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Abstract

The notion of polygon monotonicity has been well researched to be used as an important property for various geometric problems. This

notion can be more extended for categorizing the boundary shapes of polyhedrons, but it has not been explored enough yet. This paper

characterizes three types of polyhedron monotonicity: strong-, weak-, and directional-monotonicity: (Toussaint, 1985). We reexamine the

three types of polyhedron monotonicity by relating them with 3D manufacturing problems, and present their formulation with geometric

problems on the sphere.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Orienting models or equipments in many manufacturing

processes such as NC machining, mold casting, and layered

manufacturing has been an essential geometric problem in

the automation of manufacturing industry [1–6]. This paper

investigates a nice geometric notion for finding feasible

directions in manufacturing processes, which is the

polyhedron monotonicity reflecting the boundary shapes of

3D designs. The notion of monotonicity is slightly different

to that of visibility; they are equivalent in 2D when the

viewer in visibility moves infinitely. The monotonicity can

be used for classifying the boundary shapes in manufactur-

ing since it is just the pure representation of themselves.

A polygon is said to be monotone in a direction d, if every

line parallel to d intersects its boundary at most two times.

The notion of polygon monotonicity has been well

researched since it can be used for designing efficient

algorithms for some geometric problems. Given a simple

polygon, an O(n) time algorithm for testing its monotonicity
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has been presented by Preparata and Supowit [7], where a

polygon is said to be simple if adjacent edges intersect only

at a common vertex and there is no pair of non-adjacent

edges sharing a point. Sack and Toussaint: [8] proposed a

linear time algorithm for computing all directions for

disassembling a pair of simple polygons by using the

polygon monotonicity; two polygons are movably separable

with a single translation in directions d and Kd,

respectively, if both of them are monotone in the direction d.

Unlike the polygon monotonicity, we can not find many

researches about polyhedron monotonicity. The polyhedron

monotonicity can be defined diversely since the boundary

shapes of 3D objects are more complicated than those of 2D

objects. This paper discusses about the properties of

polyhedron monotonicity by relating it with 3D manufactur-

ability problems, and presents methods for determining the

three types of polyhedron monotonicity: strong-, and weak-,

and directional-monotonicity [9].
2. Overview of polyhedron monotonicity
2.1. Notion of monotonicity

First, we define the notion of monotonicity of polygons

and surfaces. In this paper, a polygon (surface/chain) is said
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Fig. 1. Orientation of 3D objects versus the three types of monotonicity.
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to be monotone in d, if every line parallel to d has at most two

(one/one) intersections with the polygon (surface/chain).

The geometry of polyhedrons is too complicated to directly

extend this notion into them. Toussaint [9] has suggested that

we can categorize the monotonicity of polyhedrons into three

types as illustrated in Fig. 1, which are defined as follows:

† A polyhedron § is strongly-monotone in a direction d, if

the intersection of § with every plane parallel to d is a

monotone polygon in d.

† A polyhedron § is weakly-monotone in a direction d, if

the intersection of § with every plane orthogonal to d is a

simple polygon.

† A polyhedron § is directionally-monotone1 in a direction

d, if every line parallel to d intersects the boundary of § at

most two times.

The three types of monotonicity are related with each

other as presented in Fig. 2. A convex polyhedron has all

types of monotonicity in every direction. If § is strongly-

monotone in a direction d, § is also directionally-monotone

in a direction d, and weakly-monotone in all directions

orthogonal to d. However, the converse is not true. There is

no relation between the weak- and the directional-

monotonicity.

2.2. Relation to 3D manufacturability

The polyhedron monotonicity reflecting the boundary

shape is closely related with 3D manufacturability. Suppose

that we have designed the mechanical components of a new
1 This term is used instead of ‘directionally-convex’ in [9], which is the

simple extension of polygon monotonicity.
electric home appliance. The components are manufactured

with various technologies such as NC machining, mould

injection, layered manufacturing, and so on. Next they will

be assembled together to form the entire structure of the

electric home appliance.

