fine convergence of MR–CT
registration.

3.2. MRI–PET registrationb

An experiment was performed to investigate the utility of the
method for the registration of MR images with PET images.
The PET data consisted of seven slices of 256 × 256 pixels
each, the interslice spacing was 12 mm, while the pixel size
was 1 mm square.

The MRI data consisted of 120 slices of 256 × 256 pixels

bImages are courtesy of Dr Jael Travere of Cyceron Center (CEA, Caen,
France).
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Table 1. Parameters used in hierarchical MR–CT registration.

XY reduction Z reduction

Level MR CT MR CT Iterations σuu σvv σv λT λR

1 8:1 16:1 1:1 1:1 10 000 2.0 2.0 4.0 1 0.0001
2 4:1 8:1 1:1 1:1 5 000 2.0 2.0 4.0 0.2 0.000 05
3 2:1 4:1 1:1 1:1 5 000 2.0 2.0 4.0 0.1 0.000 02
4 1:1 2:1 1:1 1:1 5 000 2.0 2.0 4.0 0.05 0.000 01
5 1:1 2:1 1:1 1:1 5 000 2.0 2.0 4.0 0.02 0.000 005

Differing amounts of in-slice (XY) and across slices (Z) smoothing and reduction were used in order to approach isotropy of voxel dimensions at the smoothest
level. The variables σuu , σvv and σv denote the standard deviations used in the Parzen density approximators, which are the square roots of ψuu , ψvv and ψv ,
respectively. The translational and rotational learning rates are λT and λR, respectively.

Table 2. MR–CT registration results table.

Initial Final
�T
XYZ �θ σX σY σZ |�θ | σX σY σZ |�θ | Success
(±mm) (deg) (mm) (deg) (mm) (deg) Trials (%)

25 20 14.14 14.27 14.81 10.72 1.00 1.70 1.09 2.70 111 90
100 20 57.43 56.36 51.60 8.92 1.06 1.97 1.16 2.96 87 41
25 45 17.00 16.8 17.64 22.42 1.05 1.34 0.98 2.42 70 68
10 10 5.63 5.90 5.89 5.11 1.44 2.05 1.12 3.18 20 100

From a known position and orientation, a random offset uniformly selected from the interval ±�T was added to each translational axis after the reference volume
had been rotated about a randomly selected axis by a random angle uniformly selected from the interval ±�θ . The distributions of the final and initial poses can
be evaluated by comparing the standard deviations of the location of the center, computed separately in X , Y and Z . Furthermore, the average rotation angle from
an ‘average’ rotation is computed (|�θ |). Finally, the number of trials that succeeded in converging to near the correct solution (by visual inspection) is reported.
The final statistics were evaluated only over the successful trials.

Table 3. MR–PET registration parameter table.

XY reduction Z reduction

Level MR PET MR PET Iterations σuu σvv σv λT λR

1 8:1 8:1 8:1 1:1 10 000 2.0 2.0 4.0 0.1 0.000 01
2 8:1 4:1 8:1 1:1 10 000 2.0 2.0 4.0 0.05 0.000 005
3 4:1 2:1 4:1 1:1 5 000 2.0 2.0 4.0 0.02 0.000 002
4 2:1 1:1 2:1 1:1 5 000 2.0 2.0 4.0 0.01 0.000 001

See Table 1 for explanation.

each, the voxels measured 1.3 mm cubed.
The experiments closely followed the procedures described

above. The MR image served as the test volume while the PET
images were the reference volume. The parameters used are
summarized in Table 3.

Repeated trials were not performed here, however, a

representative run is illustrated in Figures 4, 5 and 6 which
illustrate the data and the initial and final configurations of
an MR–PET registration. These results are at least visually
satisfying; the activity imaged in the PET data follows the
brain anatomy apparent in the MRI.

It was observed in these experiments that if the initial
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Video clip 1. This is the first image of a video sequence that illustrates
the registration of MR to CT. The sequence is divided into four parts,
each part at a different spatial resolution going from coarse to fine.

Figure 4. An initial configuration for MR–PET registration. Three
orthogonal central slices are shown MR above and PET below. The
PET data have been shifted posteriorly.

