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Abstract 
Projective texture mapping is used to project a texture map onto scene geometry. It has been used in many 
applications, since it eliminates the assignment of fixed texture coordinates and provides a good method of 
representing synthetic images or photographs in image-based rendering. But conventional projective texture 
mapping has limitations in the field of view and the degree of navigation because only simple rectangular texture 
maps can be used. 
In this work, we propose the concept of panoramic projective texture mapping (PPTM). It projects cubic or 
cylindrical panorama onto the scene geometry. With this scheme, any polygonal geometry can receive the 
projection of a panoramic texture map, without using fixed texture coordinates or modeling many projective 
texture mapping. For fast real-time rendering, a hardware-based rendering method is also presented. 
Applications of PPTM include panorama viewer similar to QuicktimeVR and navigation in the panoramic scene, 
which can be created by image-based modeling techniques. 
 
Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing Algorithms; 
I.3.7 [Computer Graphics]: Color, Shading, Shadowing, and Texture 

 
 
 
1. Introduction 

Texture mapping has been used for a long time in 
computer graphics imagery, because it provides much 
visual detail without complex models7. A texture map is 
generally a two-dimensional image, and accessed using 
texture coordinates assigned to the geometry of scenes. 
Although color is the content of texture maps in most 
cases, texture elements (texels) can have other 
characteristics, such as transparency, bump perturbation, 
and normal vectors. Recently, texture mapping has 
become more important, thanks to the enhancement of 
graphics hardware. It is a key component in real-time 
graphics applications such as games or virtual reality. 

Projective texture mapping is a relatively new technique 
of mapping textures. Rather than assigning fixed texture 
coordinates to geometry, projective texture mapping 
projects a texture map onto geometry, like a slide 
projector. Projective texture mapping is more convenient 
to use in many applications than assigning fixed texture 
coordinates. For example, light mapping, which enables 
fast complex light contributions such as Phong shading or 
spotlight, can be implemented easily with projective 

texture mapping. Image-based rendering (IBR) draws 
more applications of projective texture mapping. When 
photographs or synthetic images are used for IBR, those 
images contain scene information, which is projected onto 
the screen in the capturing process. Therefore, projecting 
them into scenes can be used to model image-based virtual 
environments. 

However, projective texture mapping has some 
limitations. It can project only one rectangular texture map 
using one perspective frustum. Therefore, the field of view 
determined by the projection is limited. In many image-
based applications, we must consider the boundaries of 
projection carefully and two or more projectors should be 
used as needed. Moreover, cylindrical or cubic panorama 
cannot be used as projecting sources. 

In this work, we propose the concept and algorithms for 
the projection of panoramic images. This means that 360° 
panorama can be projected to virtual environments 
directly. Therefore, many image-based applications can 
handle the projections in a more convenient way. As 
panoramic images, we use cubic panorama and cylindrical 
panorama. Cubic panorama consists of six square faces, 
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which capture what is visible along all directions from a 
viewer position. A cylindrical panorama is a rectangular 
texture map, which contains texels parameterized with 
cylindrical coordinates. Figure 1 shows the concepts of 
projective texture mapping from panorama. Our method 
achieves real-time performance, because it is implemented 
fully by 3D graphics hardware with DirectX 8 API. From 
now on, we will refer to our method as panoramic 
projective texture mapping (PPTM) to distinguish it from 
standard projective texture mapping. 

 

2. Related Work 

2.1. Texture mapping and Environment mapping 

Texture mapping is a technique of introducing visual 
details into a scene7. There are many variations in texture 
mapping, mainly according to the dimensionality and 
usage. 1D, 2D, or 3D textures can be used according to the 
dimensions of the data domain. Texture maps can 
represent surface colors, transparency, bumps, or normal 
vectors according to the contents of the map. 

Texture maps may contain the environment to be used 
for environment mapping6. In environment mapping, what 
is visible from a point is captured and contained in a 
texture map. It is accessed with the direction of reflected 
view vector, so that surfaces can reflect the environment. 
Ray-tracing-like reflection can be performed easily 
without complex computation. Recent 3D graphics 
hardware has built-in environment mapping module, so 
that it can be performed in real-time. 

 

2.2. Projective texture mapping and its hardware 
implementation 

Texture mapping is performed by the assignment of 
texture coordinates to all the points on the scene geometry. 
Usually, texture coordinates are assigned as parametric 
coordinates of surfaces or assigned manually. But 
projective texture mapping provides another method of 
texture coordinate assignment. With this method, a texture 
is projected onto object surfaces, like slide projection15. 

