
EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel Volume 21 (2002), Number 3
(Guest Editors)

© The Eurographics Association and Blackwell Publishers 2002. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Projective Texture Mapping with Full Panorama

Dongho Kim and James K. Hahn

Department of Computer Science, The George Washington University, Washington, DC, USA

Abstract
Projective texture mapping is used to project a texture map onto scene geometry. It has been used in many
applications, since it eliminates the assignment of fixed texture coordinates and provides a good method of
representing synthetic images or photographs in image-based rendering. But conventional projective texture
mapping has limitations in the field of view and the degree of navigation because only simple rectangular texture
maps can be used.
In this work, we propose the concept of panoramic projective texture mapping (PPTM). It projects cubic or
cylindrical panorama onto the scene geometry. With this scheme, any polygonal geometry can receive the
projection of a panoramic texture map, without using fixed texture coordinates or modeling many projective
texture mapping. For fast real-time rendering, a hardware-based rendering method is also presented.
Applications of PPTM include panorama viewer similar to QuicktimeVR and navigation in the panoramic scene,
which can be created by image-based modeling techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing Algorithms;
I.3.7 [Computer Graphics]: Color, Shading, Shadowing, and Texture

1. Introduction

Texture mapping has been used for a long time in
computer graphics imagery, because it provides much
visual detail without complex models7. A texture map is
generally a two-dimensional image, and accessed using
texture coordinates assigned to the geometry of scenes.
Although color is the content of texture maps in most
cases, texture elements (texels) can have other
characteristics, such as transparency, bump perturbation,
and normal vectors. Recently, texture mapping has
become more important, thanks to the enhancement of
graphics hardware. It is a key component in real-time
graphics applications such as games or virtual reality.

Projective texture mapping is a relatively new technique
of mapping textures. Rather than assigning fixed texture
coordinates to geometry, projective texture mapping
projects a texture map onto geometry, like a slide
projector. Projective texture mapping is more convenient
to use in many applications than assigning fixed texture
coordinates. For example, light mapping, which enables
fast complex light contributions such as Phong shading or
spotlight, can be implemented easily with projective

texture mapping. Image-based rendering (IBR) draws
more applications of projective texture mapping. When
photographs or synthetic images are used for IBR, those
images contain scene information, which is projected onto
the screen in the capturing process. Therefore, projecting
them into scenes can be used to model image-based virtual
environments.

However, projective texture mapping has some
limitations. It can project only one rectangular texture map
using one perspective frustum. Therefore, the field of view
determined by the projection is limited. In many image-
based applications, we must consider the boundaries of
projection carefully and two or more projectors should be
used as needed. Moreover, cylindrical or cubic panorama
cannot be used as projecting sources.

In this work, we propose the concept and algorithms for
the projection of panoramic images. This means that 360°
panorama can be projected to virtual environments
directly. Therefore, many image-based applications can
handle the projections in a more convenient way. As
panoramic images, we use cubic panorama and cylindrical
panorama. Cubic panorama consists of six square faces,

Kim and Hahn / Projective Texture Mapping with Full Panorama

© The Eurographics Association and Blackwell Publishers 2002.

which capture what is visible along all directions from a
viewer position. A cylindrical panorama is a rectangular
texture map, which contains texels parameterized with
cylindrical coordinates. Figure 1 shows the concepts of
projective texture mapping from panorama. Our method
achieves real-time performance, because it is implemented
fully by 3D graphics hardware with DirectX 8 API. From
now on, we will refer to our method as panoramic
projective texture mapping (PPTM) to distinguish it from
standard projective texture mapping.

2. Related Work

2.1. Texture mapping and Environment mapping

Texture mapping is a technique of introducing visual
details into a scene7. There are many variations in texture
mapping, mainly according to the dimensionality and
usage. 1D, 2D, or 3D textures can be used according to the
dimensions of the data domain. Texture maps can
represent surface colors, transparency, bumps, or normal
vectors according to the contents of the map.

Texture maps may contain the environment to be used
for environment mapping6. In environment mapping, what
is visible from a point is captured and contained in a
texture map. It is accessed with the direction of reflected
view vector, so that surfaces can reflect the environment.
Ray-tracing-like reflection can be performed easily
without complex computation. Recent 3D graphics
hardware has built-in environment mapping module, so
that it can be performed in real-time.

