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Abstract of Dissertation 
 

Automatic Parcellation of Longitudinal Cortical Surfaces 

 

Preterm birth incidence is a main cause of developing cognitive and neurologic 

disorders in childhood especially with children who are born extremely preterm. The 

human brain experiences significant functional and morphological changes at early 

development before and around birth. Understanding and modeling brain normal growth 

and cortical changes in early development are the keys to understanding and tracking 

neurologic disorders. The objective of this dissertation is to develop methods for 

longitudinally modeling brain development in order to provide researchers with tools for 

understanding normal growth patterns and for designing interventions that minimize 

potential preterm brain injury. We present a novel algorithm for longitudinally parcellating 

the developing brain at different stages of development. The algorithm assigns each cortical 

location to a neuroanatomical brain structure during early development. A labeled newborn 

brain atlas at 41 weeks gestational age (GA) is used to propagate labels of anatomical 

regions of interest to a spatio-temporal atlas, which provides a dynamic model of brain 

development at each week between 28-44 GA weeks. First, cortical labels from the volume 

of the newborn brain are propagated to an age-matched cortical surface from the spatio-

temporal atlas. Then, labels are propagated across the cortical surfaces of each week of the 

spatio-temporal atlas by registering successive cortical surfaces using a new approach and 

using an energy optimization function. This procedure incorporates local and global, spatial 

and temporal information when assigning the labels. The result is a complete parcellation 

of 17 neonatal brain surfaces with similar points per labels distributions across weeks. 
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Chapter 1-Introduction 
 

In the United States, one in every eight infants is born prematurely [1]. Premature 

birth is ranked second among causes of infant death in the U.S. [2]. Preterm birth (PTB) 

refers to the birth of an infant of 37 weeks gestational age (GA) or less. Although 

improvements in neonatal intensive care can increase the survival rate of prematurely born 

infants, the development of cognitive and neurologic disorders is still common especially 

with those who are extremely preterm [3,4]. Special therapies are needed for the 

neurodevelopmental care of PTB neonates. But most importantly, understanding normal 

growth and development processes of the brain are the keys to understanding and tracking 

neurologic disorders [5,6]. The objective of this dissertation is to develop methods for 

longitudinal modeling and quantitative measuring of brain structures development, in order 

to provide researchers with tools for understanding normal growth patterns and for 

designing interventions that minimize potential preterm brain injury. 

Invisible to human sensory perception, the brain remains a hidden world filled with 

mysteries awaiting scientific discovery. But what is inside the brain that scientists are 

interested in knowing about? How can the brain be non-invasively visualized? How can 

we track its development and why is it important to understand brain normal growth? 

Motivated by these questions, this dissertation contributes to the investigation of the 

developing brain. In this chapter, a general description of brain anatomy, its development, 

and the terminology used throughout the dissertation are presented. This includes a brief 

description of developing brain imaging techniques, and the challenges associated with 

these techniques. Finally, motivation, aim, and dissertation contribution conclude this 

chapter. 
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1.1. Brain Anatomy 

The cerebrum, cerebellum, and brainstem are the main components of human brain 

as shown in Figure 1.1(a). Similarly, there are three main tissue classes in the brain: gray 

matter (GM) or cerebral cortex, white matter (WM) or subcortex, and cerebrospinal fluid 

(CSF). The GM contains cells and the WM contains neuronal axons myelinated sheaths. 

The outer layer that covers the cerebrum, or the two cerebral hemispheres, is called the 

cerebral cortex and forms the largest part of the human brain. Cerebral cortex has highly 

convoluted topography. The grooves, which encompass two-thirds of the cerebral cortex, 

are called sulci (s. sulcus) and the folds are called gyri (s. gyrus). Four main lobes in each 

hemisphere of the cerebral cortex can be recognized by obvious sulci or gyri landmarks on 

the cortex as shown in Figure 1.1(b). Studying the cerebral cortex is important because it 

plays a significant role in high-level human functions and activities such as language, 

memory, planning, etc., and it is important to understand the relationship between functions 

and structures of the human brain (discussed in details in section 2.2.1). 

A number of neuroanatomical regions or structures exist in the brain and vary 

between neuroanatomical atlases where each atlas divides the brain into a number of 

regions based on relative knowledge. To identify brain structures, anatomical expertise 

about the geometry and the boundaries between structures is required. In addition, special 

radiology expertise related to classes’ intensity distribution and imaging artifacts is 

necessary. Sometimes tissue identification is needed prior to identifying brain structures or 

regions [7]. The process of identifying brain structures is usually called brain tissue 

segmentation, while the process of labeling brain regions is referred to as anatomical 

segmentation, or brain parcellation which is described in depth in Chapter 2 (see Figure 

1.1(c)). 
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Figure 1.1. Brain Anatomy. a) Lateral view of the main three components of the brain and principal fissures 

and lobes of the cerebrum (Source: [8]). b) Illustration of brain tissue anatomy (Source: [9]). c) 

Brain parcellation of 24 regions (Source [10]). 

 

1.2. Developing Brain Imaging 

Today, advancements in technical and scientific research provide great 

opportunities to combine disciplines in science and technology, producing innovative ways 

to conduct research and to solve real world problems. The most useful technologies where 

engineering science and medical science intermingle are medical imaging modalities. One 

example that is widely used to examine the pregnant women and to image the fetus is 

Obstetric Ultrasonography. This technique uses an ultrasound probe to transmit ultrasound 

waves through the body. These waves, which are not naturally heard by humans, reflect 

and echo off the body tissues and are recorded as images. Even though the ultrasound 

images are very helpful in visualizing fetus growth and development [11], they do not 

provide comprehensive information about brain anatomy. 

Magnetic Resonance Imaging (MRI) is a powerful, painless, non-invasive and non-

ionized technique for capturing detailed images that underlay tissue characteristics within 

the brain. For the developing brain, it captures the entire brain including the brain soft 

tissues, vasculature, and microstructure [12]. MRI uses a magnetic field and radio 

frequency to capture these pictures. The magnetic field aligns the nuclear magnetization of 
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hydrogen atoms within body water, while the radio wave pulses alter these alignments 

causing nuclear magnetization to produce rotating magnetic fields that are detectable by 

the scanner and produced in gray scale images. Interpreting a brain MRI scan means 

finding a correspondence between gray scale intensity in each MR image and labeled 

anatomical tissues or regions.  

MRI is not only used to investigate the anatomy and physiology of the body, but 

can also be fused within ultrasound or x-ray computed tomography (CT) images to reveal 

additional information about any organ [13]. Moreover, functional MRI (fMRI) captures 

activity in any region of the brain by detecting the blood flow to that region [14]. In 

addition, Diffusion-Weighted (DW) MRI allows visualization of the brain tissue structure 

and organization due to its sensitivity to the diffusion patterns of free water [15-17].  

By taking serial scans during and after the gestational time, we can assess the 

longitudinal maturity of the brain both in utero and ex utero. However, taking MRI scans 

of fetal brain in utero is challenging due to fetus motion artifacts caused by limited 

acquisition time [18]. Recent studies have developed approaches to successfully overcome 

this problem [19,20]. Another challenge of scanning fetal brain using MR imaging is the 

variation of the magnetic field strength that is used to acquire the MR images from one 

scanner to another; usually between one and three Tesla. This produces intensity 

inhomogeneity such that the brain intensity images produced by different scanners are 

dissimilar. This can be problematic for image-based techniques such as registration and 

segmentation since these techniques depend heavily on intensity. Another challenge 

presented when dealing with these techniques is the partial volume effect where the 

resolution (sampling grid of MR signal) of scans differ from one scanner device to another 
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[7]. However, techniques have been developed to correct for the intensity inhomogeneity 

and the partial volume effect [21,22]. Despite these challenges, MRI is the most viable 

imaging modality to longitudinally capture and track the developing brain in utero as 

demonstrated in the parcellation algorithm of this dissertation. 

 

1.3. Brain Development 

Brain development starts at the embryonic period; more specifically, at the fifth 

week of pregnancy. Figure 1.2 illustrates the timeline of pregnancy by weeks and months 

of GA [23]. In the first months of pregnancy and before birth, the brain experiences the 

most development and changes in shape, size and structure [24,25]. Most significantly, 

changes occur in the size and in the cortical folding of the brain. Growth continues rapidly 

until the brain is two to three years old, when the process slows and stabilizes and the 

developing brain becomes mature. Using MR images allows for quantitative and 

qualitative assessment and measurement of human brain myelination (maturation) 

processes and growth patterns [26-30].  

Myelination is the process of covering the WM by myelin, lipid bilayer. The fast 

myelination starts before birth and is completed within the first two or three years of life, 

while the long myelination continues until adulthood [31,32]. Myelin promotes efficient 

neural signal transmission along the nerve cells. The appearance of the developing brain in 

structural MRI differs significantly from the appearance of the mature adult brain. The 

myelinated WM in T1-weighted MRI increases in intensity from hypo intense to hyper 

intense relative to GM. In T2-weighted MRI WM decreases from hyper intense to hypo 

intense relative to GM [24,33,34]. Thus, the developing brain MR images are characterized 

by an inverted contrast of WM and GM as opposed to the developed brain as seen in Figure 
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1.3.  The inverted contrast is due to WM axonal growth where myelin sheath forms around 

the axon tracts [35,36] (see Figure 1.4) and change occurs in the cell water content as a 

result of decreasing both T1 and T2 times in order to avoid fetus motion [36,37]. By the 

completion of the myelination process, the brain tissue contrast appears in MR images 

similar to the adult brain tissue contrast, while the brain structure, shape, and size are 

different [38]. 

 

 

Figure 1.2. Timeline of pregnancy by weeks and months of gestational age (Source: [39]). 

 

 

Figure 1.3. GM and WM intensities of developing brain in contrast to developed brain (Source: [40]). 
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Figure 1.4. Axonal growth. 

 

Human corticogenesis and brain growth patterns can be predicted using structural 

MRI, DW MRI, and histology. Corticogenesis is the process responsible for creating the 

cerebral cortex (GM). The cerebral cortex development starts in the embryogenesis period 

and continues after birth [36]. Cerebral cortex is a highly convoluted structure composed 

of six layers and located on the outer layer of the brain [41], which constitutes the cognitive 

and intellectual ability center in humans. The six layers’ neurons are generated in the 

ventricular/subventricular zones and subpallial ganglionic eminence [42-45] and then 

migrate along glial cell scaffold structures to their final destination structure in the cortical 

plate [46-49]. During fetal development, this highly orchestrated cellular migration 

towards the cortical plate is characterized by having radial and tangential migrational 

trajectories [46,50-52]. Recently, Kolasinski et al. described the migration paths in detail 

using structural and DW MRI, and emphasized that the radial patterns originated from the 

ventricular/subventricular zone, while the tangentio-radial patterns originated in ganglionic 

eminence [52] (see Figure 1.5). As a result, an increase in the cerebral cortex surface area 

occurs [53]. At the same time, the total brain tissue volume increases at the ratio of 

22ml/week [26]. The radial growth of cerebral cortex in early development is postulated 

by lateral spreading of the neuron cells and the increase of the cortical surface area 

[51,53,54]. However, local cortical growth and folding which form the sulci and gyri 
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during early developments [24] are more complicated. Several methods are proposed to 

mathematically simulate local cortical growth using elasticity and plasticity [55], tension 

forces [56], and a reaction-diffusion system [57]. Recently, Budday et al. proposed a 

differential growth mechanical model for the developing brain to simulate cortical folding. 

In their model, the cortex (GM) grows morphogenetically at a constant rate and the 

subcortex (WM) grows in response to overstretch [9].  To date, no defined model that 

precisely underlay the mechanism of local brain folding and convoluting in detail during 

gestational time has been produced [6,9]. In this dissertation, we rely on the global, 

concentric, and radial growth hypothesis to track the local regions of interest (ROIs) 

development when parcellating the developing brain longitudinal MRI scans’ surfaces. 

 

1.4. Motivation 

Automatic analysis of the developing brain is challenging and needs special 

dedicated image analysis algorithms that account for the intensity change over time. 

Cerebral cortex poses a special challenge due to its convolution nature that varies from one 

person to another. Surface based analysis of such a structure is necessary to account for the 

convolution and to capture the buried regions [58]. Establishing a benchmark to assess the 

developing brain anatomical ROIs growth of PTB children requires surface-based studies 

[59]. Limited studies have attempted to identify typical patterns of growth using surfaces 

such as growth trajectories [60] and structural development biomarkers [61]. Other studies 

have aimed to identify cortical folding or cortical thickness in the developing brain [62,63] 

while others focused on analyzing the intellectual and functional abilities and abnormalities 

on the PTB brain [64]. Also, studies have focused on tracking the developmental changes  
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Figure 1.5. Two-dimensional representation of the pallial and subpallial origins and the GABAergic and 

glutamatergic radial and tangential migratory paths in human fetus brain at 19 post-conceptual 

weeks. Tangential migration can occur within the subventricular/ventricular zone (SVZ/VZ, blue 

area) in the pallial SVZ/VZ where glutant neurons originate. However, as the blue arrows show, 

radial migration occurs along radial glial fascicles, forming a dominate pattern that is perpendicular 

to cortical plate (CP) orientation.  In the pallial SVZ/VZ and subpallial ganglionic eminence (green), 

human brain GABAergic neurons develop.  The green arrows identify the tangential corridors of 

radial trajectory of GABAergic neurons in intermediate zone as it moves towards the CP after 

presenting its original migration pattern as tangentially oriented to the CP. Revealing a radial 

trajectory to the CP, the light green arrows show GABAergic neuronal migration that develops in 

the SVZ/VZ as it has been found to present in human and non-human primates.  As indicated, 

ganglionic eminence (GE), where ganglionic neurons originate, also transfers to thalamus by way 

of subcortical paths (Source: [52]). 

 

related to the intensity color change between GM and WM in MR images [65,66]. Until 

recently only a few quantitative studies have analyzed the longitudinal regional growth 

trajectories [60]. However, there is a lack of surface-based studies compared to volumetric 

image-based ones especially at early age of brain development. 

Viewed from another perspective, several studies have shifted focus to creating 

developing brain probabilistic atlases, which provide a reference of knowledge for 

physiological functional disorders and abnormalities research [67-69]. As discussed in 



10 

 

Chapter 2, some of the existing neonatal developing brain atlases are constructed with 

tissue segmentation without parcellation. If they account for parcellation, it is performed 

manually [70-73]. In addition, the parcellation is provided for a single GA week as a single-

subject atlas [71,72] or population-average atlas [70,71,73]. UNC Infant 0-1-2 Atlas is the 

first publically available neonate automatically parcellated developing brain atlas [74]. 

Nevertheless, this neonate parcellated atlas is also single aged, at 41 GA week. 

Conclusively, no longitudinal parcellation maps exist for neonatal developing brain at early 

GA. 

 

1.5. Aim 

Most neuroimaging studies of the developing brain have developed algorithms for 

intensities in MR images. Therefore, these studies were performed on the image space. 

Few studies have focused on the cortical surfaces of the developing brain within the age 

range of birth until adulthood. Neither have these studies included early GA brain 

development. This dissertation presents work on surface-based longitudinal (spatio-

temporal) atlas analysis of early brain development starting from 28 week GA to 44 week 

GA. The purpose is to provide automated methods for spatio-temporal parcellation with 

quantitative measures of brain development. These methods can assist researchers in 

understanding normal growth patterns and in designing interventions to reduce preterm 

brain injury. 
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1.6. Dissertation Contributions 

The dissertation describes methods for modeling the normal growth in prematurely 

born infants. More specifically, it identifies methods for tracking the growth of different 

cortical anatomical structures’ ROIs at early GA. In addition, it offers an automated 

longitudinal parcellation method for the developing brain. The proposed parcellation 

algorithm uses preterm brain spatio-temporal brain atlas with tissue-segmentations and 

infant brain parcellated atlas to longitudinally parcellate the developing brain at different 

stages of development. Chapter 2 sheds light on previous related work and provides 

background on techniques employed throughout the dissertation. Chapter 3 proposes a 

novel framework for solving the problem of registering and propagating the labels of a 

parcellated atlas across longitudinal surfaces with large curvature variation. In Chapter 4, 

quantitative results of modeling the regional growth of the developing brain will be 

presented, which can offer a useful marker of neurodevelopmental changes. Finally, 

Chapter 5 contains conclusions and recommendations for future work directions.  

 

1.7. Summary 

In this chapter, knowledge about brain development, its anatomy, and developing 

brain imaging modalities are presented. Also, the chapter delineated the motivation for 

solving the problem of how to longitudinally parcellate the developing brain. Justifications 

of the need for providing a solution is emphasized. 
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"The brain, the masterpiece of creation, is almost unknown to us."   

Nicolaus Steno, 1669 

 

Is it known now? 
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Chapter 2: Background and Related Work 
 

Based on: 

MH Alassaf, Y Yim, JK Hahn. “Non-rigid Surface Registration using Cover Tree based Clustering 
and Nearest Neighbor Search”, Proceedings of the 9th International Conference on Computer 
Vision Theory and Applications. (2014) 579-587. 

MH Alassaf, JK Hahn. “Probabilistic Developing Brain Atlases: A Survey”. 2015 (In Submission). 

 

2.1. Introduction 

As a biological structure, there is none more complex than the human brain. For 

centuries, scientists have worked to discover the relationship between the brain’s structures 

and functions. This chapter presents the literature review (section 2.2) of related work in 

the relationship between brain structure and functions, constructing digital brain atlases 

techniques, and parcellated brain atlases methods. The chapter provides a general overview 

of the techniques used throughout the dissertation, such as image registration and brain 

parcellation in section 2.3. Also, discussed are the challenges of applying these techniques 

to MR images of the developing brain.  

 

2.2. Related Work 

 

2.2.1. Brain Structures and Functions 

Historically, brain drawings from the Middle Ages were primarily schematic 

rather than anatomical, aiming to determine which brain sections were associated with 

brain functions. Ibn al-Haytham (965 – 1040 AD), an Arab scholar known to the west 

as Alhazen, was the first to anatomically illustrate the eye and its visual function in his 

book “Kitab Al-manazir” [75,76] (The Book of Optics). The brain was shown 
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schematically as in Figure 2.1(a). Islamic scholar Ibn Sīnā (980 – 1037AD), known to 

the west as Avicenna, was the first medical philosopher to anatomically divide the brain 

into three compartments called “cellula”. In his book “Al-Canon fi Al-Tebb” (The law 

of Medicine), he further labeled the cerebral ventricles with five labels based on their 

functionality. These consisted of: "sensus communis", "fantasia", "ymaginativa", 

"cogitativa seu estimativa", and "memorativa" [77] which correspond with common 

sense, fantasy, imagination, reasoning and cognition, and memory, respectively (Figure 

2.1(b)). Later, illustrations by Leonardo da Vinci (1452 – 1519AD), an Italian scholar 

known for his contributions to both science and art, complimented Avicenna’s 

illustrations by further anatomically describing the brain in cross sections [76] as seen 

in Figure 2.1(c). However, in the early modern age, Belgian scientist Andreas Vesalius 

(1514 – 1564 AD) who was also known as the founder of modern human anatomy, 

produced more authentic illustrations of the brain in his book “De Humani Commis 

Fabrica” (On the Structure of the Human Body) [78]. An example of the illustrations 

can be seen in Figure 2.1(d).  

With the discovery of modern age technologies, more comprehensive 

descriptions of the whole volume of the brain began to emerge. In 1909 using a 

microscope, German neurologist Korbinian Brodmann (1868 – 1918AD), 

distinguished 52 distinct regions in the cerebral cortex from their cytoarchitectonic 

(histological) features such as cortical thickness, laminae thickness, number and type 

of cells, and other features [79] as seen in Figure 2.1(e). Brodmann’s discovery of these 

regions has allowed their extensive use in many brain studies to relate function with its 

corresponding brain structures. His work was based on German anatomist Franz Joseph 
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Gall’s (1758 – 1828 AD) belief in localization of brain functions to several locations 

on the brain cerebral cortex. Using a microscope to divide the brain frontal lobe into 

eight zones based on nerve cells shape, volume, and arrangement, Sandies (1914 – 1984 

AD) described the distinct function of each division in his cytoarchitectural and 

myeloarchitectural studies [68]. In 1957, neuroscientist and professor at John Hopkins 

University Vernon Mountcastle (1918 – 2015 AD) discovered the columnar 

organization of the neocortex, which form the basis for most recent studies focusing on 

the relationship between brain function and structure [67]. In Mountcastle’s description 

of neocortex columnar organization, he divided the cerebral cortex into modules each 

of which plays the role of functional processing unit that receives input and produces 

output.  

Today, scientists divide each brain hemisphere into four lobes: the frontal lobe, 

temporal lobe, parietal lobe, and occipital lobe with each lobe being associated with 

distinct functions [69] (see Figure 1.1(a)). In partial agreement with Avicenna, the 

frontal lobe is the center of cognitive activities like planning, predicting, decision 

making and long-term memory. The temporal lobe is involved in processing sensory 

input such as auditory, visual perception, and languages. The parietal lobe is involved 

in sensory information like perception, navigation, spatial orientation, touch and pain, 

while the occipital lobe is involved in appropriately transforming vision for parietal 

and temporal processing. 

Through the evolvement of medical imaging technologies, more sophisticated 

studies relating brain structures with functions have emerged using MRI, fMRI, DW 

MRI, and PET (Positron Emission Tomography). In particular, these are highly useful 
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Figure 2.1. Old Brain Illustrations. a) The eye and the visual system schematic by Alhazen which forms the 

basis of vision and light radiated in straight light theories, dated 1038 AD (Sources: [75,76]). b) 

Avicenna’s brain illustration of the three brain parts and five cerebral areas, dated 1347 AD (Source: 

[77]). c) Leonardo da Vinci’s illustration of the brain and introduction of the cross sections drawing 

to further describe 3D anatomy, dated (1490-1500 AD) (Source: [76]). d) Vesalius’s detailed 

illustration of the physical brain, dated 1543 AD (Source: [78]). e) The Brodmann brain numerical 

map of 52 discrete regions based on histological differences between regions, dated 1909 AD 

(Source: [76]). 
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for cortical morphology caused by brain disease studies such as migraine [80], 

schizophrenia [81-83], and Alzheimer [84-87] studies to name a few. Since fMRI gives 

information about the functionally activated area in the brain but does not provide 

structure information, coupling it with structure information from MRI is important in 

order to determine relationships in areas of the cerebral cortex [88]. For example, the 

Human Connectome Project (HCP) is a currently active project funded by National 

Institutes of Health (NIH) and aims to provide a mapping of the structural and 

functional neural connections of the human brain primarily using fMRI and MRI 

[89,90].  

Human brain cortex can be further neuroanatomically divided into a number of 

regions, each of which is described by a label and associated with specific functions. 

The process of recognizing structures formations in brain MR images is called 

parcellation.   

 

2.2.2. Brain Parcellation 

Parcellation is the process of labeling the cortical geometric features and can be 

performed on brain MR images or on surfaces constructed from those images. After 

parcellation, regional and sub-regional studies can be performed to more deeply 

understand human brain functions and activities. 

As previously mentioned, the first attempt to parcellate the human brain based 

on cytoarchitectonic characteristics was done by Brodmann. Currently, in vivo 

parcellation is done on MR images or on surfaces constructed from these images (see 
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section 2.3.1 for surface construction). Hence, high-resolution structural MRI (i.e. 1.5 

or 3 Tesla) is preferable because it reveals more structure information and detailed 

anatomical landmark. Historically, cortical parcellation was done manually by an 

anatomical expert who gave each pixel on each MRI slice a label, either axial, sagittal, 

or coronal. “Talairach- Tournoux” is an example of such an atlas [91]. Talairach and 

Tournoux labeled post-mortem brain slices of a 60 year old French woman with 

anatomical labels based on sulci and gyri and Brodmann cytoarchitectonic areas 

estimations. They also introduced the Talairach coordinate system with nine degree of 

freedom (DOF) transformation (including 3 for scaling and 6 for rigid transformation), 

which maps any brain to the Talairach atlas and localizes the brain regions in functional 

imaging studies (see Figure 2.7 for linear transformation models).   

Manual parcellation involves knowledge in different disciplines such as: brain 

geometry and region landmark, relationship between structure and function, 

cytoarchitectonics and myeloarchitectonics, and radiology [92]. Roland and Zilles offer 

additional information in their paper which describes in detail the criteria and properties 

of parcellating the human brain cerebral cortex [93]. Generally, the process of manual 

labeling is time and labor intensive [10,92,94,95]. It consumes several hours (e.g. 12-

14) to parcellate one conventional MRI scan [96]. Further, it could take up to a week 

to parcellate one high resolution MRI scan [92]. In addition, intra- and inter- rater 

differences compromise manual parcellation validity. Therefore, there is a need to 

automate the process, which is not a trivial task. The inter-subject cortical geometric 

patterns’ heterogeneity has made automating the parcellation process a challenging 

problem especially when the brain is developing. Thus parcellation based on a 
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population-average atlas is preferable since it eliminates the inter-subject variability 

(see section 2.3.3). 

Automatic parcellation of the brain cortex of MRI relies on the same criterion 

used in manual parcellation including cytoarchitectonic characteristics (intensity 

values), sulci or gyri landmarks (curvature), and global and local position in the brain. 

Two main approaches have been developed to automate any MRI brain parcellation; 

one using image/surface registration and the other using image/surface segmentation 

[10]. Image/surface registration is based on registering a labeled brain atlas 

image/surface to the unlabeled brain and then warping the labels from the atlas into the 

unlabeled brain using the deformation field generated from the registration. The 

segmentation approach is based on segmenting sulci or gyri on unlabeled brain 

image/surface and delineating the sub-regions based on this segmentation. In this 

dissertation we focus on developing brain surface parcellation using image and surface 

registration-based approaches. 

Usually in the registration-based approach, automatic cortical parcellation is 

done by registering an unlabeled brain with either a manually labeled single-subject 

atlas or a population-average brain atlas, to propagate the labels [10]. For the 

registration, landmarks between neuroanatomical regions drive the surface registration 

while intensity values drive the image registration of the two brains. This approach has 

been used by researchers to parcellate the human brain cortex. Some researchers have 

used semi-automatic interactive affine [97,98], or non-rigid [99,100] image registration 

to propagate the labels using either single-subject atlas [101] or population-average 
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atlas [102,103]. Still, others have used fully automatic non-rigid surface registration to 

propagate the labels with automatic topology correction [88,92].  

Image/surface registration plays an important role in driving correct label 

propagation. Another more important registration role appears when building a 

population-based average atlas, because it is important to align the population correctly 

to build the atlas. To register the cortical surfaces of two mature brains, the surface 

geometry (i.e. sulci and gyri) defines landmarks between neuroanatomical regions. 

Spherical inflation is the most well-known solution for automatically registering the 

cortical surfaces of mature brains by minimizing the mean square difference between 

surface folding patterns [104]. This technique is implemented in FreeSurfer tool which 

provides a successful parcellation of any registered brain into a built-in parcellated 

mature brain template [92]. While a marker-less surface parcellation called Spherical 

Demons has been proposed, the process still involves spherical inflation [105,106]. 

In spherical inflation, forces are applied to flatten one hemisphere cortical 

surface, unfolding the buried regions such that the whole cortical surface becomes 

visible [107] (see Figure 2.2 (a) and (d)). This flattening is followed by mapping to a 

specific coordinate system; in this case spherical as shown in Figure 2.2(c). With this 

coordinate system, corresponding landmarks between surfaces are located and used to 

minimize the mean-squared difference employed by the registration algorithm. 

Spherical inflation is used to register cortical surfaces and is also used to construct an 

atlas from a population after aligning the surfaces (see Figure 2.2(d)). Even though 

spherical inflation succeeds in registering mature cortical surface, it has several 

drawbacks. First, the original surface metric properties are not preserved due to the 
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applied force, which introduces an average of 15% distortion onto the surface [107]. 

Secondly, the process restricts the points on the flattened plane borders and treats them 

differently from the internal points, which in the case of spherical the border points are 

the ones closest to the polar regions [107]. Lastly, the process as a whole is time 

consuming and computationally expensive, especially with high-resolution surfaces 

[94].  

The parcellation that follows spherical inflation in FreeSurfer is based on an 

estimation of probabilistic information with reference to parcellated brain atlases at any 

location of the brain [92] (see Figure 2.2(e)). By registering a new cortical surface into 

labeled atlases, labels can be propagated based on Markov Random Field (MRF) model 

prediction. The used parcellated atlases are for mature brains, which will introduce a 

bias if used to parcellate the developing brain. Goualher et al. used another approach 

to propagate the labels [108]. They built a graph where the sulci are the nodes and the 

neighboring relationships between them form the edges. Labels are learned for each 

sulcus using likelihood estimation based on the manually labeled training set [108].  

MRI surface based parcellation is better than image based parcellation for the 

following reasons: 

1. The nature of the cerebral cortex, which consists of convolutions, makes it more 

appealing to study as a 3D surface instead of a 3D volume. 

2. Sulci and gyri, which are intensively used in defining the landmark between 

structures, are best represented in a surface form rather than in intensity domain. 
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Figure 2.2. FreeSurfer generated surfaces where green represents gyri and red represents sulci: a) Pial surface 

constructed from one subject brain MRI at the GM-CSF border. b) Inflated cortical surface. c) 

Spherical surface. d) Average atlas of a population in the spherical coordinate. e) Single subject 

cortical surface after automatic parcellation with 36 ROIs. (Sources: [92,104]). 

 

3. Using cortical 3D surface form, more accurate measurements including curvature, 

deepness of sulci, and structure area can be used. 

 

2.2.3. Brain Atlases 

A brain atlas is a repository of knowledge that provides a representation of 

anatomical structure as reference information in a spatial framework. In addition to 

maps of the subject of study, terminology associated with that particular domain along 

with coordinate system that describes the study focus are inclusive in that repository. 

By having an atlas with properties that provide a reference guide, allied disciplines 

have effective and authoritative communication within the field targeting a specific 

issue. There are many advantages of digital brain atlases when compared to their 

counterpart conventional printed atlases [58]. Primarily, the advantages are that digital 

atlas is searchable, extendable, provide precise delineation of anatomy, and can be used 

in many population studies for automatic analysis with less human intervention 

[30,58,74]. In addition, they can be used as references in brain tissue-segmentation and 

parcellation [30,74,109]. 
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The early brain atlases were constructed from a single-subject such as the 

Brodmann atlas in 1909 [79], Talairach and Tournoux atlas in 1988 [91], and Montreal 

Neurology Institute (MNI) digital atlas in 2002 [110]. Recent studies focus on 

constructing a digital brain atlas using many subjects in order to best represent the 

anatomical variability of the population. Therefore, building a digital brain atlas usually 

involves collecting a large number of MRI brain scans. If the brain is developing, the 

same number of scans is needed for each time point/age of development. For example, 

to construct a developing brain atlas for fetus in utero, we need to scan the brain of n 

fetuses at each week of gestation. However, these population-based atlases are harder 

to construct than single-subject atlases keeping in mind the inherited differences in the 

brain structure and function from one subject to another. If constructed unbiased and 

using suitable techniques, the resultant repository provide tremendous amount of 

neurobiological information which is the common language of neuroscientific 

communication.  

