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A B S T R A C T   

Fat accumulation in the liver cells can increase the risk of cardiac complications and cardiovascular disease 
mortality. Therefore, a way to quickly and accurately detect hepatic steatosis is critically important. However, 
current methods, e.g., liver biopsy, magnetic resonance imaging, and computerized tomography scan, are subject 
to high cost and/or medical complications. In this paper, we propose a deep neural network to estimate the 
degree of hepatic steatosis (low, mid, high) using only body shapes. The proposed network adopts dilated re-
sidual network blocks to extract refined features of input body shape maps by expanding the receptive field. 
Furthermore, to classify the degree of steatosis more accurately, we create a hybrid of the center loss and cross 
entropy loss to compact intra-class variations and separate inter-class differences. We performed extensive tests 
on the public medical dataset with various network parameters. Our experimental results show that the proposed 
network achieves a total accuracy of over 82% and offers an accurate and accessible assessment for hepatic 
steatosis.   

1. Introduction 

Fatty liver, also known as hepatic steatosis, occurs when excessive fat 
accumulates within the liver cells [1]. Hepatic steatosis has been a 
prominent feature of some of the most common health problems such as 
Non-Alcoholic Fatty Liver Disease (NAFLD) and Alcoholic Fatty Liver 
Disease (AFLD) [2]. NAFLD is emerging as one of the most common 
causes of chronic liver disease, metabolic syndrome, type 2 diabetes and 
cardiovascular disease [3,4]. Existing literature indicates that with the 
pandemic spread of obesity, NAFLD affects more than 25% of the pop-
ulation in the developed countries [5–7]. Hepatic steatosis is often 
reversible in the early stages by appropriate treatments. Therefore, it is 
of vital importance to detect the presence of steatosis and to assess its 
severity in order to recognize fat-related functional abnormalities in the 
liver [8]. 

Currently, liver biopsy is considered the gold reference standard for 
diagnosis and grading of hepatic steatosis [9]. Liver biopsy is the pro-
cedure in which a small piece of liver tissue is removed and a histological 
analysis is conducted. However, it is an invasive method and there exists 
many associated complications (e.g., abdominal pain, internal bleeding, 
puncture damage to nearby tissue or organs and potential infection). 
These drawbacks limit liver biopsy being utilized particularly for 
repeated measurements over time. 

Imaging techniques such as computed tomography (CT) and mag-
netic resonance imaging (MRI) are non-invasive techniques in clinical 
practice and have important roles in the diagnosis of hepatic steatosis 
[10,11]. CT scanning is a widely available tool, which provides an 
assessment of hepatic steatosis using Hounsfield Units (HU) associated 
with voxels [10]. MRI assesses hepatic steatosis based on its ability to 
estimate the relative magnitude of the signals arising from fat and water 
in each voxel [12]. However, MRI and CT scans are expensive and the 
ionizing radiation exposure associated with CT may be harmful to heath. 
In addition to CT and MRI scans, there are other clinical approaches to 
conduct initial/preliminary detection of hepatic steatosis. Patients with 
hepatic steatosis are more likely to have insulin resistance. In many 
cases, fatty liver disease is diagnosed after blood tests show elevated 
liver enzymes alanine aminotransferase and aspartate aminotransferase 
[13]. Although serum markers provide approaches to detect overall 
hepatic steatosis, they have poor sensitivity and specificity and correlate 
poorly with the level of steatosis [14]. The other popular technique is the 
abdominal ultrasound scan, which uses high-frequency sound waves to 
capture images to evaluate the size and shape of the liver, as well as 
blood flow through the liver. In ultrasound images, steatotic livers look 
brighter than normal livers whereas livers with fat and advance fibrosis 
look lumpy and shrunken [11,15]. Ultrasound scans have the advantage 
of safety, wide availability and little associated patient discomfort. In 
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addition, the cost of abdominal ultrasound is relatively low compared to 
CT and MRI. Nonetheless, ultrasound has a relatively poor performance 
on qualitative classifications of steatosis degrees. There is a very simple 
physical exam to check for fatty liver by palpating or pressing on pa-
tients’ abdomen. However, this provides a very rough assessment and is 
usually used along with other methods [3]. Therefore, there is an 
increasing interest in developing reliable, inexpensive and non-invasive 
methods to detect and monitor the progression of hepatic steatosis. 