2.2. Projective texture mapping and its hardware
implementation

Texture mapping is performed by the assignment of
texture coordinates to all the points on the scene geometry.
Usually, texture coordinates are assigned as parametric
coordinates of surfaces or assigned manually. But
projective texture mapping provides another method of
texture coordinate assignment. With this method, a texture
is projected onto object surfaces, like slide projection15.

Most of the current graphics hardwares can handle
projective texturing1,11. First, all the points on the scene
geometry are given 3D texture coordinates which are their
camera space locations. These coordinates are then
transformed to the projection coordinate system, where the
origin is at the center of projection. The coordinates are
divided by z-component in order to perform perspective
projection. This procedure is similar to the viewing and
projection transformations in normal image rendering, and
can be represented as a single 44× matrix. This matrix is
set as a texture transformation matrix maintained by the
graphics hardware. When polygons are drawn with this
configuration, the automatic transformation of texture
coordinates gives the final 2D coordinates to access the
texture map.

Projective texture mapping is useful in many image-
based applications. If the images are taken from
photographs of real scenes, they can be thought of as
transformed perspectively in the capturing process.
Therefore, virtual environment can be modeled easily
using the images as projecting sources. Moreover, it
eliminates the need for complex or laborious process of
texture coordinate assignment.

Figure 1: Panoramic projective texture mapping
Left image is the projection from cubic panorama (two faces of the

projection source are not shown). Right image is the projection from
cylindrical panorama.

 Kim and Hahn / Projective Texture Mapping with Full Panorama

© The Eurographics Association and Blackwell Publishers 2002.

However, the conventional projective texture mapping
technique is limited to one rectangular image. Therefore,
projective texturing cannot be performed with panoramic
images. Moreover, with the limited field of view, the
coverage of the projection is limited only to a part of the
scene, which may be a problem in many VR applications.

2.3. Panoramic rendering from fixed viewpoint

QuicktimeVR3 introduced a simple, but realistic virtual
reality system. It uses cylindrical images and provides
look-around views from a fixed viewpoint. Even though
viewpoints cannot be relocated smoothly, QuicktimeVR
has been used widely because it can generate realistic
virtual environments easily from photographs. There are
many commercial software packages for authoring and
rendering cylindrical panorama16. Most of them employ
software-based renderers, since rendering cylindrical maps
involves nonlinear warping and is difficult to handle with
graphics hardware.

Cylindrical panorama can be rendered in hardware by
modeling polygonal approximation and texture pre-
warping. In other words, arbitrary polygonal models can
be used in the panorama authoring stage, so that the model
contains texture maps, which are pre-warped
appropriately14.

2.4. Image-based modeling using a single image

In image-based modeling, 3D scene modeling is
performed based on input images. The types and sizes of
modeling entities are extracted from images, usually with
the user’s intervention, and input images are used as
texture maps with the extracted geometry4,8,9,10,12. The
objective of these approaches is modeling a 3D scene so
that it can represent the contents in source images as well
as possible.

Some of the approaches use multiple images4 or a video
sequence. On the other hand, a single image can also be
used for image-based modeling. Tour-into-the-picture
(TIP) 8 is one of the approaches. With this scheme, a
simple rectangular structure is constructed by the user’s
specification of the vanishing point. The source image is
then used as a texture map of the rectangles for future
navigation. For rendering, it uses its own logic
implemented in software, to determine texture coordinates
for the points on the geometry.

TIP was extended by Kang et al.9, so that broader range
of images can be handled by using vanishing lines.
Spherical and cylindrical panorama can also be used as
source images. It is implemented by modeling the

background as a large spherical or cylindrical mesh with
the source panorama as textures. OpenGL performs real-
time rendering. In order to use panoramic images without
warping, the background mesh should be tessellated into
many polygons. Since the panorama is not projected to the
scene, panoramic-to-planar pre-warping is needed for
foreground objects in order to extract textures for them.

All of these works use software rendering or non-
projective texture mapping, which assigns static texture
coordinates to the polygonal mesh. Software rendering is
slow. Moreover, non-projective texture mapping requires
warping of the source image in order to nullify the effect
of projection during the capture of the source image.
Using projective texture mapping would simplify the
modeling and rendering processes.