Most of the current graphics hardwares can handle 
projective texturing1,11. First, all the points on the scene 
geometry are given 3D texture coordinates which are their 
camera space locations. These coordinates are then 
transformed to the projection coordinate system, where the 
origin is at the center of projection. The coordinates are 
divided by z-component in order to perform perspective 
projection. This procedure is similar to the viewing and 
projection transformations in normal image rendering, and 
can be represented as a single 44× matrix. This matrix is 
set as a texture transformation matrix maintained by the 
graphics hardware. When polygons are drawn with this 
configuration, the automatic transformation of texture 
coordinates gives the final 2D coordinates to access the 
texture map. 

Projective texture mapping is useful in many image-
based applications. If the images are taken from 
photographs of real scenes, they can be thought of as 
transformed perspectively in the capturing process. 
Therefore, virtual environment can be modeled easily 
using the images as projecting sources. Moreover, it 
eliminates the need for complex or laborious process of 
texture coordinate assignment. 

Figure 1: Panoramic projective texture mapping 
Left image is the projection from cubic panorama (two faces of the 

projection source are not shown). Right image is the projection from 
cylindrical panorama. 
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However, the conventional projective texture mapping 
technique is limited to one rectangular image. Therefore, 
projective texturing cannot be performed with panoramic 
images. Moreover, with the limited field of view, the 
coverage of the projection is limited only to a part of the 
scene, which may be a problem in many VR applications. 

 

2.3. Panoramic rendering from fixed viewpoint 

QuicktimeVR3 introduced a simple, but realistic virtual 
reality system. It uses cylindrical images and provides 
look-around views from a fixed viewpoint. Even though 
viewpoints cannot be relocated smoothly, QuicktimeVR 
has been used widely because it can generate realistic 
virtual environments easily from photographs. There are 
many commercial software packages for authoring and 
rendering cylindrical panorama16. Most of them employ 
software-based renderers, since rendering cylindrical maps 
involves nonlinear warping and is difficult to handle with 
graphics hardware. 

Cylindrical panorama can be rendered in hardware by 
modeling polygonal approximation and texture pre-
warping. In other words, arbitrary polygonal models can 
be used in the panorama authoring stage, so that the model 
contains texture maps, which are pre-warped 
appropriately14. 

 

2.4. Image-based modeling using a single image 

In image-based modeling, 3D scene modeling is 
performed based on input images. The types and sizes of 
modeling entities are extracted from images, usually with 
the user’s intervention, and input images are used as 
texture maps with the extracted geometry4,8,9,10,12. The 
objective of these approaches is modeling a 3D scene so 
that it can represent the contents in source images as well 
as possible.  

Some of the approaches use multiple images4 or a video 
sequence. On the other hand, a single image can also be 
used for image-based modeling. Tour-into-the-picture 
(TIP) 8 is one of the approaches. With this scheme, a 
simple rectangular structure is constructed by the user’s 
specification of the vanishing point. The source image is 
then used as a texture map of the rectangles for future 
navigation. For rendering, it uses its own logic 
implemented in software, to determine texture coordinates 
for the points on the geometry. 

TIP was extended by Kang et al.9, so that broader range 
of images can be handled by using vanishing lines. 
Spherical and cylindrical panorama can also be used as 
source images. It is implemented by modeling the 

background as a large spherical or cylindrical mesh with 
the source panorama as textures. OpenGL performs real-
time rendering. In order to use panoramic images without 
warping, the background mesh should be tessellated into 
many polygons. Since the panorama is not projected to the 
scene, panoramic-to-planar pre-warping is needed for 
foreground objects in order to extract textures for them. 

All of these works use software rendering or non-
projective texture mapping, which assigns static texture 
coordinates to the polygonal mesh. Software rendering is 
slow. Moreover, non-projective texture mapping requires 
warping of the source image in order to nullify the effect 
of projection during the capture of the source image. 
Using projective texture mapping would simplify the 
modeling and rendering processes. 

 

3. Panoramic projective texture mapping (PPTM) 

Conventional projective texture mapping uses simple 
planar image as its source of projection. However, its field 
of view is limited, and the degree of freedom in virtual 
environment modeling is also limited. Panoramic images, 
on the other hand, provide wider fields of view for the 
projection. Therefore, the whole environment can receive 
the projection from one image. 

