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Feature selection is a critical component in supervised learning to improve model performance. Searching
for the optimal feature candidates can be NP-hard. With limited data, cross-validation is widely used to
alleviate overfitting, which unfortunately suffers from high computational cost. We propose a highly
innovative strategy in feature selection to reduce the overfitting risk but without cross-validation. Our
method selects the optimal sub-interval, i.e., region of interest (ROI), of a functional feature for functional
linear regression where the response is a scalar and the predictor is a function. For each candidate sub-
interval, we evaluate the overfitting risk by calculating a necessary sample size to achieve a pre-specified
statistical power. Combining with a model accuracy measure, we rank these sub-intervals and select the
ROI. The proposed method has been compared with other state-of-the-art feature selection methods on
several reference datasets. The results show that our proposed method achieves an excellent perfor-
mance in prediction accuracy and reduces computational cost substantially.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction selected features [2]. To deal with the overfitting problem, cross-
In supervised learning, we attempt to make predictions based
on what we learn from limited existing data. However, the inher-
ently high-dimensional real data can be a curse for learning. To
generalize a learning model well, the amount of data needed is
expected to grow exponentially with data dimensionalities (i.e.,
features). Feature selection (FS) process is extremely important
to reduce data dimensionality [1]. In general, most FS methods
can be categorized into three types: the filter methods, the wrap-
per methods and the embedded methods [2]. Filter methods eval-
uate features based on their individual mapping potency to the
response [3]. The selection process ignores the relationships
between the features and is irrelevant to the choice of the learning
model. Therefore, a filter method tends to choose features with
high redundancy and the model trained accordingly tends to per-
form poorly. On the contrary, wrapper or embedded methods fully
consider a learning model during FS [4]. Wrapper methods con-
sider the FS as a searching problem, which evaluates the subsets
of features based on their performance under the learning model.
Therefore, wrapper methods typically result in a better perfor-
mance. However, with insufficient but high-dimensional training
samples, wrapper methods often suffer from overfitting and the
resulting learning model cannot be generalized well with the
validation is typically introduced to wrapper models to evaluate
the potential risk of overfitting and to select the optimal feature
subset that achieves the best trade-off between the variance and
bias [5]. However, the cross-validation process either significantly
increases the computational workload, e.g., leave-one-out-cross-
validation (LOOCV), or suffers from result uncertainties due to ran-
dom data partitioning, e.g., K-fold cross-validation. Unlike the
wrapper methods, the embedded methods alleviate overfitting
during FS with a penalty against complexity [6,7]. However, this
regularization to drop redundant features may perform poorly
when a dataset contains highly intra-correlated relevant features.
In this paper, we propose a novel method that can evaluate the
overfitting risk without cross-validation.

Many real-world features, such as sound and images, are in
essence of a continuous or functional form. Whilst the recording
process inevitably discretizes a feature, the intrinsic order and con-
tinuity (i.e., smoothness and dependency) of these discretized
measurements carry important information on this feature. Thus,
treating these measurements naively as multivariate features in
the modeling is very inefficient and often computationally unsta-
ble. Functional data analysis (FDA) [8–12], an increasingly impor-
tant area in statistics, has shown its superiority in dealing with
this type of data, called ‘‘functional data,” which considers the
feature as a function varying over a continuum. The functionaliza-
tion process turns the high-dimensionality curse into a blessing
and shows robustness in dealing with data with different sampling
rate [13]. In this paper, we focus on functional linear regression
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with a scalar response and a functional feature and we aim to
locate the optimal interval for the domain of the functional feature,
i.e., the region of interest (ROI).

The main contribution of this paper is threefold. First, we pro-
pose a novel measure to evaluate the risk of overfitting based on
a statistical modeling framework, i.e., functional linear regression.
Second, our framework trades off the model accuracy and overfit-
ting risk without the need for splitting data as in cross-validation,
which effectively reduces the computational cost. Third, our
method is highly applicable and effective for moderate datasets.
2. Related works

Wewill first review the functional FS methods and then list rep-
resentative methods for multivariate FS which can be adapted to
functional ROI through some preprocessing steps.