3. Panoramic projective texture mapping (PPTM)

Conventional projective texture mapping uses simple
planar image as its source of projection. However, its field
of view is limited, and the degree of freedom in virtual
environment modeling is also limited. Panoramic images,
on the other hand, provide wider fields of view for the
projection. Therefore, the whole environment can receive
the projection from one image.

We use two types of panorama as projection sources,
cubic and cylindrical. The details of these
parameterizations are explained in the next two sections.
With these schemes, virtual environments can be
represented by rendering polygonal models with PPTM
enabled. An efficient implementation will also be
presented, which takes advantage of hardware acceleration.

4. Projective texturing from cubic panorama (Cubic
PPTM)

Cubic panorama captures 360° field of view
horizontally and vertically, and stores the result in six
faces of a cube.

With conventional projective texture mapping, cubic
panorama can be projected onto scene geometry with six
concurrent projective texturing, each with perspective
projection of 90° field of view. But projection of cubic
panorama is not simple when two or more textures out of
the six are projected onto a polygon simultaneously,
because hardware texturing requires that a texture be
assigned to a whole polygon. The images in Figure 1 show
these cases. In these cases, the polygon should be
subdivided along the projection of frustum boundaries, so
that each can have its own texture. But this may make the
scene more complex. Moreover, dynamically changing

Kim and Hahn / Projective Texture Mapping with Full Panorama

© The Eurographics Association and Blackwell Publishers 2002.

texture mapping cannot be handled, such as moving
objects in static projection or moving projection source.
Therefore, we propose a method to project from a cubic
texture directly to overcome these limitations.

Recent graphics hardware provides cubic environment
mapping as a method of environment mapping. Texels in
cubic panorama are indexed with the directional 3-vector
from the center of the cube. So, reflection on a point is
modeled as a texel indexed by the reflected view vector at
the point.

Instead of using it for reflection, we can use the cubic
environment mapping method for projective texture
mapping with cubic panorama. A 3D point receiving the
projection is transformed into the coordinates in projection
space, where the origin is at the center of the cubic
projection and the axes are aligned with the cube. Then,
the transformed coordinates can be used to index the cubic
panorama with cubic environment mapping hardware. In
this way, any polygon can receive projection from cubic
panorama.

Texture coordinates for cubic PPTM are determined as
shown in Figure 2. Graphics hardware can generate 3D
texture coordinates with camera space positions
automatically. Let the eye coordinate vector be),,(zyx
and weT − be the transformation from eye coordinates to
world coordinates. weT − is the inverse of the viewing
transformation, which can be retrieved using DirectX API.

pwT − is the transformation from world coordinates to
projection coordinates. The projection coordinate system
has the origin at the center of the cube and the axes are
aligned with the cube. pwT − is determined by placing and
orienting the projection source. Then, wepw TTT −−=
gives the whole transformation from eye coordinates to

projection coordinates. If T is set as the texture
transformation matrix, graphics hardware transforms the
texture coordinates generated automatically with this
transformation. With these configurations, texture
mapping with cubic projection is performed by setting the
texture operation mode to cubic environment mapping. All
of these operations are performed on a per-pixel basis by
the graphics hardware. Conventional projective texture
mapping is implemented in a similar way. The only
difference is that it performs division-by-z in projection
coordinates to get 2D texture coordinates, while our cubic
projection uses the 3D vector in projection space in order
to determine the texture coordinates for cubic environment
mapping.

The pseudo code for rendering is shown in Figure 3.
DirectX API does all configuration and rendering. There is
much flexibility in the assignment of textures, i.e., two or
more projections can be performed simultaneously and
some polygons may not receive any projection.

Eye Coordinate Vector

World Coordinate Vector

Projection Coordinate Vector

Generated Automatically
for Each Pixel

weT −

pwT −

Used for Cubic
Environment Mapping

Figure 2: Determination of Texture
Coordinates for Cubic PPTM

T : Texture Transform Matrix

weT − : Inverse of Viewing Transform

pwT − : Transformation

from World Coordinates
to Projection Coordinates

for each frame
 Configure Automatic Texture

Coordinate Generation Mode
as Camera_Space_Position

 Configure Cubic Environment
Mapping mode

 Compute weT −

 for each Cubic Projective Texture
 Set texture
 wepw TTT −−=

 Set Texture Transformation
 Matrix as T

 Draw Polygons receiving
 Current Projection

 endfor

 Configure Rendering mode
to normal rendering

 Draw Polygons Not receiving
Projective Texture

endfor

Figure 3: Pseudo code of Cubic PPTM

 Kim and Hahn / Projective Texture Mapping with Full Panorama

© The Eurographics Association and Blackwell Publishers 2002.