The strong-monotonicity is related with the disassembl-

ability problem encountered in the automatic generation of

an assembly planning of 3D components. A sequence of

assembly operations is the reverse of a disassembly

sequence on the 3D components when only translation

movements are allowed. Two polyhedrons that are strongly-

monotone in the same direction can be disassembled by a

single translation [9]. However, it has been an open question

whether two polyhedrons that are strongly-monotone in

directions different to each other can also be disassembled2.

This paper gives a counter example for this open question;

two polyhedrons can be locked even though they are

strongly-monotone in directions q and f, respectively, as

given in Fig. 3(b). Hence, the directions in which two

components are strongly-monotone in common are partial

solutions since they are sufficient for the disassemblability.

A weakly monotone direction can be used for orienting a

model in gravity casting with just one pin gate [1]. The

weak-monotonicity is also a preferred condition on layered

manufacturing [10] that slices a model by a set of parallel

planes and manufactures it layer by layer by tracing out the

contours of slices as illustrated in Fig. 4(a). It is natural to

ask which direction is better for the setup of a model.

The shape of contours for each slice is an important criterion
2 Given two polygons §1 and §2 that are monotone in directions q and

f, respectively, §1 and §2 are disassemblable in at least one of two

directions qCp/2, fCp/2 [9].
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for the setup direction since the manufacturing process is

accomplished by scanning the contours or hatching the

facets of the slice. Hence, the weakly-monotone directions

of the model can be used for setting up the model since the

intersection of the model with every plane orthogonal to the

directions generates a simple contour.

The directional-monotonicity is a useful property for the

mould design for a model. Since two plates are mostly used

to form a seal in mould casting, the first step of automatic

mould design is to investigate a feasible direction along

which two plates forming a seal can be separated. However,

two plates may not be removed due to some portions of

moulded piece called undercuts that have to be dealt with

devices such as side cores [1,4]. If a polyhedron is

directionally-monotone as illustrated in Fig. 4(b), its surface

is divided into two sub-surfaces that are separable in the

monotone directions. Hence, the directional-monotonicity is

a necessary and sufficient condition for the separability of

two plates in mould design that needs no side core3.
3. Characterization of polyhedron monotonicity
3.1. Geometry on the sphere

We define notation and review geometric primitives on

the sphere. Let Ed be the d dimensional Euclidean space and

pZ{x1,.,xd} be a point in Ed. Then, the space on the

boundary of the unit sphere centered at origin is described as

SdK1 Z fpjjjpjj Z 1g:

A point p on S2 is a unit vector in E3. A great circle on

S2, which is determined by the intersection of S2 with a

plane containing the origin, is a set of points

GCðpÞ Z fxjpx Z 0; x2S2g:
3 Chen et al. [4] have developed nice algorithms for minimizing the

number of side cores in mould design, whose solutions are sufficient but not

necessary.
A hemisphere that is the spherical region bounded by a

great circle is a set of points

HSðpÞ Z fxjpxR0; x2S2g:

Lemma 1. HS(p) contains UZ{u1,.,un}, if and only if

p2hn
iZ1HSðuiÞ: ([14]).

As illustrated in Fig. 5, let U be the set of outward unit

normal vectors a surface S. Clearly, U is a set of points on

S2, which is called the Gaussian map of S. The set of

directions visible to S can be described with hn
iZ1HSðuiÞ,

which is known as the visibility map of S. The spherical

convex hull of the Gaussian map, which is the boundary of

the convex set of U, will be denoted by GCH(U). On the

while, the spherical convex hull of the visibility map hn
iZ1

HSðuiÞ will be denoted by VCH(U). For the brief

expressions, S and KS in GCH() and VCH() will be

interpreted as U and KU, respectively, where KU is the set

of inward unit normals of S. For example, GCH(S) and

VCH(S) mean GCH(U) and VCH(U), respectively.

