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SUMMARY

Until recently, sound has been given little attention in computer graphics and related domains

of computer animation and virtual environments, although sounds which are properly synchronized to

motion provide a great deal of information about events in the environment. Sounds are often not

properly synchronized because the sounds and the phenomena that caused the sounds are not

considered in an integrated way. In this paper, we present an integrated approach to motion and

sound as it applies to computer animation and virtual environments. The key to this approach is

synchronization by mapping the motion parameters to sound parameters so that the sound changes as

a result of changes in the motion. This is done by representing sounds using a technique for functional

composition analogous to the "shade trees" which we call timbre trees. These timbre trees are used as a

part of a sound description language that is analogous to scene description languages like RenderMan.

Using this methodology, we have produced convincing sound effects for a wide variety of animated

scenes including the automatic generation of background music.

KEY WORDS Computer animation     Motion     Multimedia     Sound     Soundtrack     Virtual

environments

INTRODUCTION

Sounds are an integral part of the environment. They are caused by motions in the world

and in turn cause changes to the world. Characteristics of sounds produced are directly linked with

the phenomenon that caused the sounds. Sounds are also shaped by the environment in which they

propagate. Therefore energies that represent the visible and audible spectrum that permeate the

world are very much correlated. In computer graphics (image rendering, computer animation,

virtual environments, etc.) the concentration has been in rendering the visible spectrum. When

sounds have been added, the correlation between the two has been generally weak. Sounds are

usually generated independent from the events that actually caused them. The result is that what we

see and what we hear are from two different "worlds." The resultant confusion detracts from the

total experience.

A large body of work exists in various domains that relate to sound. The issues in sound

generation have long been studied in the field of computer music1-5. Parameterization and

synchronization of sound has been investigated in relation to user interfaces6,7, data sonification5

and computer animation8,9. What is lacking, however, is a single framework that integrates

arbitrary sounds and motions for computer animation and virtual environments. The only previous
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related work in the graphics literature10 tried to address this problem. However the important issue

that the approach did not address was a general method to parameterize sounds which is essential

for establishing the mapping between motion and sound.

In this paper, we propose such a framework and describe a methodology to view sounds

and motions in an integrated way (Figure 1). The fundamental approach of this paper is to describe

sounds as parameterizable structures. These structures, called timbre trees11, allow sounds to be

represented so that the sound parameters correspond in some way to the phenomena that are

responsible for creating the sounds. For example, these mappings may be physically-based for

object-to-object interactions like scraping or collisions. These mappings may also be purely

imaginary such as when the motions are used to generate background music. These parameters

allow a timbre tree to span a class of sounds. When a timbre tree is instantiated, the parameters of

the trees are bound to the parameters from the motion control system. As the animation proceeds

the changing parameters coming from the motion cause changes in the associated sounds. In this

way the motions and the sounds that they produce are intimately linked. Environmental effects are

simulated by attaching additional nodes to the timbre tree. The final soundtrack is rendered by

evaluating the resultant tree.

evaluate tree

motion

final timbre tree

 image rendering  sound rendering

sound

timbre tree 
parameters

 mappingmotion 
parameters

synchronization

image sound

attach rendering 
nodes

Figure 1. Integrating sound and motion
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SOUND GENERATION

The most important part of sound representation and synthesis is the ability to parameterize

sounds so that we are able to link these parameters to the motions that are responsible for

producing sounds. Sounds can be parameterized by their attributes such as amplitude, pitch, etc.

We can use such parameterization for sampled sounds. However, it becomes difficult to map these

parameters to motions because it is equivalent to "reverse engineering" (i.e. determining how the

motions produced the sounds from the sounds themselves). We can also generate sounds based

on an idea of the mechanism behind them. There has been work in synthesizing auditory icons that

are parameterizable along the attributes of the events responsible for the generation of sounds in

user interfaces7. Although the application is directed toward giving the users specific information

associated with specific interface events, the approach parallels our work. However, it lacks a

general methodology to represent and map sounds to arbitrary motions.