With the explosive growth of optical scan technologies (e.g., using 
time-of-flight, vision, or structured light) and their availability on 
commodity devices including smart phones [16–18], body shape has the 
potential to become an important predictor of a variety of health out-
comes. Shape-based anthropomorphic measurements (e.g., body shape 
index, body roundness index, waist-to-hip ratio and waist-to-height 
ratio) are associated with the degree of adiposity [19]. However, the 
relationship between body shape and hepatic steatosis has not been 
studied. Consequently, we propose a Shape to assess Fatty Liver Network 
(S2FLNet) to provide a convenient and economical methodology to 
classify hepatic steatosis. 

This paper has three main contributions.  

● We propose a body shape based dilated residual network to detect 
hepatic steatosis. To the best of our knowledge, this is the first work 
to explore the relationship between the characteristics of body 
shapes and hepatic steatosis.  

● We introduce a center loss along with traditional cross entropy loss to 
enhance the classification performance by compacting the intra-class 
variations and separating the inter-class differences. 

● We offer a convenient and affordable approach to steatosis assess-
ment which can be made widely accessible. 

The remainder of our paper proceeds as follows. The body shape 
related techniques to predict health outcome are summarized in Related 
Works. The details of the dataset are introduced in Dataset and Body 
Shape Representation. The neural network architecture and model 
processing is presented in Methodology. We demonstrate our imple-
mentation details, including hyper-parameters, algorithm validation 
and prediction accuracy evaluation in Experiment. The paper ends with 
Conclusion. 

2. Related work 

Studies show that excess fat in the abdominal area is usually asso-
ciated with metabolic syndrome and can increase the likelihood of 
having more advanced forms of liver fat [20,21]. Body Mass Index (BMI) 
is the most common metric for indicating obesity levels [16,17]. Based 
on this principle, clinicians use BMI related factors to assess liver fat [13, 
20]. Although BMI is very easy to calculate, the evaluation accuracy of 
using BMI is very poor since there is much clinical evidence that in-
dicates a part of non-obese patients are also at risk of fatty liver com-
plications [21]. That is because Visceral Adipose Tissue (VAT) and not 
all abdominal fat is directly associated with hepatic steatosis [3]. In 
addition, the relative amount of VAT is small and has little contribution 
to the overall obesity level. It has been shown that waist circumference is 
highly correlated with VAT [17,22]. Given the strong associations be-
tween liver fat/waist circumference and VAT, early studies have found 
that waist circumference can be used to assess liver fat [21,23]. Ac-
cording to previous studies [16,24], waist circumference is only one of 
the shape descriptors and is not sufficient to represent body shape, thus 
the accuracy is not very high. 

Accessibility of 3D human body scanning technologies provide re-
searchers with ways to extract numerous accurate shape related mea-
surements from 3D geometry. In order to investigate correlations 
between the body shape and various healthy biomarkers [17,25], Xie 
et al. [26] studied body silhouettes and analyzed the correlation be-
tween the variation of shapes and the body leanness indicators; Lu et al. 
[16] proposed a body fat percentage estimation model by exploring 3D 
body shape features without anatomical presuppositions. Previous 
research has shown that VAT is an important intermediary between 
body shape and liver biomarkers [3,19]. There have been many ap-
proaches to predict body fat and VAT volume from the characteristics of 
body shape [16,17,24,27]. Ng et al. [25] extracted the shape represen-
tation from the 3D body surface with principal component analysis 
(PCA) and provided clinically relevant information to body composition 
estimates (regional fat/lean masses/VAT). However, these methods 
adopted simple statistical machine learning models (i.e., Gaussian Pro-
cess Regression (GPR), Support Vector Machine(SVM), Logistic Regres-
sion(LR) etc.) with the discretized shape descriptors. Thus, they are not 
able to extract deeper shape features resulting in poor predictability. 
Wang et al. [26] used dilated residual neural network to extract deep 
and refined features from 2D body shape maps that works well in pre-
dicting the 2D pixel level body composition maps. In this work, we 

Fig. 1. The extraction pipeline of 2D body shape maps and the degree of hepatic steatosis with CT scans. The original CT scans are calibrated and aligned to a 
canonical standard in the pipeline. The shape contours extracted from each slice are then combined together to produce the frontal and lateral body shape maps. The 
degree of hepatic steatosis to be used as the ground truth is estimated by averaging HU values of different liver regions. 
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further explore shape descriptors derived from 3D geometries and pro-
pose to use deep learning model to map the body shapes to hepatic 
steatosis. 