Lemma 2. Two spherical convex hulls GCH(U) and

VCH(U) are dual to each other; a vertex vi of GCH(U) for

all i corresponds to an edge (arc) ei in VCH(U), and vice

versa [5].
3.2. Strong-monotonicity

Let § denote a simple polyhedron. We represent the

geometric operations of convex hull and regularized

difference: [11] with CH() and K*, respectively. The

operation K* is similar to the set-theoretic difference, but it

eliminates dangling low-dimensional structures such as line

segment. The operation of §K�CHð§Þ will produce other

polyhedrons Di for iZ1,.,k, which are called the

deficiencies of §. The surface of Di is composed of two

kinds of sub-surfaces: the part of § and that of CHð§Þ,

which are called the pocket and the lid, respectively. The

pocket and the lid of Di will be denoted by Pi and Li,

respectively. Note that all faces of a pocket are connected

but those of a lid may not be connected. The examples of

pockets and lids of polyhedrons are presented in Fig. 6.

The strong-monotonicity of § is limited by the

deficiencies of the polyhedron since a convex polyhedron
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is strongly-monotone in every direction. We characterize

the strong-monotonicity of § by exploiting the surface

monotonicity of Pi and Li for all iZ1,.,k.

Lemma 3. § is strongly-monotone in a direction d, if and

only if both of Pi and Li for all iZ1,.,k are monotone in d.

Proof. Let PPL(d) denote an arbitrary plane parallel to the

direction d. The symbol ‘o’ denotes the intersection of two

objects in 3D space.

For proving the sufficiency part with the contradiction,

we assume that P is not strongly-monotone in d when Pi and

Li for all iZ1.k are monotone in d. If § is not strongly-

monotone in d, there is a plane PPL(d) such that §o
PPLðdÞ generates a non-monotone polygon in d, or two or

more polygons. In the former case (Fig. 7(a)), let A be the

non-monotone polygon. Clearly, we can get at least a non-

monotone chain in d from AK*CH(A), which is the part of a

pocket Pi for some i. Hence, there is a non-monotone Pi in d

since a line parallel to d can intersect Pi two or more times.

The latter is divided into two cases (Fig. 7(b) and (c)); a

polygon contains another polygon or the polygons are

disjointed. If a polygon contains another polygon, the

internal polygon is the part of a pocket Pi for some i, i.e. Pi is

not monotone in d. Otherwise, the line segments a and b

supporting them are the part of a lid Li for some i, i.e. Li is

not monotone in d. This is the contradiction.

The necessity part can be proved also with the three cases

of Fig. 7. Assume that Pi or Li for some i is not monotone in

d when § is strongly-monotone in d. If Pi is not monotone

in d, there is a plane PPL(d) such that Li generates a non-

monotone chain in d as illustrated in Fig. 7(a) and (b). On

the other hand, if Li is not monotone in d as illustrated in

Fig. 7(c), there is a plane PPL(d) such that LioPPL(d)

generates two or more disjointed chains. This is because Li

is a convex surface if its faces are connected, and there is a

hole otherwise. We can make such examples by intersecting

some vertical planes with the cases of Fig. 6(c) and (d),

respectively. This is the contradiction. ,

The monotone directions of Pi and Li can be character-

ized by the unit normals of faces forming them since a face

with a unit normal u is visible in a direction d2HS(u).
Hence, we can formulate the strong monotonicity of § as

the following geometric problem on S2.

Lemma 4. § is strongly-monotone in a direction d, if and

only if GC(d) separates GCH(PigLi) for all iZ1.k.

Proof. In general, a surface S may not be monotone in a

direction d2VCH(S)gVCH(KS). However, a pocket Pi of

a polyhedron is always monotone in d, if and only if

d2VCH(Li)gVCH(KLi). A lid Li is also monotone in d, if

and only if d2VCH(Li)gVCH(KLi).