Functional composition of sounds has been explored in a number of computer music

systems including MUSIC V, Csound, cmusic, and, Fugue1-4. There has also been a number of

approaches used for generating sounds such as Fourier synthesis, signal multiplication, filtering

(subtractive synthesis), and frequency modulation. These approaches in computer music, although

related to our approach, do not address the issue of representing general sounds so that their

parameters correspond to the phenomena that caused them. This is essential in order to

synchronize the sounds to the motion.

In this paper, we describe a flexible, general, and powerful way to use functional

composition to parameterize sounds based on motion using a representation called timbre trees.

Representation using Timbre Trees

Timbre trees are analogous to shade trees12 in image synthesis. The main idea behind

shade trees is a functional composition that allows the flexible integration of various shading and

texturing techniques. The advantage in using a tree structure is the modularity and simplicity of

composing an endless variety of techniques. Timbre trees operate in a similar fashion. Nodes of

the tree operate on other timbre trees, representations of sounds (including sampled sounds), or on

external parameters. Standard mathematical functions as well as several special-purpose functions

useful for sound synthesis, such as a number of elementary waveforms (sawtooth, triangle,

square, sine), several types of noise (white noise, Perlin noise13, etc.), and some signal processing

functions (filtering, convolution) have been implemented.
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A timbre tree with a set of associated parameters can be seen as an abstraction of a class of

sounds. The tree, evaluated with a specific set of parameter values, can be seen as a particular

instantiation of the class. Thus, the user can easily generate new classes of sounds based on

heuristics and/or libraries of trees and elementary nodes. By evaluating a tree with a time

dependent set of parameters, the characteristics of the sound can be changed "on the fly."

Growing Timbre Trees

Timbre trees provide a convenient way for animators to create sounds. We illustrate a

typical design process through an example for generating a timbre tree that represents the buzzing

sound of behaviorally-controlled bees (Figure 2). We use a general idea of how bees actually make

sound with their wings to construct a plausible procedural representation. A bee would tend to

push its wings down slowly, then lift them up quickly, repeating this process at some frequency.

Thus, our first guess is a sawtooth wave of a particular frequency. To avoid an instrument-like

pure tone, the frequency is continuously deviated about its mean, so it is represented by a varying

frequency given by a sum of a mean frequency and a high frequency noise. Even a noisy tone is

dull for a bee, if the mean frequency is constant. A living creature's continuously varying activity

can be simulated by defining the mean frequency as a nominal frequency plus a low frequency

noise resulting from a behavioral, second-order Markov process. One particular tree represents an

instance of a sound (e.g. one bee performing a particular activity), but the tree structure itself

represents an entire class of sounds (e.g. different kind of bees, different insect sounds, or even

chain saws).

The example illustrates an important goal of the sound generation and representation

system. Since the timbre tree of the sound was derived by the animator from a general idea of how

the sound was produced, the parameters associated with the tree can readily be mapped to

parameters of the motion responsible for the sound. It is not the ability to generate sounds that is

important but the ability to parameterize the sounds so that it can be mapped to the motion.
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a behavioral,
second-order

Markov process

1. basic waveform:

2. making it a "noisy tone":

3. later defining a subtree,
describing the continuously
varying activity of a busy bee:

4. initializing and using it:

sawtooth

+

mean-freq HF-noise

+

nominal-freq LF-noise

assigned randomly
for each bee

at the beginning

Figure 2. Timbre tree design process for bee sounds

One simple but extremely general timbre tree is one for Fourier synthesis. In this case, a

number of frequencies are added together to generate the desired sound. Such a synthesis was

shown to be effective in cases where the modes of vibration are simple such as guitar strings11.