3. Dataset and body shape representation 

The goal of this study is to train a prediction model to classify the 
steatosis degrees with only body shape and to provide an accurate 
method to assess hepatic steatosis with body scans. However, optical 
body scans with the associated degree of hepatic steatosis are not 
available at this time. CT scan is an accurate method to calculate the 
degree of hepatic steatosis. The spatial reconstruction precision of CT is 
very high (0.5 mm–2 mm) compared to commercial optical body scan-
ners (~ 2 mm). Therefore, we use CT to generate the iso-surface rep-
resenting the shape of the body as well as the degree of hepatic steatosis 
for the training set in this study. The main contribution of our work is to 
provide a validated methodology to map body shapes to hepatic stea-
tosis. The methodology can be used to map body shapes from a variety of 
sources including optical scanners. 

In this section, we give a brief introduction to the medical dataset 
(Dataset). We also describe the pipeline to extract the input 2D body 
shape maps (Body Shape Maps) that represent the 3D body shapes and 
the output degrees of steatosis (Steatosis Degrees). 

3.1. Dataset 

Liver fat quantification tool for CT has been used for establishing the 
prevalence of steatosis in a large screening cohort [1,2]. In this study, we 
use the CT scans from three sources: Cancer Imaging Archive (TCIA) [4, 
28], Liver Tumor Segmentation Challenge (LiTS) [29] and Combined 
Healthy Abdominal Organ Segmentation (CHAOS) [30]. Because the 
raw CT scan data is obtained from different sources and their scan 
protocols are not the same, it is necessary to calibrate the dataset before 
extracting the body shape and determining the degree of hepatic stea-
tosis. We manually align all the CT scans and re-sample to ensure CT 
scan slice thickness and image resolution consistency. All the subject CT 
data are manually processed via the specialized medical segmentation 
tool ITK-SNAP [31]. To ensure the reliability of ground truth, we 
reviewed each subject data at least twice. The dataset (Fig. 1) contains a 
total of 300 CT scans. Compared with related clinical studies in body fat 
and metabolism assessment [16,27,32], our sample size is relatively 
large. 

3.2. Body shape maps 

CT uses rotating X-ray sources to create cross-sectional images of the 
body that may also be combined to produce a 3D image of a particular 
area of the body [29]. The reconstructed 3D body shapes that use CT 

iso-surfaces are shown in Fig. 1 (left). The 3D body shape is not suitable 
for being directly fed into our prediction models, thus we transform the 
original 3D body shape into useable two 2D depth maps without loss of 
information [17,26]. The protocol is as follows: we first extract the body 
contour of each CT slice and then decompose their depth values into 
frontal and lateral directions. Following this, we combine all the resul-
tant slices to obtain the 2D body shape maps in Fig. 1 (top right). In this 
study, the image size of the 2D body shape maps is 512 × 512. 

3.3. Steatosis degrees 

The absolute measured attenuation values at each voxel, i.e., HU, can 
be used to evaluate steatosis since CT images show decreased attenua-
tion values in the liver parenchyma with fat accumulation [1,2,8]. 
However, the HU values for liver fat is prone to sampling bias because of 
the relatively small size of the liver in the image. To avoid sampling 
errors/bias and to estimate hepatic steatosis more accurately, we collect 
at least eight liver regions in each slice as shown in Fig. 1 (bottom right) 
and then average their HU values. We apply the protocol on all the 300 
subjects of our dataset. Their HU value distribution is shown in Fig. 2 
(left). The severity or the degree of liver fat has a negative linear cor-
relation with its HU value [8]. The degrees of the steatosis can be 
defined by dividing the subjects into three groups (low, mid, high) based 
on the HU distribution. The steatosis degrees are not uniformly 
distributed. In order to obtain well balanced datasets, we select HU 
values 25 and 45 as the thresholds. The corresponding steatosis degree 
distribution is shown in Fig. 2 (right). We also show the detailed sta-
tistical characteristics of each steatosis degree in Table 1. 

4. Methodology 

Our hepatic steatosis assessment model consists of two parts. First, 
we present the architecture of the body shape based network (Section 
4.1). Second, we introduce the hybrid loss function to our model to in-
crease the accuracy (Section 4.2). 