5. Projective texturing from cylindrical panorama
(Cylindrical PPTM)

Cylindrical textures are being used in many applications,
since they provide a 360-degree horizontal field of view
and constant horizontal sampling density. However, using
cylindrical maps directly with hardware acceleration is
difficult, because cylindrical mapping involves nonlinear
computations, which cannot be handled easily by graphics
hardware. So, in many look-around applications with
cylindrical maps, such as QuickTimeVR, texture
coordinates are determined by the software renderer.

Since using cubic panorama is usually faster than using
cylindrical panorama, a cylindrical map may be resampled
into a cubic map. But cylindrical maps are easy to obtain
and provide constant horizontal sampling rates. Moreover,
resampling may degrade the quality of the maps.

Projection with cylindrical panorama is a process of
warping a cylindrical texture map onto a plane. We
propose an algorithm for this process using graphics
hardware.

5.1. Main idea

First, we define projection plane, onto which a
cylindrical map is warped locally. Then, conventional
planar projective texture mapping is used with the warped
texture map on the projection plane. In order to utilize
graphics hardware and enhance rendering performance,
we perform the nonlinear local warping on-the-fly using
bump mapping hardware.

From now on, we use),(vθ for the cylindrical texture
coordinates in [0..1] for cylindrical panorama, and),(vu ′′
for the planar texture coordinates on the projection plane.
3-vector),,(zyx is a location in projection coordinate
system, where the origin is at the center of the cylinder.
The z-axis is aligned with the axis of the cylinder, and the
x-axis is aligned with 0=θ . Transformation from eye
coordinates to projection coordinates is performed in the
same way as cubic PPTM.

Let H be the height of the unit cylinder given as
)FOV5.0tan(2H ×= , where FOV is the vertical field of

view of the cylindrical panorama. Then,),(vθ is related
to),,(zyx as follows. Here, atan2() is arctangent function
in standard C library, which gives angle in [-π..π] for
output.

 (1)

For local warping, we define the direction of projection
(DOP), which becomes the normal vector of the projection
plane. In other words, DOP is the direction that we are
most interested in for the projection. We use DOP
perpendicular to the cylinder, so it is defined simply by

0θ , which is the angle of DOP from the x-axis. Then, the
projection plane is placed at unit distance from the origin
with the normal vector along DOP. Figure 4 shows a 2-
dimensional view of this configuration.

Suppose that),(yx ′′ is a projection of),,(zyx onto
the local coordinates of the projection plane. Then, the
above equations become the following equations which
determine),(vθ . And it determines),(vθ for given

),(yx ′′ .

(2)

The main idea of our work is to decompose these
equations into a linear approximation and nonlinear
residuals, and fill the bump map with the nonlinear part.
The bump map is used to perturb texture coordinates
determined by the linear part. This is done by
decomposing Equation 2 as follows.

(3)

The residual parts are given as follows.

(4)

),(5.0
)(0

yxRybv
xRxa

v ′′+′+=

′+′+= θθθ

ybyyxR

xaxxR

v ′−
′+

′
=′′

′−
′

=′

2x1H
1),(

2
)(atan)(

πθ

5.0
yxH

1

5.0
2

),(atan2

22
+

+
=

+=

zv

xy
π

θ

5.0
x1H

1
2

)(atan

2

0

+
′+

′
=

′
+=

yv

x
π

θθ

Figure 4: Projection Plane and
Direction of Projection (DOP)

Projection
Plane

x
0θ

DOP

Kim and Hahn / Projective Texture Mapping with Full Panorama

© The Eurographics Association and Blackwell Publishers 2002.