More sophisticated modal analysis can be applied based on physical properties. The advantage of

this approach is that we can easily map physical attributes to sound parameters. For example, there

exists simple models for the modal analysis of the frequency components of hollow tubes 14:

fn = πK
8L2

E
ρ

[3.0112, 52, 72,. . . ,(2n+1)2]

where L is the length, E the elasticity, ρ the density, and K is the radius of gyration which is the

square of the tube's outer diameter over the inner diameter. We used such a formula to generate

wind chime sounds (EXAMPLES).

For shading calculations in image rendering, an ad hoc heuristic such as Phong

illumination may not be physically correct, but is fast and accurate enough for most purposes.

Similarly for sound rendering, rigorous physical simulation is not practical for many sounds, nor

is it pragmatic, since even an astute listener may not recognize the difference between a physically

simulated sound and a heuristic procedural sound. For this reason, timbre trees for many common

sounds could be developed by deriving a heuristic from a rough notion of how the sound is



Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

7

actually produced by a real physical system. These heuristics could be used to determine the

parameterization for the sounds so that they can be mapped to the motion events.

For sounds generated by the interactions of physical objects, we have constructed a timbre

tree for a class of physical objects and excitation modes (e.g. colliding, sliding, rolling)15. For

collision sounds, we can use the Fourier synthesis technique. The modes of vibrations are

sufficiently complex that they should be represented as a statistical distribution:

signal(t)= e-cωit sin ωit∑
i=1

n

where the ωi correspond to a set of random frequencies and c a damping term. A timbre tree that

corresponds to this is given in Figure 3a.

(a) Timbre Tree for collision sound

*

*

noise

*

t0.5

1/f noise

amp

freq

frequency
distribution

low frequency
noise

*

combine

*

sin

t

number of
frequencies

damp

*

t*

damp_ratiorvector

n_freq basemax

frequency range

(b) Timbre Tree for wind sound

Figure 3. Timbre tree examples. The darkened nodes represent parameters

In this tree, the number of frequency components (n_freq), the range of the random frequencies

(given by base and max) and a damping ratio (damp_ratio) are given as parameters. The

specialized node rvector returns a static vector of random values within the given range. The decay

rate of each frequency component is set by the node damp as being proportional to the frequency.

This is based on the observation that energy dissipation within the material is proportional to the

velocity. Thus high frequency vibrations that undergo high speed deformations die out sooner. A

combine node sums a vector argument corresponding to the frequencies and weights of the

vibration modes and returns a single scalar value. Each of these parameters map to events and

physical attributes. Different combinations of parameter values result in a surprising variety of
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sounds within this class including bell sounds, wood-like sounds, and metallic sounds (like the

striking of a cymbal).

Using a similar technique, we generated wind sounds by multiplying a 1/f noise signal

with a low frequency noise function (Figure 3b). The amplitude parameter (amp) can map to wind

force from an animation. The frequency distribution (freq) can be used to generate different types

of wind sounds.

We found that deriving these heuristics was somewhat of a learned (and developable) skill,

much as it is for writing procedural shaders in image rendering. Once a user had developed several

of these sounds and understood how combinations of functions lead to particular families of

sounds, it became easier to develop new sound families and instances.

Many times in the development of timbre trees (especially when using a heuristic

approach), we would find that we had constructed a timbre tree which was obviously an incorrect

instance of the class that we wanted. For example, at one point we had a perfect mosquito sound,

but what we really wanted was a bee. Or we would have a timbre tree which would sound almost

right, but would be incorrect in a way which eluded quantification. Or perhaps we would have the

correct instance, but wanted to explore other sounds of that class. To help us in these situations, we

developed tools that make use of evolutionary algorithms as a form of computer-aided search

through these function classes.

Genetic programming (GP) is a method of optimization which utilizes evolutionary

concepts such as reproduction, mutation, and natural selection to discover useful computer

programs or formulas16. Sims has used a kind of GP to explore procedural textures, which were

represented by LISP-like expressions17. Since timbre trees can also be represented as LISP-like

programs, we can extend this technique to the sound domain. Using this technique, we have been

able explore sounds within a class (like mosquitos, chain saws, etc.) by varying the parameter

values within a particular timbre tree. We have also produced entirely different timbre trees with

the same set of parameters that represent different classes of sounds.