4.1. Network architecture 

Fig. 3 shows the architecture of the proposed S2FLNet with dilated 

Fig. 2. The histograms of the CT based steatosis assessment. (Left) The distribution of the liver HU values of our dataset. (Right) The distribution of the degree of 
steatosis based on HU values. 

Table 1 
The categorization of steatosis degree with HU values.  

Degree Count HU range HU mean HU std 

Low 109 [45.0, 81.4] 57.6 9.0 
Mid 111 [25.0, 45.0] 35.4 5.4 
High 80 [-61.5, 25.0] 4.3 19.6 

Total 300 [-61.5, 81.4] 35.2 24.1  
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residual network (DRN) blocks [33,34] and center loss [35,36]. The 
proposed S2FLNet contains two inputs: frontal body shape map and 
lateral body shape map (From Fig. 1). The two input body shape maps 
are followed by two independent input phases with the same architec-
ture. The first layer of the input phase consists of 3 × 3 dilated con-
volutional layers followed by a 3 × 3 max-pooling layer. Both layers of 
the input phase have a stride of 2.0, so their output size is 1/4 of the size 
of the input body shape maps. Then, the outputs of the two input phases 
are concatenated together through a concatenate layer. Next, three DRN 
blocks are introduced to extract deep and refined features. A global 
average pooling layer (GAP), a fully connected layer and a softmax are 
added successively after the last DRN block. DRN is taking advantage of 
the dilated convolution and the residual network. This kind of archi-
tecture is also proposed in Ref. [34] and increases the resolution of the 
ResNet blocks’ output by replacing a subset of interior sub-sampling 
layers by dilation. 

The receptive field of the network is one of the key factors that de-
termines the representation power of feature maps in the convolutional 
layers [9,33]. Because the dimension of our input body shape maps is 
512 × 512, our network needs a large receptive field to extract high 
resolution features. The general choices to expand the receptive field are 
enlarging the stripe of layers or increasing the depth of network. 

However, both of these approaches will introduce more trainable pa-
rameters and reduce the resolution so that more computational re-
sources are needed. A neural network with more trainable parameters 
needs more data to avoid overfitting. However, it is difficult to get large 
medical data. The dilated convolution is just a convolution applied to 
input with defined gaps or holes between the kernel elements [33,37]. 
The dilated convolution is a way of acquiring a large receptive field 
without reducing the resolution or adding additional parameters. 
Therefore, the DRNs are able to represent both small and large image 
features and outperform the normal ResNet without adding algorithmic 
complexity to the model. 

The three DRN blocks are exactly the same. Fig. 4 shows the archi-
tecture of our DRN blocks which consist of two channels that form the 
ResNet architecture. The convolution layers used in our DRN blocks 
adopt dilated kernel with the same dilation rate. In order to keep the 
output size consistent, the strides of the first convolution layer of the 
upper and lower channels are set to be the same value. In our work they 
are set to 2.0. Three DRN blocks are added following the input phase. 
The output size of the final DRN block is 1/32 of the input image size (e. 
g., in our model, the input dimension is 512 × 512. The output feature 
maps of the final DRN block is 16 × 16). For global contextual prior, 
average pooling is used before feeding to fully connected layers in image 
classification [34]. Therefore, we use GAP at the end of the DRN blocks 
and then feed the output feature maps to a fully connected layer. 

The backbone of our network adopts structure of the form 
BatchNorm-ReLu [38]. The batch normalization following the convo-
lution layer accelerates the training process by reducing internal co-
variate shift. The batch normalization also has the characteristic of 
regularization to reduce over-fitting which is especially suitable for the 
medical domain due to the limited data size. Overall, our network is well 
adopted to processing the high resolution inputs and the limited data 
which is prevalent in medical images. 

4.2. Hybrid loss function 

Cross entropy loss is one of the most popular loss functions employed 
in traditional deep classification networks [39]. However, cross entropy 
loss has a poor performance in generating discriminative features as it 
only encourages the separability of features [35,36]. Unlike general 
classification problems, the degrees of steatosis are very difficult to 
distinguish. In our study, we categorise the steatosis based on the HU 
values (proportional to the percentage of fat) of CT scan, as shown in 

Fig. 3. The architecture of our proposed S2FLNet. The input phase of our network consists of two input channels: frontal and lateral body shape maps from Fig. 1. 
The strides of convolution and maxpooling layer in the input phase are set to 2. The extraction phase includes three DRN blocks with the same strides which is 
followed by a global average pooling layer and a fully connected layer. 