Here, a and b are the coefficients of the linear
approximations of),(vθ according to),(yx ′′ . They are
computed before rendering so that the magnitudes of the
residual parts are minimized. Because texture coordinates
are interpolated linearly by texture mapping hardware, we
encode the linear components as regular texture
coordinates of the polygon. The residual components are
encoded as bump maps to perturb the linear texture
coordinates. Implementation details are explained in the
next subsection.

5.2. Using environment mapped bump mapping
(EMBM) for hardware support

Recent improvement in texture mapping hardware
introduced multi-texture mapping. With multi-texture
mapping, two or more textures can be applied to a polygon
in a single rendering pass. Each texture is applied at each
stage. The result of the previous stage and the texture for
the current stage are combined by various operations, such
as add, subtract, multiply, etc.

One of the operational modes of multi-texturing is
environment mapped bump mapping (EMBM) where
texture coordinates in the second stage are perturbed by

the texel values sampled in the first stage. This
functionality is designed originally for bumped reflection,
where the environment is reflected using environment
mapping. In this work, however, this functionality is used
to perturb texture coordinates and perform nonlinear
warping with hardware support. Because residual parts
shown in Equation 4 are approximated as a bump
perturbation map, the resolution of the bump map may
affect the quality of projective texturing. 256256× bump
map is used in this work, and there is no noticeable artifact
due to the approximation.

5.2.1. Implementation with single-pass rendering

Cylindrical PPTM can be implemented using EMBM
and multi-texturing capabilities of 3D graphics hardware.
With multi-texture capability, multiple textures can be
applied onto object geometry in a single rendering pass.
Figure 5 shows the procedure for determining texture
coordinates. For the first texture stage, texture operation is
set as EMBM and bump perturbation map is used as
texture. The bump perturbation map contains the amounts
of perturbation needed for all texels, which are computed
by the residual parts of cylindrical parameterization given
in Equation 4. For the second texture stage, the cylindrical

Eye Space Vector

World Space Vector

Projection Space Vector

First stage:
generated automatically

for each pixel

weT −

pwT −

Figure 5: Determination of texture coordinates
for cylindrical PPTM

2D Vector on Projection
Plane

Access bump map

Eye Space Vector

World Space Vector

Projection Space Vector

weT −

pwT −

2D vector on Projection
Plane

Second stage:
generated automatically

for each pixel

),(vθ as linear part of
Equation 3 Perturb texture

parameter

Final)(vθ

Standard
Projective
Texture
Mapping

 Kim and Hahn / Projective Texture Mapping with Full Panorama

© The Eurographics Association and Blackwell Publishers 2002.

panorama is used as the texture. For both stages, texture
coordinates are generated by automatic texture generation
capability, and transformed appropriately by the texture

transformation matrix. Most of the procedure is similar to
standard projective texture mapping. But the use of
EMBM makes it possible to perform nonlinear warping
with graphics hardware.

We found that current 3D graphics hardware has
problems in implementing this procedure, even though
DirectX supports the capability. We tested nVIDIA
GeForce3 and ATI Radeon. They do not function correctly
when EMBM is used and projective texturing is turned on
in multi-stages. However, DirectX reference renderer
(software renderer) executes this implementation correctly.
It seems that current hardware did not implement the
entire functionality because this usage is beyond the scope
of its original objective, which is environment mapping.
We hope that full functionality is supported in the near
future.

Therefore, we propose another rendering method in the
next subsection, which is less efficient but possible with
current graphics hardware.

5.2.2. Implementation with multi-pass rendering

Since many graphics hardware do not function correctly
when EMBM and projective texturing are used
simultaneously, we propose a multi-pass rendering
approach here. It is similar to the single-pass approach in
the previous subsection, but it renders in two passes, i.e.,
rendering takes place two times for a final result. In the
first pass, texture operation mode and texture maps are set
up in the same way as single-pass implementation. But
projective texturing is not set up, and viewing direction is
aligned with the direction of projection (DOP). This
results in the image, which contains a part of the panorama
projected onto the projection plane. In the second
rendering pass, this image is used as texture and
appropriate projective texturing is set up for the final
image. Figure 6 shows the images generated in this
process.

Because we warp the cylindrical map explicitly,
rendering performance with this method is lower than the
single-pass method. Moreover, it is required to perform
the first pass rendering more than once, since local
warping cannot cover all views from the projection source.
Polygons can be grouped according to their locations, so
that each group can be projected with each first-pass
rendering result. This problem does not occur with the
single-pass method.