SYNCHRONIZATION

The link between the image and sound domains is defined via synchronization.

Synchronization involves not only timing (when sounds are to occur), but also the mapping of

motion parameters to those of sounds (how sounds are to be shaped). Once a sound class has been

defined and its parameters determined using a timbre tree, synchronization is achieved by
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instantiating individual sounds by binding the sound class parameters with appropriate parameters

from a motion control system. For cases where a sound varies continuously with the motion, we

introduce the notion of a time dependent variable. These variables represent signals which are

continuously changing in time. Supplying a time dependent variable as an instantiation value to a

sound class results in a sound which will also vary continuously, synchronized to the continuous

change of the signal represented by the variable.

In using time dependent variables, the values that define the time varying signal are usually

calculated by the motion control at each animation frame. Since the temporal sampling granularity

of sound is much finer than that of images (8000Hz - 44100Hz as compared to 30Hz),

interpolation is used to find values of the time dependent variable for times between animation

frames.

Sonic Scene Description Language

Using a Sonic Scene Description Language, an animator or a motion control system can

describe what is occuring in the sound domain. The description language is analogous to scene

description languages such as RenderMan18. Once created, this description is fed to a renderer

which produces the final soundtrack. Thus the synchronization process which is represented by the

sonic scene description is independent of the rendering process.

We have developed such a language that allows for the definition of sound classes using

timbre trees, the instantiation of individual sounds, the starting and stopping of these instantiated

sounds, the definition of time dependent variables, and the specification of their keyframed values.

Physical object data that may be useful in sound rendering (e.g. the positions, orientations, and

attributes of microphones, sound sources, and other objects in 3-D space) can also be specified

using the language. Like most visual scene description languages, our language includes both a

textual and a functional interface. Thus the sonic scene can be described using a text file or a

program written in C++. Using the functional interface, the sonic scene may be output directly

from a motion control system.

For example, the sonic scene for a simple animation of two colliding cubes is described

using the functional interface in Figure 4. Functions beginning with Sr are utility routines used to

specify the sonic scene. Note that these routines can be incorporated directly into the application

performing the motion control. This example is typical of how these routines might be used in a

physically based animation system. The timbre tree presented in Figure 3a is used as the definition

for the class of collision sounds. Although each of the cubes is of a different material (one is

wood, the other metal), the same tree can be used for creating the sounds generated by either of the
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cubes. At each collision detected by the motion control, a collision sound is instantiated, started and

thus introduced into the sonic scene. Different instances of the collision class are created by

supplying the tree with different sets of instantiation parameters dependent upon the material of

each cube. The force of the collision, returned by the motion control, guides the amplitude of the

collision sounds. Note that, although not illustrated, time dependent variables may also be supplied

as arguments during sound instantiation.

The sonic scene description, when interpreted, will produce a series of timbre trees, one for

each sound instantiation. These trees will essentially be clones of the tree defining the class except

that leaf nodes, representing timbre tree parameters, will be replaced with nodes representing the

appropriate argument values. Time dependent variables are represented as keyframe nodes which

perform the proper interpolation of key values. A specialized timer node is placed at the root of

each instantiated tree and acts as a switch, indicating when the sound is to be turned on and off.

These trees will later be combined and evaluated during the rendering phase.

Mapping motion parameters to music

We can extend the methodology to synchronize background musical soundtracks with

motion-control parameters. This could mean generating motion from sounds or creating

soundtracks from the motion, which is the approach that we explored. Our aim was to generate

soundtracks that are both interesting, and intrinsically based on the motion parameter values. Such

a technique has been previously explored19, however, in this previous work, the very limited

correlation between the motion and sound was specified manually.