Figure 5. Registered MR data reformatted into the lattice of the PET
data.

position of the PET activity was above the MRI brain anatomy,
then there was a tendency for the optimization to become
trapped in a local minimum where the PET activity was
attracted to the scalp tissue in the MRI. One reason this
problem arises is because the MRI data is anatomical, while
the PET data is functional. A variety of methods could be
used to overcome this difficulty—one approach would be to
first isolate the brain in the MRI; semi-automatic methods for
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Figure 6. A final configuration for MR–PET registration by
maximization of mutual information. The original PET slices
are shown along with edges derived from the the MRI data after
reformatting into the lattice of the PET data at the final pose.

doing this are available (Cline et al., 1990).

Figure 7. The tumor did not enhance well in the post-contrast SPGR
MR images.

4. SURGICAL APPLICATIONS

One of the primary motivations for this research has been the
integration of information from differing medical images for
surgical exploitation. In this section we describe two examples
in which the registration method was utilized in neurosurgical
applications.

4.1. Case 1
Radiological examinations of several MRI acquisitions in-
dicated that the patient had a tumor of the frontal lobes
bilaterally. While providing good anatomical information,
post-contrast gradient-echo (SPGR) MR images did not
visualize the tumor well (Figure 7). The tumor was, however,
evident with good contrast in a T2-weighted acquisition (see
Figure 9). These two scans were registered using the method
described above in order to facilitate the construction of 3-D
models of the anatomy and pathology for surgical planning
and visualization (Kikinis et al., 1996).

The original SPGR MR images were 1.5 mm thick sagittal
images, and the original T2-weighted MR images were 5.0 mm
thick, 1.0 mm spacing axial images. The results of the
registration are illustrated in Figure 8. After registration, the
T2-weighted images were reformatted into the lattice of the
SPGR images.

Three-dimensional models of the skin, brain, vessels and
ventricles were generated from the SPGR MR images, and 3-
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Figure 8. Registration of the SPGR and T2 images is illustrated in
composite axial (left upper), sagittal (left lower) and coronal (right
lower) images.

Figure 9. The reformatted T2-weighted images visualized the tumor
in the frontal lobe. 3-D models of the tumor and the surrounding
edema were extracted from these reformatted T2-weighted images.

Figure 10. A rendering of the 3-D models constructed from the
registered MR images. Models of the skin and the brain were
generated from the SPGR MR images, and are rendered as translucent
models. The vessels (red) and the ventricles (blue) were also
generated from the SPGR images, while the tumor (green) and the
surrounding edema (orange) were generated from the reformatted
T2-weighted images.

Figure 11. This rendering shows a left upper frontal view. The skin
and brain models are suppressed for clarity. The anterior cerebral
arteries are seen overriding the tumor, which is consistent with the
radiological diagnosis.
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Video clip 2. This is the first image of a video sequence that illustrates
the results of the registration for the SPGR and T2 weighted scans.
The brain is gray, the vascular structure red, the tumor green and the
ventricles blue.

Figure 12. Right frontal view of the 3-D model. The skull (colored
white) is derived from CT images, while the vascular tree (red) was
derived from an MR angiogram. Models of the tumor (green) and
optic nerve with the ocular bulb (yellow) were derived from an SPGR
MR sequence.

Figure 13. Top view of the 3-D models for case two, showing the
spatial relationship of the circle of Willis (a part of the intracranial
vascular tree), the optic nerves and the bony structure. The tumor
(colored green) is in the middle cranial fossa and in the sphenoid
sinus (one of the paranasal sinuses). This spatial information was
found useful during surgical planning.

D models of the tumor and surrounding edema were generated
from the reformatted T2-weighted MR images (Figure 10).

The radiological diagnosis suggested that parts of the tumor
were present in both frontal lobes and that these parts were
connected through the corpus callosum (the so-called butterfly
configuration), so that the anterior cerebral arteries should
override the tumor. This spatial relationship was consistent
with the 3-D reconstructions from the registered SPGR and
T2-weighted MR images (Figure 11 and Video clip 2).

The surgery was performed in an open-configuration MR
unit (Schenk et al., 1995). The abnormal area was biopsied,
and proved to be a diffuse infiltrating glioma.