(a) Cylindrical map

(b) Projected to Projection Plane

(c) Final Result

Figure 6 Cylindrical PPTM with two-
pass rendering: The area in red
rectangle in (a) is specified by
DOP and it is projected using EMBM
(first pass). Standard projective
texturing with (b) results in final
result in (c).

Kim and Hahn / Projective Texture Mapping with Full Panorama

© The Eurographics Association and Blackwell Publishers 2002.

6. Applications and Experimental Results

Cubic and cylindrical PPTM were implemented using
DirectX 8 API. Similar implementation would be possible
with OpenGL. In the following subsections, various
applications of PPTM and their results are presented.

6.1. Panorama Viewer (viewpoint and projection
source at the same location)

When the source of projection is located at the
viewpoint, PPTM works as panorama viewer, which is
similar to QuicktimeVR. Since panorama is projected
from the viewpoint and rendered from the same location,
we can use any scene geometry as long as it covers the
entire screen. Because it is the simplest geometry, we use
a rectangle placed on the screen of the viewing frustum. In
other words, the rectangle is rendered from the viewpoint,
while it receives the projection from the viewpoint. This
rectangle is always attached to the viewing frustum when
the user rotates the viewing direction or changes the field
of view. Our panorama viewer supports both cubic and
cylindrical panorama, and Figures 7 and 8 show the
rendered results using the panorama viewer.

With the cubic panorama viewer, everything visible
from a fixed viewpoint can be captured and looked around.
Figure 7(a) is the cubic panorama data we used. Figure
7(b) shows rendered images when the user changes
viewing direction of field of view. This functionality can
be obtained by rendering six squares with static texture
coordinates. However, we believe that the approach of
projection gives possibility for more applications.

In the cylindrical panorama viewer, the direction of
projection (DOP) changes according to the viewing
direction. Cylindrical panoramic viewer provides the same
rendering capability as QuicktimeVR. But our viewer
renders fast even with large resolution, because it takes
advantage of hardware rendering. On the other hand,
software renderer such as QuicktimeVR degrades image
quality when the user changes viewing direction in order
to achieve real-time functionality. Figure 8(a) is a sample
panorama and Figure 8(b) shows various rendered images.

6.2. Projection of Panorama onto Geometry

In Figures 9 and 10, panoramas are projected onto
polygonal geometry. In our examples, panoramas rotate
while they are projecting the textures, which is not
possible with static texture mapping.

In the results of Figure 9, the cubic panorama in Figure
7(a) was used, and simple cubic geometry in Figure 9(a) is
used. In the rendered images in Figure 9(b), the colors of

the polygons are modulated by the projected texture colors.
It is shown that two or three faces of the texture contribute
together to one polygon, which is not possible with
conventional projective texture mapping. This example is
a kind of light mapping, and the modeling of full 360º
light is possible to be used for light mapping.

Figure 10 is a similar experiment with cylindrical
panorama. In this case, the polygons selects incoming
texture colors as their final colors.

6.3. Rendering speed

We used a Pentium III 450 MHz PC with GeForce3
graphics card. For cubic PPTM, rendering speed is very
high. When cylindrical panorama is used, the frame rate is
much lower than the case of cubic panorama. This is due
to the overhead of multi-pass rendering. In the example of
cylindrical projection, we performed three renderings for
the first pass, because single explicit warping cannot cover
all the polygonal models.

However, it still shows high frame rates even for large
resolutions, when compared with software renderers. If
future graphics hardware works well with single-pass
implementation of cylindrical PPTM, the frame rate will
increase a lot.

The next table shows the measured rendering frame
rates in frames per second.

Resolution 640 x 480 1024 x 768
CUBIC VIEWER 652 269
CYL VIEWER 140 104
CUBIC PROJECTION 469 227
CYL PROJECTION 53 46

7. Conclusion and future work

We presented the concept of panoramic projective
texture mapping (PPTM), and proposed algorithms to use
cubic and cylindrical panorama as projecting sources.
With this scheme, a single panoramic texture can be
projected to the whole scene without additional modeling
or subdivision of polygonal models. Examples of the
projection were shown for panoramic viewer as well as
more general cases. We believe that projective texture
mapping from panorama can be used in many useful
applications.