A fundamental question in this topic is: what is the best way to construct a 

digital brain atlas? Brain atlas has to model an infinite number of brain physical 

representations to accurately and probabilistically provide a reference that best 

describes the population. The digital brain atlas construction process itself involves 

three main steps (see Figure 2.3). The first step involves brain image preprocessing and 

cleaning. The second step consists of normalizing all brains images of each age to a 

common space using image registration techniques [109]. Finally, it is necessary to 

fuse the grouped normalized brain images per age to create a common reference atlas 

for that age [109]. If multiple channels or scanning modalities are used in the atlas 
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construction, additional information can be provided such as tissue segmentation maps 

or neuroanatomical ROIs maps. The result is one brain atlas per age or group, with 

tissue probability maps, and sometimes with label (parcellation) map identifying a 

number of neuroanatomical ROIs (see Figure 2.4). 

 

 

Figure 2.3. Pipeline of probabilistic developing brain atlas construction stages. 
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Figure 2.4. Two-year-old brain of UNC infant atlas [74], from left to right: T1-weighted image, CSF, GM, 

WM, and anatomical parcellation map. 

 

Step 1: Preprocessing 

MRI is the most useful modality for constructing brain atlases since it offers a 

non-invasive window to look into the human brain. Because early age developing brain 

T2-weighted MRI image has better tissue contrast than T1-weighted MRI image, most 

of the developing brain studies use T2- weighted MRI in contrast to developed brain 

studies, which use T1-weighted MRI [111,112]. To construct a brain probabilistic atlas 

from n MRI scans, all the non-brain tissues and organs, e.g. skull and eyes, need to be 

removed from each scan. Usually, either the Brain Extraction Tool (BET) [113], Brain 

Surface Extractor (BSE) [114], or BrainVoyager QX [115] is used for this process. In 

addition, the resulting brain images are corrected for field inhomogeneity or intensity 

nonuniformity, where N3 or N4 algorithms are generally used for this correction 

[21,22]. Sometimes intensity rescaling is necessary to compensate for intensity 

differences between scans [116]. To construct probability maps in addition to the atlas, 

special kinds of brain segmentations algorithms are needed. Different probability maps 

require different segmentations, either tissue segmentation or ROIs segmentation. 

Depending on the age of the studied group, this segmentation is done manually, as for 

example, the case of fetal brain ROIs segmentation, or by utilizing some developed 
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algorithms and available tools or priors such as FSL [117], SPM [118], or FreeSurfer 

[119] like in the case of adult tissue and ROIs segmentations. 

After preprocessing the images, the probabilistic brain atlas estimation problem 

statement can be clearly defined as follows: given n images taken by a single imaging 

modality Ii, i	∈ �1,n], and represented as intensity values Ii(x) we need to achieve a 

representative image for the n scans, Î, having two goals in mind: 1) Î requiring the 

least energy to deform into each image of the population Ii and 2) Î retaining sufficient 

information from each image Ii that authorize it to represent the population. The first 

goal is met through normalization step, and the second goal is met through the fusing 

step. 

 

Figure 2.5: T2 mid-axial slices are presented to demonstrate the variation of natural brain shape within a 

population of 12 healthy neonates [72] aging 37–43 GA weeks. 

 

 

Step 2: Normalization 

The aim of the normalization step is to map all the scans into a common space. 

Each scan represents one subject at a specific time, and each subject has unique brain 

structure as shown in Figure 2.5. In order to build a reference brain atlas from many 

scans, these scans need to be aligned in a unified space. Normalizing brain scans of 

single imaging modality, e.g. MRI, utilizes registration techniques. For registration, 

two important factors need to be specified: 1) the choice of the common space, which 

is also referred to as template, target or reference; and 2) the type of spatial 

transformation needed, or in other words the DOF level for the required alignment. 
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1) Common Space Selection 

Since we have many scans from which an atlas is built, mapping them into a 

common space, or template, in the normalization step is important to account for 

variability of individual morphology. The template selection is a major topic in medical 

imaging studies related to atlas construction. Several brain atlas studies reported 

different selections of templates. In the simplest case, the template is chosen as one 

subject of the scans as proposed by Evans et al. [120]. However, it is difficult to choose 

the subject scan that best represents the population as a template; therefore, choosing 

one could introduce a bias. By bias we mean the resulting atlas is generally optimized 

so as to be similar to the selected template. Many approaches have been developed to 

reduce or overcome this bias. For example, Park et al. [121] used Multi-Dimensional 

Scaling (MDS) [122] to select the most similar subject to the population geometrical 

mean as the template in order to reduce the bias. However, while choosing the optimal 

single subject reduces risk of bias in the final registration, it does not totally overcome 

it. Seghers et al. [116] used pairwise registration between all pairs of subjects in the 

population, where a single subject image is deformed by averaging all the estimated 

deformations between it and its pairs in the population images. However, pairwise 

registration is computationally expensive especially with large number n. Avants and 

Gee [123], Joshi et al. [124], and Bhatia et al. [125] proposed groupwise registration of 

all scans into a hidden mean space simultaneously, which will result in an atlas that is 

optimized to be similar to the population-average. Avants et al. [126] employed 

diffeomorphisms transformation space to iteratively generate the template by averaging 

the minimum shape distance between the images and the initial template.  
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However, a template-free registration approach is proposed by Miller et al. 

[127] using entropy based groupwise registration method where they use the sum of 

entropies along pixel stacks of the n images as a joint alignment criterion. Building on 

this registration approach, Rohlfing et al. [128] constructed a template-free brain atlas 

using unbiased non-rigid registration algorithm similar to the one proposed by Balci et 

al. [129].  Balci et al. extended Miller’s approach to include B-splines-based free-form 

deformations in 3D and stochastic gradient descent-based multi-resolution setting 

optimization [129]. Lorenzen et al. [130] utilized Fréchet mean estimation and large 

deformations metric mapping to form an unbiased statistical framework for brain atlas 

constructing. While, Jia et al. [131] made use of hierarchical groupwise registration 

framework where iteratively each subject image is restricted to deform locally with 

respect to its neighbors’ images within the learned global image manifold.  

 

2) Spatial Transformation Types 

The selected template will play the role of the target in the image registration 

process [132]. The aim of image registration is to find the spatial transformation X that 

maps points of the source image, also called the float, to the corresponding points of 

the target image, also called the reference. Registration is used in correlating 

information obtained from same or different imaging modalities, like PET or MRI 

scans. In addition, registration is a very valuable tool for tracking time series 

information about the development of an organ, or of a disease. In the context of brain 

atlas construction, which usually uses single imaging modality (hence MRI), we focus 

on intra-modality registration techniques. 
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Generally, MR images are obtained by sampling a 3D intensity volume of 

voxels into a discrete grid of points. To register two MR images the source S and the 

target T, a transformation � is estimated to align S points into T points; � ∶
���, 
�, ��� → ��� , 
� , ���. Registration is an iterative process where individual 

iteration consists of many stages such as similarity computation, interpolation, 

regularization and optimization. A similarity metric is used to pair S and T points by 

measuring the intensity similarity or minimizing distance between point pairs after a 

single iteration. When registering images, interpolation is needed to obtain intensity 

where a transformed S point is located on a non-grid position on T image. The topology 

is assumed to be preserved when transforming similar images such as brain images. 

Also, transformation is constrained to be smoothed by regularization. 

The registration problem can be classified into three broad categories based on 

the type of spatial transformation; rigid (also called linear), affine, and non-rigid (also 

called non-linear or deformable) registration (see Figures 2.6 and 2.7). The needed 

spatial transformation depends on the problem at hand and the nature of the images 

being registered. In case we want to register rigid structure of the same subject in two 

images, linear alignment is enough. But if we want to register same structure of two 

different subjects, affine transformation is needed. Additionally, if we want to register 

soft tissue of non-rigid structure that varies across subjects, non-linear transformation 

is necessary. These three registration categories are discussed in details in section 2.3.2. 

 

Step 3: Fusing 

Now that we have all brain scans normalized into one common space, each 

denoted by ��̅, we need to fuse their information to produce one template atlas ��. It 
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should be noted that the variations in brain position in space is taken care of as the 

normalization step corrects for differences in location. Furthermore, in case of using 

affine and non-rigid registration, a correction is made to accommodate head size or 

head shape differences. 

Several techniques have been employed to fuse the information of all the 

normalized images, such as weighted [133] or uniform averaging [134], voting, patch-

based voting and sparse-based learning. Usually, all normalized images are treated 

equally voxel-by-voxel to construct the atlas by averaging the correspondence voxels 

[71,132]. To achieve better atlas construction, weighted averaging based on similarity 

measure between voxels can be used, as demonstrated in equation (2.1) where wi is the 

weight of the ith normalized image ��̅: 

����� = ∑ ����̅�������∑ ������
     (2.1) 

In fact, if an outlier is present in the population used to create the atlas, the level 

of representation of the atlas to the population will be reduced [109]. To overcome this 

problem, dictionary-based learning can be utilized such that a synthetic image is 

learned by looking-up similar patches in a dictionary. Recently, Shi et al. used batch-

based dictionary in group sparsity framework to construct an atlas, where the neighbors 

of the voxel in 3D patch of all subjects participate to vote for that voxel value in the 

resultant atlas [109]. This method preserves finer anatomical details in the constructed 

atlas [109].  
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Figure 2.6: Comparison of different registration types between two neonates brain T2 MRI scans. Top row: 

The source brain is rigidly aligned to the target brain (6 DOF) and the difference between the two 

scans is extreme due to each neonate having different brain size. Middle row: The source brain is 

affinely aligned to the target brain (12 DOF). This alignment corrects for the brain size differences 

while preserving the convolution patterns inside the source brain. Bottom row: the source brain is 

non-rigidly aligned to the target brain and optimized to look similar to it. The difference between 

the target and the deformed source is minimal in the case of non-rigid registration. 

 

In the case of constructing 4D brain atlas, usually referred to as spatio-temporal 

or longitudinal atlases, where time is the fourth dimension, special care of the time 

parameter is needed. Hence, time plays a significant role in dividing the population into 

groups. Each group of images are fused together to construct the targeted group atlas, 

which represents one time in the spatio-temporal atlas. Time dependent kernel 

regression [135] is used to estimate the weight of each scan in the population-average. 

Hence, Gaussian kernel is used to produce the weight w to the kth scan at time t as given 

in equation (2.2): 
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Accordingly, the average atlas at time t is given by equation (2.3): 

�*+��� = ∑ ��*�,*���̅�������∑ �	�*�,*�����
     (2.3) 

Davis et al. [136] and Ericsson et al. [137] used time-dependent kernel 

regression in order to construct spatio-temporal atlases by which they made the 

contribution of the subjects closer to the template time higher than far away subjects. 

Similarly, time-dependent kernel regression and Gaussian weighted averaging are 

employed to construct the spatio-temporal neonates atlas with constant kernel width 

,	as in [30,138,139] and with variant width , as in [140]. 

 

2.2.3.1. Multi-channel Brain Atlases 

Brain tissue segmentation is the process of assigning each pixel in the MR 

images, or voxel in the MRI volume, to a tissue class in the brain, either GM, WM, or 

cerebrospinal fluid (CSF) based on physiological properties. Parcellation, as defined 

previously, is the process of segmenting the brain image into different structures, 

referred to as ROIs, based on specified knowledge. Both processes are needed by which 

we delineate a structure or tissue on medical imaging data either to visualize it or to 

identify it in pathological reports. By adding the tissue and/or structure segmentation 

into the brain atlas construction, multi-channel brain atlases are produced. 
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2.2.4. Developing Brain Atlases 

Before we report the developing brain atlases available in literature, and 

techniques in constructing them, it is important to describe how these developing brain 

MRIs are tissue segmented or ROIs labeled.  

 

2.2.4.1. Developing Brain Atlases with Tissue Segmentation 

MR images represent intensities where each intensity range falls within a 

specific tissue type (GM, WM, CSF), allowing us to segment the tissue. In the case of 

developing brain, the intensity change of WM during the myelination process imposes 

a challenge for its segmentation. In addition, the differences in the intensities range 

from one scanning protocol to another and the large overlapping between tissue 

intensities in MR images complicate the process and postulate the need for spatial prior 

information to initialize the segmentation process. This spatial prior is built by 

collecting manual segmentations done by experts, or automatic segmentation done by 

developed algorithms, and fusing them into a common space, for example, using a 

probabilistic brain atlas with tissue segmentation maps.  Most of the neonatal brain 

developing image segmentation used an atlas as prior to guide the segmentation 

[36,141-145]. Some studies address this intensity variability using probability density 

function (PDF) non-parametric estimation or a mixture of Gaussian (MoG) modeling. 

In general, atlas based segmentation algorithms performs two steps. Step one involves 

registering the tissue segmented atlas into the brain in query for segmentation. Step two 

includes segmenting the query brain using the segmented atlas priors. Some brain 

segmentation studies have performed the two steps sequentially [146-148], while other 

studies have performed them jointly [149-152]. 
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Weisenfeld and Warfield proposed fused classification algorithm to 

automatically learn the subject specific tissue class-conditional PDFs [145]. They used 

tissue segmented atlas as reference to obtain the prior tissue information, and employed 

MRF prior in a neighborhood around each pixel to account for spatial homogeneity 

[145]. Further, they differentiated between myelinated WM and unmyelinated WM 

classes [145]. Anbeek et al. made use of K-nearest neighbor (k-NN) classification to 

segment the neonatal MRI by employing voxel coordinate and voxel intensities as 

features for the classifier [153]. Habas et al. [154] constructed a probabilistic fetal 

spatio-temporal atlas with tissue maps by utilizing the Expectation Maximization (EM) 

classification [155], where the brain scans are manually tissue segmented, and the atlas 

tissue segmentation maps are produced by tissue class membership modeling after 

normalizing all the scans. Also, Kuklisova-Murgasova et al. [30] built a probabilistic 

neonatal spatio-temporal atlas with tissue maps by incorporating the prior information 

into the EM algorithm. They extended the method to refine the partial volume 

misclassification between tissue boundaries like CSF-GM boundary. Similar to 

Kuklisova-Murgasova et al., Serag et al. [112] developed a probabilistic neonatal 

spatio-temporal atlas while employing non-rigid registration in the normalization step 

instead of affine registration. Serag et al. used Free-Form Deformation (FFD) based 

non-rigid pairwise registration in the normalization step with variant kernel regression 

in the fusing step.  In addition, Serag et al. [112] created a probabilistic fetal spatio-

temporal atlas using the same approach of the neonatal construction albeit having the 

prior segmented manually. Schuh et al. [139] also used the prior tissue segmentation 

information to construct neonatal spatio-temporal atlas with probabilistic tissue maps 
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similar to Serag et al., differing by using parametric diffeomorphic deformation 

registration algorithm and with fixed kernel width. Shi et al. [111]  used late time (2 

years) tissue segmented brain atlas to segment early time (1 year and neonate) brain 

atlases. They segmented the late time brain atlas using fuzzy segmentation algorithm 

[142], after which the segmentation is carried into earlier time using a joint registration-

segmentation framework that incorporates EM algorithm [149,150].  

On the other hand, some studies segmented the developing brain without using 

an atlas as prior information. Song et al. [156] used fuzzy nonlinear Support Vector 

Machines (SVM) [157] to learn the intensity-based prior from training data, then 

incorporating this prior in the Maximum-a-Posteriori (MAP) within a graph-cut 

framework [158] to obtain the segmentation. Xue et al. [159] adopted EM-MRF 

scheme for tissue segmentation after reducing the partial volume effect by 

incorporating a knowledge-based prior in each iteration of the EM algorithm, resulting 

in correction of the boundaries of the CSF-GM and CSF-background. However, a 

problem arises in purely intensity-based methods such that they are prone to systematic 

misclassifications when the distributions of WM and GM tissue classes overlap. 

 

2.2.4.2. Developing Brain Atlases with Parcellation 

In spite of parcellation methodology, and as in the case of brain tissue 

segmentation, some parcellation techniques used prior information encoded in an atlas, 

while others depend on data-driven information without incorporating an atlas 

[160,161]. For developing brains, due to rapid brain development during gestational 

time, the use of adult or even pediatric atlases as prior information to parcellate the 
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developing brain is not suitable and will introduce a bias. There is a need for providing 

a specialized prior for developing brain parcellation. Historically, parcellating the 

developing brain was done manually. Manual parcellation involves knowledge in 

different disciplines such as: brain geometry and region landmark, relationship between 

structure and function, cytoarchitectonics and myeloarchitectonics, and radiology [92]. 

Gilmore et al. used anatomy experts to manually parcellate the brain of 74 neonates 

into 38 ROIs for the purpose of studying the GM growth and the asymmetry in the 

neonatal brain [70]. In this study, the individual parcellation maps are used to compare 

individual brains. Oishi et al. manually parcellated an atlas built from 25 neonate into 

122 ROIs [71]. Gousias et al. designed a delineation protocol to manually parcellate 

the brains of 20 preterm and term neonates into 50 ROIs based on macro-anatomical 

landmarks [72]. In this work, all brains were segmented region by region by the same 

rater instead of brain by brain. The result includes 20 templates of neonate brains with 

their parcellation maps, called a label-based encephalic ROI template (ALBERT). Out 

of these 20 parcellation maps, Gousias et al. constructed different atlases based on the 

age at scan using pairwise registration and label fusion [73]. The result consists of 40 

atlases where each atlas is the result of label fusion of the remaining 19 ALBERTs (20 

atlases), 14 ALBERTs in the cases of preterms (15 atlases), or 4 ALBERTs in the cases 

of terms (5 atlases). However, these atlases are not internet accessible or available; only 

the 20 templates of the individual with manual parcellation maps are internet 

accessible. 

Manual parcellation is time and labor intensive and can suffer from intra- and 

inter- rater differences and disagreements [92]. Therefore, Automated Anatomical 
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Labeling (AAL) is desirable. The first publically available neonate automatically 

parcellated atlas was constructed by Shi et al. and called UNC Infant 0-1-2 Atlas [74]. 

This neonate parcellated atlas is part of infant atlas ranging from neonate to one to two 

years old. In this atlas, the adult parcellation map of MNI called Colin27 (average of 

27 subjects) with 90 ROIs was warped into each subject of the two year old images 

(total is 95 subjects) in order to propagate the labels by using a hierarchical nonlinear 

deformable registration algorithm called HAMMER [162]. Then, labels are propagated 

from two years to one year old, then to neonate, using the correspondences established 

by longitudinal deformation fields. The parcellation maps of all subjects per age are 

then fused together using majority voting to generate one parcellation map per age. The 

resulting neonate parcellated atlas represents only one age, 41 GA week. Recently, 

Alassaf and Hahn [163] proposed a method to carry on this neonate one age parcellation 

map prior of Shi et al. into other GA weeks in the spatio-temporal atlas of Serag et al. 

Their longitudinal method depends on modeling the shortest path of growth from one 

week surface to another as rays. Each ray is originating from the unlabeled surface 

week and intersecting the labeled surface week, where the label propagation is based 

on optimizing ray-triangle intersection framework, resulting in parcellating spatio-

temporal neonatal atlas of 28-44 GA weeks. 

Without using an atlas as prior, Shi et al. proposed a multi-region multi-

reference neonate atlas construction by parcellating the brain population-average atlas 

into 76 different ROIs using watershed algorithm [164], then used affinity propagation 

[165] to cluster the ROIs. The result is used within a joint registration-segmentation 
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framework to parcellate new query brain, resulting in subject-specific parcellated atlas 

[161]. 

Having described brain atlas construction, segmentation, and parcellation 

techniques, the following section will present a literature review on existing developing 

brain atlases, their properties, and the employed techniques in constructing each of 

them. 

 

2.2.4.3. Developing Brain Atlases Available in Literature 

Brain atlases for neonate at one age exist in the literature. Gilmore et al. utilized 

FFD based non-rigid registration to construct one probabilistic neonate brain atlas using 

74 MRI brain scans of neonate aging between 38.8 to 47.8 GA weeks with manual 

parcellation map of 38 ROIs [70]. Weisenfeld and Warfield used affine registration to 

construct one probabilistic neonate brain atlas using 15 subjects at 42 GA week with 

tissue segmentation maps [145]. Similarly, Oishi et al. used affine registration among 

25 neonates ranging in age between 38 and 41 post-conceptional weeks to construct a 

probabilistic atlas with manual parcellation into 122 ROIs [71]. For Gousias et al., 

pairwise registration and label fusing were used to construct different atlases out of 20 

manually parcellated scans of neonates, 15 subjects aged between 37 and 43 

postmenstrual weeks, and 5 subjects aged between 39 and 45 postmenstrual weeks [73]. 

Their manual parcellation delineated 50 ROIs. Shi et al. used groupwise registration 

diffeomorphic non-rigid registration to construct a probabilistic brain atlas out of 73 

neonates aging roughly at 41 GA week with tissue segmentation maps [109]. List of 

these single time neonatal atlases are presented in Table 2.1. 
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Table 2.1. Neonatal Developing Brain Single time Atlases 

Atlas/ 

Year 

#
 o

f 
S

u
b

je
c
ts

 

Age Range 

Probability 

map (Tissue 

segmentation

) L
a

b
e
l 

M
a

p
 

(R
O

I 

P
a

rc
el

la
ti

o
n

) 

Bias? Available online Used Registration 

Gilmore et 

al., 2007 [70] 

 

74 
38.8–47.8 
GA weeks 

No 

Yes 

manually to 

38 ROIs 

- - 

Nonlinear (FFD) 

using mutual 

information (MI) 

Weisenfeld 

and 

Warfield, 

2009 [145] 

15 42 GA 

Yes, GM, 
CSF, myelin 

WM, 

unmyelinated 
WM, and 

subcortical 

GM 
 

No - - Affine 

Oishi et al. 

2011 [71] 
25 

38–41 post-

conceptiona

l weeks(0–4 
days) 

- 
Yes 

manually to 

122 ROIs 

- 

http://lbam.med.j

hmi.edu/ 
Or 

www.mri.kenned

ykrieger.org 

Affine 

Gousias et 

al. 2012 [72] 
20 

postmenstr
ual  

15 in 37–43 

weeks and 
5 in 39–45 

weeks 

- 
Yes, to 50 

ROIs 
- 

http://biomedic.d

oc.ic.ac.uk/brain-
development/inde

x.php?n=Main.N

eonatal3 

Manually 

 

Gousias et 

al. 2013 [73] 
20 

postmenstr
ual  

15 in 37–43 

weeks and 
5 in 39–45 

weeks 

- 
Yes to 50 

ROIs 
No - 

Pairwise 

registration and 

label fusion 
 

Shi et al. 

2014 [109] 
73 

postnatal 
24±10 (9–

55 days) 

(≈41 GA 
Week) 

Yes for GM, 
WM, CSF 

No No - 

Groupwise 
Nonlinear 

registration 

(Diffeomorphic 
Demons) 

 

Most recently, population based longitudinal atlases have begun to emerge for 

developing brain. Many studies have been conducted to construct longitudinal neonatal 

brain atlases. The first attempt to create 4D neonatal atlas was by Kazemi et al. [160], 

who used 7 neonates of 39 to 42 GA weeks to construct two templates; one from 39-

40 GA weeks and the other from 41 to 42 GA weeks by performing non-rigid 

registration into a template and then averaging the voxels. Habas et al. constructed a 

spatio-temporal atlas with tissue maps for fetal brain using tissue probability maps prior 

and kernel regression from 20 fetuses with age range of 20.5 to 24.7 weeks GA [166]. 
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Kuklisova-Murgasova et al. developed a 4D probabilistic atlas with tissue maps of 

neonates that covers the range of 29 to 44 GA weeks by using regression kernel and 

affinely registering the subjects into an average space [30]. Serag et al. used pairwise 

non-rigid registration and kernel regression to produce a 4D probabilistic multi-channel 

atlas out of 204 neonates and 80 fetuses that cover the range of 28 to 44 GA weeks and 

23 to 37 GA weeks, respectively. Shi et al. constructed a longitudinal infant atlas at 

birth (neonate), one year old, and two years old from 95 infants using groupwise 

nonlinear registration with tissue and parcellation maps. Schuh et al. constructed a 

neonatal 4D atlas of 118 subjects using pairwise parametric diffeomorphic deformation 

and kernel regression with tissue maps. Gholipour et al. constructed a 4D atlas of 40 

fetuses using symmetric diffeomorphic deformation and kernel regression [138]. Table 

2.2 provides a list of available 4D fetal and neonatal probabilistic atlases. 

 

Table 2.2. Developing Brain Spatio-temporal and Longitudinal (4D) Atlases 

Atlas/ 

Year 

#
 o

f 
S

u
b

je
c
ts

 

Age 

Range 

F
e
ta

l 
(F

e
t.

) 

/N
e
o

n
a

ta
l 

(N
e
o

.)
 

Probability 

map (Tissue 

segmentation) 

L
a

b
e
l 

M
a

p
 

(R
O

I 

P
a

rc
el

la
ti

o
n

) 

Bias? Available online Used Registration 

Kazemi 

et al. 

2007 

[160] 

7 

39 – 42 

GA 

weeks 

Neo. No No Yes 

http://www.u-

picardie.fr/labo/GRA
MFC 

 

Nonlinear (squared 

difference 

minimization) 

Habas et 

al. 2009 

& 2010 

[166] 

20 

20-24 

GA 

Weeks 

Fet. 

Yes, GM, WM, 

the germinal 
matrix and 

ventricles 

No No - 

Nonlinear 

(template-free,  
groupwise), kernel 

regression 

Kuklisov

a-

Murgaso

va et.al. 

2011 [30] 

142 

29-44 

GA 
weeks 

Neo. 

Yes for six 
Structures: 

cortex, white 

matter, 
subcortical grey 

matter, 

brainstem, 
cerebellum and 

cerebro-spinal 

fluid 

No No 
www.brain-

development.org 

Affine, pairwise, 

kernel regression 

Serag et 

al.  2012 

[140] 

204 

28-44 

GA 

weeks 

Neo. 
Yes for GM, 
WM, CSF 

No No 
www.brain-

development.org 

Nonlinear (FFD), 

pairwise, kernel 

regression 
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Serag et 

al.  2012 

[140] 

80 

23-37 

GA 
weeks 

Fet. 
Yes for GM, 

WM, CSF 
No No 

www.brain-

development.org 

Nonlinear (FFD), 

pairwise, kernel 
regression 

Shi et al. 

2011 [74] 
95 

Neo- 1- 

2- years 
(38.7 - 

46.4 GA 

weeks) 

Neo. 
Yes for GM, 

WM, CSF 

Yes to 

90 

ROIs 
(Using 

MNI 

Colin 
27) 

No 

http://www.med.unc.e

du/bric/ideagroup/free

-softwares/unc-infant-
0-1-2-atlases 

Nonlinear using 

feature-based 
groupwise 

registration 

algorithm 

Gholipou

r et al. 

2014 

[138] 

 

 

40 

26 - 35  

GA 
weeks 

Fet. - No No 

crl.med.harvard.edu/r

esearch/fetal brain 

atlas/ 
 

 

Nonlinear 

(symmetric 

diffeomorphic 
deformation), 

kernel regression 

Schuh et 

al. 2015 

[139] 

 

118 

28-44 

GA 

Weeks 

Neo. 
Yes for GM, 
WM, CSF 

No No - 

Nonlinear 

(parametric 

diffeomorphic 
deformation), 

pairwise, kernel 

regression 

 

2.3.  Background 

 

2.3.1. MRI Surface Construction 

Segmenting the brain tissues (GM, WM, and CSF) in any MRI results in a 

mapping of tissue value at each voxel. This mapping allows for constructing a specific 

surface for each tissue. Cortical surfaces of the brain can be constructed to visualize the 

CSF-GM border or GM-WM border. These surfaces can be generated from the tissue 

classified MR images using Marching Cubes algorithm [167]. In general, Marching 

Cubes algorithm extracts polygonal or triangular mesh of iso-surface from three 

dimensional (3D) scalar volume of voxels. By specifying tissue value, cube is marching 

the volume voxels and determining whether or not each voxel belongs to this tissue. If 

all cube corners belong to this tissue, the voxel is below the iso-surface. If there is no 

match at any of the cube corners, the voxel is above the iso-surface. If there is partial 

matching, the surface is passing through the voxel. By interpolating values along the 

cube edges, polygons can be constructed and later fused together to generate the final 
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iso-surface that represents this tissue. The cortical surfaces used in this dissertation are 

constructed from the GM-WM border (referred to as WM surfaces). 

 

2.3.2. Image/Surface Registration 

Registration is introduced in 2.2.3. The aim of image/surface registration is to 

find the spatial transformation that maps points of the source image/surface, also called 

the float, to the corresponding points of the target image/surface, alscalled the 

reference. To register two MR images/surfaces the source S and the target T, a 

transformation � is estimated to align S points into T points; � ∶ ���, 
�, ��� →
��� , 
� , ���.  

There are three broad categories of spatial transformation; rigid (also called 

linear), affine, and non-rigid (also called non-linear or deformable) registration. These 

three categories are explained next. More types of transformation (shown in Figure 2.7) 

are occasionally needed for special registrations. 

 

Figure 2.7. Linear Transformation Models (Source: [76]). 
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2.3.2.1. Rigid Transformations 

 Three-dimensional (3D) rigid transformation has six degree of freedom 

(DOF) and can be described by a translation vector d and 3x3 orthogonal rotation 

matrix R for any given point  � = 	 ��, 
, ��� as in equation (2.4): 

�-�.�/��� = 0� + 2    (2.4) 

These transformations preserve the points being transformed and the distance 

between them. 

 

2.3.2.2. Affine Transformations 

 Three-dimensional (3D) affine transformation has twelve DOF considering 

the sheering and the scaling beside the translation and the rotation. When the 

transformation and the rotation are insufficient to align the source into the target, 

3D affine transformation is needed. Affine transformation is described by a 

translation vector d and 9 parameters matrix M encoding rotation, scaling and 

shearing for any given point � = 	 ��, 
, ��� as in equation (2.5): 

�344�56��� = 7� + 2   (2.5) 

These transformations preserve collinearity but do not preserve the distance 

between the points being transformed, as the scales could enlarge or minimize it, 

and as the shears could shift the points parallel to an axis. 
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2.3.2.3. Non-rigid Transformations 

Both rigid and affine transformations provide global transformation effect, 

where the same transformation parameters are applied on all points. Non-rigid 

transformations increase the DOF locally by providing local effect at each point. 