4.2. Case 2
This patient had a skull base meningioma which consisted
of both intra- and extra-cranial parts. The 3-D models were
made from CT images and two sequences of MR images (see
Figure 12). In this 3-D model, the skull was constructed from
CT images, the tumor and the optic nerves from SPGR MR
images and the vascular tree from MR angiograms. The tumor
is seen in extra-cranial and intra-orbital areas as well as in the
middle cranial fossa. A top view of the anatomical structures
appears in Figure 13.
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Table 4. Idealized example: joint distribution on anatomy under transformation, p(A(x), A(T (x))), at alignment.

A(x)

AIR BONE WM GM FAT Row sum constraint

A(T (x)) AIR PA 0 0 0 0 PA

BONE 0 PB 0 0 0 PB

WM 0 0 PW 0 0 PW

GM 0 0 0 PG 0 PG

FAT 0 0 0 0 PF PF

Column sum constraint PA PB PW PG PF

5. DISCUSSION

5.1. Analysis of an idealized example
This section analyzes an idealization of a medical registration
problem in order to clarify our registration approach and to
suggest its effectiveness. The example used is a simplification
of the situation that occurs during the registration of volumetric
data of the head from MRI and CT. We will show that under
certain reasonable assumptions, the joint signal entropy (an
important component of mutual information) is at a local
minimum at alignment.

Let us suppose that the anatomy is characterized by a
function mapping from locations in space to the following
tissue types: air, bone, white matter (WM), gray matter (GM)
and fat,

A(x) ∈ {AIR, BONE, WM, GM, FAT} ,

and that the overall probabilities of the various tissues occuring
in the volume are the non-zero values PA, PB, PW, PG, and PF

respectively.
Suppose that there are two observations of the anatomy,

A(x) and A(T (x)), with the second observed through a
coordinate transformation T . We assume that T is a volume-
preserving transformation such as rigid-body motion, and that
the volume boundary conventions are defined such that the
marginal distributions, p(A(x)) and p(A(T (x))), are not a
function of T . This allows us to ignore the marginal entropy
terms of mutual information and to focus solely on the joint
entropy term.

Since the joint entropy is a property of the joint dis-
tribution let us examine the joint distribution on anatomy
under transformation, p(A(x), A(T (x))). This distribution
is tabulated in Table 4 for the particular case in which the
two signals are properly aligned, e.g. T (x) = x . When this
holds, the distribution is diagonal. The joint distribution is
subject to the constraints that the marginal distributions equal
the overall tissue probabilities, this leads to the row- and

Table 5. Idealized example: contrast properties of hypothetical
imaging modalities F and G. Note that modality F does not separate
the soft tissues, and modality G does not separate bone from air.

Tissue F(tissue) G(tissue)

AIR F1 G1

BONE F2 G1

WM F3 G2

GM F3 G3

FAT F3 G4

column-sum constraints that are listed in the table. These
constraints hold independently of T . We assume that the joint
distribution p(A(x), A(T (x))) departs from being diagonal
when T departs from the null transformation. In other words,
when the anatomy is compared with itself under a non-null
transformation, some mixing of the tissue compartments will
occur (otherwise the anatomy is degenerate with respect to the
transformations induced by T ).

Now let us introduce two imaging modalities, F and G,
whose contrast properties are described in Table 5. F and
G are intended to be analogous to CT and MRI, respectively.
We assume that modality F observes the anatomy through
a transformation, T (x), with respect to the coordinates of
modality G, and define the signals in the following way,

u(x) ≡ G(A(x)) and v(x) ≡ F(A(x)).

The joint signal distribution, p(u(x), v(T (x))), is shown in
Table 6, for the case that the two signals are properly aligned.
Guided by the tissue contrast properties (shown in Table 5),
this distribution is easily constructed from the one shown in
Table 4, by merging the probabilities in the first two columns
and the last three rows. From the definition of the entropy of
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Table 6. Idealized example: distribution on joint signal, p(u(x), v(T (x))), at alignment.

u(x) = G(A(x))

G1 G2 G3 G4 Row sum constraint

v(T (x)) = F(A(T (x))) F1 PA 0 0 0 PA

F2 PB 0 0 0 PB

F3 0 PW PG PF PW + PG + PF

Column sum constraint PA + PB PW PG PF

a discrete probability distributiona we see that in this example
the entropy of the joint signal, when properly aligned, is the
same as the entropy of the anatomy,

H(u(x), v(T (x))) = H(A(x)) = −PA ln PA − PB ln PB

−PW ln PW − PG ln PG − PF ln PF.