We apply transformations to motion parameters to produce a musical score which can be

considered another example of a sonic scene description language. Performance information is

supplied within the score, but the actual musical output is dependent on the nature of the rendition

of the score. Any motion control parameters, or combination of motion control parameters may be

employed in generating a musical score. In general, the introduction of more complex mappings

creates scores that tend to reflect the motions of objects less distinctly, but adds subtlety and

character to the music produced. These resultant scores often appear far more "composed" in the

traditional sense, than simply reflecting the motion in some automated way. The transformations

used may be based on heuristics, or on simple musical or physical rules or dependencies.

Similarly, any musical parameters or structures may be mapped to the motion parameters.

Minimally, only musical pitches need be output in order to produce a score. In addition, some

concept of instrumentation is necessary. The obvious methodology is to assign one part to each

object for which parameter values are available.
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/*
 * declare a collision sound class defined by the timbre tree
 * found in file figure3a.tt
 */
SrSoundClass collision = SrTimbreTree ("figure3a.tt");

/*
 * animation loop - t is a global clock used in guiding the
 * simulation...frame rate is 30 frames/sec
 */
for (float t = 0.0 ; t < simulation_length; t += 0.0333) {

   /*  motion of each cube is determined and collision(s)
       detected by motion control. Force of each collision is obtained */
   motion_and_collision_detection (...);

   for each collision {
      float force = obtain_collision_force (...);

      if (wooden_cube_collision) {
          /* instantiate a wood collision sound.  Wood sound is created by
             summing many frequencies that damp out quickly */
          SrSound wood_collision =

     SrInstantiateSound (collision,                  // sound class
                           "amp",       SR_CONSTANT, force,  // amp depends on force
                           "n_freq",    SR_CONSTANT, 500,    // n freq = 500
                           "max",       SR_CONSTANT, 10000,  // max_freq = 10000
                           "base",      SR_CONSTANT, 5000,   // base freq = 5000
                           "damp_ratio",SR_CONSTANT, 2.6,    // damp ratio = 2.6
                           NULL);                       // end of parameter list

          /* start up this instantiated sound at time corresponding to
             current frame */

   SrStartSound (wood_collision, t);
      }

      if (metal_cube_collision) {
          /* instantiate a metal collision sound.  Metal sound is created by
             summing a handful of frequencies that damp out slower */
           SrSound metal_collision =

      SrInstantiateSound (collision,                  // sound class
                            "amp",       SR_CONSTANT, force,  // amp depends on force
                            "n_freq",    SR_CONSTANT, 50,     // n_freq = 50
                            "max",       SR_CONSTANT, 1000,   // max_freq = 1000
                            "base",      SR_CONSTANT, 500,    // base freq = 500
                            "damp_ratio",SR_CONSTANT, 1.0,    // damp ratio = 1.0

                    NULL);                       // end of parameter list

          /* start up this instantiated sound at time corresponding to
             current frame */
      SrStartSound (metal_collision, t);
      }
   }  // end of for each collisiom
   ....
}  // end of animation loop

Figure 4. Sonic Scene Description for the collision of two cubes
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We allowed our transformations to map motion parameters to any semitone in the

Western-based diatonic scaling system. By using simple transformations, however, we could also

force the music to obey musical rules such as conformation to a modal scale (e.g. the diatonic

minor scale in C). By keeping these compositional constraints as transformations, the system is

freed of musical bias at the lowest level, while still allowing rule-based composition if desired.

Updating musical pitches (which are mapped to time dependent variables) continuously in

time is both unrealistic and unnecessary. It is more sensible to sample every quarter, or half

second. By producing scores with equal length notes, associated constructs such as instrument

tempos can be handled simply by slurring notes to produce longer durations of constant pitches.

The musical scores produced from the transformations are immediately identifiable to

musicians. This however is only one method of performing, or rendering, the soundtrack. Using

MIDI devices, the output may be generated directly, without the need for an explicit musical score.

We have used such techniques to produce background music for a number of animations

(EXAMPLES).