Non-rigid registration is needed when the structure being registered varies inter- or 

intra- subject such as soft tissues. Complex differences in objects shapes can be 

described by simple space deformations where the objects are treated as fluid [168] 

or elastic [169]. The general non-rigid transformation equation (2.6) is composed 

from two parts: global transformation, part, usually affine, to align the images, and 

local transformation part to deform the images locally: 

�5859-�.�/��� = �.:8;3:��� +	�<8=3:���	   (2.6) 

 In non-rigid registration, every position in S image/surface is mapped into 

a single corresponding position in T image/surface. Three main techniques are 

developed for non-rigid image registration: B-spline FFD [170], Demons [171], and 

large deformation diffeomorphic metric mapping (LDDMM) [172]. The most 

famous non-rigid surface registration algorithm is Iterative Closest Point algorithm 

(ICP) [173,174] which has many variants [175-177]. In general, non-rigid 

registration method is iterative, combining in each iteration an applied similarity 

criteria between S and T and a calculated geometric transformation. Iterations’ 

transformations can be composed and they have two important characteristics, 

which are smoothness, to preserve the contour of the deforming object, and 

invertibility, to allow both forward and backward registration (from T to S). 

Different similarity metrics are used in non-rigid registration including sum of 
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square differences (SSD) or cross correlation (CC) for intra- or monomodality 

registration, joint entropy (JE), mutual information (MI) or normalized mutual 

information (NMI) for inter- or multimodality registration. Some can be used for 

both monomodality and multimodality like MI and NMI [178]. For more details a 

survey can be found in [179,180] for image registration, in [181,182] for surface 

registration, and in [183] for similarity metrics. Since the non-rigid image 

transformation used in this work is based on FFD, and since the surfaces in this 

work are parcellated without deforming them, brief descriptions of FFD and ICP 

are necessary.  

 In FFD, a 3D lattice of uniformly spaced control points is embedded into 

the 3D volume of MRI. Manipulating the lattice will then manipulate the contained 

3D volume (see Figure 2.8). Each point in each image experiences a displacement 

proportional to convolving the control point vectors of the voxel containing it with 

a B-spline kernel, which will provide local deformations that are globally 

continuous and smooth. The spacing along each dimension δx, δy, δz specifies the 

degree of locality for each deformation. By using i, j, k as subscripts to index the 

location of a control point within the lattice φi,j,k, the local displacement on any 

point � = 	 ��, 
, ��� is described by a B-spline tensor product over the local control 

point as shown in equation (2.7): 

�>?@A>��� 	= ∑ ∑ ∑ B�C�B�D�B���E�F:,GFH,�F5I5JKIHJKI:JK   (2.7) 
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where B refers to the cubic B-spline basis functions as in [170], L = 	 M�/O�P Q 1, 

S = T
/OUV Q 1,  W = 	 M�/OXP Q 1, 	C = 	�/O� Q M�/O�P , D = 	
/OU Q T
/OUV, 
� = �/OX Q	M�/OXP.  

 

Figure 2.8. Deforming and Pending Cow using FFD (Source: [184]). 

 

 In ICP, the least squared distance between points’ pairs of two surfaces 

meshes is minimized to find the best rigid transformation that aligns them together. 

The linear solution of Horn [185] finds the rigid transformation such that the energy 

function given in equation (2.8) is minimized: 

Y = 	∑ |[� Q 0	�\� Q \=� Q 2|"5�J�    (2.8) 

where Sc is the centroid of the source mesh. The translation vector d is the offset 

between the two meshes centroid while the unit quaternion rotation matrix R is the 

eigenvector corresponding to the largest eigenvalue of the cross-covariant matrix 

of both meshes after describing all the points with respect to their centroid in each 

mesh. Different similarity metrics are used to pair n points of T and S. For non-

rigid alignment, the process is iterative such that various optimizations are 

performed in every iteration to pair the points or find the correspondences and use 
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this pairing to find the best local transformation for each point. Different 

optimization methods involve different criteria like neighboring point and Jacobean 

calculation. Therefore, surface non-rigid registration using ICP algorithm is 

computationally expensive and time consuming. 

Figure 2.9: Non-rigid registration using cover tree pipeline (Source: [177]). 

 

In our previous work on non-rigid surface registration [177], we proposed 

a novel non-rigid registration method that computes the correspondences of two 

deformable surfaces using the cover tree [186]. The aim in that work is to find the 

correct correspondences without landmark selection and to reduce the 

computational complexity. As shown in Figure 2.9, the method consists of four 

steps which are initial alignment, construction of the cover tree, piecewise rigid (p-

rigid) ICP registration, and non-rigid ICP registration. In the initial alignment step, 

the two input surfaces are initially matched by aligning them and scaling the surface 

S according to the maximum ranges of the points on S and T. After initial 

alignment, the cover tree is constructed from the points of both surfaces and used 

for hierarchical clustering and k-NN in the correspondence computation of the p-

rigid and non-rigid ICP registration, respectively. The points of the two surfaces 

are divided into multiple clusters by cutting the cover tree into sub-trees rooted at 
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nodes of a selected level. The hierarchical clustering based on cover tree helps to 

establish correspondences of the clusters between two surfaces. For the p-rigid ICP 

registration, the method finds the correspondence of each source point p among the 

points in the same cluster which comes from T, q, and has the best correspondence 

measure given in equation (2.9): 

∑ −+⋅+−−−=

++−−=

k
kkqp

IsometricNormalDistCorr

qNqLpNpLnnqp

EEEqpE

))(,())(,()1(

)1(),(

2

2
βαβα

βαβα
 (2.9) 

The first term EDist is used to find the closest point by calculating the Euclidean 

distance between two points. The second term ENormal that indicates the angle 

between the normal vectors is calculated by inner product of two normalized 

vectors, np and nq. The third term EIsometric is defined to enforce the two 

corresponding points that have similar connectivity with the adjacent points Nk. 

This is measured by calculating the absolute difference between the length L of the 

connecting edges of p and that of the connecting edges of q. 

Once the corresponding point sets on the two surfaces have been 

determined, each cluster on S is locally transformed to T by minimizing the error 

between the two point sets. In the non-rigid ICP registration, the candidate 

correspondences of a given point on S are computed by looking for its k-NN in the 

cover tree, which are originating from T. A correct correspondence is chosen as the 

one that has the best correspondence measure among the k nearest points.  After 

determining two correspondent point sets from S and T as P and P’, respectively, 

the deformation D is applied on P to deform it to P’ by iteratively optimizing the 
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energy function EDR given in equation (2.10) that includes a fitting term, a stiffness 

term, and a Jacobian penalty term: 

)10.2())(())(())(,())(,(
0

i

N

i
JacobianiSmoothiiFitiDR pDEpDEpDpEPDPE ∑

=

++′=′ δγω

 The first term EFit measures the accuracy of alignment by calculating the 

distance between P’ and D(P). The second error term ESmooth regularizes the 

deformation by minimizing the sum of differences of the deformation between 

adjacent points as shown in equation (2.11): 

∑
∈

−=
)(

)()())((
ij pNp

ijiSmooth pDpDpDE    (2.11) 

The third term EJacobian regularizes the deformation by assigning penalty to 

the points with the negative Jacobian determinant. To impose penalty to the points 

with negative Jacobian and avoid the folding of the deformation, EJacobian is defined 

by equation (2.12): 

)))((1log())(( DJDetcpDE iJacobian −=   (2.12) 

where Det(J) is the determinant of the Jacobian matrix J, and c is the constant that 

adjusts the effect of the negative Jacobian term. The constant c is proportional to 

the distance between pi and its farthest neighbor. This Jacobian penalty term is 

applied only for the points with the negative Jacobian. The derivatives of the 

deformation is normalized by the edge length, |N(p) – p| where N(p) is the adjacent 

point of p. The Jacobian matrix of the deformation is calculated by equation (2.13): 
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To minimize the EDR between two corresponding point sets P and P’, the 

Levenberg Marquardt optimization algorithm [187] is applied. γ and δ are the 

parameters that adjust the effect of stiffness term and Jacobian term, respectively. 

If the stiffness parameter γ is small, the optimization converges quickly to the 

closest point based on the fitting term. However, the surface mesh becomes very 

irregular and bumpy. As γ is larger, the deformation is smoother but the 

optimization becomes slower and the surface may shrink. We set γ to 1. The 

parameter δ for Jacobian term is set to 1 if the point has a negative Jacobian. 

Otherwise the value is set to 0. The optimization ends when the termination 

condition is met. If the reduced error measure after each iteration i, EDR
i - EDR

i-1, is 

less than 5% of the error measure EDR
i, it is considered that the optimization 

converges to the optimum. By penalizing the deformation with stiffness term and 

Jacobian term, the proposed optimization regularizes the deformation so that the 

deformed surface has smooth deformation with less folding. More details can be 

found in [177]. 

Using this method, we analyzed the time complexity of the search to find 

the correspondence candidates in both stages p-wise registration and non-rigid 

registration. The correspondence computation time of p-rigid registration was 
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reduced from O(n2) to )
1

1
(

4

4

c

c
nO

d

−
−  and the correspondence computation time of non-

rigid registration was reduced to O(c12 n log n) according to the following claims: 

 

Claim 1: The correspondence computation using clustering reduces the time 

complexity of our p-rigid ICP from O(n2) to O(nl) where l is the number of nodes 

in the largest cluster. 

Claim 2: When applying cover tree-based hierarchical clustering, the number of 

nodes l in any cluster is upper bounded by 
4

4

1

1

c

c d

−
−  where c is the expansion constant 

of the cover tree and d is the depth of the sub-tree that corresponds to a cluster. 

Proof: 

Each node in the cover tree has at most c4 children [186]. Assuming the 

worst case, when the constructed cover tree is balanced and each node has exactly 

c4 children, then cutting the cover tree at level i with k nodes will introduce k 

clusters. Each cluster contains one root node of the sub-tree and all its decedent 

nodes in all the lower levels from the level i down to the leaves level j. Let d denotes 

the depth of the sub-tree, i.e. d = i-j. The number of the nodes in each cluster is 

calculated as follows: At level i, d is 0 and each cluster has one node, the root. The 

total number of nodes at level i is (c4)0 =1. At the next level i-1, d is 1 and each 

cluster has at most c4 nodes which are the children of the root node. The total 

number of nodes at level i-1 is (c4)1 = c4. As the level decreases by 1, d increases 
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by 1 and each cluster at each level has at most (c4)d nodes. Therefore, the total 

number of the nodes in a cluster is calculated using equation (2.14): 
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Thus, the number of the nodes l in the largest cluster is upper bounded by  

4

4

1

1

c

c d

−
−

 
■. 

Claim 3: The correspondence computation using cover tree-based hierarchical 

clustering reduces the time complexity of our p-rigid ICP from O(n2) to )
1

1
(

4

4

c

c
nO

d

−
−  

where c is the expansion constant of the cover tree and d is the depth of the sub-

tree that corresponds to a cluster. 

Claim 4: The cover tree based NN search reduces the correspondence computation 

time for non-rigid ICP from O(n2) to O(c12 n log n). 

Proof: 

Let S and T have the same number of points, n. The time complexity of the 

cover tree based NN search is O(c12 log n) when the tree is constructed from T. As 

it takes O(c12 log n) time to find the k-NN for each point on S, the total time 

complexity for all points on S is O(c12 n log n) ■. 

 

Even though this method allowed performing a marker-less registration of 

two surfaces with less computational time and resulted in accurate deformation, it 
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is well-known that surface non-rigid registration is generally time consuming and 

computationally expensive especially with surfaces that have a large number of 

points. Therefore, we solve the problem of parcellating the brain surfaces of the 

spatio-temporal atlas 28-44 GA weeks without the need to perform non-rigid 

registration. In fact, we started tackling the parcellation problem by applying this 

non-rigid registration method to deform the surfaces and propagate the labels after 

the deformation, but the problem was solved without the need for expensive 

computational non-rigid registration, as discussed in Chapter 3. 

 

2.4. Conclusion 

The automatic parcellation approaches mentioned in this chapter have been 

developed for mature brain and are not currently used to automatically and longitudinally 

parcellate neonatal developing brain atlases at early GA weeks. In fact, if the brain 

undergoes significant changes in shape, size and structure, as in the case of neonatal brain 

during early development [24], it has no reliable folding patterns to drive the registration 

in the case of registration-based parcellation or to rely on in the case of segmentation-based 

parcellation. Moreover, parcellating it based on a mature brain template introduces a bias 

since several studies suggested that developing brain analysis needs to be performed 

independent of mature brain due to significant differences in brain tissue properties, image 

intensities appearance, and anatomical shapes [30,132,140]. Even though developing brain 

parcellated atlases reported in this chapter exist in scientific literature, they provide 

parcellation for a single GA week. No longitudinal parcellation for developing brain that 

covers early GA weeks exist.  
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 In this dissertation we propose a longitudinal parcellation method for developing 

brains that is novel, fast, and automatic. The method preserves the surface, without 

deforming, distorting, or mapping it into a different coordinate system. Also, the method 

does not rely on any landmark or sulcal depth, and requires only moderate time to perform 

the parcellation. The parcellation is performed on the brain surface shape three dimensional 

(3D) coordinate system as opposed to the spherical 2D coordinate system. Also, the 

parcellation is applied to the whole brain surface as opposed to one hemisphere as in the 

case of spherical inflation method, and is therefore, suitable to be used with symmetric and 

asymmetric brain templates. Moreover, the parcellation is done by longitudinally 

propagating a probabilistic estimation of a labeled neonatal brain atlas at one age of 

gestation to other gestational weeks using spatial points pairing and temporal points voting 

without performing the time consuming deformable surface registration.  

 

2.5. Summary 

This chapter covers the related work on brain atlases generation and processing, 

available developing brain atlases, and developed brain parcellation algorithms. It also 

gives an overview of techniques used throughout the dissertation, such as image/surface 

registration and parcellation. Also, discussed are the challenges of applying these 

techniques on the developing brain MRI. 
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Chapter 3: Methods 
 

Based on: 

MH Alassaf, JK Hahn, “Automatic Parcellation of Longitudinal Cortical Surfaces”, SPIE medical 
imaging. International Society for Optics and Photonics (2015). 

MH Alassaf, JK Hahn. “Longitudinally Parcellating the Human Developing Brain Cortex”. 2015 
(In Submission). 

 

3.1. Introduction 

Advances in MRI have facilitated studying brain maturation at the physiological, 

morphological, and functional levels [24]. Tracking the growth and folds of developing 

brain regions is important for early detection of disease such as autism, schizophrenia, and 

epilepsy [9]. Parcellation refers to the process of labeling specific neuroanatomically 

defined areas using MRI. Originally, cortical parcellation was done manually, a time and 

labor intensive process [92,94,95], highlighting the need for automation. Automating 

cortical parcellation has been challenging due to inter-subject cortical geometric 

heterogeneity, especially in the developing brain as described in Chapter 2. 

In this chapter, we present a novel automatic method to parcellate the cortical 

surface of the neonatal brain at different stages of development.  A labeled newborn brain 

atlas at 41 weeks gestational age (GA) is used to propagate labels of anatomical regions of 

interest to a spatio-temporal atlas, which provides a dynamic model of brain development 

at each week between 28-44 GA weeks. The first step involves propagating labels from the 

cortical volume of the newborn brain to an age-matched cortical surface from the spatio-

temporal atlas. Next, we used a novel approach and an energy optimization function to 

propagate labels across the cortical surfaces of each week of the spatio-temporal atlas by 

registering successive cortical surfaces. In this procedure, local and global, spatial and 



56 

 

temporal information are incorporated when assigning the labels. As a result, we were able 

to produce a complete parcellation of 17 neonatal brain surfaces with similar points per 

labels distributions across weeks. 

 

3.2. Input and Pipeline 

In order to label developing cortical structures, we used the three available labeled 

neonatal brain atlases; the newborn UNC atlas at week 41 GA [74], the ALBERT atlas 

with 20 newborn infants [70], and the JHU atlas [71], along with the neonatal spatio-

temporal brain atlas of weeks 28-44 GA [140] as input. The average age of the ALBERT’s 

20 subjects is 41 GA week (see Table 3.1 for more details). UNC Atlas parcellation divides 

the cortex into 90 ROIs, ALBERT atlas parcellation divides the brain into 50 ROIs while 

JHU atlas divides the brain into 122 ROIs. Details about these ROIs are provided in tables 

6.1, 6.2, and 6.3 in Appendix 1. 

The proposed method involves three steps (Figure 3.1). Step one involves 

propagating the labels from the labeled brain atlas to the corresponding age match of the 

spatio-temporal brain atlas, week 41 as in section 3.3. Second, the labels are propagated 

from the spatio-temporal atlas volume of week 41 to a constructed WM surface of the same 

week using proposed volume-surface parcellation, described in section 3.4. Finally, the 

labels are propagated from the spatio-temporal atlas week 41 surface, among surfaces of 

the other weeks of the spatio-temporal atlas using the proposed surface-surface parcellation 

in section 3.5. 
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3.3. Propagating the Labels in the Volume Space 

All UNC, ALBERT, and JHU atlases are provided as 3D volumes of intensities and 

labels. They need to be registered into the corresponding week, week 41, of the spatio-

temporal atlas volume in order to transform the labels into that week. Later in stage two, 

labels need to be described in surface representation. Stage one of the pipeline is intended 

to register the volumes. 

A labeled volume of a neonate brain atlas parcellation map of week 41 GA, with C 

neuroanatomical regions of interest (ROIs) labels, is registered using FFD [170] to the 

corresponding week in the spatio-temporal atlas, week 41. This is done by applying FFD 

registration between the intensity volumes of UNC, ALBERTs, and JHU atlases one at a 

time as source S, and the intensity volume of week 41 of the spatio-temporal atlas as target 

T. Then, resultant transformations are used to deform or warp the labels volumes of UNC, 

Table 3.1. ALBERT Atlas Subjects Age at Scan. 

ALBERT Gestational Age Age at scan 

1 Term 41.43 

2 Term 44.43 

3 Term 40.71 

4 Term 44.86 

5 Term 39.43 

6 26.71 41 

7 30.57 36.85 

8 29.57 36.57 

9 26.85 39 

10 29 39.85 

11 29 39.85 

12 28 40.14 

13 34.57 43.29 

14 29.14 39.14 

15 26.85 41.85 

16 31.57 43.31 

17 26.71 39.57 

18 26 41.71 

19 32 41.85 

20 29 41.29 

 Average: 41.36 
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Figure 3.1. Pipeline of the proposed method. 

 

ALBERTs, and JHU atlases into week 41 volume. Hence, the labels are propagated in the 

volume space as shown in Figure 3.2. In case of the 20 ALBERTs, the normalized 

transformed label volumes need to be fused together in order to generate one template as 

shown in Figure 3.3. We used weighted fusing such that each week is assigned a weight 

based on its temporal location from week 41. The closer weeks to week 41 get higher 

weights than the distant ones. The weights are specified using equation (3.1): 
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]� = 1 Q ^ �
:85.�*_/�53:	-35.6 `��3.6 Q ��̅3.6`a   (3.1) 

Where ��3.6is the average image age, here 41, ��̅3.6 is image i age at scan, longitudinal range 

is the difference between the first and last time point in the spatio-temporal atlas. 

 

 
 

Figure 3.2. Propagating the labels in the volume space. 
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Figure 3.3: ALBERTs’ 20 labeled brain normalization and fusing to generate one template. 

 

3.4. Volume-Surface Parcellation 

At this stage, week 41 of the spatio-temporal atlas is automatically delineated by 

labels. A WM surface is constructed from this 41 week intensity volume using Marching 

Cubes algorithm [167]. To get a smooth surface, the volume is blurred using a Gaussian 

kernel with σ = 2 before constructing the surface. The goal of this stage is to find a surface-

based representation of the labels from the volume. We start by embedding the surface 

inside the volume of labels by rigid alignment. Then, for each point pi on the surface, the 
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intersection between the surface and the volume determines the label of pi. Each 

intersection is located inside a voxel in the volume and the majority of the voxel corners 

labels is selected as the pi label.  Let b be a set that holds the eight corners’ labels cG , S ∈
	�1,8e. Labeling pi is based on C-length weights vector: �:, f ∈ 	 �1, ge. This weights vector 

defines a scoring function h� →	�:. b	jcGk and the label associated to point pi is given by 

equation (3.2): 

flm$f�h�� = lnopl�:		�:. bjcGk     (3.2) 

Furthermore, the eight votes are not uniformly distributed among the eight corners. 

Rather, they are determined based on the location inside the voxel where pi is located 

following the trilinear interpolation weighting mechanism. Considering a voxel between 

two volume grid points [x1, y1, z1] and [x2, y2, z2] as in Figure 3.4: 

  

Figure 3.4: Illustration of the localization of a surface point pi inside a voxel in the volume between two 

volume grid points [x1, y1, z1] and [x2, y2, z2], the participation of each voxel corner in the voting 

process is weighted by the location of pi. 
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The votes’ participation is specified as follows in equations (3.3-3.13): 

Δx = pi.x – x1      (3.3) 

Δy = pi.y – y1      (3.4) 

Δz = pi.z – z1      (3.5) 

f1 = (1-Δx)*(1-Δy)*(1-Δz)    (3.6) 

f2 = (1-Δx)*Δy*(1-Δz)     (3.7) 

f3 = (1-Δx)*Δy*Δz     (3.8) 

f4 = (1-Δx)*(1-Δy)*Δz     (3.9) 

f5 = Δx*(1-Δy)*(1-Δz)     (3.10) 

f6 = Δx*Δy*(1-Δz)      (3.11) 

f7 = Δx*Δy*Δz      (3.12) 

f8 = Δx*(1-Δy)*Δz     (3.13) 

 

If there is no majority, the label of the corner nearest to the intersection point 

(denoted as NN) is participating in the voting more than the other corners labels according 

to equation (3.14): 

cG = q1 Q rr	sLt�luv$, Lc	S = rr
ww	/�x*35=6

y ,														z�ℎ$n�Lt$     (3.14) 

Consequently, the label of the NN will be selected to be the label of pi. In this way, 

jaggies and aliasing artifacts at the boundaries are avoided, ensuring clear boundaries 

between regions. If pi intersects the volume in an empty space where no label is defined, a 

ray is traced from pi in the direction of its normal vector ni to find an intersection point p 
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within a non-empty voxel. Ray tracing [188] advances a fractional distance d from pi along 

its normal vector ni to find new point p as described in equation (3.15): 

h�s� = h� + 	s	u�     (3.15) 

This is done iteratively with small d steps until the ray intersects non-empty voxel. 

Then, this voxel corners’ labels are similarly used to assign pi a label. Illustration of this 

stage using UNC atlas parcellation map is shown in Figure 3.5.  

 

3.5. Surface-Surface Parcellation 

 The input to this stage is the labeled atlas surface at week 41 of the spatio-temporal 

atlas, which plays the role of prior L. The goal is to propagate these labels from the week 

41 surface into WM surfaces which are constructed from each week of the spatio-temporal 

atlas, weeks 28-44 GA. Each surface is represented in an isotropic triangular mesh t of v 

vertices, e edges, and x triangles, and embedded in a 3D Cartesian space. 

 

Figure 3.5. Volume-Surface Parcellation: Labels are propagated from the volume to the surface after 

alignment. 
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Problem Statement 

Automatically and longitudinally labeling the developing brain cortical gyri and 

sulci problem can be phrased within conditional probability framework. In this framework, 

for a given observed surface model M, the classification of each point in M depends on its 

location with respect to the prior information L. Here, the prior L is incorporated in the 

parcellation of M. Considering the large degree of variability in cortical folding patterns of 

M, both the priors on L and the conditional probability of observing the surface given the 

classification can be conveyed within a mapping space. This allows them to be expressed 

as a function of position on the cortical surface; making them non-stationary. Using this 

mapping space, the classifiers are distributed and each classifier is responsible for a region 

with limited number of classes that occur within it. Therefore, a relationship is established 

between the number of classes falling within a region of space and the accuracy of the 

mapping system, P(L(pi) = l). Meaning that, P(L(pi) = l) ≠ 0 at each mapped location pi 

only for a small number of classes l. In this way, the problem of classifying each surface 

point into one of C labels is decomposed into a set of tractable problems of classifying the 

points in each region of the surface model into one of only a small number of labels.  

A function f(p) needs to be calculated to define the mapping space 	c�h�:	h → �. 

This function takes as input a point in the surface p, returning the corresponding location 

in the prior coordinates x. The returned coordinates are useful in this context only if they 

are spatially and temporally related to the anatomical location of p. This type of mapping 

therefore provides the ability to meaningfully relate coordinates temporally. Using the 

mapping space, the class statistics will vary as function of location.  
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Mapping Space 

During the brain myelination, radial glial cells form the scaffolds where neurons 

migrate to their cortical destinations [24,53] and cause an increase in the cerebral cortex 

surface area [53] with total brain tissue volume increasing at the ratio of 22 ml/week [26]. 

Inspired by the neuronal migrational trajectories (described in section 1.3), which are radial 

dominant and cortical plate perpendicular [52], and since the cortex globally grows radial 

with constant rate assumption in early GA development, we can trace the growth of the 

cortex by linearly registering all weeks’ cortical surfaces, identifying the centroid, and 

shooting rays from the centroid in all directions. Each ray will intersect all surfaces in 

several points on its way out. Considering a small time interval, these intersection points 

model the shortest path of growth from one week to its next; hence, a mapping between 

them. However, to account for the local cortical surface folding that forms the sulci and 

gyri, a local directional mapping between the points is more desirable. We rely on local 

pairing between points of consecutive weeks’ surfaces to propagate the labels among pairs 

from labeled surface to unlabeled surface. To map the points locally and also to accelerate 

the process, we shoot a single ray ri from each point pi of the unlabeled surface t along its 

normal vector direction ni towards the labeled surface t±1 rather than shooting all rays from 

the centroid. In fact, the ray will intersect the labeled surface at some point inside a triangle 

xj on that surface mesh. Therefore, defining the mapping function c�h�:	h → �.  

Denoting the vertices of xj by vj1, vj2, and vj3, the intersection between a ray 

originating at pi having the normalized direction ni with xj will occur when the equality in 

equation (3.16) is satisfied: 

h�* + 	s	u�* =	DG�*±� + 	CjDG"*±� Q DG�*±�k + 	t�DGI*±� Q DG�*±��  (3.16) 
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We solve in barycentric coordinate for three unknowns: d, u, and s using the linear solution 

of [189] (see Appendix 2 for more details). After locating xj, xj vertices’ labels will vote to 

label pi and pi will take the label of the majority. If there is no majority among xj vertices’ 

labels, pi will take the label of the closest vertex to the intersection point Iij.  

 Additionally, due to the fact that one ray can intersect many triangles, a margin 

around the unlabeled surface is defined to insure that only local intersections within the 

margin are considered. The benefits of defining a margin are that it will lead to more 

efficient pairing and accelerates the process. In fact, when two consecutive GA weeks brain 

surfaces are aligned, some regions of the earlier week surface cover or occlude the later 

week surface in some locations, and vice versa, as shown in Figure 3.6. This surface 

overlaying is primarily due to the fact that brain curvature is deforming [24]. The solution 

of this situation is to look for intersections from each side of the surface via the positive 

and the negative normal direction as demonstrated in Figure 3.6. In addition, energy 

optimization function described in equation (3.17) is used to find the best intersection: 

Y�5*6-x6=*jh�*, �G*±�k = 	Y/�x*jh�*, �G*±�k + Y58-H3:�u�*, �uG*±��  (3.17) 

where h�* and u�* represent a point and its normal vector on surface t, respectively. And 

�G*±� and �uG*±� represent a triangle and its normal vector on surface t±1, respectively. In 

the first term Edist, the process is optimized by looking for the closest intersected triangle 

within the described margin, as in equation (3.18): 

Y/�x*jh�*, �G*±�k 	= pLuG 	sLt�luv$jh�*, ��G*±�k (3.18) 
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Figure 3.6. Surface-Surface Parcellation: Shooting rays from the unlabeled surface points along their normal 

vectors and within a margin around the surface toward the labeled surface. 

 

where ��G*±� is the intersection point inside the triangle �G*±� with the ray originating from 

h�*. In the second term Enormal, the process is optimized by guaranteeing that the selected 

triangle has the most similar normal vector direction to the point normal vector direction. 

Therefore, intersections with surface triangles in the opposite direction are avoided, as in 

equation (3.19): 

Y58-H3:�u�*, �uG*±�� = pLuG 	�1 Q vzt�u�*, �uG�±��� (3.19) 

Parcellation 

While parcellating the spatio-temporal atlas starting from week 41 and using this 

parcellation as prior then going in both directions, we build a history of the point-triangle 

mapping between successive weeks. When we parcellate the surface of t, using prior 

labeled surface of t±1, the history information obtained from all weeks t±2, t±3, t±4 … 
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etc., are incorporated in the majority voting process such that all previously labeled 

surfaces participate in giving labels to surface t points. The number of points participating 

in the voting process is specified by the level of priors available at week t, starting from 

week 41 and going in both directions one at a time. We build a tree for each point pi at time 

t such that pi will be the root of the tree. In the next tree level, we add 3 nodes, which are 

the intersected triangle vertices at time t±1. Each additional level of the tree will have 3depth 

nodes, which are the intersected triangles vertices at time t±depth. These nodes are the ones 

participating in the voting. Let � be a set that holds the labels of these nodes. The size of 

� can be expressed using equation (3.20): 

|�| = 	∑ 3|�9��|���J* Q 1    (3.20) 

Now, given the mapping function f, and the number of votes participating in the voting 

process, the probability of assigning class l into current point pi is given by equation (3.21): 

h�h� = f� = #	84	*�H6x	=:3xx	:	8==_-	�5	�
x�X6	84	�     (3.21) 

After collecting the labels that will participate in the voting process, we can specify 

the amount of participation of each label based on its temporal location or tree level such 

that the weeks closer to the current week t participate more than distant weeks. Labeling pi 

is formulated based on C-length weights vector: �:*, f ∈ 	 �1, ge. This weights vector defines 

a relative scoring function based on the longitudinal location � of each point participating 

in the voting h� →	�:*. �	�h�*� such that points in t±1 participate more than points in t±2, 

points in t±2 participate more than points in t±3, and so on. To specify this temporal 

participation, time dependent kernel regression [135] is used to estimate the weight of votes 
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coming from each time. Hence, Gaussian kernel is used to produce the weight � of the 

votes of the kth time point t as given in equation (3.22): 

�*��W, �� = 	 1
,√2� $

Q��WQ��
2,2      (3.22) 

Then, the label associated with point pi is given by equation (3.23): 

flm$f�h�*� = lnopl�:	�:�	�jh��k, W	 ∈ �� + 1, 41e	zn	W	 ∈ �41, � Q 1e  (3.23) 

These votes and their weights will specify the level of certainty when assigning a label to 

any point. The propagated error will also be quantified based on those votes. 