We use two types of panorama as projection sources, 
cubic and cylindrical. The details of these 
parameterizations are explained in the next two sections. 
With these schemes, virtual environments can be 
represented by rendering polygonal models with PPTM 
enabled. An efficient implementation will also be 
presented, which takes advantage of hardware acceleration. 

 

4. Projective texturing from cubic panorama (Cubic 
PPTM) 

Cubic panorama captures 360° field of view 
horizontally and vertically, and stores the result in six 
faces of a cube. 

With conventional projective texture mapping, cubic 
panorama can be projected onto scene geometry with six 
concurrent projective texturing, each with perspective 
projection of 90° field of view. But projection of cubic 
panorama is not simple when two or more textures out of 
the six are projected onto a polygon simultaneously, 
because hardware texturing requires that a texture be 
assigned to a whole polygon. The images in Figure 1 show 
these cases. In these cases, the polygon should be 
subdivided along the projection of frustum boundaries, so 
that each can have its own texture. But this may make the 
scene more complex. Moreover, dynamically changing 



Kim and Hahn / Projective Texture Mapping with Full Panorama 

© The Eurographics Association and Blackwell Publishers 2002. 

texture mapping cannot be handled, such as moving 
objects in static projection or moving projection source. 
Therefore, we propose a method to project from a cubic 
texture directly to overcome these limitations. 

Recent graphics hardware provides cubic environment 
mapping as a method of environment mapping. Texels in 
cubic panorama are indexed with the directional 3-vector 
from the center of the cube. So, reflection on a point is 
modeled as a texel indexed by the reflected view vector at 
the point. 

Instead of using it for reflection, we can use the cubic 
environment mapping method for projective texture 
mapping with cubic panorama. A 3D point receiving the 
projection is transformed into the coordinates in projection 
space, where the origin is at the center of the cubic 
projection and the axes are aligned with the cube. Then, 
the transformed coordinates can be used to index the cubic 
panorama with cubic environment mapping hardware. In 
this way, any polygon can receive projection from cubic 
panorama. 

 

Texture coordinates for cubic PPTM are determined as 
shown in Figure 2. Graphics hardware can generate 3D 
texture coordinates with camera space positions 
automatically. Let the eye coordinate vector be ),,( zyx  
and weT −  be the transformation from eye coordinates to 
world coordinates. weT −  is the inverse of the viewing 
transformation, which can be retrieved using DirectX API. 

pwT −  is the transformation from world coordinates to 
projection coordinates. The projection coordinate system 
has the origin at the center of the cube and the axes are 
aligned with the cube. pwT −  is determined by placing and 
orienting the projection source. Then, wepw TTT −−=  
gives the whole transformation from eye coordinates to 

projection coordinates. If T  is set as the texture 
transformation matrix, graphics hardware transforms the 
texture coordinates generated automatically with this 
transformation. With these configurations, texture 
mapping with cubic projection is performed by setting the 
texture operation mode to cubic environment mapping. All 
of these operations are performed on a per-pixel basis by 
the graphics hardware. Conventional projective texture 
mapping is implemented in a similar way. The only 
difference is that it performs division-by-z in projection 
coordinates to get 2D texture coordinates, while our cubic 
projection uses the 3D vector in projection space in order 
to determine the texture coordinates for cubic environment 
mapping. 

The pseudo code for rendering is shown in Figure 3. 
DirectX API does all configuration and rendering. There is 
much flexibility in the assignment of textures, i.e., two or 
more projections can be performed simultaneously and 
some polygons may not receive any projection. 

 

Eye Coordinate Vector 

World Coordinate Vector 

Projection Coordinate Vector

Generated Automatically 
for Each Pixel 

weT −

pwT −

Used for Cubic 
Environment Mapping 

Figure 2: Determination of Texture 
Coordinates for Cubic PPTM

T : Texture Transform Matrix 

weT − : Inverse of Viewing Transform 

pwT − : Transformation 

from World Coordinates 
to Projection Coordinates 

 
for each frame 
   Configure Automatic Texture 

Coordinate Generation Mode 
as Camera_Space_Position 

   Configure Cubic Environment 
Mapping mode 

   Compute weT −  

   for each Cubic Projective Texture
      Set texture 
      wepw TTT −−=  

      Set Texture Transformation 
   Matrix as T  

      Draw Polygons receiving 
   Current Projection 

   endfor 
 

   Configure Rendering mode 
to normal rendering 

   Draw Polygons Not receiving 
Projective Texture 

endfor 

Figure 3: Pseudo code of Cubic PPTM



 Kim and Hahn / Projective Texture Mapping with Full Panorama  

© The Eurographics Association and Blackwell Publishers 2002. 