Functional ROI selection. Our aim here is to select the ROI for a
functional feature within functional linear regression. Although
the functional feature is always discretely measured over its
domain in practice, the classical FS methods, which are originally
designed for multivariate features, cannot be applied directly since
they cannot take into account the intrinsic order and dependencies
between these measurements. Prior work on this topic is limited,
which only include [14,15] to the best of our knowledge. They both
transformed the functional linear regression model to a classical
linear regression model by approximating the functional feature
using B-spline basis functions and then applied a LASSO-type
method [20] to select the B-spline coefficients. Since each B-
spline basis is defined on a local region, the ROI of the functional
feature can be selected accordingly.

Extended Multivariate FS methods. Multivariate FS methods are
usually categorized into three types: filter methods, wrapper meth-
ods and embedded methods [3]. A filter method typically evaluates
the informativeness of each feature individually using a criterion
score regardless of the learning model [16–18]. Without a training
model, filter methods are typically fast and robust. In contrast a
wrapper method involves a learning model during FS and ranks
the candidate feature subsets according to the learning performance
[5,19]. Wrapper methods usually perform better performance but
suffer from higher computation cost. Embedded methods are simi-
lar to wrapper methods in that they both search for a feature subset
that fits the model best, but they do not separate the feature selec-
tion frommodel training which increase the efficiency of FS. LASSO
[20] is a commonly used embedded method, which introduces the
L1 regularization to penalize model complexity and excludes inef-
fective features simultaneously. Similarly, ridge regression adopts
the L2 regularization and Elastic-Net [21] combines the L1 and L2
regularizations. LASSO has been further developed for feature selec-
tion purposes in many recent works [22,23,2]. Embedded methods
take advantage of both filter methods and wrapper methods. Com-
pared to the wrapper methods, embedded methods are typically
faster and suffer less from overfitting. To extend the general multi-
variate FS methods to functional data, the functional feature can be
transformed with some basis functions such as the eigenfunctions
obtained from the functional principal component analysis, Fourier
functions and B-spline bases. The transformed features are usually
very similar to classical multivariate features and multivariate FS
methods can be accordingly applied.
3. Methodology

3.1. Functional linear models

In scalar-on-functional regression, we want to map a smooth
(e.g., continuous) functional feature X tð Þ 2 L2 Ið Þ defined on domain
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I to the scalar response Y 2 R. For simplicity we focus on a func-
tional linear model as in Eq. (1). E X tð Þð Þ ¼ 0; t 2 I. For example, in
practice, we could center the functional feature at its cross-
sectional mean. The b tð Þ 2 L2 Ið Þ is the coefficient function and
b0 2 R is the intercept.

Y � b0 þ
Z
I
b tð ÞX tð Þdt: ð1Þ

It is difficult to fit Eq. (1) directly since both X tð Þ and b tð Þ are in
essence infinite-dimensional. However, they can be transformed
to a classical linear model as in Eq. (2) in terms of a set of basis func-
tions as in Eq. (3), where xk tð Þ denotes a basis function; nk and hk
are the transformed parameters of X tð Þ and b tð Þ, respectively. Com-
monly used basis functions include the eigenfunctions from the
functional principal component analysis (FPCA) of X tð Þ, B-splines
and Fourier functions [24–26]. In this paper, we adopt the FPCA of
X tð Þ to transform the original functional feature.