For this Gaussian kernel, the choice of the kernel width , is important, because it 

will specify the amount of participation at each level of the tree. We chose , = 1. With 

this choice, the previous 4 times are going to directly affect the prediction of the current 

label at time t as they will be assigned higher weights than the rest times. According to 

Markov Chain theory, each state depends only on the states immediately previous in time. 

Hence, the labels are treated as random variables lt such that t indicates the time, the future 

is conditionally depends on the past according to the probability given in equation (3.24): 

h��* = S	|�*±� =	 L*±�, �*±" =	 L*±", …	 , ��� = L��� =	
h��* = S	|	�*±� =	 L*±�, �*±" =	 L*±", �*±I =	 L*±I, �*±� =	 L*±��    (3.24) 

Let the discrete values a1, …, at denote the variables of a Markov sequence as in equation 

(3.25):  

hjf* = l�& 	`f*±� = l�&±� , f*±" = l�&±( , …	, f�� = l���� =	
	hjf* = l�& 	`f*±� = l�&±� , f*±" = l�&±( , f*±I = l�&±� , f*±� = l�&±��  (3.25) 
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The sequence lt is called a Markov chain [190]. For Markov chain, the starting state does 

not affect the long-range predictions.  

Additionally, the parcellation is followed by three refinement steps. The first 

refinement is to fill the gaps. The second refinement is to correct for the parcellation 

depending on the topology of the surface. The third refinement is to merge small patches 

with their neighbors as shown in Figure 3.7. 

 If the ray segment is parallel with the triangles in the defined margin or when u or 

s is larger than 1, no intersection can be found. Therefore, small gaps, or few points with 

no assigned label could occur in the parcellated surface. Filling the gaps is solved by 

adopting a semi-supervised learning approach to propagate the labels between the surface 

points [191]. In this approach, labels are propagated through the neighbors iteratively until 

convergence. A C-dimensional vector is defined for each unlabeled point pi to hold weights 

for each possible candidate region.  Only the weights of the neighboring regions of pi (e.g. 

regions of the points that share an edge with pi in the triangulated surface mesh) are 

considered and updated. Then, the label of the higher weight region will be given to pi. 

This is done iteratively until all unlabeled points are labeled. 

 Since brain cortex topology consists of sulci and gyri, one automatic, numeric way 

to capture this topology is by calculating the curvature of the surface. Using the mean 

curvature (see Figure 3.8), we locate the set Σ of points with maximum/minimum curvature 

on the surface. Referring to some brain sulci and gyri segmentations, some of these points 

are located on the boundaries between ROIs. We check to see if these points are surrounded 

with more than one ROI in a bounded space. If yes, then we determine whether there is 
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leakage from one ROI to another passing through these points. The leakage is identified by 

checking for a connected patch around one side of a line formed by points of Σ, where the 

patch size does not exceed a specified threshold. If we find a leak, we correct for it by 

pulling the region back to these points, which serve as the boundary between two ROIs, 

thereby eliminating the leakage. 

 Shooting rays along the points’ normal vectors direction could result in cross 

intersection due to the fact that the neonatal brain surface curvature is deforming. This 

results in small patches near borders that belong to neighboring regions after parcellation. 

The described situation is directly related to the change in the normal vectors direction, 

especially where the curvature is high among neighboring points. Whenever a small patch 

with less than a pre-specified threshold number of points is located, we merge it with the 

neighboring region where the largest border is shared. 

 

3.6. Summary  

 This chapter presented an approach for propagating a number of neuroanatomical 

ROIs through 4D atlas of the developing brain. The approach consists of three stages. In 

the first stage, non-rigid registration of MR images of intensity volumes is performed to 

propagate the labels into the spatio-temporal atlas at one GA week. In the second stage, 

intersections between volume, and surface constructed from it are used to propagate the 

labels from the volume space into the surface space. In the third stage, ray-triangle 

intersections framework between consecutive weeks’ surfaces is described to propagate 
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the labels among the GA weeks of the spatio-temporal atlas. Experimental results of this 

approach and evaluation methods are presented in Chapter 4. 

 

 

Figure 3.7. Lateral view of parcellated brain and refinements results. First row: Before and after refinement 

step 1 of filling gaps on left column and right column, respectively. Middle row: Before and after 

refinement step 2 of correcting for the topology using mean curvature on left column and right 

column, respectively. Bottom row: Before and after refinement step 3 of merging small patches with 

neighbors on left column and right column, respectively. Final Refinement Result is shown on the 

right of the last row. 
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Figure 3.8. Superior and lateral views of the surface mean curvature on selected GA weeks of the spatio-

temporal atlas. Top: Symmetric results. Bottom: Asymmetric results.  
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Chapter 4: Results and Evaluation 
 

4.1. Introduction 

This chapter presents the experimental results of the method discussed in Chapter 

3 that demonstrate a three-stage parcellation algorithm for 4D atlas of the developing brain.  

Both final results and individual stages’ results are presented in this chapter. Also offered 

are evaluation methods and discussion. Since there is no available neonatal parcellated 

atlas that covers weeks 28-44 GA to use as ground truth and for comparison purposes, we 

designed four experiments to validate the resultant parcellation. 

 

4.2. Experimental Setup 

 The method described in Chapter 3 has been implemented using C# programming 

language. The programming and compilation are performed on Microsoft Visual Studio 

2012 IDE. The system used is a DELL Precision T7500 Workstation with Intel Xeon 

2.27GHz E5607 processor, 54 GB of usable RAM. The operating system is Windows 7 

Professional. Two versions of the code are implemented; one without using parallelism, 

and one with using parallelism in parallel threading [192]. Comparison between 

performances in term of time is given in Table 4.1. 

With regards to the input data, we used the three available datasets on the web for 

the labeled neonatal atlases; UNC [74], ALBERT [72], and JHU [71]. For the spatio-

temporal atlas, we used the only online accessible 4D neonatal atlas that is constructed 

from the largest number of subjects [140] in order to best represent the population.  
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4.3. Results and Evaluation 

 

4.3.1. Results 

We performed the proposed parcellation on the neonatal spatio-temporal atlas 

[140] using UNC labeled atlas of C=90 ROIs parcellation map [74], ALBERT labeled 

atlas of C=50 ROIs parcellation map (44 are cortical ROIs only) [72], and JHU labeled 

atlas of C=122 ROIs parcellation map [71]. Two versions of each parcellation map are 

used: one is symmetric and another is asymmetric. In the first stage of propagating the 

labels in the volume space, the UNC and JHU neonate atlases are non-rigidly registered 

into week 41 of the spatio-temporal atlas and labels are propagated in the volume 

domain. For ALBERT atlas, since it consists of 20 parcellated subjects, we need to 

normalize their volumes into week 41 of the spatio-temporal brain space, then fuse their 

information to build one template. Each subject is non-rigidly registered to week 41 of 

the spatio-temporal atlas (which is the average age of ALBERTs as given in Table 3.1) 

and labels are propagated in the volume domain. Then, fusing is performed using voxel-

level majority voting to generate one template (as described in section 3.3), which is 

used in the stages that follow. Results of the first stage are given in Figure 4.1. 

 
 

Figure 4.1. Results of first stage: Propagating the labels in the volume space into week 41 of spatio-temporal 

atlas. Left: Deformed UNC atlas labels. Middle: Deformed ALBERTs atlases labels after majority 

voting. Right: Deformed JHU atlas labels. 
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In the volume-surface parcellation stage, the deformed volume of labels of 

UNC, ALBERT, and JHU are used one at a time to transfer labels into the WM surface 

of the spatio-temporal atlas at week 41.  

For UNC atlas, out of 90 ROIs, three ROIs numbered: 75,76, and 79 in the 

parcellation map did not initially appear in the volume-surface parcellation results of 

week 41 because they did not intersect with the constructed cortical surface. 

Additionally, eight ROIs numbered: 25, 26, 29, 31, 32, 36, 42 and 80 in the parcellation 

map have a very small number of points assigned to each. Therefore, these regions fade 

away at different weeks during the propagation because they are considered as small 

patches and were merged into their neighbors at some longitudinal point in the 

refinement step as shown in Table 6.5. The remaining 79 ROIs are presented and 

propagated from week 41 in both directions into the spatio-temporal atlas by proposed 

surface-surface parcellation.  

For ALBERT atlas, 44 cortical ROIs are propagated into the surface after 

removing the cerebellum and non-cortical structures, which are ROIs numbered: 17, 

18, 19, 44, 45, and 48 in the parcellation map as shown in Table 6.7.  

For JHU atlas, 49 ROIs did not initially appear in the volume-surface 

parcellation results of week 41 because they did not intersect with the constructed 

cortical surface. These ROIs have numbers: [7-16], 21, 23, [25-29], 31, 32, 37, 38, [41-

57], [59-66], 102, 119, and 120 in the parcellation map. Also, twelve ROIs numbered: 

3, 4, 5, 20, 24, 30, 58, 85, 87, 115, 116 and 118 in the parcellation map had only a small 

number of points assigned to them. Therefore, these regions fade away at different 
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weeks during the propagation because they are considered as small patches and were 

merged into their neighbors in the refinement step as shown in Table 6.9. 

The results of this stage in 3D form parcellated surfaces at week 41 GA are 

embedded in Figure 4.2 and in the supplementary material for interactive illustrations. 

 

 

 

Figure 4.2. 3D results of second stage of volume-surface parcellation. Left: Using UNC atlas labels. Middle: 

Using ALBERT atlas labels. Right: Using JHU atlas labels. Top: Symmetric. Bottom: Asymmetric. 
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In the last stage of surface-surface parcellation, labels are propagated into all 

spatio-temporal atlas weeks. The symmetric and asymmetric results of this stage in 

selected GA weeks are shown in Figure 4.3 using UNC atlas parcellation map, Figure 

4.4 using ALBERT parcellation map, and Figure 4.5 using JHU parcellation map. 

Visual inspection shows consistent propagation of the labels over time. Processing time 

is reported in Table 4.1 and depends heavily on the number of points per source surface 

and the number of triangles per target surface. Because longitudinal brain development 

and cortical changes in two consecutive GA weeks is minimal and subtle [24,26,193], 

the ray-triangle intersection process provides rough pairing between the two surfaces 

as solid ground to propagate the labels among them. It also describes the growth 

trajectories between successive weeks. The average Euclidian distances of the pairing 

done by the proposed parcellation across weeks are reported in Table 4.1. The average 

ranges from 0.26 to 1.02 mm in the symmetric surfaces, and ranges from 0.26 to 1.03 

mm in the asymmetric surfaces. This minimal distance between the consecutive 

surfaces strengthen the proposed parcellation method which rely on the pairing between 

the consecutive weeks without the need of performing the time-consuming deformable 

registration. 

 

4.3.2. Evaluation 

To our best knowledge, this is the first parcellated atlas of neonatal developing 

brain that covers GA weeks 28 to 44. For this reason, several approaches are necessary 

to evaluate the results. We used four evaluation methods on the proposed parcellation. 

The first approach incorporates ground truth parcellation to assess the validity of the 
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proposed parcellation method. The second evaluation method includes cross validation 

on ALBERT’s 20 subjects to validate the final result. The third evaluation measures 

the local growth of individual neuroanatomical regions (labels) over time. The fourth 

evaluation focuses on comparing the probabilistic distribution of the labels among 

points across successive weeks. Finally, the utility of the parcellation in capturing the 

normal growth of perinatal brain individual ROI development is demonstrated in tables 

6.4 to 6.9 in Appendix 1. 

 

Table 4.1. Spatio-temporal atlas information: number of points per surface, number of triangles per surface, 

average pairing distance, and parcellation time starting from week 41 and going in both directions 

with and without multithreading. Sym.: Symmetric, Asym: Asymmetric 

W
ee

k
 Number  of 

points/Surface 

Number  of 

triangles/Surface 
Average paring 

distance (mm) 

Time without 

multithreading 

(min:sec) 

Time with  

multithreading 

(min:sec) 

Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym. 

28 35,172 34,872 70,348  69,740 0.58 0.55 11:50 12:40 05:55 5:09 

29 37,464 36,926 74,932  73,844 0.96 1.00 14:16 14:22 06:46 5:55 

30 40,900 40,522 81,796  81,040 0.77 0.82 16:35 17:15 07:38 6:56 

31 43,848 43,706 87,692  87,412 0.70 0.70 17:55 19:47 08:33 7:51 

32 46,435 46,448 93,048  92,896 1.02 1.08 20:42 18:02 09:51 9:01 

33 50,784 51,264 101,788  102,536 0.69 0.70 22:13 26:38 11:01 10:30 

34 53,206 53,784 106,420  107,576 0.93 0.98 25:34 30:47 12:13 12:01 

35 56,990 59,240 113,976  118,488 0.64 0.66 30:11 26:50 13:52 14:20 

36 60,230 64,180 120,452  128,364 0.26 0.26 30:52 40:15 14:43 15:35 

37 60,252 64,752 120,496  129,508 0.85 0.82 35:15 45:47 16:51 17:52 

38 69,070 73,280 138,148  146,564 1.02 1.03 45:24 58:13 20:29 22:35 

39 78,548 82,254 157,104  164,516 0.49 0.43 50:22 63:58 24:07 24:54 

40 76,848 80,770 153,700  161,540 0.55 0.49 50:03 63:28 22:37 25:05 

41 78,222 82,310 156,440  164,620 - - - - - - 

42 86,188 88,924 172,392  177,860 0.86 0.86 59:13 71:53 25:16 27:32 

43 85,472 88,694 170,964  177,400 0.41 0.38 60:09 75:27 26:59 29:17 

44 88,532 91,070 177,084  182,152 0.31 0.31 63:21 77:10 27:55 30:04 
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 Figure 4.3. Parcellation results using UNC labels map on ten selected GA weeks. Top: Symmetric results. 

Bottom: Asymmetric results. 
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Figure 4.4. Parcellation results using ALBERT labels map on ten selected GA weeks. Top: Symmetric 

results. Bottom: Asymmetric results. 
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Figure 4.5. Parcellation results using JHU labels map on ten selected GA weeks. Top: Symmetric results. 

Bottom: Asymmetric results. 
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First Validation: Spatial and Temporal Consistency using Longitudinal Atlas 

We used UNC Infant 0-1-2 parcellated brain atlas [74] to evaluate the proposed 

longitudinal method. This brain atlas provides full parcellation of the brain at three 

temporal ages: newborn, 1 year, and 2 years. As ground truth, a parcellated surface is 

constructed from each time point. Then, labels are propagated from one time point to 

another; from birth to year 1 and from year 1 to year 2 surfaces and vice versa, using 

the proposed parcellation method. The result is compared with ground truth point-by-

point and by using DICE similarity index [194], which is given in equation (4.1) for 

any two sets X and Y and measures the overlapping and the agreement of these two sets, 

hence X and Y stand for the result and the ground truth: 

2|� ∩ �| |�|⁄ + |�|     (4.1) 

Having a consistency of 70% to 90%, the propagated labels are compared to ground 

truth as shown in Table 4.2. This consistency is comparable with the consistency of a 

similar experiment reported by UNC Infant 0-1-2 brain atlas authors [74]. In fact, the 

consistency is similar on birth vs. 1 year and is better on 1 vs. 2 years of age (90%). As 

shown in Figure 4.6, the location of most of the mismatched points is at the borders 

between regions; the ambiguous locations where precise parcellation could be missed 

even if it is done manually by an expert. We believe that dramatic changes in the brain 

shape, geometry, curvature and size between neonates to 1 year then to 2 year old are 

key reasons why a higher accuracy was not achieved in our validation experiment. 

These changes in the brain are less in magnitude during a week as opposed to a year. 

Furthermore, due to significant changes between neonatal and 1-year-old brains, a 

larger error is reported after propagating the labels starting from neonate towards 2 
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years old, as indicated in the dark gray shaded cells in Table 4.2. The main reason for 

this is the differences in the cortical growth rates during the first two years of age, as 

the cortex grows 1.8 times in average during the first year and 1.2 times in average 

during the second year [195].  

Table 4.2. Dice similaity index of propagating labels among neonate, 1, 2 years old atlas. Left (light gray 

shaded cells): Starting the propagation from year 2 towards neonate. Right (dark gray shaded cells): 

Starting propagation from neonate towards year 2.  

 From 2 to 1 From 1 to neo. From neo. to 1 From 1 to 2 

DICE score 0.9042 0.8027 0.7297 0.7135 

 

 

Figure 4.6: The UNC Infant 0-1-2 Atlas validation experiment. Top row: Ground truth parcellation maps. 

Second and third rows: Proposed method parcellation maps starting from 0 to 1 then to 2 years and 

the color coded agreement between the ground truth and the proposed method parcellation where 

error is shown in red. Fourth and fifth rows: Proposed method parcellation maps starting from 2 to 

1 then to 0 year old and the color coded agreement between the ground truth and the proposed 

method parcellation where error is shown in red. 
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Second Validation: Spatial and Temporal Consistency using Cross validation  

The ALBERTs atlas dataset consists of 20 brain MRI scans and their manual 

parcellation maps. Each brain scan was taken at specific week of gestation as shown 

Table 3.1. According to Table 4.3, several GA weeks have more than one scan. 

Therefore, cross validation/leave-one-out/n-folds/jackknife technique can be employed 

to validate the proposed method. Using this technique, one scan per age is removed 

from the dataset and called testing scan, the remaining scans are used to create a 

template by normalizing and fusing them as described in section 3.3, called training 

set. The new template is used as an input for the proposed parcellation, and its labels 

are propagated in the spatio-temporal atlas starting from week 41 GA and targeting the 

testing scan age week. The resultant parcellation of the training set at that age is then 

compared with the testing scan. The disagreement between the manual and the 

automated parcellation is quantified point-by-point, whereas this disagreement will 

report the percentage of error. To further explain how this cross validation was set up, 

we leave-one-out of each individual week as ground truth, making the testing data size 

equal to 1 and the training data size 20-1 equal to 19. With the available 20 ALBERTs, 

we need to perform 5 cross validation experiments where each experiment uses a 

different age and a randomly selected scan at that age as the testing data according to 

Table 4.4. 

 As reported in Table 4.4, parcellation results using the proposed method have 

83.79% to 87.08% accuracy with the testing data. The accuracy depends heavily on the 

randomly selected data for testing. If the leave-one-out scan represents an outlier of the 

ALBERTs population, the result will be compromised as shown in Figure 4.7. This 
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compares to the accuracy of a similar experiment reported by FreeSurfer parcellation 

[92] for adult brain, which reports an accuracy of 79% to 83%. 

 

Table 4.3. ALBERTs atlas information: range of age at scan of 20 neonates brains and number of scans 

avaliable in the ALBERTs atlas per each age. 

Age at scan (week) 36 39 40 41 43 44 Total 

Number of scans/age 2 6 2 6 2 2 20 

 

Table 4.4. ALBERTs leave-one-out experiments setup with labels agreements accuracy between the test data 

and the proposed parcellation result reported in each experiment. 

Age at scan (week) 36 39 40 43 44 
Training data 

size 

Testing 

data size 

Labels 

agreement 

Number of scans/age 2 6 2 2 2    

Experiment 1 1     19 1 85.93890% 

Experiment 2  1    19 1 87.08815% 

Experiment 3   1   19 1 83.79138% 

Experiment 4    1  19 1 84.88628% 

Experiment 5     1 19 1 83.82167% 

 

Third validation: Measuring the Normal Growth 

We compared the number of points per label to measure the growth of the brain 

between weeks. Ultimately, the number of points per region label is expected to 

fluctuate from one week to another as the brain grows and cells form. The growth of 

the ROIs fluctuate from one week to another due to the brain structure convolution and 

sulci and gyri maturation as shown in Appendix 1’s tables 6.4 to 6.9. Figure 4.8 shows 

the growth of two regions reported as good cortical growth biomarkers for the used 

neonatal spatio-temporal atlas [61] and which is consistent with the growth reported in 

clinical studies. These regions are: Middle Temporal Gyrus (MTG), and Inferior 

Temporal Gyrus (ITG). 



87 

 

 

Figure 4.7: The ALBERT Atlas validation experiment. Left column: The leave-one-out per GA week test 

subject parcellation map as ground truth. Middle column: The parcellation map of proposed method 

starting from week 41 GA to the corresponding test subject GA week. Right column: The color-

coded agreement between the test subject and the proposed method parcellation where error is 

shown in red. 
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Figure 4.7: Continued 
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Figure 4.8. The number of points per two biomarker growth regions, (Middle temporal gyrus (MTG), and 

Inferior temporal gyrus (ITG)) is plotted against age at time of scan. 

 

 

Fourth Validation: Longitudinal Probabilistic Distribution Consistency 

Demonstrating the growth model, the fitting of the propagated labels from a 

labeled week to a successive unlabeled week is evaluated. The spatial distribution of 

points per labels of each week after parcellation is quantified by statistical probability. 

The distribution of the points under each label is maintained with the same probability 

in all GA week, even though the numbers of surface points (reported in Table 4.1) vary 

significantly between weeks. 

The detailed quantitative information about the growth of each ROI is reported 

in tables in Appendix 1; including: Tables 6.4 and 6.5 using UNC parcellation map 

symmetrically and asymmetrically, Tables 6.6 and 6.7 using ALBERT parcellation 
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map symmetrically and asymmetrically, and Tables 6.8 and 6.9 using JHU parcellation 

map symmetrically and asymmetrically. 

 

4.4. Limitation 

Spatially, one can consider the isotropic concentric brain growth model encoded in 

the proposed ray-triangle intersection framework a limitation. However, the actual 

implemented ray-triangle algorithm takes into account the local growth as the rays are shot 

locally in the direction of their normal vector and are perpendicular to the cortical plate. 

Therefore, it is not fully isometric and concentric. The local ray-triangle intersection 

framework is the most relevant model to the growth trajectory, which reflects the behavior 

of the neuronal migration while the brain is developing. If a detailed model describing the 

brain ROIs growth trajectories at early development were available, we would more 

accurately model the brain ROIs growth at early gestational age. Temporally, it is important 

to mention that when error appears in time t, it will propagate to all times following it, e.g. 

time t±1, t±2, and so on. Currently, to limit this error propagation we incorporated the 

history of the previous week’s parcellated surfaces in the voting process as described in 

section 3.5. A future project will investigate and address this issue by incorporating the 

neighboring points in the voting process. Finally, having no ground truth of all GA weeks 

to compare our result with is a validation limitation, especially in weeks 28 to 35 GA. 

 

4.5. Summary  

 This chapter described the experimental results of the method of parcellating the 

developing brain longitudinal cortical surfaces proposed in this dissertation. Two different 

datasets are used to parcellate the spatio-temporal atlas. The proposed method has three 
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stages. Individual stages’ results are provided along with final results. Also, several 

evaluations of this parcellation method are discussed. In the next chapter we will conclude 

the description of this work and propose possible future work.   
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Chapter 5: Conclusion and Future Work 
 

5.1. Conclusion 

The marker-less automatic parcellation method described in this dissertation has 

been shown to provide a label for each point in the longitudinal cortical surfaces of 17 

consecutive GA weeks. Label propagation across neonatal spatio-temporal brain atlas 

surfaces is phrased within a customized ray-triangle intersection framework. The accuracy 

of label assignment in the proposed method is leveraged out through the use of local and 

global, spatial and temporal information. The local information is encoded by modeling 

the shortest spatial path of growth throughout the 17 weeks as directional rays. The global 

information is merged into the parcellation by incorporating the history of the voting 

process in a temporal fashion. The proposed brain parcellation method is applicable when 

we cannot rely on the surface curvature alone to locate the landmarks or predict the labels, 

and when the growth is radial, as in the case of developing brains. Having the labels 

propagated with the same probabilistic distribution into younger GA weeks is appealing, 

especially with the lack of parcellated brain atlases in early development, such as at week 

28 GA. The aim is to parcellate the developing brain, which can be used as a benchmark 

to assess brain structures development of preterm born children in order to discover 

functional abnormalities at early age. We ultimately aim to facilitate the acquisition of 

detailed morphometric information allowing the investigation of correlations between 

morphological characteristics of neonatal brain regions and specific disorders at early GA.  

 



93 

 

5.2.  Future Work 

The long-term future work includes extending this method to the use of other 

labeled neonatal brain atlases and to parcellate different neonatal and fetal brain spatio-

temporal atlases. Also, we intend to perform cortical region analysis, find the gyrification 

indices on the developing brain and accelerate the parcellation by making use of GPU 

computation. In addition, we intend to investigate more ways to quantify the propagated 

error.  
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6.  Appendix 1 
 

Table 6.1. Index of the UNC infant-AAL atlas ROIs’ names and colors. Sym.: Symmetric, 

Asym.: Asymmetric. 

Index 
Color 

(Sym.) 

Color 

(Asym.) 
Region Abbreviation 

1   Precentral gyrus left PreCG-L 

2   Precentral gyrus right PreCG-R 

3   Superior frontal gyrus (dorsal) left SFGdor-L 

4   Superior frontal gyrus (dorsal) right SFGdor-R 

5   Orbitofrontal cortex (superior) left ORBsupb-L 

6   Orbitofrontal cortex (superior) right ORBsupb-R 

7   Middle frontal gyrus left MFG-L 

8   Middle frontal gyrus right MFG-R 

9   Orbitofrontal cortex (middle) left ORBmid-L 

10   Orbitofrontal cortex (middle) right ORBmid-R 

11   Inferior frontal gyrus (opercular) left IFGoperc-L 

12   
Inferior frontal gyrus (opercular) 

right 
IFGoperc-R 

13   Inferior frontal gyrus (triangular) left IFGtriang-L 

14   
Inferior frontal gyrus (triangular) 

right 
IFGtriang-R 

15   Orbitofrontal cortex (inferior) left ORBinf-L 

16   Orbitofrontal cortex (inferior) right ORBinf-R 

17   Rolandic operculum left ROL-L 

18   Rolandic operculum right ROL-R 

19   Supplementary motor area left SMA-L 

20   Supplementary motor area right SMA-R 

21   Olfactory left OLF-L 

22   Olfactory right OLF-R 

23   Superior frontal gyrus (medial) left SFGmed-L 

24   Superior frontal gyrus (medial) right SFGmed-R 

25   Orbitofrontal cortex (medial) left ORBmed-L 

26   Orbitofrontal cortex (medial) right ORBmed-R 

27   Rectus gyrus left REC-L 

28   Rectus gyrus right REC-R 

29   Insula left INS-L 

30   Insula right INS-R 

31   Anterior cingulate gyrus left ACG-L 

32   Anterior cingulate gyrus right ACG-R 

33   Middle cingulate gyrus left MCG-L 
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34   Middle cingulate gyrus right MCG-R 

35   Posterior cingulate gyrus left PCG-L 

36   Posterior cingulate gyrus right PCG-R 

37   Hippocampus left HIP-L 

38   Hippocampus right HIP-R 

39   ParaHippocampal gyrus left PHG-L 

40   ParaHippocampal gyrus right PHG-R 

41   Amygdala left AMYG-L 

42   Amygdala right AMYG-R 

43   Calcarine cortex left CAL-L 

44   Calcarine cortex right CAL-R 

45   Cuneus left CUN-L 

46   Cuneus right CUN-R 

47   Lingual gyrus left LING-L 

48   Lingual gyrus right LING-R 

49   Superior occipital gyrus left SOG-L 

50   Superior occipital gyrus right SOG-R 

51   Middle occipital gyrus left MOG-L 

52   Middle occipital gyrus right MOG-R 

53   Inferior occipital gyrus left IOG-L 

54   Inferior occipital gyrus right IOG-R 

55   Fusiform gyrus left FFG-L 

56   Fusiform gyrus right FFG-R 

57   Postcentral gyrus left PoCG-L 

58   Postcentral gyrus right PoCG-R 

59   Superior parietal gyrus left SPG-L 

60   Superior parietal gyrus right SPG-R 

61   Inferior parietal lobule left IPL-L 

62   Inferior parietal lobule right IPL-R 

63   Supramarginal gyrus left SMG-L 

64   Supramarginal gyrus right SMG-R 

65   Angular gyrus left ANG-L 

66   Angular gyrus right ANG-R 

67   Precuneus left PCUN-L 

68   Precuneus right PCUN-R 

69   Paracentral lobule left PCL-L 

70   Paracentral lobule right PCL-R 

71   Caudate left CAU-L 

72   Caudate right CAU-R 

73   Putamen left PUT-L 

74   Putamen right PUT-R 
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75   Pallidum left PAL-L 

76   Pallidum right PAL-R 

77   Thalamus left THA-L 

78   Thalamus right THA-R 

79   Heschl gyrus left HES-L 

80   Heschl gyrus right HES-R 

81   Superior temporal gyrus left STG-L 

82   Superior temporal gyrus right STG-R 

83   Temporal pole (superior) left TPOsup-L 

84   Temporal pole (superior) right TPOsup-R 

85   Middle temporal gyrus left MTG-L 

86   Middle temporal gyrus right MTG-R 

87   Temporal pole (middle) left TPOmid-L 

88   Temporal pole (middle) right TPOmid-R 

89   Inferior temporal gyrus left ITG-L 

90   Inferior temporal gyrus right ITG-R 
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Table 6.2. Index of the ALBERT atlas ROIs’ names and colors. Sym.: Symmetric, Asym.: 

Asymmetric. 

Index 
Color 

(Sym.) 

Color 

(Asym.) 
Region 

1   Hippocampus right 

2   Hippocampus left 

3   Amygdala right 

4   Amygdala left 

5   Anterior temporal lobe, medial part right 

6   Anterior temporal lobe, medial part left 

7   Anterior temporal lobe, lateral part right 

8   Anterior temporal lobe, lateral part left 

9   Gyri parahippocampalis et ambiens anterior part right 

10   Gyri parahippocampalis et ambiens anterior part left 

11   Superior temporal gyrus, middle part right 

12   Superior temporal gyrus, middle part left 

13   Medial and inferior temporal gyri anterior part right 

14   Medial and inferior temporal gyri anterior part left 

15   
Lateral occipitotemporal gyrus, gyrus fusiformis anterior 

part right 

16   
Lateral occipitotemporal gyrus, gyrus fusiformis anterior 

part left 

17   Cerebellum right 

18   Cerebellum left 

19   Brainstem, spans the midline 

20   Insula left 

21   Insula right 

22   Occipital lobe left 

23   Occipital lobe right 

24   Gyri parahippocampalis et ambiens posterior part left 

25   Gyri parahippocampalis et ambiens posterior part right 

26   
Lateral occipitotemporal gyrus, gyrus fusiformis posterior 

part left 

27   
Lateral occipitotemporal gyrus, gyrus fusiformis posterior 

part right 

28   Medial and inferior temporal gyri posterior part left 

29   Medial and inferior temporal gyri posterior part right 

30   Superior temporal gyrus, posterior part left 

31   Superior temporal gyrus, posterior part right 

32   Cingulate gyrus, anterior part left 

33   Cingulate gyrus, anterior part right 

34   Cingulate gyrus, posterior part left 
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35   Cingulate gyrus, posterior part right 

36   Frontal lobe left 

37   Frontal lobe right 

38   Parietal lobe left 

39   Parietal lobe right 

40   Caudate nucleus left 

41   Caudate nucleus right 

42   Thalamus left 

43   Thalamus right 

44   Subthalamic nucleus left 

45   Subthalamic nucleus right 

46   Lentiform Nucleus left 

47   Lentiform Nucleus right 

48   Corpus Callosum 

49   Lateral Ventricle right 

50   Lateral Ventricle left 
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Table 6.3. Index of the JHU atlas ROIs’ names and colors. Sym.: Symmetric, Asym.: 

Asymmetric. 