5. Projective texturing from cylindrical panorama 
(Cylindrical PPTM) 

Cylindrical textures are being used in many applications, 
since they provide a 360-degree horizontal field of view 
and constant horizontal sampling density. However, using 
cylindrical maps directly with hardware acceleration is 
difficult, because cylindrical mapping involves nonlinear 
computations, which cannot be handled easily by graphics 
hardware. So, in many look-around applications with 
cylindrical maps, such as QuickTimeVR, texture 
coordinates are determined by the software renderer. 

Since using cubic panorama is usually faster than using 
cylindrical panorama, a cylindrical map may be resampled 
into a cubic map. But cylindrical maps are easy to obtain 
and provide constant horizontal sampling rates. Moreover, 
resampling may degrade the quality of the maps. 

Projection with cylindrical panorama is a process of 
warping a cylindrical texture map onto a plane. We 
propose an algorithm for this process using graphics 
hardware. 

 

5.1. Main idea 

First, we define projection plane, onto which a 
cylindrical map is warped locally. Then, conventional 
planar projective texture mapping is used with the warped 
texture map on the projection plane. In order to utilize 
graphics hardware and enhance rendering performance, 
we perform the nonlinear local warping on-the-fly using 
bump mapping hardware. 

From now on, we use ),( vθ  for the cylindrical texture 
coordinates in [0..1] for cylindrical panorama, and ),( vu ′′  
for the planar texture coordinates on the projection plane. 
3-vector ),,( zyx  is a location in projection coordinate 
system, where the origin is at the center of the cylinder. 
The z-axis is aligned with the axis of the cylinder, and the 
x-axis is aligned with 0=θ . Transformation from eye 
coordinates to projection coordinates is performed in the 
same way as cubic PPTM. 

Let H be the height of the unit cylinder given as 
)FOV5.0tan(2H ×= , where FOV is the vertical field of 

view of the cylindrical panorama. Then, ),( vθ  is related 
to ),,( zyx  as follows. Here, atan2() is arctangent function 
in standard C library, which gives angle in [-π..π] for 
output. 

  
   

 (1) 
 

 

For local warping, we define the direction of projection 
(DOP), which becomes the normal vector of the projection 
plane. In other words, DOP is the direction that we are 
most interested in for the projection. We use DOP 
perpendicular to the cylinder, so it is defined simply by 

0θ , which is the angle of DOP from the x-axis. Then, the 
projection plane is placed at unit distance from the origin 
with the normal vector along DOP. Figure 4 shows a 2-
dimensional view of this configuration. 

Suppose that ),( yx ′′  is a projection of ),,( zyx  onto 
the local coordinates of the projection plane. Then, the 
above equations become the following equations which 
determine ),( vθ . And it determines ),( vθ  for given 

),( yx ′′ . 

  
  

(2) 
 
 

 

The main idea of our work is to decompose these 
equations into a linear approximation and nonlinear 
residuals, and fill the bump map with the nonlinear part. 
The bump map is used to perturb texture coordinates 
determined by the linear part. This is done by 
decomposing Equation 2 as follows. 

 
 
(3) 

 

The residual parts are given as follows. 

 
 
 

(4) 
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Here, a and b are the coefficients of the linear 
approximations of ),( vθ  according to ),( yx ′′ . They are 
computed before rendering so that the magnitudes of the 
residual parts are minimized. Because texture coordinates 
are interpolated linearly by texture mapping hardware, we 
encode the linear components as regular texture 
coordinates of the polygon. The residual components are 
encoded as bump maps to perturb the linear texture 
coordinates. Implementation details are explained in the 
next subsection. 

 

5.2. Using environment mapped bump mapping 
(EMBM) for hardware support 

Recent improvement in texture mapping hardware 
introduced multi-texture mapping. With multi-texture 
mapping, two or more textures can be applied to a polygon 
in a single rendering pass. Each texture is applied at each 
stage. The result of the previous stage and the texture for 
the current stage are combined by various operations, such 
as add, subtract, multiply, etc. 

One of the operational modes of multi-texturing is 
environment mapped bump mapping (EMBM) where 
texture coordinates in the second stage are perturbed by 

the texel values sampled in the first stage. This 
functionality is designed originally for bumped reflection, 
where the environment is reflected using environment 
mapping. In this work, however, this functionality is used 
to perturb texture coordinates and perform nonlinear 
warping with hardware support. Because residual parts 
shown in Equation 4 are approximated as a bump 
perturbation map, the resolution of the bump map may 
affect the quality of projective texturing. 256256×  bump 
map is used in this work, and there is no noticeable artifact 
due to the approximation. 