We consider a differential change of the transformation
away from the null transformation, and assume that this will
induce a mixing of tissue compartments that is observable
in the joint signal, for example if misalignment causes the
air and fat tissue structures to overlap, then the upper-right
and/or lower-left entries in the joint signal distribution will
become non-zero. Note that any change in the distribution
of the joint signal due to misalignment will require that
some zero-probability entries become non-zero. This is
because, at alignment, the non-zero values are maximal due
to the marginal constraints. We assume that a differential
change in alignment induces a differential change in the
joint signal distribution, thus the effect on the distribution is
that some zero-probability entries receive positive differential
increments, while some non-zero entries receive negative
differential increments.

The partial derivative of the entropy of a distribution with
respect to the probability of a particular event is ∂ H

∂pi
= −(1 +

ln pi ). This partial derivative is finite for non-zero probability,
and approaches positive infinity as the probability of the event
approaches zero. Because of this, the change in the joint signal
entropy due to the probability changes described above will
be positive, since the effect of the zero-probability entries will
dominate. Thus the joint signal entropy at alignment is a local
minimum.

This idealization has modeled the imaging modalities as
having a few discrete values, while conventional medical
imaging modalities typically take on many values, and are
more conveniently modeled as continuous intensities. The
discrete values used in the modeling here will correspond
to specific clusters in conventional data, and these clusters

a H(x) ≡ −∑
i p(xi ) ln (p(xi ))

will have some variance due to partial-volume effects and any
spatial smoothing that is used.

While not all of the above assumptions are met in real
applications, conventional medical image registration prob-
lems often have the property that spurious clusters appear in
the joint signal under misalignment, due to the simultaneous
observation of differing tissues. This may be the cause of the
increase in entropy we have observed in the joint signal when
misaligned.

5.2. Discussion: correlation and occlusion
We have presented a metric for evaluating the registration
of multi-modal image data that uses intensity information
directly. The metric has been rigorously derived from
information theory. While intensity based, it is more robust
than traditional correlation.

Conventional correlation may be seen to align two signals
by minimizing a summed quadratic penalty in the difference
between their intensities. For the sake of example, let us
consider two hypothetical signals that can be aligned well by
traditional correlation, i.e. at alignment their intensities are
in good agreement. If we then negate the intensity of one
of these signals, their intensities will no longer agree, and
their alignment by correlation will most likely fail. It is easy
to see that the mutual information formulation of alignment
is insensitive to, and in fact not affected by, the negation of
either of the signals. Similar robustness with respect to other
transformations is described in Viola and Wells (1995).

Mutual information also has attractive robustness with
respect to occlusions of one of the signals, while traditional
correlation is often significantly disturbed by occlusions,
since they lead to substantial penalties for disagreement
of intensities. In medical imagery, the effect of occlu-
sions on the joint signal is frequently manifested by the
appearance of additional intensity clusters where the valid
part of one signal is in registration with a background
(occluded) value for the other signal. While such additional
clusters will typically reduce the mutual information at
alignment, we have found that there can still be a good
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maximum at alignment, i.e. that the mutual information mea-
sure degrades gracefully when subject to partially occluded
imagery.

6. RELATED WORK

The registration of medical images by optimization in trans-
formation space has been investigated by many researchers.
The use of correlation for the registration of MRI and CT has
been investigated (Van den Elsen, 1993).

Pelizzari et al. (1989) have used surface-based methods
to register PET and MRI imagery. Jiang et al. (1992) have
applied a robust variant of chamfer matching to register
surfaces from multi-modal medical images. Malandain et
al. (1995) have described a physically based method for
registration of medical images, including PET to MR, that
uses potentials of attraction. Grimson et al. (1994) have
used surface-based methods to register MRI to laser mea-
surements of the skin, as well as to register MRI to MRI.
While such approaches are often useful, the need for reliable
segmentation can be a drawback for surface-based registration
methods. In addition, the skin surface may be the least
geometrically accurate part of MRI data, due to susceptibility
artifacts.

Registration by extremizing properties of the joint signal
has been investigated (Hill et al., 1994) for the alignment of
MRI, CT and other medical image modalities. They showed
interesting scatter-plots of the joint data as the registration
is disturbed, and used third-order moments of the joint
histogram, as well as other measures to characterize the
clustering of the joint data.