Index 
Color 

(Sym.) 

Color 

(Asym.) 
Region Location 

1   corpus callosum left 

2   corpus callosum right 

3   anterior limb of internal capsule left 

4   anterior limb of internal capsule right 

5   posterior limb of internal capsule left 

6   posterior limb of internal capsule right 

7   retrolenticular part of internal capsule left 

8   retrolenticular part of internal capsule right 

9   anterior corona radiata left 

10   anterior corona radiata right 

11   superior corona radiata left 

12   superior corona radiata right 

13   posterior corona radiata left 

14   posterior corona radiata right 

15   cingulum cingular part left 

16   cingulum cingular part right 

17   cingulum hippocampal part left 

18   cingulum hippocampal part right 

19   fornix left 

20   fornix right 

21   stria terminalis left 

22   stria terminalis right 

23   tapetum left 

24   tapetum right 

25   superior longitudinal fasciculus left 

26   superior longitudinal fasciculus right 

27   external capsule left 

28   external capsule right 

29   posterior thalamic radiation left 

30   posterior thalamic radiation right 

31   sagittal stratum left 

32   sagittal stratum right 

33   thalamus left 

34   Thalamus right 

35   Putamen left 

36   Putamen right 

37   globus pallidus left 

38   globus pallidus right 
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39   caudate nucleus left 

40   caudate nucleus right 

41   cerebral peduncle left 

42   cerebral peduncle right 

43   superior fronto-occipital fasciculus left 

44   superior fronto-occipital fasciculus right 

45   inferior fronto-occipital fasciculus left 

46   inferior fronto-occipital fasciculus right 

47   corticospinal tract left 

48   corticospinal tract right 

49   superior cerebellar peduncle left 

50   superior cerebellar peduncle right 

51   middle cerebellar peduncle left 

52   middle cerebellar peduncle right 

53   inferior cerebellar peduncle left 

54   inferior cerebellar peduncle right 

55   pontine crossing tract left 

56   pontine crossing tract right 

57   uncinate fasciculus left 

58   uncinate fasciculus right 

59   midbrain left 

60   midbrain right 

61   pons left 

62   pons right 

63   medial lemniscus left 

64   medial lemniscus right 

65   medulla oblongata left 

66   medulla oblongata right 

67   superior frontal gyrus left 

68   superior frontal gyrus right 

69   middle frontal gyrus left 

70   middle frontal gyrus right 

71   inferior frontal gyrus left 

72   inferior frontal gyrus right 

73   medial fronto-orbaital gyrus left 

74   medial fronto-orbaital gyrus right 

75   lateral fronto-orbital gyrus left 

76   lateral fronto-orbital gyrus right 

77   gyrus rectus left 

78   gyrus rectus right 

79   precentral gyrus left 
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80   precentral gyrus right 

81   postcentral gyrus left 

82   postcentral gyrus right 

83   superior parietal gyrus left 

84   superior parietal gyrus right 

85   precuneus left 

86   precuneus right 

87   cingular gyrus left 

88   cingular gyrus right 

89   supramarginal gyrus left 

90   supramarginal gyrus right 

91   angular gyrus left 

92   angular gyrus right 

93   superior temporal gyrus left 

94   superior temporal gyrus right 

95   middle temporal gyrus left 

96   middle temporal gyrus right 

97   inferior temporal gyrus left 

98   inferior temporal gyrus right 

99   fusiform gyrus left 

100   fusiform gyrus right 

101   parahippocampal gyrus left 

102   parahippocampal gyrus right 

103   entrhinal cortex left 

104   entrhinal cortex right 

105   superior occipital gyrus left 

106   superior occipital gyrus right 

107   middle occipital gyrus left 

108   middle occipital gyrus right 

109   inferior occipital gyrus left 

110   inferior occipital gyrus right 

111   cuneus left 

112   cuneus right 

113   lyngual gyrus left 

114   lyngual gyrus right 

115   amygdala left 

116   amygdala right 

117   hippocampus left 

118   hippocampus right 

119   cerebellar hemisphere left 

120   cerebellar hemisphere right 
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121   insular cortex left 

122   insular cortex right 
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Table 6.4. Longitudinal Probabilistic Distribution of Points per ROIs using Symmetric UNC Parcellation Map with 90 ROIs given as: 

Number of points per ROI (Percentage on surface %) 
Week 

/ROI# 
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

1 & 2 
1031(2.9

31%) 

1087(2.9

01%) 

1190(2.9

1%) 

1266(2.8

87%) 

1409(3.0

28%) 

1570(3.0

85%) 

1708(3.2

1%) 

1916(3.3

62%) 

1978(3.2

84%) 

2092(3.4

72%) 

2497(3.6

15%) 

2721(3.4

64%) 

2734(3.5

58%) 

2757(3.5

25%) 

2963(3.4

38%) 

2838(3.3

2%) 

2907(3.2

84%) 

3 & 4 
1073(3.0

51%) 

1180(3.1

5%) 

1349(3.2

98%) 

1527(3.4

82%) 

1807(3.8

84%) 

2128(4.1

81%) 

2290(4.3

04%) 

2648(4.6

46%) 

2824(4.6

89%) 

2881(4.7

82%) 

3183(4.6

08%) 

3573(4.5

49%) 

3467(4.5

12%) 

3657(4.6

75%) 

4334(5.0

29%) 

4173(4.8

82%) 

4248(4.7

98%) 

5 & 6 
547(1.55

5%) 

614(1.63

9%) 

695(1.69

9%) 

772(1.76

1%) 

823(1.76

9%) 

907(1.78

2%) 

984(1.84

9%) 

1077(1.8

9%) 

1123(1.8

65%) 

1073(1.7

81%) 

1161(1.6

81%) 

1324(1.6

86%) 

1293(1.6

83%) 

1352(1.7

28%) 

1578(1.8

31%) 

1540(1.8

02%) 

1652(1.8

66%) 

7 & 8 
2769(7.8

73%) 

2909(7.7

65%) 

3209(7.8

46%) 

3442(7.8

5%) 

3627(7.7

96%) 

3893(7.6

49%) 

4085(7.6

78%) 

4351(7.6

35%) 

4460(7.4

05%) 

4495(7.4

6%) 

4715(6.8

26%) 

5126(6.5

26%) 

5024(6.5

38%) 

5073(6.4

85%) 

5395(6.2

6%) 

5357(6.2

68%) 

5547(6.2

66%) 

9 & 

10 

376(1.06

9%) 

456(1.21

7%) 

561(1.37

2%) 

677(1.54

4%) 

738(1.58

6%) 

831(1.63

3%) 

956(1.79

7%) 

1151(2.0

2%) 

1218(2.0

22%) 

1187(1.9

7%) 

1307(1.8

92%) 

1542(1.9

63%) 

1541(2.0

05%) 

1587(2.0

29%) 

1729(2.0

06%) 

1736(2.0

31%) 

1778(2.0

08%) 

11 & 

12 

718(2.04

1%) 

709(1.89

2%) 

724(1.77

%) 

715(1.63

1%) 

705(1.51

5%) 

694(1.36

4%) 

668(1.25

5%) 

689(1.20

9%) 

658(1.09

2%) 

674(1.11

9%) 

762(1.10

3%) 

790(1.00

6%) 

816(1.06

2%) 

815(1.04

2%) 

860(0.99

8%) 

900(1.05

3%) 

927(1.04

7%) 

13 & 

14 

756(2.14

9%) 

826(2.20

5%) 

926(2.26

4%) 

968(2.20

8%) 

1054(2.2

65%) 

1135(2.2

3%) 

1230(2.3

12%) 

1330(2.3

34%) 

1437(2.3

86%) 

1415(2.3

48%) 

1596(2.3

11%) 

1775(2.2

6%) 

1731(2.2

52%) 

1658(2.1

2%) 

1686(1.9

56%) 

1808(2.1

15%) 

1802(2.0

35%) 

15 & 

16 

1632(4.6

4%) 

1683(4.4

92%) 

1734(4.2

4%) 

1751(3.9

93%) 

1773(3.8

11%) 

1793(3.5

23%) 

1834(3.4

47%) 

1834(3.2

18%) 

1879(3.1

2%) 

1819(3.0

19%) 

1941(2.8

1%) 

2132(2.7

14%) 

2118(2.7

56%) 

2075(2.6

53%) 

2100(2.4

37%) 

2228(2.6

07%) 

2255(2.5

47%) 

17 & 

18 

522(1.48

4%) 

542(1.44

7%) 

572(1.39

9%) 

586(1.33

6%) 

588(1.26

4%) 

587(1.15

3%) 

590(1.10

9%) 

614(1.07

7%) 

533(0.88

5%) 

557(0.92

4%) 

615(0.89

%) 

880(1.12

%) 

804(1.04

6%) 

558(0.71

3%) 

948(1.1

%) 

991(1.15

9%) 

950(1.07

3%) 

19 & 

20 

730(2.07

6%) 

769(2.05

3%) 

787(1.92

4%) 

780(1.77

9%) 

816(1.75

4%) 

896(1.76

%) 

872(1.63

9%) 

873(1.53

2%) 

1027(1.7

05%) 

1077(1.7

87%) 

1510(2.1

86%) 

1935(2.4

63%) 

1891(2.4

61%) 

2006(2.5

64%) 

2225(2.5

82%) 

2296(2.6

86%) 

2408(2.7

2%) 

21 & 

22 

427(1.21

4%) 

441(1.17

7%) 

467(1.14

2%) 

467(1.06

5%) 

469(1.00

8%) 

451(0.88

6%) 

440(0.82

7%) 

467(0.81

9%) 

456(0.75

7%) 

407(0.67

5%) 

361(0.52

3%) 

366(0.46

6%) 

338(0.44

%) 

338(0.43

2%) 

337(0.39

1%) 

309(0.36

2%) 

302(0.34

1%) 

23 & 

24 

860(2.44

5%) 

902(2.40

8%) 

954(2.33

3%) 

957(2.18

3%) 

995(2.13

9%) 

971(1.90

8%) 

1033(1.9

42%) 

1153(2.0

23%) 

1151(1.9

11%) 

1137(1.8

87%) 

1330(1.9

26%) 

1754(2.2

33%) 

1652(2.1

5%) 

1778(2.2

73%) 

2107(2.4

45%) 

2061(2.4

11%) 

2415(2.7

28%) 

25 & 

26 

93(0.264

%) 

97(0.259

%) 

101(0.24

7%) 

106(0.24

2%) 

106(0.22

8%) 

109(0.21

4%) 

115(0.21

6%) 

126(0.22

1%) 

123(0.20

4%) 

126(0.20

9%) 

137(0.19

8%) 

267(0.34

%) 

282(0.36

7%) 

309(0.39

5%) 

422(0.49

%) 

407(0.47

6%) 

486(0.54

9%) 

27 & 

28 

222(0.63

1%) 

252(0.67

3%) 

291(0.71

1%) 

301(0.68

6%) 

340(0.73

1%) 

371(0.72

9%) 

360(0.67

7%) 

382(0.67

%) 

386(0.64

1%) 

380(0.63

1%) 

380(0.55

%) 

424(0.54

%) 

393(0.51

1%) 

395(0.50

5%) 

404(0.46

9%) 

403(0.47

1%) 

398(0.45

%) 

29 & 

30 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

46(0.076

%) 

181(0.26

2%) 

200(0.25

5%) 

197(0.25

6%) 

196(0.25

1%) 

184(0.21

3%) 

174(0.20

4%) 

159(0.18

%) 

31 & 

32 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

354(0.51

3%) 

750(0.95

5%) 

739(0.96

2%) 

823(1.05

2%) 

919(1.06

6%) 

909(1.06

4%) 

1110(1.2

54%) 

33 & 

34 

164(0.46

6%) 

362(0.96

6%) 

502(1.22

7%) 

523(1.19

3%) 

489(1.05

1%) 

443(0.87

%) 

405(0.76

1%) 

220(0.38

6%) 

527(0.87

5%) 

488(0.81

%) 

1130(1.6

36%) 

1436(1.8

28%) 

1361(1.7

71%) 

1323(1.6

91%) 

1310(1.5

2%) 

1588(1.8

58%) 

1684(1.9

02%) 

35 & 

36 

217(0.61

7%) 

253(0.67

5%) 

260(0.63

6%) 

242(0.55

2%) 

215(0.46

2%) 

190(0.37

3%) 

156(0.29

3%) 

164(0.28

8%) 

169(0.28

1%) 

192(0.31

9%) 

186(0.26

9%) 

166(0.21

1%) 

165(0.21

5%) 

172(0.22

%) 

164(0.19

%) 

159(0.18

6%) 

150(0.16

9%) 

37 & 

38 

560(1.59

2%) 

684(1.82

6%) 

727(1.77

8%) 

805(1.83

6%) 

817(1.75

6%) 

946(1.85

9%) 

903(1.69

7%) 

897(1.57

4%) 

957(1.58

9%) 

942(1.56

3%) 

1074(1.5

55%) 

1114(1.4

18%) 

1085(1.4

12%) 

1164(1.4

88%) 

1285(1.4

91%) 

1278(1.4

95%) 

1308(1.4

77%) 

39 & 

40 

1511(4.2

96%) 

1614(4.3

08%) 

1635(3.9

98%) 

1676(3.8

22%) 

1664(3.5

76%) 

1640(3.2

22%) 

1586(2.9

81%) 

1491(2.6

16%) 

1460(2.4

24%) 

1423(2.3

62%) 

1293(1.8

72%) 

1244(1.5

84%) 

1218(1.5

85%) 

1188(1.5

19%) 

1050(1.2

18%) 

1011(1.1

83%) 

992(1.12

%) 

41 & 

42 

292(0.83

%) 

317(0.84

6%) 

334(0.81

7%) 

341(0.77

8%) 

405(0.87

%) 

438(0.86

1%) 

437(0.82

1%) 

417(0.73

2%) 

407(0.67

6%) 

428(0.71

%) 

389(0.56

3%) 

326(0.41

5%) 

346(0.45

%) 

306(0.39

1%) 

264(0.30

6%) 

276(0.32

3%) 

276(0.31

2%) 

43 & 

44 

616(1.75

1%) 

682(1.82

%) 

847(2.07

1%) 

994(2.26

7%) 

1027(2.2

07%) 

1393(2.7

37%) 

1402(2.6

35%) 

1391(2.4

41%) 

1703(2.8

27%) 

1640(2.7

22%) 

2160(3.1

27%) 

2510(3.1

95%) 

2479(3.2

26%) 

2726(3.4

85%) 

3284(3.8

1%) 

2975(3.4

81%) 

3049(3.4

44%) 

45 & 

46 

509(1.44

7%) 

546(1.45

7%) 

630(1.54

%) 

768(1.75

2%) 

861(1.85

1%) 

1070(2.1

02%) 

1224(2.3

%) 

1453(2.5

5%) 

1489(2.4

72%) 

1467(2.4

35%) 

1715(2.4

83%) 

1920(2.4

44%) 

1943(2.5

28%) 

1804(2.3

06%) 

1934(2.2

44%) 

1921(2.2

48%) 

1924(2.1

73%) 
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47 & 

48 

2119(6.0

25%) 

2207(5.8

91%) 

2301(5.6

26%) 

2411(5.4

99%) 

2511(5.3

97%) 

2609(5.1

26%) 

2714(5.1

01%) 

2681(4.7

04%) 

2529(4.1

99%) 

2532(4.2

02%) 

2601(3.7

66%) 

2644(3.3

66%) 

2406(3.1

31%) 

2477(3.1

67%) 

2424(2.8

12%) 

2203(2.5

77%) 

2203(2.4

88%) 

49 & 

50 
0(0%) 0(0%) 

150(0.36

7%) 

179(0.40

8%) 

229(0.49

2%) 

292(0.57

4%) 

368(0.69

2%) 

466(0.81

8%) 

512(0.85

%) 

489(0.81

2%) 

676(0.97

9%) 

971(1.23

6%) 

769(1.00

1%) 

852(1.08

9%) 

951(1.10

3%) 

814(0.95

2%) 

918(1.03

7%) 

51 & 

52 

990(2.81

5%) 

1045(2.7

89%) 

1060(2.5

92%) 

1202(2.7

41%) 

1259(2.7

06%) 

1504(2.9

55%) 

1630(3.0

64%) 

1789(3.1

39%) 

1865(3.0

96%) 

1857(3.0

82%) 

2111(3.0

56%) 

2340(2.9

79%) 

2167(2.8

2%) 

2297(2.9

37%) 

2356(2.7

34%) 

2316(2.7

1%) 

2475(2.7

96%) 

53 & 

54 

87(0.247

%) 

106(0.28

3%) 

152(0.37

2%) 

201(0.45

8%) 

238(0.51

2%) 

335(0.65

8%) 

440(0.82

7%) 

536(0.94

1%) 

577(0.95

8%) 

572(0.94

9%) 

729(1.05

5%) 

976(1.24

3%) 

885(1.15

2%) 

1040(1.3

3%) 

1144(1.3

27%) 

1033(1.2

09%) 

1044(1.1

79%) 

55 & 

56 

1065(3.0

28%) 

1309(3.4

94%) 

1490(3.6

43%) 

1647(3.7

56%) 

1744(3.7

48%) 

1967(3.8

65%) 

2185(4.1

07%) 

2353(4.1

29%) 

2497(4.1

46%) 

2621(4.3

5%) 

2840(4.1

12%) 

3321(4.2

28%) 

3202(4.1

67%) 

3394(4.3

39%) 

3315(3.8

46%) 

3123(3.6

54%) 

3057(3.4

53%) 

57 & 

58 

1413(4.0

17%) 

1466(3.9

13%) 

1599(3.9

1%) 

1699(3.8

75%) 

1801(3.8

71%) 

1919(3.7

7%) 

2036(3.8

27%) 

2236(3.9

23%) 

2284(3.7

92%) 

2324(3.8

57%) 

2503(3.6

24%) 

2505(3.1

89%) 

2514(3.2

71%) 

2381(3.0

44%) 

2478(2.8

75%) 

2495(2.9

19%) 

2484(2.8

06%) 

59 & 

60 

288(0.81

9%) 

319(0.85

1%) 

364(0.89

%) 

436(0.99

4%) 

545(1.17

1%) 

685(1.34

6%) 

769(1.44

5%) 

997(1.74

9%) 

1173(1.9

48%) 

1306(2.1

68%) 

1641(2.3

76%) 

2040(2.5

97%) 

1838(2.3

92%) 

2101(2.6

86%) 

2436(2.8

26%) 

2287(2.6

76%) 

2388(2.6

97%) 

61 & 

62 

897(2.55

%) 

933(2.49

%) 

959(2.34

5%) 

989(2.25

6%) 

1039(2.2

33%) 

1077(2.1

16%) 

1111(2.0

88%) 

1189(2.0

86%) 

1196(1.9

86%) 

1236(2.0

51%) 

1379(1.9

97%) 

1536(1.9

55%) 

1548(2.0

14%) 

1538(1.9

66%) 

1765(2.0

48%) 

1732(2.0

26%) 

1795(2.0

28%) 

63 & 

64 

579(1.64

6%) 

640(1.70

8%) 

765(1.87

%) 

856(1.95

2%) 

979(2.10

4%) 

1023(2.0

1%) 

1140(2.1

43%) 

1329(2.3

32%) 

1445(2.3

99%) 

1465(2.4

31%) 

1611(2.3

32%) 

1852(2.3

58%) 

1953(2.5

41%) 

2033(2.5

99%) 

2296(2.6

64%) 

2545(2.9

78%) 

2547(2.8

77%) 

65 & 

66 

870(2.47

4%) 

899(2.4

%) 

968(2.36

7%) 

1107(2.5

25%) 

1223(2.6

29%) 

1368(2.6

88%) 

1443(2.7

12%) 

1588(2.7

86%) 

1686(2.7

99%) 

1651(2.7

4%) 

1783(2.5

81%) 

1936(2.4

65%) 

1909(2.4

84%) 

1958(2.5

03%) 

2090(2.4

25%) 

2063(2.4

14%) 

2131(2.4

07%) 

67 & 

68 

1151(3.2

72%) 

1187(3.1

68%) 

1298(3.1

74%) 

1440(3.2

84%) 

1525(3.2

78%) 

1673(3.2

87%) 

1703(3.2

01%) 

1696(2.9

76%) 

1964(3.2

61%) 

2027(3.3

64%) 

2722(3.9

41%) 

3150(4.0

1%) 

3097(4.0

3%) 

3200(4.0

91%) 

3268(3.7

92%) 

3299(3.8

6%) 

3369(3.8

05%) 

69 & 

70 

149(0.42

4%) 

165(0.44

%) 

185(0.45

2%) 

214(0.48

8%) 

214(0.46

%) 

247(0.48

5%) 

241(0.45

3%) 

242(0.42

5%) 

261(0.43

3%) 

240(0.39

8%) 

271(0.39

2%) 

276(0.35

1%) 

252(0.32

8%) 

261(0.33

4%) 

247(0.28

7%) 

259(0.30

3%) 

280(0.31

6%) 

71 & 

72 

622(1.76

8%) 

693(1.85

%) 

741(1.81

2%) 

807(1.84

%) 

794(1.70

7%) 

953(1.87

2%) 

1124(2.1

13%) 

1227(2.1

53%) 

1438(2.3

88%) 

1351(2.2

42%) 

1595(2.3

09%) 

1925(2.4

51%) 

2094(2.7

25%) 

1902(2.4

32%) 

2389(2.7

72%) 

2235(2.6

15%) 

2390(2.7

%) 

73 & 

74 

1012(2.8

77%) 

1119(2.9

87%) 

1254(3.0

66%) 

1364(3.1

11%) 

1404(3.0

18%) 

1586(3.1

16%) 

1650(3.1

01%) 

1675(2.9

39%) 

1864(3.0

95%) 

1800(2.9

87%) 

2006(2.9

04%) 

2145(2.7

31%) 

2193(2.8

54%) 

2219(2.8

37%) 

2433(2.8

23%) 

2546(2.9

79%) 

2651(2.9

94%) 

75 & 

76 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

77 & 

78 

718(2.04

1%) 

709(1.89

2%) 

760(1.85

8%) 

826(1.88

4%) 

862(1.85

3%) 

912(1.79

2%) 

924(1.73

7%) 

968(1.69

9%) 

985(1.63

5%) 

968(1.60

7%) 

1067(1.5

45%) 

1236(1.5

74%) 

1187(1.5

45%) 

1296(1.6

57%) 

1589(1.8

44%) 

1385(1.6

2%) 

1490(1.6

83%) 

79 & 

80 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

81 & 

82 

1300(3.6

96%) 

1331(3.5

53%) 

1468(3.5

89%) 

1535(3.5

01%) 

1577(3.3

9%) 

1625(3.1

93%) 

1587(2.9

83%) 

1756(3.0

81%) 

1772(2.9

42%) 

1764(2.9

28%) 

2819(4.0

81%) 

3462(4.4

07%) 

3480(4.5

28%) 

2804(3.5

85%) 

3537(4.1

04%) 

3355(3.9

25%) 

3636(4.1

07%) 

83 & 

84 

550(1.56

4%) 

588(1.57

%) 

644(1.57

5%) 

723(1.64

9%) 

804(1.72

8%) 

910(1.78

8%) 

995(1.87

%) 

1214(2.1

3%) 

1458(2.4

21%) 

1504(2.4

96%) 

1816(2.6

29%) 

2150(2.7

37%) 

2111(2.7

47%) 

2241(2.8

65%) 

3207(3.7

21%) 

3408(3.9

87%) 

3418(3.8

61%) 

85 & 

86 

1223(3.4

77%) 

1355(3.6

17%) 

1573(3.8

46%) 

1765(4.0

25%) 

2004(4.3

07%) 

2314(4.5

47%) 

2552(4.7

96%) 

2859(5.0

17%) 

3222(5.3

49%) 

3271(5.4

29%) 

3561(5.1

56%) 

3941(5.0

17%) 

4114(5.3

53%) 

4308(5.5

07%) 

4407(5.1

13%) 

4308(5.0

4%) 

4366(4.9

32%) 

87 & 

88 

199(0.56

6%) 

221(0.59

%) 

274(0.67

%) 

359(0.81

9%) 

475(1.02

1%) 

592(1.16

3%) 

692(1.30

1%) 

800(1.40

4%) 

942(1.56

4%) 

996(1.65

3%) 

1109(1.6

06%) 

1342(1.7

09%) 

1389(1.8

07%) 

1451(1.8

55%) 

1580(1.8

33%) 

1575(1.8

43%) 

1601(1.8

08%) 

89 & 

90 

3765(10.

705%) 

3685(9.8

36%) 

3857(9.4

3%) 

3922(8.9

45%) 

3989(8.5

74%) 

4171(8.1

95%) 

4135(7.7

72%) 

4260(7.4

75%) 

4084(6.7

81%) 

3804(6.3

13%) 

3690(5.3

42%) 

3894(4.9

57%) 

3515(4.5

74%) 

3783(4.8

36%) 

4158(4.8

24%) 

4553(5.3

27%) 

4951(5.5

92%) 
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Table 6.5. Longitudinal Probabilistic Distribution of Points per ROIs using Asymmetric UNC Parcellation Map with 90 ROIs given as: 

Number of points per ROI (Percentage on surface %) 
Week 

/ROI# 
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

1 
504(1.44

5%) 

527(1.42

7%) 

577(1.42

4%) 

617(1.41

2%) 

673(1.44

9%) 

780(1.52

2%) 

821(1.52

6%) 

911(1.53

8%) 

938(1.46

2%) 

967(1.49

3%) 

1136(1.5

5%) 

1223(1.4

87%) 

1229(1.5

22%) 

1247(1.5

15%) 

1346(1.5

14%) 

1400(1.5

78%) 

1459(1.6

02%) 

2 
419(1.20

2%) 

440(1.19

2%) 

507(1.25

1%) 

547(1.25

2%) 

605(1.30

3%) 

686(1.33

8%) 

741(1.37

8%) 

845(1.42

6%) 

894(1.39

3%) 

947(1.46

3%) 

1019(1.3

91%) 

1142(1.3

88%) 

1131(1.4

%) 

1167(1.4

18%) 

1264(1.4

21%) 

1253(1.4

13%) 

1293(1.4

2%) 

3 
461(1.32

2%) 

495(1.34

1%) 

583(1.43

9%) 

666(1.52

4%) 

776(1.67

1%) 

927(1.80

8%) 

980(1.82

2%) 

1121(1.8

92%) 

1159(1.8

06%) 

1170(1.8

07%) 

1279(1.7

45%) 

1368(1.6

63%) 

1347(1.6

68%) 

1394(1.6

94%) 

1462(1.6

44%) 

1462(1.6

48%) 

1488(1.6

34%) 

4 
295(0.84

6%) 

329(0.89

1%) 

382(0.94

3%) 

433(0.99

1%) 

492(1.05

9%) 

600(1.17

%) 

666(1.23

8%) 

810(1.36

7%) 

922(1.43

7%) 

933(1.44

1%) 

1130(1.5

42%) 

1407(1.7

11%) 

1344(1.6

64%) 

1434(1.7

42%) 

1875(2.1

09%) 

1821(2.0

53%) 

1840(2.0

2%) 

5 
257(0.73

7%) 

287(0.77

7%) 

340(0.83

9%) 

323(0.73

9%) 

362(0.77

9%) 

407(0.79

4%) 

441(0.82

%) 

483(0.81

5%) 

484(0.75

4%) 

461(0.71

2%) 

498(0.68

%) 

576(0.7

%) 

561(0.69

5%) 

593(0.72

%) 

603(0.67

8%) 

611(0.68

9%) 

622(0.68

3%) 

6 
193(0.55

3%) 

231(0.62

6%) 

274(0.67

6%) 

332(0.76

%) 

376(0.81

%) 

393(0.76

7%) 

425(0.79

%) 

497(0.83

9%) 

499(0.77

8%) 

472(0.72

9%) 

528(0.72

1%) 

649(0.78

9%) 

601(0.74

4%) 

639(0.77

6%) 

804(0.90

4%) 

745(0.84

%) 

836(0.91

8%) 

7 
1318(3.7

8%) 

1375(3.7

24%) 

1489(3.6

75%) 

1571(3.5

94%) 

1637(3.5

24%) 

1728(3.3

71%) 

1823(3.3

89%) 

1910(3.2

24%) 

1972(3.0

73%) 

1969(3.0

41%) 

2069(2.8

23%) 

2261(2.7

49%) 

2196(2.7

19%) 

2196(2.6

68%) 

2325(2.6

15%) 

2277(2.5

67%) 

2354(2.5

85%) 

8 
1327(3.8

05%) 

1382(3.7

43%) 

1489(3.6

75%) 

1611(3.6

86%) 

1703(3.6

66%) 

1862(3.6

32%) 

1951(3.6

27%) 

2093(3.5

33%) 

2134(3.3

25%) 

2120(3.2

74%) 

2182(2.9

78%) 

2341(2.8

46%) 

2321(2.8

74%) 

2326(2.8

26%) 

2335(2.6

26%) 

2414(2.7

22%) 

2387(2.6

21%) 

9 
153(0.43

9%) 

186(0.50

4%) 

211(0.52

1%) 

240(0.54

9%) 

254(0.54

7%) 

301(0.58

7%) 

334(0.62

1%) 

396(0.66

8%) 

429(0.66

8%) 

423(0.65

3%) 

471(0.64

3%) 

549(0.66

7%) 

553(0.68

5%) 

573(0.69

6%) 

670(0.75

3%) 

669(0.75

4%) 

696(0.76

4%) 

10 
208(0.59

6%) 

225(0.60

9%) 

281(0.69

3%) 

317(0.72

5%) 

346(0.74

5%) 

416(0.81

1%) 

478(0.88

9%) 

550(0.92

8%) 

593(0.92

4%) 

585(0.90

3%) 

659(0.89

9%) 

796(0.96

8%) 

773(0.95

7%) 

820(0.99

6%) 

925(1.04

%) 

949(1.07

%) 

971(1.06

6%) 

11 
187(0.53

6%) 

196(0.53

1%) 

205(0.50

6%) 

199(0.45

5%) 

212(0.45

6%) 

216(0.42

1%) 

200(0.37

2%) 