RENDERING

The process of rendering sound in a spatial environment involves a series of modifications

to the sound. These are due to transformations from object space to microphone space,

auralization, and environmental effects. The transformation of sound from the object space to

microphone space is result of attenuation and delay due to the distance between them11. This can

be expressed as attenuation/delay nodes in the timbre tree.

A good deal of the work has been done in the area of auralization in virtual environments.

Several methods have been successfully implemented ranging from the simulation of Head

Related Transfer Functions (HRTFs) using Finite Impulse Response (FIR) filters based on

empirical data20 to heuristics based on simple psychoacoustical principals21. All of these methods

share a common approach in that they filter a sound signal based on the position of a sound source

in a virtual space. Thus the directional effects of a listening device, whether it be a set of stereo

directional microphones or the ear represented by a set of HRTF filters, can simply be seen as yet

another timbre tree node.

The method used to create the environmental effects is defined by an "environmental" node

and could range from simple heuristics to a sophisticated treatment of acoustical theory. One

approach is to trace the sound energy in the environment using representations of objects that are
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specifically designed for sound tracing since light waves and sound waves "see" different

representations of objects. For example, reflection, refraction, and transmission of each object can

be represented by 3-dimensional bidirectional reflectance distribution functions (BRDFs) which

are functions of the shape and material characteristics of the object.

(a) Environmental effects (b) Timbre tree with specialized rendering nodes

       sound source
given by a timbre tree receiver

BRDF for B

from reflector
to microphone

timbre tree of 
sound emitted by 

source

transmissivity
of A

transmissivity
of C

final filtering
by microphone

atten

mike

from source
to reflector

BRDF of B

C

A

atten

BRDF

A

C
objects in

environment

Figure 5. Environmental nodes appended to the timbre tree

By attaching these nodes to the timbre trees that represent individual sound and combining

the resultant trees, an entire scene to be rendered can be represented as a single timbre tree. This

tree will represent the sound heard by a given sound receiver and, when evaluated and sampled,

will result in the generation of the final soundtrack. Evaluation of timbre trees in the temporal

domain is much like evaluation of shade trees in the spatial domain. At each sample point in the

soundtrack, evaluation is performed by a post order traversal of the tree. The output from the root

of the tree is the computed value of the sound for that time sample point. Figure 5 illustrates the

use of specialized rendering nodes in describing a sonic scene to be rendered.
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EXAMPLES

We have made a number of animations to illustrate our approach. The basic philosophy

that was used in constructing timbre trees as well as the mapping between sound and motion was

not to restrict ourselves to the mappings implied by strict physical simulations.

The first example illustrates a process of synchronization that automates the function of a

"foley artist"22. In this case, we wanted to map the parameters of a physically-based motion of a

coin rolling on the floor to a sampled sound. The parameters that we had for the sound were

amplitude and pitch. We mapped the angular velocity to the amplitude based on the observation

that the energy of the interaction of the coin with the floor is proportional to the angular velocity.

We also mapped the surface normal to the amplitude. Physical analysis of the sound produced as

the coin starts to oscillate and comes to rest is rather complicated. However, this mapping gives the

synchronization that we expect. The final soundtrack was produced using a composition of the two

mappings. Figure 6 shows the frames from the animation as well as the amplitude variation of the

sound produced.

time

am
pl

itu
de

rolling oscillation

Figure 6. Frames from the animation and the sound produced by a rolling coin

Figure 7 shows a frame from an animation where five chimes are being tossed about by

winds animated using physically-based modeling. Three types of sounds were generated: the

chimes themselves, the wind, and the background music. Using the timbre tree for a wind chime

discussed previously, chime sounds are produced for collision events that occur within the

simulation. For the wind sound, we used the wind timbre tree presented. Here the mapping is less
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direct as the three dimensional vector field of the wind, which has no visible motion, has to be

mapped to the scalar wind force of the timbre tree. We chose to map the total wind force felt by

each of the chimes to the wind force of timbre tree.