The use of joint entropy as a criterion for registration
of CT and MRI data has been explored (Collignon et al.,
1995b). They graphically demonstrated a good minimum by
probing the criterion, but no search techniques were described.
They also described the use of Parzen density estimation for
computing entropy, and their graphs illustrate a reduction in
ripple artifacts when Parzen windowing is used.

The use of mutual information as a registration method
and the stochastic search technique we use appeared in Viola
and Wells (1995). The experiments there were primarily
registration of video images to 3-D object models. A
simplified medical image problem was described: that of 2-D
registration of the two components of a dual-echo MRI slice.

Several researchers have investigated the use of joint
entropy to characterize the proper registration of medical
imagery (Collignon et al., 1995a; Studholme et al., 1995b),
and found that it is not a robust measure of registration,
with Collignon (1995a) describing difficulties associated with
partial overlap of the data. Collignon et al. (1995a) and
Studholme et al. (1995a) found registration based on mutual

information to be an attractive approach, with Collignon et al.
(1995a) describing the use of Powell’s optimization method.

In a previous report of this research (Wells et al., 1995),
mutual information combined with stochastic search was
shown to be a robust approach for the registration of medical
imagery.

We believe that mutual information provides some advan-
tage over joint entropy by providing larger capture range—this
behavior was apparent in the experiments we have performed.
It arises because of the additional influence of the term that
rewards for complexity (entropy) in the portion of the test
volume into which the reference volume is transformed.

Woods et al. (1993) has suggested a measure of registration
between MR and PET based on the assumption that when
registered the range of PET values associated with a particular
value of MR should be minimized. The overall measure is a
sum of the standard deviations of the PET values associated
with each value of MR. When viewed in a theoretical light,
Woods’ measure of registration is closely related to the
conditional entropy of the test volume given the reference
volume. We have shown that a very similar approach is
a measure of conditional entropy when the test volume is
conditionally Gaussian (Viola, 1995). Woods’ measure is
most effective when the test volume is in fact conditionally
Gaussian: for each value in the reference volume there is
a uni-modal distribution of test volume values. Woods’
technique can break down when there is a bi-modal or multi-
modal distribution of test volume values. This is a common
occurrence when matching CT and MR: indistinguishable
tissue in CT can map to significantly different tissues in
MR. In addition, differing levels of imaged activation may
normally occur in brain compartments. In contrast, our
mutual information measure can easily handle data that
are conditionally multi-modal. Another source of concern
regarding Wood’s measure is sensitivity to noise and outliers.
Like other quadratic measures, an otherwise good match can
be swamped out by a few outliers. Our mutual information
measure is robust in the face of outliers, since it does not
involve higher order moments of the distribution.

Additional technical details on the relationship between
mutual information and other measures of registration may be
found in Viola (1995).

Entropy is playing an ever increasing role within the field
of neural networks. There has been work using entropy and
information in vision problems. None of these techniques
uses a non-parametric scheme for density/entropy estimation
as we do. In most cases the distributions are assumed to be
either binomial or Gaussian. Entropy and mutual information
plays a role in the work of Linsker (1986), Becker and Hinton
(1992) and Bell and Sejnowski (1994).
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7. SUMMARY AND CONCLUSIONS

The registration of volumetric data from sources such as
MR, CT or PET, is of importance for surgical planning,
diagnosis and medical research. While there are many existing
approaches based on alignment of surfaces, these techniques
are dependent on the a priori quality of the available segmen-
tations. Alternatively, intensity-based techniques can work
directly with the volumetric data. In the past these techniques
have relied on somewhat ad hoc assumptions about the nature
of the signals involved.

We have presented a technique based on mutual information
that requires neither a segmentation nor any ad hoc assump-
tions about the nature of the imaging modalities. In addition
to being effective and efficient, the technique is quite general.
It shows promise in many application domains.

In related work we have shown that the same formalism
can be used to register 3-D volumetric information directly
to video images of patients (Viola and Wells, 1995). We are
currently constructing a unified registration system that can ac-
commodate various planar and volumetric images. In addition
we hope to extend these techniques so that they can be used
in domains where the correct registration may not be rigid.
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