204(0.34

4%) 

213(0.33

2%) 

214(0.33

%) 

230(0.31

4%) 

228(0.27

7%) 

224(0.27

7%) 

221(0.26

8%) 

231(0.26

%) 

250(0.28

2%) 

243(0.26

7%) 

12 
372(1.06

7%) 

370(1.00

2%) 

376(0.92

8%) 

413(0.94

5%) 

413(0.88

9%) 

435(0.84

9%) 

431(0.80

1%) 

448(0.75

6%) 

486(0.75

7%) 

425(0.65

6%) 

430(0.58

7%) 

373(0.45

3%) 

361(0.44

7%) 

367(0.44

6%) 

337(0.37

9%) 

356(0.40

1%) 

354(0.38

9%) 

13 
495(1.41

9%) 

532(1.44

1%) 

591(1.45

8%) 

617(1.41

2%) 

650(1.39

9%) 

691(1.34

8%) 

724(1.34

6%) 

793(1.33

9%) 

833(1.29

8%) 

794(1.22

6%) 

875(1.19

4%) 

994(1.20

8%) 

1027(1.2

72%) 

1007(1.2

23%) 

1056(1.1

88%) 

1114(1.2

56%) 

1119(1.2

29%) 

14 
407(1.16

7%) 

437(1.18

3%) 

483(1.19

2%) 

490(1.12

1%) 

531(1.14

3%) 

596(1.16

3%) 

621(1.15

5%) 

683(1.15

3%) 

725(1.13

%) 

716(1.10

6%) 

743(1.01

4%) 

831(1.01

%) 

800(0.99

%) 

868(1.05

5%) 

822(0.92

4%) 

859(0.96

8%) 

861(0.94

5%) 

15 
847(2.42

9%) 

879(2.38

%) 

916(2.26

1%) 

938(2.14

6%) 

963(2.07

3%) 

952(1.85

7%) 

1000(1.8

59%) 

1034(1.7

45%) 

1055(1.6

44%) 

1023(1.5

8%) 

975(1.33

1%) 

1080(1.3

13%) 

1065(1.3

19%) 

1085(1.3

18%) 

1114(1.2

53%) 

1169(1.3

18%) 

1186(1.3

02%) 

16 
450(1.29

%) 

488(1.32

2%) 

532(1.31

3%) 

567(1.29

7%) 

609(1.31

1%) 

658(1.28

4%) 

720(1.33

9%) 

795(1.34

2%) 

844(1.31

5%) 

811(1.25

2%) 

891(1.21

6%) 

1001(1.2

17%) 

1020(1.2

63%) 

1048(1.2

73%) 

1038(1.1

67%) 

1078(1.2

15%) 

1085(1.1

91%) 

17 
42(0.12

%) 

46(0.125

%) 

58(0.143

%) 

60(0.137

%) 

70(0.151

%) 

72(0.14

%) 

81(0.151

%) 

82(0.138

%) 

83(0.129

%) 

84(0.13

%) 

293(0.4

%) 

503(0.61

2%) 

532(0.65

9%) 

347(0.42

2%) 

553(0.62

2%) 

370(0.41

7%) 

330(0.36

2%) 

18 
56(0.161

%) 

65(0.176

%) 

64(0.158

%) 

65(0.149

%) 

72(0.155

%) 

83(0.162

%) 

91(0.169

%) 

106(0.17

9%) 

118(0.18

4%) 

105(0.16

2%) 

120(0.16

4%) 

148(0.18

%) 

159(0.19

7%) 

178(0.21

6%) 

237(0.26

7%) 

234(0.26

4%) 

222(0.24

4%) 

19 
431(1.23

6%) 

454(1.22

9%) 

474(1.17

%) 

470(1.07

5%) 

524(1.12

8%) 

638(1.24

5%) 

594(1.10

4%) 

670(1.13

1%) 

901(1.40

4%) 

1034(1.5

97%) 

1125(1.5

35%) 

1183(1.4

38%) 

1184(1.4

66%) 

1192(1.4

48%) 

1331(1.4

97%) 

1251(1.4

1%) 

1283(1.4

09%) 

20 
382(1.09

5%) 

385(1.04

3%) 

390(0.96

2%) 

422(0.96

6%) 

442(0.95

2%) 

482(0.94

%) 

581(1.08

%) 

789(1.33

2%) 

819(1.27

6%) 

858(1.32

5%) 

860(1.17

4%) 

833(1.01

3%) 

820(1.01

5%) 

825(1.00

2%) 

832(0.93

6%) 

859(0.96

8%) 

892(0.97

9%) 

21 
195(0.55

9%) 

207(0.56

1%) 

208(0.51

3%) 

205(0.46

9%) 

211(0.45

4%) 

211(0.41

2%) 

206(0.38

3%) 

224(0.37

8%) 

212(0.33

%) 

215(0.33

2%) 

240(0.32

8%) 

234(0.28

4%) 

221(0.27

4%) 

227(0.27

6%) 

226(0.25

4%) 

221(0.24

9%) 

211(0.23

2%) 

22 
415(1.19

%) 

441(1.19

4%) 

333(0.82

2%) 

324(0.74

1%) 

321(0.69

1%) 

309(0.60

3%) 

307(0.57

1%) 

299(0.50

5%) 

301(0.46

9%) 

314(0.48

5%) 

309(0.42

2%) 

309(0.37

6%) 

310(0.38

4%) 

304(0.36

9%) 

288(0.32

4%) 

285(0.32

1%) 

287(0.31

5%) 

23 
424(1.21

6%) 

453(1.22

7%) 

491(1.21

2%) 

524(1.19

9%) 

586(1.26

2%) 

665(1.29

7%) 

700(1.30

2%) 

866(1.46

2%) 

933(1.45

4%) 

943(1.45

6%) 

1402(1.9

13%) 

1743(2.1

19%) 

1673(2.0

71%) 

1669(2.0

28%) 

1960(2.2

04%) 

1865(2.1

03%) 

1915(2.1

03%) 
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24 
336(0.96

4%) 

346(0.93

7%) 

381(0.94

%) 

440(1.00

7%) 

476(1.02

5%) 

526(1.02

6%) 

565(1.05

%) 

683(1.15

3%) 

747(1.16

4%) 

741(1.14

4%) 

1017(1.3

88%) 

1169(1.4

21%) 

1155(1.4

3%) 

1189(1.4

45%) 

1147(1.2

9%) 

1116(1.2

58%) 

1115(1.2

24%) 

25 0(0%) 0(0%) 0(0%) 
100(0.22

9%) 

96(0.207

%) 

114(0.22

2%) 

122(0.22

7%) 

154(0.26

%) 

172(0.26

8%) 

165(0.25

5%) 

250(0.34

1%) 

350(0.42

6%) 

348(0.43

1%) 

306(0.37

2%) 

377(0.42

4%) 

435(0.49

%) 

449(0.49

3%) 

26 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
51(0.099

%) 

65(0.121

%) 

92(0.155

%) 

100(0.15

6%) 

102(0.15

8%) 

297(0.40

5%) 

421(0.51

2%) 

400(0.49

5%) 

563(0.68

4%) 

606(0.68

1%) 

472(0.53

2%) 

499(0.54

8%) 

27 
202(0.57

9%) 

235(0.63

6%) 

260(0.64

2%) 

298(0.68

2%) 

318(0.68

5%) 

352(0.68

7%) 

365(0.67

9%) 

414(0.69

9%) 

433(0.67

5%) 

406(0.62

7%) 

440(0.6

%) 

491(0.59

7%) 

463(0.57

3%) 

457(0.55

5%) 

609(0.68

5%) 

543(0.61

2%) 

563(0.61

8%) 

28 
286(0.82

%) 

297(0.80

4%) 

324(0.8

%) 

292(0.66

8%) 

303(0.65

2%) 

294(0.57

4%) 

301(0.56

%) 

311(0.52

5%) 

288(0.44

9%) 

284(0.43

9%) 

274(0.37

4%) 

276(0.33

6%) 

278(0.34

4%) 

293(0.35

6%) 

304(0.34

2%) 

322(0.36

3%) 

313(0.34

4%) 

29 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
41(0.063

%) 

174(0.23

7%) 

164(0.19

9%) 

171(0.21

2%) 

163(0.19

8%) 

251(0.28

2%) 

262(0.29

5%) 

252(0.27

7%) 

30 
260(0.74

6%) 

204(0.55

2%) 

202(0.49

8%) 

211(0.48

3%) 

220(0.47

4%) 

238(0.46

4%) 

235(0.43

7%) 

240(0.40

5%) 

188(0.29

3%) 

195(0.30

1%) 

211(0.28

8%) 

214(0.26

%) 

188(0.23

3%) 

218(0.26

5%) 

214(0.24

1%) 

217(0.24

5%) 

210(0.23

1%) 

31 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
273(0.42

5%) 

434(0.67

%) 

645(0.88

%) 

745(0.90

6%) 

706(0.87

4%) 

677(0.82

3%) 

721(0.81

1%) 

866(0.97

6%) 

970(1.06

5%) 

32 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
193(0.30

1%) 

393(0.60

7%) 

607(0.82

8%) 

674(0.81

9%) 

703(0.87

%) 

697(0.84

7%) 

665(0.74

8%) 

722(0.81

4%) 

722(0.79

3%) 

33 
216(0.61

9%) 

227(0.61

5%) 

330(0.81

4%) 

334(0.76

4%) 

365(0.78

6%) 

317(0.61

8%) 

420(0.78

1%) 

628(1.06

%) 

870(1.35

6%) 

847(1.30

8%) 

928(1.26

6%) 

992(1.20

6%) 

976(1.20

8%) 

846(1.02

8%) 

970(1.09

1%) 

986(1.11

2%) 

1097(1.2

05%) 

34 0(0%) 
108(0.29

2%) 

121(0.29

9%) 

152(0.34

8%) 

179(0.38

5%) 

218(0.42

5%) 

221(0.41

1%) 

312(0.52

7%) 

790(1.23

1%) 

868(1.34

%) 

1125(1.5

35%) 

1282(1.5

59%) 

1320(1.6

34%) 

1417(1.7

22%) 

1249(1.4

05%) 

1273(1.4

35%) 

1329(1.4

59%) 

35 
502(1.44

%) 

460(1.24

6%) 

511(1.26

1%) 

571(1.30

6%) 

553(1.19

1%) 

511(0.99

7%) 

512(0.95

2%) 

417(0.70

4%) 

448(0.69

8%) 

434(0.67

%) 

483(0.65

9%) 

482(0.58

6%) 

457(0.56

6%) 

456(0.55

4%) 

533(0.59

9%) 

522(0.58

9%) 

542(0.59

5%) 

36 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
60(0.073

%) 

56(0.063

%) 
0(0%) 0(0%) 

37 0(0%) 
55(0.149

%) 

153(0.37

8%) 

176(0.40

3%) 

183(0.39

4%) 

222(0.43

3%) 

216(0.40

2%) 

248(0.41

9%) 

269(0.41

9%) 

271(0.41

9%) 

375(0.51

2%) 

457(0.55

6%) 

451(0.55

8%) 

521(0.63

3%) 

574(0.64

5%) 

565(0.63

7%) 

563(0.61

8%) 

38 
157(0.45

%) 

267(0.72

3%) 

316(0.78

%) 

354(0.81

%) 

434(0.93

4%) 

506(0.98

7%) 

465(0.86

5%) 

507(0.85

6%) 

588(0.91

6%) 

517(0.79

8%) 

564(0.77

%) 

498(0.60

5%) 

503(0.62

3%) 

507(0.61

6%) 

541(0.60

8%) 

558(0.62

9%) 

587(0.64

5%) 

39 
986(2.82

7%) 

982(2.65

9%) 

941(2.32

2%) 

949(2.17

1%) 

976(2.10

1%) 

951(1.85

5%) 

926(1.72

2%) 

886(1.49

6%) 

851(1.32

6%) 

833(1.28

6%) 

734(1.00

2%) 

683(0.83

%) 

667(0.82

6%) 

695(0.84

4%) 

595(0.66

9%) 

567(0.63

9%) 

535(0.58

7%) 

40 
955(2.73

9%) 

974(2.63

8%) 

959(2.36

7%) 

997(2.28

1%) 

997(2.14

6%) 

997(1.94

5%) 

1041(1.9

36%) 

924(1.56

%) 

886(1.38

%) 

858(1.32

5%) 

757(1.03

3%) 

697(0.84

7%) 

724(0.89

6%) 

699(0.84

9%) 

615(0.69

2%) 

625(0.70

5%) 

623(0.68

4%) 

41 
110(0.31

5%) 

132(0.35

7%) 

153(0.37

8%) 

169(0.38

7%) 

186(0.4

%) 

206(0.40

2%) 

208(0.38

7%) 

225(0.38

%) 

242(0.37

7%) 

247(0.38

1%) 

186(0.25

4%) 

188(0.22

9%) 

189(0.23

4%) 

164(0.19

9%) 

165(0.18

6%) 

170(0.19

2%) 

169(0.18

6%) 

42 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
82(0.138

%) 

81(0.126

%) 

77(0.119

%) 

70(0.096

%) 

67(0.081

%) 

64(0.079

%) 

71(0.086

%) 

61(0.069

%) 

61(0.069

%) 

52(0.057

%) 

43 
96(0.275

%) 

111(0.30

1%) 

156(0.38

5%) 

232(0.53

1%) 

247(0.53

2%) 

415(0.81

%) 

555(1.03

2%) 

682(1.15

1%) 

908(1.41

5%) 

955(1.47

5%) 

1309(1.7

86%) 

1520(1.8

48%) 

1442(1.7

85%) 

1479(1.7

97%) 

1826(2.0

53%) 

1768(1.9

93%) 

1874(2.0

58%) 

44 
99(0.284

%) 

105(0.28

4%) 

141(0.34

8%) 

160(0.36

6%) 

233(0.50

2%) 

469(0.91

5%) 

646(1.20

1%) 

759(1.28

1%) 

1003(1.5

63%) 

940(1.45

2%) 

1157(1.5

79%) 

1384(1.6

83%) 

1411(1.7

47%) 

1540(1.8

71%) 

1657(1.8

63%) 

1673(1.8

86%) 

1700(1.8

67%) 

45 
351(1.00

7%) 

357(0.96

7%) 

417(1.02

9%) 

458(1.04

8%) 

490(1.05

5%) 

526(1.02

6%) 

545(1.01

3%) 

633(1.06

9%) 

641(0.99

9%) 

658(1.01

6%) 

918(1.25

3%) 

1058(1.2

86%) 

1055(1.3

06%) 

1014(1.2

32%) 

1051(1.1

82%) 

1050(1.1

84%) 

1059(1.1

63%) 

46 
523(1.5

%) 

572(1.54

9%) 

634(1.56

5%) 

566(1.29

5%) 

637(1.37

1%) 

638(1.24

5%) 

626(1.16

4%) 

661(1.11

6%) 

739(1.15

1%) 

759(1.17

2%) 

828(1.13

%) 

888(1.08

%) 

903(1.11

8%) 

907(1.10

2%) 

834(0.93

8%) 

861(0.97

1%) 

879(0.96

5%) 

47 
1261(3.6

16%) 

1350(3.6

56%) 

1390(3.4

3%) 

1530(3.5

01%) 

1536(3.3

07%) 

1714(3.3

43%) 

1696(3.1

53%) 

1819(3.0

71%) 

1790(2.7

89%) 

1787(2.7

6%) 

1839(2.5

1%) 

1891(2.2

99%) 

1803(2.2

32%) 

1873(2.2

76%) 

1792(2.0

15%) 

1666(1.8

78%) 

1634(1.7

94%) 

48 
833(2.38

9%) 

875(2.37

%) 

1019(2.5

15%) 

1167(2.6

7%) 

1149(2.4

74%) 

1261(2.4

6%) 

1303(2.4

23%) 

1469(2.4

8%) 

1489(2.3

2%) 

1462(2.2

58%) 

1471(2.0

07%) 

1481(1.8

01%) 

1345(1.6

65%) 

1399(1.7

%) 

1277(1.4

36%) 

1288(1.4

52%) 

1290(1.4

16%) 
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49 
143(0.41

%) 

143(0.38

7%) 

168(0.41

5%) 

206(0.47

1%) 

226(0.48

7%) 

299(0.58

3%) 

363(0.67

5%) 

452(0.76

3%) 

500(0.77

9%) 

494(0.76

3%) 

674(0.92

%) 

864(1.05

%) 

742(0.91

9%) 

783(0.95

1%) 

829(0.93

2%) 

774(0.87

3%) 

839(0.92

1%) 

50 
77(0.221

%) 

79(0.214

%) 

98(0.242

%) 

126(0.28

8%) 

142(0.30

6%) 

182(0.35

5%) 

218(0.40

5%) 

283(0.47

8%) 

337(0.52

5%) 

325(0.50

2%) 

454(0.62

%) 

650(0.79

%) 

527(0.65

2%) 

564(0.68

5%) 

666(0.74

9%) 

610(0.68

8%) 

687(0.75

4%) 

51 
573(1.64

3%) 

624(1.69

%) 

719(1.77

4%) 

811(1.85

6%) 

876(1.88

6%) 

1017(1.9

84%) 

1096(2.0

38%) 

1197(2.0

21%) 

1254(1.9

54%) 

1246(1.9

24%) 

1357(1.8

52%) 

1515(1.8

42%) 

1428(1.7

68%) 

1524(1.8

52%) 

1608(1.8

08%) 

1521(1.7

15%) 

1641(1.8

02%) 

52 
515(1.47

7%) 

537(1.45

4%) 

610(1.50

5%) 

670(1.53

3%) 

715(1.53

9%) 

827(1.61

3%) 

913(1.69

8%) 

1018(1.7

18%) 

1056(1.6

45%) 

1042(1.6

09%) 

1164(1.5

88%) 

1372(1.6

68%) 

1283(1.5

88%) 

1323(1.6

07%) 

1391(1.5

64%) 

1445(1.6

29%) 

1473(1.6

17%) 

53 
136(0.39

%) 

161(0.43

6%) 

188(0.46

4%) 

202(0.46

2%) 

220(0.47

4%) 

274(0.53

4%) 

286(0.53

2%) 

298(0.50

3%) 

323(0.50

3%) 

326(0.50

3%) 

354(0.48

3%) 

409(0.49

7%) 

374(0.46

3%) 

401(0.48

7%) 

435(0.48

9%) 

429(0.48

4%) 

420(0.46

1%) 

54 
125(0.35

8%) 

130(0.35

2%) 

154(0.38

%) 

188(0.43

%) 

205(0.44

1%) 

257(0.50

1%) 

315(0.58

6%) 

377(0.63

6%) 

396(0.61

7%) 

405(0.62

5%) 

486(0.66

3%) 

614(0.74

6%) 

590(0.73

%) 

642(0.78

%) 

722(0.81

2%) 

704(0.79

4%) 

737(0.80

9%) 

55 
1114(3.1

95%) 

1088(2.9

46%) 

1078(2.6

6%) 

1157(2.6

47%) 

1196(2.5

75%) 

1300(2.5

36%) 

1353(2.5

16%) 

1442(2.4

34%) 

1437(2.2

39%) 

1420(2.1

93%) 

1461(1.9

94%) 

1608(1.9

55%) 

1542(1.9

09%) 

1639(1.9

91%) 

1609(1.8

09%) 

1628(1.8

36%) 

1834(2.0

14%) 

56 
1188(3.4

07%) 

1228(3.3

26%) 

1308(3.2

28%) 

1255(2.8

71%) 

1259(2.7

11%) 

1397(2.7

25%) 

1434(2.6

66%) 

1574(2.6

57%) 

1559(2.4

29%) 

1542(2.3

81%) 

1545(2.1

08%) 

1688(2.0

52%) 

1728(2.1

39%) 

1750(2.1

26%) 

1762(1.9

81%) 

1689(1.9

04%) 

1693(1.8

59%) 

57 
885(2.53

8%) 

923(2.5

%) 

1006(2.4

83%) 

1083(2.4

78%) 

1116(2.4

03%) 

1121(2.1

87%) 

1174(2.1

83%) 

1244(2.1

%) 

1184(1.8

45%) 

1195(1.8

46%) 

1284(1.7

52%) 

1284(1.5

61%) 

1265(1.5

66%) 

1183(1.4

37%) 

1200(1.3

49%) 

1158(1.3

06%) 

1168(1.2

83%) 

58 
704(2.01

9%) 

725(1.96

3%) 

743(1.83

4%) 

765(1.75

%) 

775(1.66

9%) 

806(1.57

2%) 

834(1.55

1%) 

923(1.55

8%) 

921(1.43

5%) 

963(1.48

7%) 

1107(1.5

11%) 

1187(1.4

43%) 

1305(1.6

16%) 

1254(1.5

24%) 

1230(1.3

83%) 

1155(1.3

02%) 

1212(1.3

31%) 

59 
221(0.63

4%) 

227(0.61

5%) 

254(0.62

7%) 

296(0.67

7%) 

336(0.72

3%) 

388(0.75

7%) 

421(0.78

3%) 

502(0.84

7%) 

562(0.87

6%) 

591(0.91

3%) 

655(0.89

4%) 

770(0.93

6%) 

766(0.94

8%) 

794(0.96

5%) 

885(0.99

5%) 

871(0.98

2%) 

869(0.95

4%) 

60 
135(0.38

7%) 

152(0.41

2%) 

173(0.42

7%) 

205(0.46

9%) 

224(0.48

2%) 

260(0.50

7%) 

295(0.54

8%) 

377(0.63

6%) 

453(0.70

6%) 

513(0.79

2%) 

682(0.93

1%) 

878(1.06

7%) 

850(1.05

2%) 

1008(1.2

25%) 

1141(1.2

83%) 

1101(1.2

41%) 

1156(1.2

69%) 

61 
628(1.80

1%) 

656(1.77

7%) 

686(1.69

3%) 

722(1.65

2%) 

759(1.63

4%) 

803(1.56

6%) 

833(1.54

9%) 

902(1.52

3%) 

937(1.46

%) 

938(1.44

9%) 

1030(1.4

06%) 

1158(1.4

08%) 

1197(1.4

82%) 

1233(1.4

98%) 

1469(1.6

52%) 

1478(1.6

66%) 

1512(1.6

6%) 

62 
532(1.52

6%) 

533(1.44

3%) 

567(1.39

9%) 

579(1.32

5%) 

592(1.27

5%) 

612(1.19

4%) 

633(1.17

7%) 

672(1.13

4%) 

676(1.05

3%) 

680(1.05

%) 

758(1.03

4%) 

814(0.99

%) 

859(1.06

4%) 

827(1.00

5%) 

895(1.00

6%) 

871(0.98

2%) 

897(0.98

5%) 

63 
165(0.47

3%) 

187(0.50

6%) 

224(0.55

3%) 

251(0.57

4%) 

295(0.63

5%) 

295(0.57

5%) 

331(0.61

5%) 

361(0.60

9%) 

397(0.61

9%) 

413(0.63

8%) 

480(0.65

5%) 

533(0.64

8%) 

539(0.66

7%) 

551(0.66

9%) 

583(0.65

6%) 

672(0.75

8%) 

686(0.75

3%) 

64 
364(1.04

4%) 

386(1.04

5%) 

456(1.12

5%) 

519(1.18

7%) 

573(1.23

4%) 

696(1.35

8%) 

775(1.44

1%) 

843(1.42

3%) 

909(1.41

6%) 

923(1.42

5%) 

997(1.36

1%) 

1092(1.3

28%) 

1071(1.3

26%) 

1056(1.2

83%) 

1361(1.5

31%) 

1348(1.5

2%) 

1383(1.5

19%) 

65 
224(0.64

2%) 

223(0.60

4%) 

256(0.63

2%) 

291(0.66

6%) 

328(0.70

6%) 

370(0.72

2%) 

400(0.74

4%) 

446(0.75

3%) 

490(0.76

3%) 

502(0.77

5%) 

556(0.75

9%) 

611(0.74

3%) 

565(0.7

%) 

603(0.73

3%) 

634(0.71

3%) 

612(0.69

%) 

624(0.68

5%) 

66 
497(1.42

5%) 

507(1.37

3%) 

553(1.36

5%) 

603(1.38

%) 

650(1.39

9%) 

721(1.40

6%) 

777(1.44

5%) 

869(1.46

7%) 

943(1.46

9%) 

944(1.45

8%) 

1032(1.4

08%) 

1160(1.4

1%) 

1118(1.3

84%) 

1132(1.3

75%) 

1216(1.3

67%) 

1215(1.3

7%) 

1237(1.3

58%) 

67 
554(1.58

9%) 

605(1.63

8%) 

622(1.53

5%) 

703(1.60

8%) 

861(1.85

4%) 

1068(2.0

83%) 

1024(1.9

04%) 

1333(2.2

5%) 

1669(2.6

%) 

1724(2.6

62%) 

2006(2.7

37%) 

2285(2.7

78%) 

2192(2.7

14%) 

2355(2.8

61%) 

2564(2.8

83%) 

2411(2.7

18%) 

2372(2.6

05%) 

68 
643(1.84

4%) 

710(1.92

3%) 

773(1.90

8%) 

873(1.99

7%) 

1054(2.2

69%) 

895(1.74

6%) 

815(1.51

5%) 

866(1.46

2%) 

953(1.48

5%) 

994(1.53

5%) 

1181(1.6

12%) 

1273(1.5

48%) 

1240(1.5

35%) 

1344(1.6

33%) 

1330(1.4

96%) 

1308(1.4

75%) 

1314(1.4

43%) 

69 
268(0.76

9%) 

284(0.76

9%) 

359(0.88

6%) 

377(0.86

3%) 

387(0.83

3%) 

515(1.00

5%) 

437(0.81

3%) 

490(0.82

7%) 

465(0.72

5%) 

507(0.78

3%) 

518(0.70

7%) 

539(0.65

5%) 

478(0.59

2%) 

490(0.59

5%) 

500(0.56

2%) 

459(0.51

8%) 

472(0.51

8%) 

70 
91(0.261

%) 

93(0.252

%) 

150(0.37

%) 

259(0.59

3%) 

113(0.24

3%) 

263(0.51

3%) 

317(0.58

9%) 

170(0.28

7%) 

165(0.25

7%) 

175(0.27

%) 

154(0.21

%) 

164(0.19

9%) 

139(0.17

2%) 

130(0.15

8%) 

130(0.14

6%) 

126(0.14

2%) 

134(0.14

7%) 

71 
201(0.57

6%) 

198(0.53

6%) 

339(0.83

7%) 

378(0.86

5%) 

408(0.87

8%) 

536(1.04

6%) 

592(1.10

1%) 

683(1.15

3%) 

805(1.25

4%) 

760(1.17

4%) 

928(1.26

6%) 

1171(1.4

24%) 

1239(1.5

34%) 

1137(1.3

81%) 

1508(1.6

96%) 

1425(1.6

07%) 

1527(1.6

77%) 

72 
473(1.35

6%) 

569(1.54

1%) 

631(1.55

7%) 

735(1.68

2%) 

740(1.59

3%) 

862(1.68

1%) 

940(1.74

8%) 

917(1.54

8%) 

1018(1.5

86%) 

1017(1.5

71%) 

1125(1.5

35%) 

1248(1.5

17%) 

1339(1.6

58%) 

1288(1.5

65%) 

1493(1.6

79%) 

1376(1.5

51%) 

1494(1.6

4%) 

73 
256(0.73

4%) 

353(0.95

6%) 

424(1.04

6%) 

471(1.07

8%) 

467(1.00

5%) 

562(1.09

6%) 

579(1.07

7%) 

609(1.02

8%) 

702(1.09

4%) 

657(1.01

5%) 

771(1.05

2%) 

852(1.03

6%) 

879(1.08

8%) 

895(1.08

7%) 

987(1.11

%) 

1043(1.1

76%) 

1074(1.1

79%) 
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74 
463(1.32

8%) 

517(1.4

%) 

592(1.46

1%) 

633(1.44

8%) 

694(1.49

4%) 

781(1.52

3%) 

781(1.45

2%) 

835(1.41

%) 

949(1.47

9%) 

918(1.41

8%) 

1062(1.4

49%) 

1170(1.4

22%) 

1203(1.4

89%) 

1238(1.5

04%) 

1350(1.5

18%) 

1360(1.5

33%) 

1405(1.5

43%) 

75 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

76 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

77 
187(0.53

6%) 

139(0.37

6%) 

139(0.34

3%) 

149(0.34

1%) 

178(0.38

3%) 

198(0.38

6%) 

220(0.40

9%) 

212(0.35

8%) 

194(0.30

2%) 

190(0.29

3%) 

206(0.28

1%) 

189(0.23

%) 

178(0.22

%) 

164(0.19

9%) 

174(0.19

6%) 

183(0.20

6%) 

199(0.21

9%) 

78 
155(0.44

4%) 

153(0.41

4%) 

203(0.50

1%) 

205(0.46

9%) 

217(0.46

7%) 

224(0.43

7%) 

236(0.43

9%) 

255(0.43

%) 

254(0.39

6%) 

239(0.36

9%) 

245(0.33

4%) 

232(0.28

2%) 

207(0.25

6%) 

215(0.26

1%) 

198(0.22

3%) 

223(0.25

1%) 

216(0.23

7%) 

79 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

80 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
42(0.057

%) 

101(0.12

3%) 

79(0.098

%) 

97(0.118

%) 

42(0.047

%) 

78(0.088

%) 
0(0%) 

81 
400(1.14

7%) 

404(1.09

4%) 

430(1.06

1%) 

450(1.03

%) 

475(1.02

3%) 

527(1.02

8%) 

556(1.03

4%) 

671(1.13

3%) 

720(1.12

2%) 

724(1.11

8%) 

1092(1.4

9%) 

1373(1.6

69%) 

1320(1.6

34%) 

1085(1.3

18%) 

1691(1.9

02%) 

1857(2.0

94%) 

1962(2.1

54%) 

82 
605(1.73

5%) 

638(1.72

8%) 

704(1.73

7%) 

724(1.65

7%) 

798(1.71

8%) 

855(1.66

8%) 

894(1.66

2%) 

1009(1.7

03%) 

1119(1.7

44%) 

1176(1.8

16%) 

1653(2.2

56%) 

2256(2.7

43%) 

2206(2.7

31%) 

2113(2.5

67%) 

2587(2.9

09%) 

2495(2.8

13%) 

2741(3.0

1%) 

83 
183(0.52

5%) 

209(0.56

6%) 

228(0.56

3%) 

259(0.59

3%) 

289(0.62

2%) 

351(0.68

5%) 

371(0.69

%) 

416(0.70

2%) 

499(0.77

8%) 

525(0.81

1%) 

636(0.86

8%) 

753(0.91

5%) 

722(0.89

4%) 

732(0.88

9%) 

828(0.93

1%) 

869(0.98

%) 

887(0.97

4%) 

84 
713(2.04

5%) 