Fig. 4. The architecture of DRN block. The upper channel has two convolution 
layers and the lower channel has one convolution layer. All convolution layers 
adopt the dilated kernel with the same dilation rate and the strides of first 
convolution layer of the upper and lower channel are set to 2.0. 
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Fig. 2. Because HU value is continuous in the field, the bounds of the 
steatosis degrees are not absolutely separable. It is prone to mis-classify 
high (low) steatosis degree to low (high) steatosis degree, which is 
clinically unacceptable. Thus, we explore an effective loss function, 
center loss [36,40], which makes the classes close to their class center 
and compacts the intra-class variations. The details of the center loss 
function are as follows. 

Suppose the training sample of the mini-batch is m and the number of 
classes is n. Let f1

yi
(xi) be the output of pre-final layer before the fully 

connected layer by passing the ith training image (xi) with label (yi) 
through the network. Similarly, let f2

yi
(xi) be the final fully connected 

layer output. Suppose class yi has Nyi images. First, the training images of 
the mini-batch are passed through the network. Next, we calculate the 
deep feature center (cyi ) of the class yi and the center loss ℒcenter as 
formulated in Eq. (1): 

ℒcenter =
∑m

i=1

⃦
⃦
⃦f 1

yi
(xi) − cyi

⃦
⃦
⃦

2

2
,

where cyi =
1

Nyi

∑
f 1

yi
(xi).

(1) 

The formulation effectively characterizes the intra-class variations. 
When training the deep neural network, we apply the joint super-

vision of cross entropy loss ℒs and center loss ℒcenter to prevent the 
embedding from collapsing. The joint loss ℒtotal is formulated in Eq. (2): 

ℒtotal = ℒs + λℒcenter

= −
∑m

i=1 log
eWT

yi
f 2

yi
(xi)+byi

∑n
j=1 eWT

j f 2
yi
(xi)+bj

+λ
∑m

i=1

⃦
⃦
⃦f 1

yi
(xi) − cyi

⃦
⃦
⃦

2

2
,

(2)  

where W and b are the weight matrix and bias vector in the last fully 
connected layer respectively. Wj and Wyi denote the jth and yi

th columns 
of W. bj and byi denote the jth and yi

th elements of b. Loss weight λ is a 
weight tuning parameter which balances the center loss and cross en-
tropy loss. The optimal λ depends on the data and the task and requires 
tuning. One may select the optimal λ through analyzing different loss 
weights. More details can be found in Experiment. By minimizing the 
joint loss ℒtotal with respect to W and b, we get the target softmax 
outputs. 

5. Experiment 

In this section, we carry out the proposed deep neural network on the 
dataset in Section 3.1 and evaluate the performance of hepatic steatosis 
classification. 

5.1. Implementation 

The proposed network with different parameters in this paper are 
implemented on the open source deep learning framework TensorFlow. 
To optimize the algorithm, the stochastic gradient descent optimizer 
with learning rate of 0.01 and momentum of 0.9 is used. We set the batch 
size to 16 to train the network and set the overall training phase to be 
100 epochs. The training and validation processes are performed on two 
NVIDIA GTX 1080Ti graphics cards (11 GB GPU memory for each). 
TensorFlow offers a parameter called class_weight in model training that 
directly specifies the weight for each of the classes. To reduce the impact 
of the imbalance of the dataset, we set the parameter class_weight to 
equal the number of classes in the training process. 

To evaluate the performance of each method comprehensively, we 
calculate the total classification accuracy, confusion matrix and area 
under curve (AUC) of the receiver operating characteristic (ROC) curve. 

Due to the data size limitation of medical dataset, and to reduce the 

impact of particular random choice of samples, we use five-fold cross 
validation to evaluate the performance of the methods. In order to 
balance the testing and training data, we make training/testing ratios 
the same across of the degrees of steatosis. 

5.2. Ablation study 

The dilation convolution rate and loss weight are the most important 
hyper-parameters in our network. In this section, we run ablation studies 
to isolate the effect of the dilated convolution and the center loss. We 
discuss various parameters and the methodology to find the optimal 
parameters of our network. 