The set of monotone directions of Pi and Li is described

as (VCH(Pi)gVCH(KPi))h(VCH(Li)gVCH(KLi)). This

is equivalent to VCH(PigLi)gVCH(PigKLi)gVCH(K
PigLi). VCHðPi gLiÞZVCHðKPi gKLiÞZ, since they are,

respectively, the set of outward unit normals and the set of

inward unit normals of a deficiency Di. Thus, the set of

monotone directions of Pi and Li for all iZ1.k is

represented as hk
iZ1ðVCHÞðPi gKLiÞgVCHðKPi gLiÞÞ.

By Lemma 1 and 2, a direction d is included in VCH(U)

if and only if HS(d) contains GCH(U). Thus, for a direction

d 2hk
iZ1ðVCHðPigKLiÞgVCHðKPigLiÞÞ, HS(d) con-

tains GCH(PigKLi) or GCH(KPigLi) for any i. In other

words, Pi and Li are monotone in d, if and only if the great

circle GC(d) separates GCH(PigKLi) for all iZ1.k. By

this result and Lemma 3, the proof has been finished. ,

The pockets and lids of a polyhedron can be obtained in

O(n lo n) time, where n is the number of all faces of the

polyhedron [11,12]. All great circles separating k spherical

polygons can be found O(mk log k) time, where mZO(n) is
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the number of all vertices [3]. Thus, we get a result for the

strong-monotonicity as.

Theorem 1. All directions for the strong monotonicity of a

polyhedron can be computed in O(nk log kCn log n) time,

where n and k are the numbers of all faces and all

deficiencies of the polyhedron, respectively.
3.3. Weak- and directional-monotonicity

The two types of the weak- and the directional-

monotonicity of a polyhedron are limited also by its

deficiencies. In order to characterize the two types of

polyhedron monotonicity, we define other sub-surfaces

from the deficiencies.

We have defined the pockets and the lids of § by

computing its deficiencies from the operations of

§K�CHð§Þ. A set of faces forming a pocket can be

partitioned into several sets of faces by sets of convex edges

that are connected, which will be called sub-pockets and

denoted by SPi for all iZ1,.,ks. An edge is said to be

convex if the exterior dihedral angle between its two

incident faces is greater than 1808. Now we define another

sub-surface called a sub-lid (but this is not a pure sub-part of

a lid). From the operation of SPiK
*CH(SPi), we get a set of

faces that are not contained in §, which is the sub-lid
c

(a)

c

(b)

Fig. 7. The proof o
corresponding to SPi and will be denoted by SLi. The

examples of SPi and SLi are illustrated in Fig. 8.

We assume that § has no hole in the formulation of the

weak-monotonicity, since a polyhedron with a hole is not

weakly-monotone in any direction. Then, we can describe

an obvious characterization for the weak-monotonicity of

§ with SPi as.

Lemma 5. § is weakly-monotone in a direction d if and

only if SPi for all iZ1,.,ks is divided into at most two sub-

surfaces by every plane orthogonal to the direction d.

Let SLFij for all jZ1,.,li be each face 2SLi, each of

which will also represent its unit normal in HS() similarly to

GCH() and VCH(). Then, we can formulate a geometric

problem on S2 for the weak-monotonicity of § as.

Lemma 6. § is weakly-monotone in a direction d, if and

only if GC(d) intersects VCH(SPigKSLFij) for all iZ1,.,

ks, jZ1,.,li.

Proof. Let OPL(d) denote an arbitrary plane orthogonal to

the direction d. Note that {OPL(d)}3{PPL(d 0)} if d 0 is

orthogonal to d, where {OPL(d)} is the set of all planes

orthogonal to d and {PPL(d 0)} is the set of all planes parallel

to d 0.

We consider the condition that a given SPi for some i is

divided into more than two sub-surfaces by a plane. First,

SPi is divided into more than two sub-surfaces by a plane
d

b

a

(c)

f Lemma 3.
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2{PPL(d 0)} if d 0;VCH(SPi), as illustrated in Fig. 9(a).

Second, even when d 02VCH(SPi), SPi is divided into more

than two sub-surfaces by a plane 2{PPL(d 0)} if

d 02HS(SLFij) for any jZ1,.,li, as illustrated in Fig. 9(b).