728(1.97

2%) 

751(1.85

3%) 

763(1.74

6%) 

779(1.67

7%) 

786(1.53

3%) 

768(1.42

8%) 

759(1.28

1%) 

915(1.42

6%) 

992(1.53

2%) 

1131(1.5

43%) 

1340(1.6

29%) 

1306(1.6

17%) 

1357(1.6

49%) 

1512(1.7

%) 

1744(1.9

66%) 

1728(1.8

97%) 

85 
1368(3.9

23%) 

1375(3.7

24%) 

1468(3.6

23%) 

1504(3.4

41%) 

1566(3.3

72%) 

1635(3.1

89%) 

1632(3.0

34%) 

1691(2.8

54%) 

1764(2.7

49%) 

1748(2.7

%) 

1843(2.5

15%) 

1960(2.3

83%) 

1997(2.4

72%) 

2005(2.4

36%) 

2001(2.2

5%) 

2017(2.2

74%) 

2099(2.3

05%) 

86 
1026(2.9

42%) 

1087(2.9

44%) 

1168(2.8

82%) 

1267(2.8

99%) 

1352(2.9

11%) 

1490(2.9

07%) 

1531(2.8

47%) 

1664(2.8

09%) 

1813(2.8

25%) 

1863(2.8

77%) 

2065(2.8

18%) 

2208(2.6

84%) 

2252(2.7

88%) 

2310(2.8

06%) 

2360(2.6

54%) 

2360(2.6

61%) 

2395(2.6

3%) 

87 
61(0.175

%) 

78(0.211

%) 

110(0.27

1%) 

130(0.29

7%) 

154(0.33

2%) 

197(0.38

4%) 

260(0.48

3%) 

318(0.53

7%) 

371(0.57

8%) 

375(0.57

9%) 

423(0.57

7%) 

527(0.64

1%) 

523(0.64

8%) 

559(0.67

9%) 

620(0.69

7%) 

652(0.73

5%) 

675(0.74

1%) 

88 
103(0.29

5%) 

110(0.29

8%) 

132(0.32

6%) 

164(0.37

5%) 

189(0.40

7%) 

262(0.51

1%) 

285(0.53

%) 

340(0.57

4%) 

396(0.61

7%) 

434(0.67

%) 

522(0.71

2%) 

641(0.77

9%) 

630(0.78

%) 

695(0.84

4%) 

817(0.91

9%) 

859(0.96

8%) 

847(0.93

%) 

89 
523(1.5

%) 

610(1.65

2%) 

729(1.79

9%) 

781(1.78

7%) 

858(1.84

7%) 

943(1.83

9%) 

1009(1.8

76%) 

1141(1.9

26%) 

1166(1.8

17%) 

1161(1.7

93%) 

1218(1.6

62%) 

1399(1.7

01%) 

1343(1.6

63%) 

1458(1.7

71%) 

1634(1.8

38%) 

1657(1.8

68%) 

1622(1.7

81%) 

90 
1362(3.9

06%) 

1470(3.9

81%) 

1667(4.1

14%) 

1845(4.2

21%) 

1976(4.2

54%) 

2055(4.0

09%) 

2137(3.9

73%) 

2326(3.9

26%) 

2373(3.6

97%) 

2254(3.4

81%) 

2260(3.0

84%) 

2522(3.0

66%) 

2375(2.9

4%) 

2438(2.9

62%) 

2638(2.9

67%) 

2811(3.1

69%) 

2879(3.1

61%) 
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Table 6.6. Longitudinal Probabilistic Distribution of Points per ROIs using Symmetric ALBERT Parcellation Map with 50 ROIs given 

as: Number of points per ROI (Percentage on surface %) 
Week 

/ROI# 
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

1 & 2 
159(0.4

52%) 

176(0.4

7%) 

189(0.46

2%) 

150(0.34

2%) 

164(0.35

2%) 

187(0.36

7%) 

189(0.35

5%) 

173(0.30

4%) 

186(0.30

9%) 

199(0.33

%) 

216(0.31

3%) 

281(0.35

8%) 

308(0.40

1%) 

379(0.48

5%) 

425(0.49

3%) 

429(0.50

2%) 

485(0.54

8%) 

3 & 4 0(0%) 0(0%) 0(0%) 
74(0.169

%) 

132(0.28

4%) 

167(0.32

8%) 

176(0.33

1%) 

206(0.36

1%) 

253(0.42

%) 

245(0.40

7%) 

268(0.38

8%) 

289(0.36

8%) 

336(0.43

7%) 

325(0.41

5%) 

309(0.35

9%) 

317(0.37

1%) 

278(0.31

4%) 

5 & 6 
452(1.2

85%) 

523(1.3

96%) 

591(1.44

5%) 

701(1.59

9%) 

769(1.65

3%) 

900(1.76

8%) 

967(1.81

7%) 

1197(2.1

%) 

1342(2.2

28%) 

1367(2.2

69%) 

1621(2.3

47%) 

1879(2.3

92%) 

1851(2.4

09%) 

1927(2.4

64%) 

2035(2.3

61%) 

2091(2.4

46%) 

2335(2.6

37%) 

7 & 8 
486(1.3

82%) 

494(1.3

19%) 

565(1.38

1%) 

615(1.40

3%) 

701(1.50

7%) 

771(1.51

5%) 

901(1.69

3%) 

993(1.74

2%) 

1148(1.9

06%) 

1149(1.9

07%) 

1249(1.8

08%) 

1441(1.8

35%) 

1398(1.8

19%) 

1476(1.8

87%) 

2384(2.7

66%) 

2568(3.0

04%) 

2565(2.8

97%) 

9 & 10 
1993(5.

666%) 

2055(5.

485%) 

2083(5.0

93%) 

2119(4.8

33%) 

2131(4.5

8%) 

2077(4.0

81%) 

2063(3.8

77%) 

1994(3.4

99%) 

1945(3.2

29%) 

1903(3.1

58%) 

1721(2.4

92%) 

1599(2.0

36%) 

1555(2.0

23%) 

1509(1.9

29%) 

1400(1.6

24%) 

1330(1.5

56%) 

1321(1.4

92%) 

11 & 

12 

650(1.8

48%) 

660(1.7

62%) 

736(1.8

%) 

822(1.87

5%) 

834(1.79

3%) 

881(1.73

1%) 

928(1.74

4%) 

1100(1.9

3%) 

1078(1.7

9%) 

1093(1.8

14%) 

1887(2.7

32%) 

2688(3.4

22%) 

2804(3.6

49%) 

1927(2.4

64%) 

2808(3.2

58%) 

2665(3.1

18%) 

2835(3.2

02%) 

13 & 

14 

1517(4.

313%) 

1593(4.

252%) 

1800(4.4

01%) 

1901(4.3

35%) 

2020(4.3

42%) 

2262(4.4

44%) 

2358(4.4

32%) 

2601(4.5

64%) 

2683(4.4

55%) 

2666(4.4

25%) 

2785(4.0

32%) 

3127(3.9

81%) 

3069(3.9

94%) 

3275(4.1

87%) 

3616(4.1

95%) 

3668(4.2

91%) 

3667(4.1

42%) 

15 & 

16 

671(1.9

08%) 

758(2.0

23%) 

794(1.94

1%) 

873(1.99

1%) 

931(2.00

1%) 

1027(2.0

18%) 

1073(2.0

17%) 

1089(1.9

11%) 

1122(1.8

63%) 

1116(1.8

52%) 

1177(1.7

04%) 

1256(1.5

99%) 

1251(1.6

28%) 

1297(1.6

58%) 

1323(1.5

35%) 

1351(1.5

81%) 

1336(1.5

09%) 

17 & 

18 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

19 & 

20 

559(1.5

89%) 

524(1.3

99%) 

528(1.29

1%) 

498(1.13

6%) 

501(1.07

7%) 

473(0.92

9%) 

471(0.88

5%) 

497(0.87

2%) 

583(0.96

8%) 

700(1.16

2%) 

961(1.39

1%) 

1034(1.3

16%) 

1026(1.3

35%) 

899(1.14

9%) 

883(1.02

5%) 

908(1.06

2%) 

892(1.00

8%) 

21 & 

22 

4826(13

.721%) 

5204(13

.891%) 

5846(14.

293%) 

6586(15.

02%) 

6920(14.

873%) 

8076(15.

868%) 

8783(16.

508%) 

9352(16.

41%) 

9647(16.

017%) 

9631(15.

985%) 

10957(1

5.864%) 

12606(1

6.049%) 

11718(1

5.248%) 

12355(1

5.795%) 

12827(1

4.883%) 

12207(1

4.282%) 

12586(1

4.216%) 

23 & 

24 

602(1.7

12%) 

606(1.6

18%) 

606(1.48

2%) 

632(1.44

1%) 

630(1.35

4%) 

630(1.23

8%) 

630(1.18

4%) 

634(1.11

2%) 

768(1.27

5%) 

778(1.29

1%) 

876(1.26

8%) 

832(1.05

9%) 

761(0.99

%) 

744(0.95

1%) 

798(0.92

6%) 

851(0.99

6%) 

857(0.96

8%) 

25 & 

26 

817(2.3

23%) 

876(2.3

38%) 

912(2.23

%) 

925(2.11

%) 

937(2.01

4%) 

1016(1.9

96%) 

1033(1.9

42%) 

1099(1.9

28%) 

1082(1.7

96%) 

1127(1.8

7%) 

1152(1.6

68%) 

1243(1.5

82%) 

1212(1.5

77%) 

1281(1.6

38%) 

1266(1.4

69%) 

1242(1.4

53%) 

1218(1.3

76%) 

27 & 

28 

2115(6.

013%) 

2167(5.

784%) 

2312(5.6

53%) 

2364(5.3

91%) 

2490(5.3

52%) 

2694(5.2

93%) 

2725(5.1

22%) 

2851(5.0

03%) 

3035(5.0

39%) 

3028(5.0

26%) 

3153(4.5

65%) 

3436(4.3

74%) 

3347(4.3

55%) 

3580(4.5

77%) 

3625(4.2

06%) 

3658(4.2

8%) 

3803(4.2

96%) 

29 & 

30 

400(1.1

37%) 

398(1.0

62%) 

451(1.10

3%) 

487(1.11

1%) 

567(1.21

9%) 

571(1.12

2%) 

584(1.09

8%) 

680(1.19

3%) 

741(1.23

%) 

724(1.20

2%) 

851(1.23

2%) 

905(1.15

2%) 

955(1.24

3%) 

947(1.21

1%) 

956(1.10

9%) 

955(1.11

7%) 

1031(1.1

65%) 

31 & 

32 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

634(0.91

8%) 

1014(1.2

91%) 

1010(1.3

14%) 

984(1.25

8%) 

995(1.15

4%) 

1073(1.2

55%) 

1265(1.4

29%) 

33 & 

34 

154(0.4

38%) 

355(0.9

48%) 

511(1.24

9%) 

537(1.22

5%) 

510(1.09

6%) 

531(1.04

3%) 

476(0.89

5%) 

269(0.47

2%) 

667(1.10

7%) 

602(0.99

9%) 

890(1.28

9%) 

977(1.24

4%) 

910(1.18

4%) 

826(1.05

6%) 

785(0.91

1%) 

853(0.99

8%) 

897(1.01

3%) 

35 & 

36 

11561(3

2.87%) 

12307(3

2.85%) 

13451(3

2.888%) 

14175(3

2.328%) 

15129(3

2.517%) 

16228(3

1.885%) 

17076(3

2.094%) 

18530(3

2.514%) 

19210(3

1.894%) 

19230(3

1.916%) 

21440(3

1.041%) 

24542(3

1.245%) 

24043(3

1.286%) 

24787(3

1.688%) 

27437(3

1.834%) 

27493(3

2.166%) 

28510(3

2.203%) 

37 & 

38 

6011(17

.09%) 

6403(17

.091%) 

6873(16.

804%) 

7375(16.

819%) 

7959(17.

107%) 

8559(16.

817%) 

8799(16.

538%) 

9734(17.

08%) 

10269(1

7.05%) 

10475(1

7.385%) 

12324(1

7.843%) 

13737(1

7.489%) 

13439(1

7.488%) 

13757(1

7.587%) 

14960(1

7.357%) 

14892(1

7.423%) 

15314(1

7.298%) 

39 & 

40 

114(0.3

24%) 

117(0.3

12%) 

154(0.37

7%) 

176(0.40

1%) 

182(0.39

1%) 

281(0.55

2%) 

380(0.71

4%) 

359(0.63

%) 

457(0.75

9%) 

386(0.64

1%) 

535(0.77

5%) 

725(0.92

3%) 

899(1.17

%) 

797(1.01

9%) 

1130(1.3

11%) 

1054(1.2

33%) 

1099(1.2

41%) 

41 & 

42 

855(2.4

31%) 

897(2.3

94%) 

933(2.28

1%) 

1010(2.3

03%) 

1049(2.2

55%) 

1215(2.3

87%) 

1260(2.3

68%) 

1308(2.2

95%) 

1403(2.3

29%) 

1351(2.2

42%) 

1449(2.0

98%) 

1527(1.9

44%) 

1508(1.9

62%) 

1529(1.9

55%) 

1624(1.8

84%) 

1634(1.9

12%) 

1643(1.8

56%) 

43 & 

44 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

45 & 

46 

710(2.0

19%) 

808(2.1

57%) 

954(2.33

3%) 

1042(2.3

76%) 

1093(2.3

49%) 

1226(2.4

09%) 

1271(2.3

89%) 

1293(2.2

69%) 

1451(2.4

09%) 

1398(2.3

2%) 

1613(2.3

35%) 

1795(2.2

85%) 

1837(2.3

9%) 

1872(2.3

93%) 

2118(2.4

57%) 

2223(2.6

01%) 

2336(2.6

39%) 
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47 & 

48 

155(0.4

41%) 

150(0.4

%) 

162(0.39

6%) 

161(0.36

7%) 

145(0.31

2%) 

126(0.24

8%) 

115(0.21

6%) 

117(0.20

5%) 

101(0.16

8%) 

98(0.163

%) 

82(0.119

%) 

88(0.112

%) 

97(0.126

%) 

81(0.104

%) 

71(0.082

%) 

83(0.097

%) 

77(0.087

%) 

49 & 

50 

365(1.0

38%) 

393(1.0

49%) 

449(1.09

8%) 

625(1.42

5%) 

641(1.37

8%) 

886(1.74

1%) 

948(1.78

2%) 

914(1.60

4%) 

1059(1.7

58%) 

986(1.63

6%) 

1229(1.7

79%) 

1527(1.9

44%) 

1514(1.9

7%) 

1668(2.1

32%) 

2413(2.8

%) 

1927(2.2

55%) 

2182(2.4

65%) 
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Table 6.7. Longitudinal Probabilistic Distribution of Points per ROIs using Asymmetric ALBERT Parcellation Map with 50 ROIs given 

as: Number of points per ROI (Percentage on surface %) 
Week

\ROI

# 

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

1 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
41(0.051

%) 

110(0.13

4%) 

46(0.052

%) 
0(0%) 0(0%) 

2 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
67(0.081

%) 

140(0.17

3%) 

202(0.24

5%) 

236(0.26

5%) 

264(0.29

8%) 

272(0.29

9%) 

3 0(0%) 0(0%) 0(0%) 0(0%) 
42(0.09

%) 

124(0.2

42%) 

130(0.2

42%) 

133(0.22

5%) 

157(0.24

5%) 

164(0.25

3%) 

173(0.23

6%) 

176(0.21

4%) 

179(0.22

2%) 

142(0.17

3%) 

195(0.21

9%) 

235(0.26

5%) 

230(0.25

3%) 

4 
102(0.29

2%) 

112(0.3

03%) 

130(0.3

21%) 

130(0.2

97%) 

144(0.3

1%) 

186(0.3

63%) 

230(0.4

28%) 

305(0.51

5%) 

318(0.49

5%) 

256(0.39

5%) 

260(0.35

5%) 

256(0.31

1%) 

130(0.16

1%) 

130(0.15

8%) 

191(0.21

5%) 

195(0.22

%) 

192(0.21

1%) 

5 
267(0.76

6%) 

299(0.8

1%) 

345(0.8

51%) 

395(0.9

04%) 

449(0.9

67%) 

511(0.9

97%) 

581(1.0

8%) 

690(1.16

5%) 

764(1.19

%) 

779(1.20

3%) 

900(1.22

8%) 

1045(1.2

7%) 

1017(1.2

59%) 

1038(1.2

61%) 

1049(1.1

8%) 

1080(1.2

18%) 

1197(1.3

14%) 

6 
177(0.50

8%) 

193(0.5

23%) 

212(0.5

23%) 

252(0.5

77%) 

310(0.6

67%) 

365(0.7

12%) 

393(0.7

31%) 

474(0.8

%) 

571(0.89

%) 

596(0.92

%) 

728(0.99

3%) 

855(1.03

9%) 

841(1.04

1%) 

844(1.02

5%) 

923(1.03

8%) 

909(1.02

5%) 

957(1.05

1%) 

7 
335(0.96

1%) 

351(0.9

51%) 

390(0.9

62%) 

410(0.9

38%) 

431(0.9

28%) 

494(0.9

64%) 

555(1.0

32%) 

610(1.03

%) 

676(1.05

3%) 

699(1.08

%) 

750(1.02

3%) 

870(1.05

8%) 

836(1.03

5%) 

876(1.06

4%) 

1239(1.3

93%) 

1254(1.4

14%) 

1237(1.3

58%) 

8 
231(0.66

2%) 

256(0.6

93%) 

293(0.7

23%) 

331(0.7

57%) 

356(0.7

66%) 

419(0.8

17%) 

521(0.9

69%) 

529(0.89

3%) 

618(0.96

3%) 

583(0.9

%) 

731(0.99

8%) 

772(0.93

9%) 

752(0.93

1%) 

890(1.08

1%) 

977(1.09

9%) 

1173(1.3

23%) 

1144(1.2

56%) 

9 
1045(2.9

97%) 

1094(2.

963%) 

1121(2.

766%) 

1169(2.

675%) 

1181(2.

543%) 

1173(2.

288%) 

1159(2.

155%) 

1114(1.8

8%) 

1009(1.5

72%) 

989(1.52

7%) 

912(1.24

5%) 

848(1.03

1%) 

840(1.04

%) 

774(0.94

%) 

817(0.91

9%) 

811(0.91

4%) 

818(0.89

8%) 

10 
802(2.3

%) 

819(2.2

18%) 

777(1.9

17%) 

822(1.8

81%) 

859(1.8

49%) 

900(1.7

56%) 

847(1.5

75%) 

862(1.45

5%) 

835(1.30

1%) 

834(1.28

8%) 

776(1.05

9%) 

685(0.83

3%) 

730(0.90

4%) 

646(0.78

5%) 

588(0.66

1%) 

600(0.67

6%) 

581(0.63

8%) 

11 
475(1.36

2%) 

474(1.2

84%) 

529(1.3

05%) 

544(1.2

45%) 

571(1.2

29%) 

609(1.1

88%) 

589(1.0

95%) 

647(1.09

2%) 

654(1.01

9%) 

638(0.98

5%) 

685(0.93

5%) 

737(0.89

6%) 

690(0.85

4%) 

708(0.86

%) 

703(0.79

1%) 

739(0.83

3%) 

757(0.83

1%) 

12 
516(1.48

%) 

538(1.4

57%) 

570(1.4

07%) 

570(1.3

04%) 

617(1.3

28%) 

630(1.2

29%) 

641(1.1

92%) 

704(1.18

8%) 

698(1.08

8%) 

777(1.2

%) 

1109(1.5

13%) 

1463(1.7

79%) 

1428(1.7

68%) 

1401(1.7

02%) 

1707(1.9

2%) 

1522(1.7

16%) 

1573(1.7

27%) 

13 
499(1.43

1%) 

555(1.5

03%) 

641(1.5

82%) 

711(1.6

27%) 

793(1.7

07%) 

905(1.7

65%) 

1000(1.

859%) 

1120(1.8

91%) 

1167(1.8

18%) 

1132(1.7

48%) 

1194(1.6

29%) 

1365(1.6

59%) 

1324(1.6

39%) 

1397(1.6

97%) 

1651(1.8

57%) 

1715(1.9

34%) 

1693(1.8

59%) 

14 
730(2.09

3%) 

791(2.1

42%) 

893(2.2

04%) 

980(2.2

42%) 

1048(2.

256%) 

1158(2.

259%) 

1204(2.

239%) 

1373(2.3

18%) 

1455(2.2

67%) 

1455(2.2

47%) 

1543(2.1

06%) 

1714(2.0

84%) 

1752(2.1

69%) 

1826(2.2

18%) 

1939(2.1

81%) 

1989(2.2

43%) 

1993(2.1

88%) 

15 
411(1.17

9%) 

392(1.0

62%) 

364(0.8

98%) 

393(0.8

99%) 

359(0.7

73%) 

391(0.7

63%) 

345(0.6

41%) 

376(0.63

5%) 

377(0.58

7%) 

370(0.57

1%) 

399(0.54

4%) 

426(0.51

8%) 

448(0.55

5%) 

465(0.56

5%) 

472(0.53

1%) 

470(0.53

%) 

462(0.50

7%) 

16 
796(2.28

3%) 

832(2.2

53%) 

887(2.1

89%) 

869(1.9

88%) 

877(1.8

88%) 

870(1.6

97%) 

883(1.6

42%) 

869(1.46

7%) 

840(1.30

9%) 

756(1.16

8%) 

685(0.93

5%) 

731(0.88

9%) 

647(0.80

1%) 

647(0.78

6%) 

661(0.74

3%) 

652(0.73

5%) 

660(0.72

5%) 

17 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

18 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

19 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

20 
113(0.32

4%) 

88(0.23

8%) 

215(0.5

31%) 

228(0.5

22%) 

264(0.5

68%) 

287(0.5

6%) 

302(0.5

62%) 

319(0.53

8%) 

380(0.59

2%) 

426(0.65

8%) 

473(0.64

5%) 

657(0.79

9%) 

651(0.80

6%) 

642(0.78

%) 

697(0.78

4%) 

799(0.90

1%) 

752(0.82

6%) 

21 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
46(0.071

%) 

179(0.24

4%) 

170(0.20

7%) 

173(0.21

4%) 

336(0.40

8%) 

313(0.35

2%) 

326(0.36

8%) 

353(0.38

8%) 

22 
2027(5.8

13%) 

2172(5.

882%) 

2552(6.

298%) 

2762(6.

319%) 

3085(6.

642%) 

3599(7.

021%) 

4017(7.

469%) 

4541(7.6

65%) 

4949(7.7

11%) 

4834(7.4

65%) 

5465(7.4

58%) 

6327(7.6

92%) 

5912(7.3

2%) 

6131(7.4

49%) 

6173(6.9

42%) 

6170(6.9

57%) 

6347(6.9

69%) 

23 
1791(5.1

36%) 

1917(5.

191%) 

2166(5.

345%) 

2473(5.

658%) 

2729(5.

875%) 

3317(6.

47%) 

3590(6.

675%) 

4132(6.9

75%) 

4392(6.8

43%) 

4369(6.7

47%) 

5011(6.8

38%) 

5748(6.9

88%) 

5288(6.5

47%) 

5618(6.8

25%) 

5723(6.4

36%) 

5383(6.0

69%) 

5573(6.1

19%) 
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24 
311(0.89

2%) 

352(0.9

53%) 

394(0.9

72%) 

423(0.9

68%) 

376(0.8

1%) 

411(0.8

02%) 

418(0.7

77%) 

432(0.72

9%) 

441(0.68

7%) 

374(0.57

8%) 

379(0.51

7%) 

353(0.42

9%) 

381(0.47

2%) 

416(0.50

5%) 

399(0.44

9%) 

425(0.47

9%) 

451(0.49

5%) 

25 
451(1.29

3%) 

488(1.3

22%) 

455(1.1

23%) 

506(1.1

58%) 

378(0.8

14%) 

377(0.7

35%) 

372(0.6

92%) 

387(0.65

3%) 

412(0.64

2%) 

409(0.63

2%) 

438(0.59

8%) 

414(0.50

3%) 

406(0.50

3%) 

408(0.49

6%) 

427(0.48

%) 

398(0.44

9%) 

376(0.41

3%) 

26 
337(0.96

6%) 

340(0.9

21%) 

354(0.8

74%) 

375(0.8

58%) 

381(0.8

2%) 

425(0.8

29%) 

443(0.8

24%) 

491(0.82

9%) 

495(0.77

1%) 

520(0.80

3%) 

541(0.73

8%) 

606(0.73

7%) 

636(0.78

7%) 

646(0.78

5%) 

636(0.71

5%) 

659(0.74

3%) 

620(0.68

1%) 

27 
336(0.96

4%) 

379(1.0

26%) 

414(1.0

22%) 

423(0.9

68%) 

433(0.9

32%) 

451(0.8

8%) 

479(0.8

91%) 

487(0.82

2%) 

487(0.75

9%) 

486(0.75

1%) 

496(0.67

7%) 

536(0.65

2%) 

540(0.66

9%) 

579(0.70

3%) 

576(0.64

8%) 

585(0.66

%) 

599(0.65

8%) 

28 
1163(3.3

35%) 

1201(3.

252%) 

1317(3.

25%) 

1376(3.

148%) 

1451(3.

124%) 

1534(2.

992%) 

1535(2.

854%) 

1650(2.7

85%) 

1723(2.6

85%) 

1722(2.6

59%) 

1835(2.5

04%) 

1920(2.3

34%) 

1941(2.4

03%) 

1965(2.3

87%) 

1997(2.2

46%) 

2048(2.3

09%) 

2087(2.2

92%) 

29 
905(2.59

5%) 

917(2.4

83%) 

991(2.4

46%) 

1021(2.

336%) 

1092(2.

351%) 

1184(2.

31%) 

1218(2.

265%) 

1280(2.1

61%) 

1348(2.1

%) 

1354(2.0

91%) 

1383(1.8

87%) 

1494(1.8

16%) 

1472(1.8

22%) 

1565(1.9

01%) 

1590(1.7

88%) 

1584(1.7

86%) 

1603(1.7

6%) 

30 
129(0.37

%) 

136(0.3

68%) 

165(0.4

07%) 

186(0.4

26%) 

214(0.4

61%) 

243(0.4

74%) 

271(0.5

04%) 

326(0.55

%) 

336(0.52

4%) 

361(0.55

8%) 

514(0.70

1%) 

618(0.75

1%) 

595(0.73

7%) 

681(0.82

7%) 

747(0.84

%) 

715(0.80

6%) 

864(0.94

9%) 

31 
236(0.67

7%) 

242(0.6

55%) 

265(0.6

54%) 

279(0.6

38%) 

311(0.6

7%) 

324(0.6

32%) 

331(0.6

15%) 

371(0.62

6%) 

409(0.63

7%) 

387(0.59

8%) 

440(0.6

%) 

468(0.56

9%) 

490(0.60

7%) 

473(0.57

5%) 

465(0.52

3%) 

454(0.51

2%) 

538(0.59

1%) 

32 0(0%) 
24(0.06

5%) 

222(0.5

48%) 

136(0.3

11%) 

143(0.3

08%) 

65(0.12

7%) 

143(0.2

66%) 

94(0.159

%) 

576(0.89

7%) 

478(0.73

8%) 

611(0.83

4%) 

695(0.84

5%) 

680(0.84

2%) 

690(0.83

8%) 

575(0.64

7%) 

570(0.64

3%) 

567(0.62

3%) 

33 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
250(0.39

%) 

199(0.30

7%) 

288(0.39

3%) 

331(0.40

2%) 

358(0.44

3%) 

335(0.40

7%) 

450(0.50

6%) 

483(0.54

5%) 

549(0.60

3%) 

34 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
158(0.26

7%) 

489(0.76

2%) 

565(0.87

3%) 

696(0.95

%) 

749(0.91

1%) 

774(0.95

8%) 

735(0.89

3%) 

708(0.79

6%) 

734(0.82

8%) 

770(0.84

6%) 

35 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
116(0.18

1%) 

89(0.137

%) 

96(0.131

%) 

99(0.12

%) 

110(0.13

6%) 

139(0.16

9%) 

141(0.15

9%) 

148(0.16

7%) 

147(0.16

1%) 

36 
6096(17.

481%) 

6371(17

.253%) 

6849(16

.902%) 

7308(16

.721%) 

7698(16

.573%) 

8564(16

.706%) 

9066(16

.856%) 

10182(1

7.188%) 

10807(1

6.839%) 

11130(1

7.189%) 

12296(1

6.779%) 

13773(1

6.744%) 

13500(1

6.714%) 

13936(1

6.931%) 

14869(1

6.721%) 

15067(1

6.988%) 

15403(1

6.913%) 

37 
6183(17.

731%) 

6552(17

.744%) 

7118(17

.566%) 

7558(17

.293%) 

8117(17

.475%) 

8907(17

.375%) 

9228(17

.158%) 

10442(1

7.627%) 

10924(1

7.021%) 

11329(1

7.496%) 

12785(1

7.447%) 

14340(1

7.434%) 

14185(1

7.562%) 

13872(1

6.853%) 

15371(1

7.286%) 

15245(1

7.188%) 

15604(1

7.134%) 

38 
2970(8.5

17%) 

3134(8.

487%) 

3377(8.

334%) 

3806(8.

708%) 

4051(8.

722%) 

4295(8.

378%) 

4409(8.

198%) 

4705(7.9

42%) 

5070(7.9

%) 

5175(7.9

92%) 

5812(7.9

31%) 

6717(8.1

66%) 

6666(8.2

53%) 

6866(8.3

42%) 

7388(8.3

08%) 

7359(8.2

97%) 

7471(8.2

04%) 

39 
3020(8.6

6%) 

3176(8.

601%) 

3464(8.

548%) 

3807(8.

71%) 

4097(8.

821%) 

4509(8.

796%) 

4759(8.