5.2.1. Dilated convolution 
We discuss different dilation rates in our dilated convolution layers 

and observe how the dilated convolution influences the performance of 
our network. We run the network with different dilation rates (1 × 1, 2 
× 2, 3 × 3, 4 × 4 and 5 × 5), where the dilation rate 1 × 1 means there is 
no dilated convolution and only classical convolutional layers are used. 
When discussing the dilation rates, we set the loss weight (λ = 0.2) in Eq. 
(2). The prediction accuracy with different dilation rates is shown in 
Table 2 (top). The ablation study results show that the dilated convo-
lution in the network influences the classification accuracy. We observe 
that the performance can be improved if we select an appropriate dila-
tion rate. The dilated convolution can expand the receptive field and 
extract more contextual information. Although a larger dilation rate can 
increase the receptive field, this may reduce the effectiveness of the 
filters and hurt the classification performance as well. Therefore, we 
select an optimal dilation rate to strengthen performance. Based on our 
study, the dilation rate 2 × 2 outperforms others (top blue row). 
Compared with the model without dilated convolution, our proposed 
network improves the accuracy by approximately 6% (from 76.3% to 

Table 2 
The results of ablation study. 
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82.0%). 5.2.2. Center loss 
The other important characteristic of our proposed network is the 

hybrid center loss. Therefore, we want to know if and how the center loss 

Fig. 5. The results of different classification methods. From (a)–(f): the confusion matrices are for Waist + Logistic Regression, Waist + SVM, 2D Body Shape +
Logistic Regression, 2D body Shape + SVM, Baseline method and proposed S2FLNet. 

Fig. 6. The ROC curve results of different classification methods. From (a)–(f): the diagrams are for Waist + Logistic Regression, Waist + SVM, 2D body shapes +
Logistic Regression, 2D body shapes + SVM, Baseline method and proposed S2FLNet. 
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can improve the classification performance. We run the network with 
different loss weights λ = (0, 0.1, 0.2, 0.3, 0, 4, 0.5), where the loss 
weight λ = 0 indicates that we do not embed center loss and only use 
traditional cross entropy loss. The dilation rate is fixed at 2 × 2. The 
results are shown in Table 2 (bottom). We can see that the introduction 
of center loss improves the accuracy significantly. It is worth noting that 
increasing loss weight does not always enhance the performance. The 
center loss can increase the intra-classes variation, but may make the 
classes cluster to the same center and decrease the inter-classes differ-
ences. In our study, the loss weights λ = 0.2, 0.3 work better than other 
loss weights and achieve a total accuracy of over 80% (bottom blue and 
gray rows refer to λ = 0.2, 0.3 respectively). Compared with the network 
without using center loss, the loss weight λ = 0.2 improves the accuracy 
by about 10% (from 72.3% to 82.7%). 

The optimal parameters depend on the task and dataset. Based on our 
ablation study, we select the optimal dilation rate of 2 × 2 and loss 
weight λ = 0.2. 

5.3. Comparison with reference methods 

5.3.1. Performance experiment 
To the best of our knowledge, this work is the first to explore the 

relationship between body shape and hepatic steatosis. Therefore, our 
major objective is to validate the proposed method which uses 2D body 
maps to predict hepatic steatosis. We have two specific aims: one is to 
verify the effectiveness of the body shape descriptors and the other is to 
validate the proposed network. There exists no other shape based 
methods to grade hepatic steatosis. The closest approach to ours is the 
use of waist circumference to predict steatosis [23]. Thus, we apply the 
LR and the linear SVM to model the relationship between waist 
circumference and hepatic steatosis. Furthermore, in order to evaluate 
the relative effectiveness of using 2D body shape maps, we also apply 
these two classical statistic methods (LR and SVM). The 2D body shape 
maps are not appropriate for direct use in SVM and logistic regression. 
Unlike convolutional neural network which has feature extraction and 
dimensionality reduction, the SVM and logistic regression cannot refine 
the high dimensional 2D body shape maps. Therefore, we apply PCA on 
our body shape maps and select the top principal components (PCs) of 
our body shape maps which characterize at least 95% of the variation in 
body shape. We also run the baseline method (the S2FLNet without 
using dilated convolution and center loss) in our experiment to validate 
the proposed neural network. 