 

5.2.1. Implementation with single-pass rendering 

Cylindrical PPTM can be implemented using EMBM 
and multi-texturing capabilities of 3D graphics hardware. 
With multi-texture capability, multiple textures can be 
applied onto object geometry in a single rendering pass. 
Figure 5 shows the procedure for determining texture 
coordinates. For the first texture stage, texture operation is 
set as EMBM and bump perturbation map is used as 
texture. The bump perturbation map contains the amounts 
of perturbation needed for all texels, which are computed 
by the residual parts of cylindrical parameterization given 
in Equation 4. For the second texture stage, the cylindrical 

Eye Space Vector

World Space Vector

Projection Space Vector

First stage: 
generated automatically 

for each pixel 

weT −

pwT −

Figure 5: Determination of texture coordinates 
for cylindrical PPTM 

2D Vector on Projection 
Plane

Access bump map

Eye Space Vector 

World Space Vector 

Projection Space Vector 

weT −

pwT −

2D vector on Projection 
Plane

Second stage: 
generated automatically 

for each pixel 

),( vθ as linear part of 
Equation 3 Perturb texture 

parameter

Final )( vθ

Standard 
Projective 
Texture 
Mapping 
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panorama is used as the texture. For both stages, texture 
coordinates are generated by automatic texture generation 
capability, and transformed appropriately by the texture 

transformation matrix. Most of the procedure is similar to 
standard projective texture mapping. But the use of  
EMBM makes it possible to perform nonlinear warping 
with graphics hardware. 

We found that current 3D graphics hardware has 
problems in implementing this procedure, even though 
DirectX supports the capability. We tested nVIDIA 
GeForce3 and ATI Radeon. They do not function correctly 
when EMBM is used and projective texturing is turned on 
in multi-stages. However, DirectX reference renderer 
(software renderer) executes this implementation correctly. 
It seems that current hardware did not implement the 
entire functionality because this usage is beyond the scope 
of its original objective, which is environment mapping. 
We hope that full functionality is supported in the near 
future.  

Therefore, we propose another rendering method in the 
next subsection, which is less efficient but possible with 
current graphics hardware. 

 

5.2.2. Implementation with multi-pass rendering 

Since many graphics hardware do not function correctly 
when EMBM and projective texturing are used 
simultaneously, we propose a multi-pass rendering 
approach here. It is similar to the single-pass approach in 
the previous subsection, but it renders in two passes, i.e., 
rendering takes place two times for a final result. In the 
first pass, texture operation mode and texture maps are set 
up in the same way as single-pass implementation. But 
projective texturing is not set up, and viewing direction is 
aligned with the direction of projection (DOP). This 
results in the image, which contains a part of the panorama 
projected onto the projection plane. In the second 
rendering pass, this image is used as texture and 
appropriate projective texturing is set up for the final 
image. Figure 6 shows the images generated in this 
process. 

Because we warp the cylindrical map explicitly, 
rendering performance with this method is lower than the 
single-pass method. Moreover, it is required to perform 
the first pass rendering more than once, since local 
warping cannot cover all views from the projection source. 
Polygons can be grouped according to their locations, so 
that each group can be projected with each first-pass 
rendering result. This problem does not occur with the 
single-pass method. 

 

(a) Cylindrical map 

(b) Projected to Projection Plane

(c) Final Result 

Figure 6 Cylindrical PPTM with two-
pass rendering: The area in red
rectangle in (a) is specified by
DOP and it is projected using EMBM
(first pass). Standard projective
texturing with (b) results in final
result in (c). 
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6. Applications and Experimental Results 

Cubic and cylindrical PPTM were implemented using 
DirectX 8 API. Similar implementation would be possible 
with OpenGL. In the following subsections, various 
applications of PPTM and their results are presented.  

 

6.1. Panorama Viewer ( viewpoint and projection 
source at the same location ) 

When the source of projection is located at the 
viewpoint, PPTM works as panorama viewer, which is 
similar to QuicktimeVR. Since panorama is projected 
from the viewpoint and rendered from the same location, 
we can use any scene geometry as long as it covers the 
entire screen. Because it is the simplest geometry, we use 
a rectangle placed on the screen of the viewing frustum. In 
other words, the rectangle is rendered from the viewpoint, 
while it receives the projection from the viewpoint. This 
rectangle is always attached to the viewing frustum when 
the user rotates the viewing direction or changes the field 
of view. Our panorama viewer supports both cubic and 
cylindrical panorama, and Figures 7 and 8 show the 
rendered results using the panorama viewer. 