As future work, our method could be applied to many
image-based rendering techniques. First, it could be used
with an image-based modeler so that a panorama can work

 Kim and Hahn / Projective Texture Mapping with Full Panorama

© The Eurographics Association and Blackwell Publishers 2002.

as an input image for modeling. Virtual environments with
more degrees of navigation could be generated.

Since photographs can be modeled as projecting texture
into the scene, many image-based rendering techniques
use projective texture mapping. Our method could be
combined with some of existing image-based rendering
techniques using projective textures2,4. Another future
work could be the projection of more complex texture
maps, which are modeled nonlinearly. For example,
concentric mosaics13 is similar to cylindrical map, but it is
parameterized differently to capture horizontal parallax
with 3D data. It is not possible to render it using 3D
graphics hardware due to its nonlinearity. Since our work
proposes the baseline of projecting nonlinear texture map
using graphics hardware, it could be extended to using
concentric mosaics as rendering entity.

Acknowledgement

The authors wish to thank Ge Jin for the help in the
preparation of demo videos. This work was partially
supported by George Washington University Presidential
Fellowship.

References

1. D. Blythe, et al., “Advanced Graphics Programming
Techniques Using OpenGL”, Siggraph 2000 Course
Notes.

2. C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M.
Cohen, “Unstructured Lumigraph Rendering”,
Proceedings of SIGGRAPH 2001, 425-432, 2001.

3. S.E. Chen, “Quicktime VR – An Image-Based
Approach to Virtual Environment Navigation”,
Proceedings of SIGGRAPH 95, 29-38, 1995.

4. P.E. Debevec, C.J. Taylor, and J. Malik, “Modeling
and Rendering Architecture from Photographs: A
Hybrid Geometry- and Image-Based Approach”,
Proceedings of SIGGRAPH 96, 11-20, 1996.

5. P.E. Debevec, Y. Yu, and G.D. Borshukov, “Efficient
View-Dependent Image-Based Rendering with
Projective Texture-Mapping”, Eurographics
Rendering Workshop 1998, 105-116, 1998.

6. N. Greene, “Environment Mapping and Other
Applications of World Projections”, IEEE Computer
Graphics & Applications, 6(11):21-29, 1986.

7. P.S. Heckbert, “Survey of Texture Mapping”, IEEE
Computer Graphics & Applications, 6(11):56-67,
1986.

8. Y. Horry, K. Anjyo, and K. Arai, “Tour Into the
Picture: Using Spidery Mesh Interface to Make
Animation from a Single Image”, Proceedings of
SIGGRAPH 97, 225-232, 1997.

9. H.W. Kang, S.H. Pyo, K. Anjyo, and S.Y. Shin, “Tour
Into the Picture Using a Vanishing Line and its
Extension to Panoramic Images”, Computer Graphics
Forum, 20(3):132-141, 2001.

10. D. Liebowitz, A. Criminisi, and A. Zisserman,
“Creating Architectural Models from Images”,
Computer Graphics Forum, 18(3):39-50, 1999.

11. Microsoft, DirectX 8 Programmer’s Manual.

12. B.M. Oh, M. Chen, J. Dorsey, and F. Durand, “Image-
Based Modeling and Photo Editing”, Proceedings of
SIGGRAPH 2001, 433-442, 2001.

13. H.Y. Shum and L.W. He, “Rendering with Concentric
Mosaics”, Proceedings of SIGGRAPH 99, 299-306,
1999.

14. R. Szeliski and H.Y. Shum, “Creating Full Panoramic
Mosaics and Environment Maps”, Proceedings of
SIGGRAPH 97, 251-258, 1997.

15. F.M. Weinhaus and R.N. Devich, “Photogrammetric
Texture Mapping onto Planar Polygons”, Graphical
Models and Image Processing, 61(2):63-83, 1999.

16. http://www.panoguide.com/

Kim and Hahn / Projective Texture Mapping with Full Panorama

© The Eurographics Association and Blackwell Publishers 2002.

Figure 9: Result of Cubic Panorama Projection

(a) (b)

Figure 10: Result of Cylindrical Panorama Projection

(a) (b)

Figure 8: Result of Cylindrical Panorama Viewer

(a)

(b)

(a) (b)