Hence, the set of planes that does not divide SPi into

more than two sub-surfaces is described ashis
jZ1fPPLðd 0

ijÞg,

where d 0
ij 2VCHðSPi gKSLFijÞ that is equivalent to d 0

ij 2
VCHðSPiÞ and d 0

ij ;HSðSLFijÞ. Since the directions orthog-

onal to d are on GC(d) and fPPLðd 0
1Þgh fPPLðd 0

2ÞgZ
fOPLðdÞg for dZd 0

1d 0
2 (d is orthogonal to both of d 0

1 and

d 0
2), {OPL(d)} does not divide any sub-pockets into more

than two pockets if and only if every d 0
ij 2VCHðSPig

KSLFijÞ is on GC(d). In other words, § is weakly-monotone

if and only if GC(d) intersects VCH(SPig-SLFij) for all iZ
1,.,ks, jZ1,.,li. ,

The directional-monotonicity of § can be characterized

by exploiting the surface monotonicity of SPi for all iZ1,

.,ks as.

Lemma 7. § is directionally-monotone in a direction d, if

and only if SPi for all iZ1,.,ks are monotone in d.

Proof. For proving the sufficiency part with the contradic-

tion, assume that § is not directionally-monotone in d,

when SPi for all iZ1,.,ks are monotone in d. Then, there is

a line parallel to d such that it intersects a pocket of § two

or more times. Let a and b, respectively, be the two points

that are the first and the last intersection points of the pocket

with the line. There are two cases; a and b are included in

SPi for some i, or not. In the first case, clearly, the SPi

including a and b is not monotone in d. In the second case,

let SPa and SPb be the sub-pockets including a and b,
respectively. The path from a to b on the pocket always

passes a convex edge, since SPa and SPb are divided by a set

of convex edges. Hence, there are at least two intersection

points with a line parallel to d in each of SPa and SPb. It

follows that neither of SPa and SPb is monotone in d, i.e. SPi

is not monotone in d.

For the necessity part, assume that SPi for some i is not

monotone in d, when § is directionally-monotone in d.

Then, SPi has two or more intersection points with a line

parallel to d, i.e. the line intersects § more than two times.

This is the contradiction. ,

We can describe another geometric formulation on S2 for

the directional-monotonicity of § with the proof similar to

that of Lemma 4 as.
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Lemma 8. § is directionally-monotone in a direction d, if

and only if GC(d) separates GCH(SPi) for all iZ1,.,ks.

Prior to checking the weak-monotonicity, it can be

determined in O(n log n) time to determine whether or not

§ has any hole. We can divide a pocket into sub-pockets by

searching a set of faces that are adjacent to each other and

share a concave edge, which can be performed in O(n) time

similarly to the depth-first search or the breadth-first search

of a graph [13]. Furthermore, all great circles intersecting k

spherical polygons can be found also in O(nk log k) time [3].

Hence, we summarize the results for the weak- and the

directional-monotonicity as.

Theorem 2. All directions for the weak-(directional-)

monotonicity of a polyhedron can be obtained in O(nk log

kCn log n) time, where n and k are the numbers of all faces

and all sub-pockets of the polyhedron, respectively.
4. Conclusion

We discussed about the properties of the three types of

polyhedron monotonicity: strong-, weak-, and directional-

monotonicity. The strong-monotonicity was reexamined with

the disassemblability problem. Other types of polyhedron

monotonicity are also related with 3D manufacturability

problems such as layered manufacturing and mould casting.

By characterizing the monotonicity of a given poly-

hedron with the sub-surfaces of its deficiencies, the problem

of determining the polyhedron monotonicity was formu-

lated as a well-known geometric problem on the sphere; find

great circles separating or intersecting a set of spherical

polygons. Consequently, all directions for the strong-

(weak-, directional-) monotonicity of a polyhedron can be

obtained in O(nk log kCn log n) time, where n and k are the

numbers of all faces and all deficiencies (sub-pockets) of the

polyhedron, respectively.
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