848%) 

5152(8.6

97%) 

5578(8.6

91%) 

5773(8.9

16%) 

7169(9.7

83%) 

7924(9.6

34%) 

7738(9.5

8%) 

7423(9.0

18%) 

8641(9.7

17%) 

8640(9.7

41%) 

8966(9.8

45%) 

40 
151(0.43

3%) 

152(0.4

12%) 

153(0.3

78%) 

196(0.4

48%) 

201(0.4

33%) 

248(0.4

84%) 

288(0.5

35%) 

268(0.45

2%) 

396(0.61

7%) 

335(0.51

7%) 

393(0.53

6%) 

462(0.56

2%) 

528(0.65

4%) 

539(0.65

5%) 

666(0.74

9%) 

595(0.67

1%) 

665(0.73

%) 

41 
178(0.51

%) 

219(0.5

93%) 

226(0.5

58%) 

322(0.7

37%) 

339(0.7

3%) 

394(0.7

69%) 

430(0.7

99%) 

364(0.61

4%) 

394(0.61

4%) 

295(0.45

6%) 

390(0.53

2%) 

496(0.60

3%) 

572(0.70

8%) 

543(0.66

%) 

729(0.82

%) 

698(0.78

7%) 

739(0.81

1%) 

42 
443(1.27

%) 

488(1.3

22%) 

628(1.5

5%) 

692(1.5

83%) 

739(1.5

91%) 

811(1.5

82%) 

789(1.4

67%) 

845(1.42

6%) 

953(1.48

5%) 

808(1.24

8%) 

598(0.81

6%) 

591(0.71

9%) 

579(0.71

7%) 

611(0.74

2%) 

592(0.66

6%) 

600(0.67

6%) 

585(0.64

2%) 

43 
519(1.48

8%) 

569(1.5

41%) 

663(1.6

36%) 

792(1.8

12%) 

830(1.7

87%) 

989(1.9

29%) 

930(1.7

29%) 

873(1.47

4%) 

1002(1.5

61%) 

982(1.51

7%) 

1115(1.5

22%) 

1124(1.3

66%) 

1043(1.2

91%) 

1035(1.2

57%) 

1053(1.1

84%) 

1044(1.1

77%) 

1032(1.1

33%) 

44 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

45 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

46 
405(1.16

1%) 

461(1.2

48%) 

419(1.0

34%) 

461(1.0

55%) 

510(1.0

98%) 

583(1.1

37%) 

588(1.0

93%) 

620(1.04

7%) 

716(1.11

6%) 

676(1.04

4%) 

807(1.10

1%) 

923(1.12

2%) 

914(1.13

2%) 

954(1.15

9%) 

1075(1.2

09%) 

1145(1.2

91%) 

1185(1.3

01%) 

47 
348(0.99

8%) 

406(1.0

99%) 

489(1.2

07%) 

533(1.2

2%) 

534(1.1

5%) 

560(1.0

92%) 

572(1.0

64%) 

598(1.00

9%) 

694(1.08

1%) 

667(1.03

%) 

745(1.01

7%) 

811(0.98

6%) 

832(1.03

%) 

779(0.94

6%) 

918(1.03

2%) 

965(1.08

8%) 

1011(1.1

1%) 

48 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

49 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
140(0.23

6%) 

194(0.30

2%) 

228(0.35

2%) 

318(0.43

4%) 

505(0.61

4%) 

548(0.67

8%) 

749(0.91

%) 

1000(1.1

25%) 

783(0.88

3%) 

873(0.95

9%) 
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50 
374(1.07

2%) 

436(1.1

81%) 

474(1.1

7%) 

467(1.0

69%) 

438(0.9

43%) 

452(0.8

82%) 

528(0.9

82%) 

577(0.97

4%) 

510(0.79

5%) 

707(1.09

2%) 

1162(1.5

86%) 

1393(1.6

94%) 

1463(1.8

11%) 

1548(1.8

81%) 

1611(1.8

12%) 

1464(1.6

51%) 

1574(1.7

28%) 
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Table 6.8. Longitudinal Probabilistic Distribution of Points per ROIs using Symmetric JHU Parcellation Map with 122 ROIs given as: 

Number of points per ROI (Percentage on surface %) 
Week\

ROI# 
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

1 & 2 
133(0.37

8%) 

140(0.3

74%) 

144(0.3

52%) 

146(0.3

33%) 

146(0.3

14%) 

143(0.2

81%) 

150(0.2

82%) 

159(0.2

79%) 

161(0.2

67%) 

179(0.2

97%) 

240(0.3

47%) 

285(0.3

63%) 

262(0.3

41%) 

330(0.4

22%) 

438(0.5

08%) 

363(0.42

5%) 

408(0.46

1%) 

3 & 4 0(0%) 0(0%) 
51(0.12

5%) 

81(0.18

5%) 

80(0.17

2%) 

135(0.2

65%) 

156(0.2

93%) 

147(0.2

58%) 

214(0.3

55%) 

180(0.2

99%) 

258(0.3

74%) 

335(0.4

26%) 

323(0.4

2%) 

329(0.4

21%) 

395(0.4

58%) 

421(0.49

3%) 

517(0.58

4%) 

5 & 6 
221(0.62

8%) 

226(0.6

03%) 

258(0.6

31%) 

273(0.6

23%) 

302(0.6

49%) 

319(0.6

27%) 

318(0.5

98%) 

335(0.5

88%) 

343(0.5

69%) 

345(0.5

73%) 

371(0.5

37%) 

397(0.5

05%) 

404(0.5

26%) 

403(0.5

15%) 

414(0.4

8%) 

471(0.55

1%) 

474(0.53

5%) 

7 & 8 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

9 & 10 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

11 & 

12 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

13 & 

14 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

15 & 

16 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

17 & 

18 

763(2.16

9%) 

818(2.1

83%) 

769(1.8

8%) 

789(1.7

99%) 

799(1.7

17%) 

802(1.5

76%) 

719(1.3

51%) 

691(1.2

12%) 

640(1.0

63%) 

630(1.0

46%) 

610(0.8

83%) 

577(0.7

35%) 

541(0.7

04%) 

565(0.7

22%) 

531(0.6

16%) 

507(0.59

3%) 

510(0.57

6%) 

19 & 

20 

557(1.58

4%) 

572(1.5

27%) 

570(1.3

94%) 

653(1.4

89%) 

667(1.4

34%) 

724(1.4

23%) 

793(1.4

9%) 

831(1.4

58%) 

890(1.4

78%) 

861(1.4

29%) 

837(1.2

12%) 

821(1.0

45%) 

836(1.0

88%) 

815(1.0

42%) 

787(0.9

13%) 

741(0.86

7%) 

765(0.86

4%) 

21 & 

22 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

23 & 

24 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

72(0.09

2%) 

49(0.06

4%) 

107(0.1

37%) 

216(0.2

51%) 

143(0.16

7%) 

190(0.21

5%) 

25 & 

26 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

27 & 

28 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

29 & 

30 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

31 & 

32 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

33 & 

34 

565(1.60

6%) 

630(1.6

82%) 

684(1.6

72%) 

756(1.7

24%) 

770(1.6

55%) 

921(1.8

1%) 

951(1.7

87%) 

1024(1.

797%) 

1078(1.

79%) 

1080(1.

792%) 

1247(1.

805%) 

1318(1.

678%) 

1312(1.

707%) 

1306(1.

67%) 

1392(1.

615%) 

1391(1.6

27%) 

1383(1.5

62%) 

35 & 

36 

393(1.11

7%) 

454(1.2

12%) 

507(1.2

4%) 

563(1.2

84%) 

603(1.2

96%) 

697(1.3

69%) 

739(1.3

89%) 

799(1.4

02%) 

940(1.5

61%) 

918(1.5

24%) 

1076(1.

558%) 

1093(1.

392%) 

1122(1.

46%) 

1153(1.

474%) 

1297(1.

505%) 

1360(1.5

91%) 

1380(1.5

59%) 

37 & 

38 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

39 & 

40 

329(0.93

5%) 

354(0.9

45%) 

371(0.9

07%) 

423(0.9

65%) 

412(0.8

86%) 

534(1.0

49%) 

650(1.2

22%) 

643(1.1

28%) 

781(1.2

97%) 

690(1.1

45%) 

945(1.3

68%) 

1349(1.

717%) 

1532(1.

994%) 

1380(1.

764%) 

1980(2.

297%) 

1785(2.0

88%) 

1916(2.1

64%) 

41 & 

42 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

43 & 

44 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

45 & 

46 

129(0.36

7%) 

139(0.3

71%) 

164(0.4

01%) 

176(0.4

01%) 

184(0.3

95%) 

155(0.3

05%) 

150(0.2

82%) 

138(0.2

42%) 

139(0.2

31%) 

144(0.2

39%) 

128(0.1

85%) 

124(0.1

58%) 

133(0.1

73%) 

125(0.1

6%) 

118(0.1

37%) 

115(0.13

5%) 

123(0.13

9%) 
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47 & 

48 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

49 & 

50 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

51 & 

52 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

53 & 

54 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

55 & 

56 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

57 & 

58 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

59 & 

60 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

61 & 

62 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

63 & 

64 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

65 & 

66 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

67 & 

68 

3022(8.5

92%) 

3194(8.

526%) 

3437(8.

403%) 

3601(8.

212%) 

3945(8.

479%) 

4229(8.

309%) 

4471(8.

403%) 

4886(8.

573%) 

5070(8.

418%) 

5177(8.

592%) 

5872(8.

502%) 

7142(9.

093%) 

6808(8.

859%) 

7417(9.

482%) 

8506(9.

869%) 

8620(10.

085%) 

8905(10.

059%) 

69 & 

70 

2870(8.1

6%) 

3066(8.

184%) 

3451(8.

438%) 

3771(8.

6%) 

3999(8.

595%) 

4376(8.

598%) 

4682(8.

8%) 

5138(9.

016%) 

5340(8.

866%) 

5300(8.

796%) 

5739(8.

309%) 

6295(8.

014%) 

6279(8.

171%) 

6374(8.

149%) 

6757(7.

84%) 

6649(7.7

79%) 

6853(7.7

41%) 

71 & 

72 

1484(4.2

19%) 

1571(4.

193%) 

1783(4.

359%) 

1834(4.

183%) 

1964(4.

221%) 

2086(4.

099%) 

2233(4.

197%) 

2384(4.

183%) 

2481(4.

119%) 

2406(3.

993%) 

2605(3.

772%) 

2920(3.

717%) 

2929(3.

811%) 

2958(3.

782%) 

3174(3.

683%) 

3440(4.0

25%) 

3456(3.9

04%) 

73 & 

74 

602(1.71

2%) 

659(1.7

59%) 

701(1.7

14%) 

755(1.7

22%) 

800(1.7

19%) 

840(1.6

5%) 

912(1.7

14%) 

968(1.6

99%) 

1014(1.

684%) 

975(1.6

18%) 

1045(1.

513%) 

1185(1.

509%) 

1167(1.

519%) 

1192(1.

524%) 

1359(1.

577%) 

1295(1.5

15%) 

1343(1.5

17%) 

75 & 

76 

1058(3.0

08%) 

1153(3.

078%) 

1218(2.

978%) 

1290(2.

942%) 

1338(2.

876%) 

1412(2.

774%) 

1431(2.

69%) 

1591(2.

792%) 

1635(2.

715%) 

1612(2.

675%) 

1746(2.

528%) 

1928(2.

455%) 

1823(2.

372%) 

1721(2.

2%) 

1932(2.

242%) 

1927(2.2

55%) 

1980(2.2

36%) 

77 & 

78 

956(2.71

8%) 

1040(2.

776%) 

1143(2.

795%) 

1158(2.

641%) 

1207(2.

594%) 

1261(2.

478%) 

1248(2.

346%) 

1321(2.

318%) 

1291(2.

143%) 

1264(2.

098%) 

1281(1.

855%) 

1430(1.

821%) 

1364(1.

775%) 

1454(1.

859%) 

1555(1.

804%) 

1596(1.8

67%) 

1752(1.9

79%) 

79 & 

80 

1401(3.9

83%) 

1494(3.

988%) 

1552(3.

795%) 

1612(3.

676%) 

1750(3.

761%) 

1915(3.

763%) 

1980(3.

721%) 

2143(3.

76%) 

2213(3.

674%) 

2318(3.

847%) 

2802(4.

057%) 

3021(3.

846%) 

2953(3.

843%) 

2936(3.

753%) 

3210(3.

724%) 

3070(3.5

92%) 

3136(3.5

42%) 

81 & 

82 

1319(3.7

5%) 

1373(3.

665%) 

1529(3.

738%) 

1679(3.

829%) 

1813(3.

897%) 

1974(3.

878%) 

2103(3.

953%) 

2295(4.

027%) 

2371(3.

937%) 

2411(4.

002%) 

2643(3.

827%) 

2639(3.

36%) 

2604(3.

389%) 

2551(3.

261%) 

2614(3.

033%) 

2642(3.0

91%) 

2688(3.0

36%) 

83 & 

84 

552(1.56

9%) 

590(1.5

75%) 

662(1.6

19%) 

792(1.8

06%) 

902(1.9

39%) 

1039(2.

041%) 

1126(2.

116%) 

1364(2.

393%) 

1579(2.

622%) 

1726(2.

865%) 

2108(3.

052%) 

2566(3.

267%) 

2376(3.

092%) 

2564(3.

278%) 

2908(3.

374%) 

2733(3.1

98%) 

2822(3.1

88%) 

85 & 

86 

989(2.81

2%) 

1029(2.

747%) 

1049(2.

565%) 

1085(2.

474%) 

1185(2.

547%) 

1243(2.

442%) 

1196(2.

248%) 

1298(2.

278%) 

1284(2.

132%) 

1346(2.

234%) 

1656(2.

398%) 

1976(2.

516%) 

2020(2.

629%) 

1981(2.

533%) 

2132(2.

474%) 

2080(2.4

34%) 

2173(2.4

54%) 

87 & 

88 

582(1.65

5%) 

828(2.2

1%) 

1017(2.

487%) 

1096(2.

5%) 

1030(2.

214%) 

1237(2.

43%) 

1125(2.

114%) 

877(1.5

39%) 

1562(2.

593%) 

1525(2.

531%) 

2762(3.

999%) 

3615(4.

602%) 

3502(4.

557%) 

3410(4.

359%) 

3597(4.

173%) 

3739(4.3

75%) 

4240(4.7

89%) 

89 & 

90 

451(1.28

2%) 

487(1.3

%) 

592(1.4

47%) 

650(1.4

82%) 

754(1.6

21%) 

809(1.5

9%) 

920(1.7

29%) 

1113(1.

953%) 

1250(2.

075%) 

1256(2.

085%) 

1408(2.

039%) 

1678(2.

136%) 

1806(2.

35%) 

1919(2.

453%) 

2217(2.

572%) 

2382(2.7

87%) 

2379(2.6

87%) 

91 & 

92 

1617(4.5

97%) 

1668(4.

452%) 

1769(4.

325%) 

1899(4.

331%) 

2018(4.

337%) 

2164(4.

252%) 

2303(4.

328%) 

2488(4.

366%) 

2574(4.

274%) 

2571(4.

267%) 

2747(3.

977%) 

2968(3.

779%) 

2941(3.

827%) 

3020(3.

861%) 

3282(3.

808%) 

3211(3.7

57%) 

3315(3.7

44%) 

93 & 

94 

1548(4.4

01%) 

1623(4.

332%) 

1782(4.

357%) 

1953(4.

454%) 

2017(4.

335%) 

2199(4.

321%) 

2240(4.

21%) 

2552(4.

478%) 

2592(4.

304%) 

2639(4.

38%) 

3921(5.

677%) 

4974(6.

332%) 

4956(6.

449%) 

4056(5.

185%) 

5944(6.

897%) 

5945(6.9

55%) 

6153(6.9

5%) 

95 & 

96 

968(2.75

2%) 

1031(2.

752%) 

1221(2.

985%) 

1316(3.

001%) 

1506(3.

237%) 

1674(3.

289%) 

1846(3.

47%) 

2100(3.

685%) 

2511(4.

169%) 

2580(4.

282%) 

2916(4.

222%) 

3440(4.

379%) 

3573(4.

649%) 

3680(4.

705%) 

3999(4.

64%) 

4057(4.7

47%) 

4077(4.6

05%) 
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97 & 

98 

3515(9.9

94%) 

3496(9.

332%) 

3691(9.

024%) 

3724(8.

493%) 

3806(8.

18%) 

4040(7.

938%) 

4063(7.

636%) 

4259(7.

473%) 

4090(6.

791%) 

3799(6.

305%) 

3710(5.

371%) 

3949(5.

027%) 

3521(4.

582%) 

3866(4.

942%) 

4266(4.

95%) 

4658(5.4

5%) 

5102(5.7

63%) 

99 & 

100 

975(2.77

2%) 

1132(3.

022%) 

1313(3.

21%) 

1495(3.

41%) 

1655(3.

557%) 

1875(3.

684%) 

2078(3.

906%) 

2323(4.

076%) 

2412(4.

005%) 

2543(4.

221%) 

2614(3.

785%) 

2948(3.

753%) 

2983(3.

882%) 

3089(3.

949%) 

3011(3.

494%) 

2875(3.3

64%) 

2729(3.0

83%) 

101 & 

102 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

103 & 

104 

565(1.60

6%) 

597(1.5

94%) 

583(1.4

25%) 

605(1.3

8%) 

636(1.3

67%) 

600(1.1

79%) 

603(1.1

33%) 

535(0.9

39%) 

586(0.9

73%) 

607(1.0

07%) 

652(0.9

44%) 

583(0.7

42%) 

577(0.7

51%) 

601(0.7

68%) 

449(0.5

21%) 

420(0.49

1%) 

396(0.44

7%) 

105 & 

106 

45(0.128

%) 

99(0.26

4%) 

135(0.3

3%) 

175(0.3

99%) 

215(0.4

62%) 

272(0.5

34%) 

343(0.6

45%) 

442(0.7

76%) 

493(0.8

19%) 

497(0.8

25%) 

717(1.0

38%) 

992(1.2

63%) 

821(1.0

68%) 

869(1.1

11%) 

916(1.0

63%) 

845(0.98

9%) 

922(1.04

1%) 

107 & 

108 

1431(4.0

69%) 

1513(4.

039%) 

1747(4.

271%) 

1978(4.

511%) 

2162(4.

647%) 

2572(5.

053%) 

2786(5.

236%) 

3071(5.

389%) 

3230(5.

363%) 

3176(5.

271%) 

3672(5.

316%) 

4176(5.

316%) 

3840(4.

997%) 

4080(5.

216%) 

4266(4.

95%) 

4084(4.7

78%) 

4380(4.9

47%) 

109 & 

110 

593(1.68

6%) 

687(1.8

34%) 

815(1.9

93%) 

946(2.1

57%) 

1018(2.

188%) 

1171(2.

301%) 

1280(2.

406%) 

1427(2.

504%) 

1500(2.

49%) 

1542(2.

559%) 

1662(2.

406%) 

1958(2.

493%) 

1884(2.

452%) 

2070(2.

646%) 

2013(2.

336%) 

1897(2.2

19%) 

1947(2.1

99%) 

111 & 

112 

927(2.63

6%) 

931(2.4

85%) 

989(2.4

18%) 

1063(2.

424%) 

1124(2.

416%) 

1286(2.

527%) 

1312(2.

466%) 

1446(2.

537%) 

1566(2.

6%) 

1533(2.

544%) 

1862(2.

696%) 

2049(2.

609%) 

2109(2.

744%) 

2099(2.

683%) 

2215(2.

57%) 

2213(2.5

89%) 

2207(2.4

93%) 

113 & 

114 

2487(7.0

71%) 

2644(7.

057%) 

2844(6.

954%) 

3001(6.

844%) 

3101(6.

665%) 

3345(6.

572%) 

3625(6.

813%) 

3619(6.

35%) 

3674(6.

1%) 

3657(6.

07%) 

4023(5.

825%) 

4325(5.

506%) 

4088(5.

32%) 

4215(5.

389%) 

4379(5.

081%) 

4112(4.8

11%) 

4029(4.5

51%) 

115 & 

116 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

46(0.09

%) 

50(0.09

4%) 

70(0.12

3%) 

168(0.2

79%) 

173(0.2

87%) 

214(0.3

1%) 

221(0.2

81%) 

230(0.2

99%) 

244(0.3

12%) 

231(0.2

68%) 

226(0.26

4%) 

214(0.24

2%) 

117 & 

118 

645(1.83

4%) 

677(1.8

07%) 

743(1.8

17%) 

780(1.7

79%) 

831(1.7

86%) 

918(1.8

04%) 

905(1.7

01%) 

912(1.6

%) 

896(1.4

88%) 

877(1.4

56%) 

901(1.3

04%) 

952(1.2

12%) 

951(1.2

38%) 

1019(1.

303%) 

1077(1.

25%) 

1064(1.2

45%) 

1120(1.2

65%) 

119 & 

120 
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

121 & 

122 

559(1.58

9%) 

560(1.4

95%) 

536(1.3

11%) 

539(1.2

29%) 

522(1.1

22%) 

483(0.9

49%) 

477(0.8

97%) 

421(0.7

39%) 

437(0.7

26%) 

508(0.8

43%) 

596(0.8

63%) 

602(0.7

66%) 

593(0.7

72%) 

493(0.6

3%) 

511(0.5

93%) 

496(0.58

%) 

509(0.57

5%) 
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Table 6.9. Longitudinal Probabilistic Distribution of Points per ROIs using Asymmetric JHU Parcellation Map with 122 ROIs given 

as: Number of points per ROI (Percentage on surface %) 
Week\

ROI# 
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

1 
363(1.04

1%) 

432(1.17

%) 

466(1.15

%) 

583(1.33

4%) 

544(1.17

1%) 

594(1.15

9%) 

431(0.80

1%) 

365(0.61

6%) 

333(0.51

9%) 

333(0.51

4%) 

652(0.89

%) 

945(1.14

9%) 

1050(1.3

%) 

1203(1.4

62%) 

1507(1.6

95%) 

1403(1.5

82%) 

1535(1.6

86%) 

2 
114(0.32

7%) 

112(0.30

3%) 

101(0.24

9%) 

105(0.24

%) 

103(0.22

2%) 

102(0.19

9%) 

95(0.177

%) 

101(0.17

%) 

96(0.15

%) 

104(0.16

1%) 

98(0.134

%) 

98(0.119

%) 

100(0.12

4%) 

211(0.25

6%) 

219(0.24

6%) 

100(0.11

3%) 

101(0.11

1%) 

3 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
98(0.134

%) 

125(0.15

2%) 

131(0.16

2%) 

134(0.16

3%) 

144(0.16

2%) 

144(0.16

2%) 

154(0.16

9%) 

4 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
94(0.128

%) 

131(0.15

9%) 

137(0.17

%) 

196(0.23

8%) 

218(0.24

5%) 

235(0.26

5%) 

267(0.29

3%) 

5 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
46(0.09

%) 

82(0.152

%) 

86(0.145

%) 

93(0.145

%) 

92(0.142

%) 

108(0.14

7%) 

119(0.14

5%) 

110(0.13

6%) 

114(0.13

9%) 

116(0.13

%) 

115(0.13

%) 

120(0.13

2%) 

6 
222(0.63

7%) 

200(0.54

2%) 

201(0.49

6%) 

221(0.50

6%) 

242(0.52

1%) 

278(0.54

2%) 

263(0.48

9%) 

269(0.45

4%) 

282(0.43

9%) 

246(0.38

%) 

244(0.33

3%) 

268(0.32

6%) 

274(0.33

9%) 

268(0.32

6%) 

306(0.34

4%) 

307(0.34

6%) 

317(0.34

8%) 

7 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

8 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

9 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

10 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

11 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

12 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

13 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

14 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

15 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

16 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

17 
275(0.78

9%) 

262(0.71

%) 

240(0.59

2%) 

239(0.54

7%) 

238(0.51

2%) 

254(0.49

5%) 

235(0.43

7%) 

230(0.38

8%) 

214(0.33

3%) 

215(0.33

2%) 

210(0.28

7%) 

209(0.25

4%) 

219(0.27

1%) 

218(0.26

5%) 

181(0.20

4%) 

165(0.18

6%) 

173(0.19

%) 

18 
833(2.38

9%) 

799(2.16

4%) 

805(1.98

7%) 

802(1.83

5%) 

821(1.76

8%) 

749(1.46

1%) 

669(1.24

4%) 

686(1.15

8%) 

508(0.79

2%) 

496(0.76

6%) 

446(0.60

9%) 

396(0.48

1%) 

427(0.52

9%) 

405(0.49

2%) 

379(0.42

6%) 

368(0.41

5%) 

359(0.39

4%) 

19 
88(0.252

%) 

114(0.30

9%) 

180(0.44

4%) 

214(0.49

%) 

219(0.47

1%) 

265(0.51

7%) 

295(0.54

8%) 

408(0.68

9%) 

447(0.69

6%) 

441(0.68

1%) 

339(0.46

3%) 

337(0.41

%) 

308(0.38

1%) 

319(0.38

8%) 

339(0.38

1%) 

328(0.37

%) 

343(0.37

7%) 

20 0(0%) 0(0%) 
110(0.27

1%) 

116(0.26

5%) 

157(0.33

8%) 

251(0.49

%) 

255(0.47

4%) 

267(0.45

1%) 

309(0.48

1%) 

295(0.45

6%) 

344(0.46

9%) 

326(0.39

6%) 

322(0.39

9%) 

268(0.32

6%) 

242(0.27

2%) 

333(0.37

5%) 

347(0.38

1%) 

21 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

22 0(0%) 
183(0.49

6%) 

268(0.66

1%) 

322(0.73

7%) 

356(0.76

6%) 

393(0.76

7%) 

335(0.62

3%) 

353(0.59

6%) 

431(0.67

2%) 

373(0.57

6%) 

456(0.62

2%) 

548(0.66

6%) 

558(0.69

1%) 

305(0.37

1%) 

349(0.39

2%) 

431(0.48

6%) 

499(0.54

8%) 

23 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

24 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
120(0.14

6%) 

182(0.20

5%) 

43(0.048

%) 
0(0%) 
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25 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

26 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

27 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

28 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

29 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

30 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
160(0.19

4%) 

202(0.22

7%) 

198(0.22

3%) 

188(0.20

6%) 

31 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

32 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

33 
627(1.79

8%) 

656(1.77

7%) 

708(1.74

7%) 

763(1.74

6%) 

803(1.72

9%) 

795(1.55

1%) 

796(1.48

%) 

809(1.36

6%) 

883(1.37

6%) 

853(1.31

7%) 

920(1.25

5%) 

928(1.12

8%) 

898(1.11

2%) 

920(1.11

8%) 

969(1.09

%) 

973(1.09

7%) 

964(1.05

9%) 

34 
566(1.62

3%) 

553(1.49

8%) 

392(0.96

7%) 

420(0.96

1%) 

417(0.89

8%) 

456(0.89

%) 

495(0.92

%) 

510(0.86

1%) 

546(0.85

1%) 

558(0.86

2%) 

594(0.81

1%) 

596(0.72

5%) 

520(0.64

4%) 

543(0.66

%) 

531(0.59

7%) 

544(0.61

3%) 

516(0.56

7%) 

35 
285(0.81

7%) 

323(0.87

5%) 

384(0.94

8%) 

409(0.93

6%) 

457(0.98

4%) 

535(1.04

4%) 

496(0.92

2%) 

507(0.85

6%) 

597(0.93

%) 

586(0.90

5%) 

546(0.74

5%) 

591(0.71

9%) 

597(0.73

9%) 

588(0.71

4%) 

683(0.76

8%) 

720(0.81

2%) 

729(0.8

%) 

36 
460(1.31

9%) 

471(1.27

6%) 

536(1.32

3%) 

572(1.30

9%) 

637(1.37

1%) 

765(1.49

2%) 

771(1.43

4%) 

886(1.49

6%) 

926(1.44

3%) 

929(1.43

5%) 

911(1.24

3%) 

981(1.19

3%) 

983(1.21

7%) 

1003(1.2

19%) 

1070(1.2

03%) 

1099(1.2

39%) 

1110(1.2

19%) 

37 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

38 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

39 
113(0.32

4%) 

125(0.33

9%) 

167(0.41

2%) 

192(0.43

9%) 

201(0.43

3%) 

332(0.64

8%) 

392(0.72

9%) 

386(0.65

2%) 

450(0.70

1%) 

366(0.56

5%) 

422(0.57

6%) 

548(0.66

6%) 

571(0.70

7%) 

581(0.70

6%) 

884(0.99

4%) 

786(0.88

6%) 

857(0.94

1%) 

40 
92(0.264

%) 

105(0.28

4%) 

118(0.29

1%) 

143(0.32

7%) 

144(0.31

%) 

192(0.37

5%) 

235(0.43

7%) 

328(0.55

4%) 

383(0.59

7%) 

411(0.63

5%) 

514(0.70

1%) 

602(0.73

2%) 

730(0.90

4%) 

683(0.83

%) 

866(0.97

4%) 

734(0.82

8%) 

839(0.92

1%) 

41 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

42 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

43 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

44 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

45 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

46 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

47 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

48 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

49 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

50 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

51 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 



119 

 

52 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

53 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

54 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

55 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

56 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

57 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

58 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
81(0.098

%) 
0(0%) 0(0%) 0(0%) 

59 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

60 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

61 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

62 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 
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7.  Appendix 2 
 

7.1.  Ray Triangle Intersection  

 In 1997, a benchmark fast linear solution to find the intersection between any ray 

and triangle was proposed by [189] where the plane equation is not needed to compute the 

intersection. Denoting the three vertices of the triangle by �K, ��, lus	�", the barycentric 

coordinate �C, D� equation of any point inside the triangle is given in equation (7.1): 

��C, D� = �1 Q C Q D��K + 	C�� + D�"   (7.1) 

A ray originated at � with direction � intersects the triangle by a displacement � that aligns 

the ray origin with a point inside the triangle as given in equation (7.2) (see Figure 7.1): 

� + �� = �1 Q C Q D��K + 	C�� + D�"   (7.2) 

Rearranging the terms will provide the following linear system of equations in (7.3), a 

solution through which the intersection can be found: 

�Q�, �� Q �K, �" Q	�Ke �
�CD� = � Q �K   (7.3) 

Where both C and D ≥ 0 for the intersection to be within the triangle, and C + D ≤ 1. If 

one of C or D = 1, then the ray is parallel with one of the triangle’s edges. And if � < 0, 

the triangle is not visible to the ray (e.g. the ray intersects the triangle in the opposite 

direction of �). 
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Figure 7.1. Translation t maps the ray to the barycentric coordinate (C, D) (Source: www.scratchapixel.com) 

 

7.2. Surface Points Normal Calculations 

For any surface approximated as a polygonal or triangular mesh, the surface 

vertices normal vectors are usually computed by averaging the normal vectors of the facets 

surrounding these vertices. For example, with reference to Figure 7.2, the normal vector at 

vertex V0 will be given by the normalized average of the facets sharing vertex V0 as shown 

in equation (7.4): 

rK����� = 	 ∑ 	w����������
`∑ w���������� `     (7.4) 
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Figure 7.2. Illustration of surface vertex normal vector calculation using surrounding facets normal vectors. 

 

where each facet normal is computed by the cross product of two of its edges. i.e. r������ =
	��� Q �K� × ��" Q �K�. Equal weights for the contribution of the facets in the average is 

initially suggested by Gouraud [196]. While Thürrner and Wüthrich adjusted the weights 

to accounts for the angle of each facet such that facets with the same normal vectors 

contribute only once [197], Max suggested taking the area of the facet into account by 

assigning larger weights for small facets [198].  Gouraud’s normal calculation using equal 

weights is efficient and convenient for shading and rendering, but Max’s method seems 

superior, especially with spherical like surfaces. 
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