With the cubic panorama viewer, everything visible 
from a fixed viewpoint can be captured and looked around. 
Figure 7(a) is the cubic panorama data we used. Figure 
7(b) shows rendered images when the user changes 
viewing direction of field of view. This functionality can 
be obtained by rendering six squares with static texture 
coordinates. However, we believe that the approach of 
projection gives possibility for more applications. 

In the cylindrical panorama viewer, the direction of 
projection (DOP) changes according to the viewing 
direction. Cylindrical panoramic viewer provides the same 
rendering capability as QuicktimeVR. But our viewer 
renders fast even with large resolution, because it takes 
advantage of hardware rendering. On the other hand, 
software renderer such as QuicktimeVR degrades image 
quality when the user changes viewing direction in order 
to achieve real-time functionality. Figure 8(a) is a sample 
panorama and Figure 8(b) shows various rendered images. 

 

6.2. Projection of Panorama onto Geometry 

In Figures 9 and 10, panoramas are projected onto 
polygonal geometry. In our examples, panoramas rotate 
while they are projecting the textures, which is not 
possible with static texture mapping. 

In the results of Figure 9, the cubic panorama in Figure 
7(a) was used, and simple cubic geometry in Figure 9(a) is 
used. In the rendered images in Figure 9(b), the colors of 

the polygons are modulated by the projected texture colors. 
It is shown that two or three faces of the texture contribute 
together to one polygon, which is not possible with 
conventional projective texture mapping. This example is 
a kind of light mapping, and the modeling of full 360º 
light is possible to be used for light mapping. 

Figure 10 is a similar experiment with cylindrical 
panorama. In this case, the polygons selects incoming 
texture colors as their final colors.  

 

6.3. Rendering speed 

We used a Pentium III 450 MHz PC with GeForce3 
graphics card. For cubic PPTM, rendering speed is very 
high. When cylindrical panorama is used, the frame rate is 
much lower than the case of cubic panorama. This is due 
to the overhead of multi-pass rendering. In the example of 
cylindrical projection, we performed three renderings for 
the first pass, because single explicit warping cannot cover 
all the polygonal models. 

However, it still shows high frame rates even for large 
resolutions, when compared with software renderers. If 
future graphics hardware works well with single-pass 
implementation of cylindrical PPTM, the frame rate will 
increase a lot. 

The next table shows the measured rendering frame 
rates in frames per second. 

 

Resolution 640 x 480 1024 x 768 
CUBIC VIEWER 652 269 
CYL VIEWER 140 104 
CUBIC PROJECTION 469 227 
CYL PROJECTION 53 46 

 

7. Conclusion and future work 

We presented the concept of panoramic projective 
texture mapping (PPTM), and proposed algorithms to use 
cubic and cylindrical panorama as projecting sources. 
With this scheme, a single panoramic texture can be 
projected to the whole scene without additional modeling 
or subdivision of polygonal models. Examples of the 
projection were shown for panoramic viewer as well as 
more general cases. We believe that projective texture 
mapping from panorama can be used in many useful 
applications. 

As future work, our method could be applied to many 
image-based rendering techniques. First, it could be used 
with an image-based modeler so that a panorama can work 
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as an input image for modeling. Virtual environments with 
more degrees of navigation could be generated. 

Since photographs can be modeled as projecting texture 
into the scene, many image-based rendering techniques 
use projective texture mapping. Our method could be 
combined with some of existing image-based rendering 
techniques using projective textures2,4. Another future 
work could be the projection of more complex texture 
maps, which are modeled nonlinearly. For example, 
concentric mosaics13 is similar to cylindrical map, but it is 
parameterized differently to capture horizontal parallax 
with 3D data. It is not possible to render it using 3D 
graphics hardware due to its nonlinearity. Since our work 
proposes the baseline of projecting nonlinear texture map 
using graphics hardware, it could be extended to using 
concentric mosaics as rendering entity. 
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Figure 9: Result of Cubic Panorama Projection
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Figure 10: Result of Cylindrical Panorama Projection 
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Figure 8: Result of Cylindrical Panorama Viewer 
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