Figure 7. Frame from an animation of wind chimes
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la
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t

Figure 8. Motions of the physically-based wind chimes and the musical score they produced

The musical score for the background music was generated by mapping the motions of

each of the five chimes every half second to individual notes (Figure 8). The top figure shows the

actual displacements of the chimes over time and the bottom figure shows the score generated by

the system. The scale corresponds to the discretization of the mapped parameters along pitch

(vertical) axes while the timing and duration of the notes corresponds to the discretization along the

time (horizontal) axes.

The motion for the famous animated lamp learning to limbo (Figure 9) was produced by

an experimental motion control system based on genetic programming. In listening to the squeaky

hinges of a real lamp, we noticed that the hinges produced a raspy sound whose pitch and

amplitude varied with angular velocity. Because of this, we chose a frequency and amplitude

modulated sawtooth wave. Since squeaky joints seem to have different sounds when opening and

closing, the hinge has two squeak sounds associated with it, one for when the angular motion is in

a clockwise direction and another for when the motion is in the counter clockwise direction. The

base collision sound was produced with a Fourier synthesized timbre tree whose amplitude is

mapped to the collision force (Figure 10). The music for the animation was produced by mapping

the angular displacement of the hinges to notes of a blues scale.
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Figure 9. "L*xo Learns to Limbo"
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Timbre Tree for sqeaking 
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direction

*

amp

Fourier synthesized
collision sound

Timbre Tree for base collision 
sound

collision force

Figure 10. Mapping motion of lamp to timbre trees

CONCLUSION

In the past, sounds have been given only a cursory review in the computer graphics

community and have been added to graphics almost as an afterthought. It has become obvious that

the aural senses and the added impact of synchronized sound and images will play a bigger role in

providing a more complete experience. In this context, it is important that the sound design and its

use occur in conjunction with (and with the same level of importance as) the generation of motions

and images.

Sound has been a part of many domains such as computer music, human-computer

interaction, sonification, virtual environments, and recently in computer animation. The body of

knowledge amassed from these disciplines may give the impression that the work, as it relates to

computer graphics, is largely finished. But the quality and the effort needed to synchronize sound

to motion in computer animations and virtual environments attest to the fact that much work is
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needed in integrating the domains of sounds and images. It is the purpose of this research to tackle

this integration problem. According to this philosophy, we have developed a system of sound

representation and synthesis using timbre trees, synchronization by mapping motion parameters to

sound parameters, and rendering by adding additional nodes to the final timbre tree.

Future extensions include more coupling between parameters of the motion and the

parameters of the timbre tree. For example, the motions of deformable objects can be used to

generate sounds (e.g. a flag snapping in the wind). Parameterizing sampled sounds require more

studies in what constitutes "generic" qualities of sounds so that they can be mapped to the events

that caused the sounds. The system can be extended to real-time by the use of a MIDI based

system where the sound generation is handled by dedicated hardware (e.g. a synthesizer or

sampler). We are in the process of developing such a real-time sound system to be used in virtual

environment applications.
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Figure 1. Integrating sound and motion
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Figure 2. Timbre tree design process for bee sounds
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(a) Timbre Tree for collision sound

*

*

noise

*

t0.5

1/f noise

amp

freq

frequency
distribution

low frequency
noise

*

combine

*

sin

t

number of
frequencies

damp

*

t*

damp_ratiorvector

n_freq basemax

frequency range

(b) Timbre Tree for wind sound

Figure 3. Timbre tree examples. The darkened nodes represent parameters
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(a) Environmental effects (b) Timbre tree with specialized rendering nodes
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Figure 5. Environmental nodes appended to the timbre tree
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Figure 6. Frames from the animation and the sound produced by a rolling coin
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Figure 7. Frame from an animation of wind chimes
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Figure 8. Motions of the physically-based wind chimes and the musical score they produced
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Figure 9. "L*xo Learns to Limbo"
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Figure 10. Mapping motion of lamp to timbre trees