Y � a0 þ
X1
k¼1

hknk: ð2Þ

b tð Þ ¼
X1
k¼1

hkxk tð Þ; hk ¼
R
I b tð Þxk tð Þdt;

X tð Þ ¼
X1
k¼1

nkxk tð Þ; nk ¼
R
I X tð Þxk tð Þdt:

8>>>><>>>>: ð3Þ

In practice, the functional feature X tð Þ is discretely measured at N
points over the domain I. We collect data from n subjects, so the
upper limit of the summation is at most min N;nð Þ. Moreover, the
first Cn principal components (PCs) often suffice to approximate
X tð Þ well if they cumulatively explain at least g proportion of the
variance of X tð Þ, e.g., 95%. Therefore, the linear model in Eq. (2) is
almost equivalent to Eq. (4),

Y ¼ a0 þ
XCn

k¼1

hknk þ d;

Cn ¼ argmin
S6min N;nð Þ

XS
i¼1

ki=
Xmin N;nð Þ

i¼1

ki P g

 !
:

8>>>>><>>>>>:
ð4Þ

where ki; i ¼ 1; . . . ; Cn are positive eigenvalues in a decreasing order
and d is the noise term.

3.2. ROI selection for a functional feature

We define the original functional feature domain as C, which,
without loss of generality, is assumed to be 0;1½ �. Our goal here
is to find the optimal sub-interval of C such that the best trade-
off between the model accuracy and overfitting risk of the func-
tional linear model in Eq. (1) is achieved. Fig. 1 illustrates our pro-
posed method. First, for each sub-interval Cj of C, a candidate ROI,
we let I ¼ Cj in Eq. (1) and then transform Eq. (1) to Eq. (4). Then
we propose two measures to evaluate the model accuracy and
overfitting risk in terms of Eq. (4). Finally, we define a metric that
balances the two measures and select the optimal sub-interval, i.e.,
ROI, that achieves the best trade-off.

Model accuracy. For each sub-interval Cj, we solve Eq. (4) by the

least square method and obtain the coefficient estimates ĥji and
residual sj in Eq. (5), where Y is the vector of all subjects’ response

vector, Ŷj is the fitted response and n̂
j
i is the vector that consists of

the ith PC of all subjects.

sj ¼ Y � Ŷj; Ŷj ¼ â0 þ
XCj

n

i¼1

ĥjin̂
j
i: ð5Þ



Fig. 1. An illustration of our approach. Sub-Interval Extraction: sub-intervals are defined as candidate ROIs. Feature Transform: the functional feature of each candidate ROI is
transformed using basis functions, e.g., eigenfunctions via FPCA. Two measures are proposed to evaluate the model accuracy and overfitting risk. Feature Selection: the ROI is
selected as the subinterval that achieves the best trade-off between the two measures.
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The model accuracy is measured by m̂2j ¼ sT
j
s

n�1�Cj
n
, the estimated

noise variance in terms of the residual sj, which is commonly used
in classical linear regression.

Overfitting risk. A learning model trained with limited data is
prone to suffer from overfitting, which means that it cannot be
generalized well to unseen data. The larger the training dataset
we use, the lower the overfitting risk. In theory, as the training data
size increases, the training error converges to the generalization
error and the overfitting risk converges to zero. We propose a novel
measure to quantify the overfitting risk by evaluating the neces-
sary sample size for the training model to achieve a sufficiently
large statistical power. A small necessary sample size indicates a
low risk of overfitting, whereas a large necessary sample size indi-
cates a high risk. We will illustrate this relation using a real dataset
in Section 4.3.

We follow [26] to obtain the sample size based on statistical
power. First, we define

V̂ j
i ¼ k̂ji ĥji

� �2
; i ¼ 1;2; . . . ; Cj

n: ð6Þ

The V̂ j
i is not only closely related to the coefficients of determi-

nation (i.e., R2) of the training model, but also takes the variation of

PCs, i.e., k̂ji, into account. We denote their order statistics by V̂ j
ið Þ in a

decreasing order, with the concomitant coefficient estimate ĥj ið Þ and

PCs n̂
j
ið Þ.

Then we define a test statistic for the null hypothesis
H0 : bj tð Þ ¼ 0 for all t 2 0;1½ � in Eq. (7) where c is a pre-specified
fraction, e.g., 0.95.