Fig. 5 and Fig. 6 show the confusion matrices and ROC curves of the 
different methods. The quantitative results of classical methods and 

networks are shown in Table 3. The LR and SVM using only waist 
circumference have the prediction accuracy of less than 63% (LR: 
60.3%, SVM: 62.7%) which are worse than all body shape based ap-
proaches. The LR and SVM using our 2D body shape maps improve the 
total accuracy by about 3% (LR: 60.3% → 63.7%, SVM: 62.7% → 65.3%) 
compared with the same models using waist circumference. Both base-
line and the proposed S2LFNet which adopt the deep neural network 
have significant advantages over the classical statistical models (blue 
row). This indicates that deep neural networks can extract more 
discriminative features than principal component analysis and classical 
statistical models. Furthermore, we can see that our proposed S2FLNet 
works the best in terms of both accuracy and AUC values. Compared 
with the baseline method, the proposed S2FLNet improves the total 
accuracy by about 11% (from 71.0% to 82.3%). According to the results 
of the confusion matrix, our proposed neural network outperforms the 
baseline without adding center loss and our misclassification between 
degrees low and high is very low. This has clinical significance. The 
center loss works well in our task because it compacts the intra-class 
variations. 

The AUC values are used to evaluate the prediction performance of 
the classical statistical models and proposed neural networks. First, 
similar to the classification accuracy results, all AUC values of the waist 
related models are less than those of body shape based methods. Second, 
the AUC values of the baseline method and proposed S2FLNet are 
generally larger than those of LR and SVM in the three categories, which 
indicates that the deep neural networks have better predictability for 
hepatic steatosis. Third, the three AUC values of proposed S2FLNet are 
over 0.9 and are larger than those of the baseline method. This shows 
our S2LFNet archives the best predictability for hepatic steatosis with 2D 
body shape maps. 

These experimental results demonstrate that the 2D body shape maps 
include more shape information and train better than waist circumfer-
ence. Our proposed deep neural networks surpass the classical statistical 
models (LR, SVM) with the same body shape maps. In addition, ac-
cording to the results of different network variations, the dilated 
convolution and the center loss can improve the prediction performance. 
Our proposed method promises to make diagnosing hepatic steatosis 
more affordable and convenient without compromising accuracy. 

5.3.2. Visualization experiment 
We conduct visualization experiments to investigate the discrimi-

native body regions used by the deep neural network to identify hepatic 
steatosis. This is designed to give insight on the inner workings of the 
S2FLNet that would allow clinicians to interpret the “black box” often 

Table 3 
The classification performance comparison of different models on the public medical 
dataset. 
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associated with machine learning approaches. Gradient-weighted Class 
Activation Mapping (Grad-CAM) [41] is a class-discriminative locali-
zation technique and could also be used to interpret the prediction de-
cision made by the deep neural network. We generate the feature 
activation heatmap by Grad-CAM for both baseline network and the 
proposed network. The results are shown in Fig. 7. The baseline network 
exhibits a circumscribed activation on the sides of the abdomen which 
are not the best region for the prediction of hepatic steatosis [42,43]. 
The proposed S2FLNet generate a wide activation on the region where 
the liver is located. This indicates that our proposed network has the 
ability to learn from a rich representation of the body shape. 

6. Conclusion 

Unlike the current studies on hepatic steatosis assessment, we pre-
sent a novel deep neural network based approach to determining the 
degree of hepatic steatosis using body shapes. Because of the high res-
olution of input body shapes and the difficulty of distinguishing the 
degrees of hepatic steatosis, our proposed network introduces the DRN 
blocks and the center loss to improve the classification performance. 
Classical methods and proposed network with various parameters 
(with/without dilated convolution and center loss) are tested on medical 
datasets. The optimal dilation rate and loss weight are chosen to achieve 
excellent accuracy. The experimental results show that our 2D body 
shape maps are better than simple waist circumference and the proposed 
deep neural networks are superior to classical methods, (e.g., SVM and 
LR). The network with dilated convolution and the center loss achieves 
the best prediction accuracy and AUC values. The detailed performance 
analysis indicates that our proposed S2FLNet solution provides a less- 
expensive and accurate alternative to competing solutions for assess-
ing hepatic steatosis. 

Our proposed method is limited in the following perspectives. First, 
our proposed method only utilized partial body shape information due 
to the fact that 2D body shapes are only available from two directions. 
Second, there are more shape representation approaches that can be 
used to extract shape information such as surface curvature and surface 
normal. Third, the approach presented here uses CT for both the body 
shape and the degree of steatosis. However, the approach can be used 
with shapes from any source including optical scans and steatosis de-
grees from liver biopsies. 
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