Tj ¼
XKj

n

i¼1

ĥj
ið Þ

� �2

^var ĥj
ið Þ

� � ¼ 1
m̂2
j

XKj
n

i¼1

YT n̂
j
ið Þ

� �2

n̂
jT

ið Þ n̂
j
ið Þ

;

Kj
n ¼ argmin

S6Cj
n

XS
i¼1

bV j
ið Þ=
XCj

n

i¼1

bV j
ið Þ P c

0@ 1A:

8>>>>>>><>>>>>>>:
ð7Þ
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By Theorem 1 of [26], under the null hypothesis, the test function Tj

in Eq. (7) is asymptotically equivalent to the sum of the first Kj
n

order statistics of Cj
n independent chi-square random variables with

degree of freedom 1. With the significance level a, let q a;Kj
n ;C

j
nð Þ

denote the 100 1� að Þ% quantile of Tj under the null hypothesis,
which can be found accurately by 10,000 Monte Carlo simulations.

By Theorem 2 of [26], under the significance level a, the neces-
sary sample size hj to achieve the statistical power p is determined
by Eq. (8), where U is the cumulative distribution function of the
standard normal distribution.

1�U
q

a;Kjn ;C
j
nð Þ� Kj

nþ
hj

m̂2
j

Z

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Kj

nþ2
hj

m̂2
j

Z

� �s
0BBBB@

1CCCCAP p;

Z ¼
XKj

n

i¼1

bV j
ið Þ:

8>>>>>>>>>><>>>>>>>>>>:
ð8Þ

Once hj is obtained, the overfitting risk is measured by

wj ¼ log
hj

n
þ 1

� �
: ð9Þ

The risk wj is always positive as in Eq. (9).
ROI selection. We define a metric f which linearly trades off the

normalized model accuracy and overfitting risk with the weight w
as in Eq. (10).

f wj; m̂2j
� �

¼ 1�wð ÞP wj

� �þwP m̂2j
� �

;

P xð Þ ¼ x�min xð Þ
max xð Þ�min xð Þ :

8<: ð10Þ

For each sub-interval Cj, we compute a value of a f wj; m̂2j
� �

follow-

ing Eq. (10) and select the ROI of which f value is the smallest.
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4. Discussion

The ROI is determined jointly by both model accuracy and over-
fitting risk via a weight w by Eq. (10). In this section we discuss
how this weight influences the ROI selection in detail using a real
dataset.

Dataset. Some studies indicated the human body shape descrip-
tors, such as the circumference and waist-hip ratio, can predict the
visceral adipose tissue (VAT) value. We have collected a 3D human
body shape data using a depth vision sensor (DVS) based 3D
human body scan and reconstruct system [27]. The VAT value is
measured by the CoreScan�(GE Healthcare, Madison, WI), a Dual-
energy X-ray Absorptiometry (DXA) based VAT assessment soft-
ware. The accuracy has been validated by multiple studies
[28,29]. Given the high cost of data collection, this is a very repre-
sentative moderate-sized medical dataset, which contains 60 male
and 87 female subjects. The body level circumference, one type of
the anthropometric data, has been verified as a very useful shape
descriptor to summarize body shape related information [30,36].
Therefore, we extract N ¼ 128 equal-spaced level circumferences
of the 3D body shape from the neck to the ankle (Fig. 2a). These
level circumferences can be viewed as discrete measurements of
a functional feature defined on the domain C ¼ 0;1½ �. The original
functional feature derived from the level circumference is shown
in Fig. 2b. We use the 60 male subjects to analyze the influence
of the weight on the ROI selection.

Implementation. To study the effect of the weightw, we generate
a real sequence ranging from 0.1 to 0.9 with the increment 0.1. A
large w value implies an emphasis on model accuracy, while a
small w implies an emphasis on suppressing overfitting. As the
level circumference is measured at N ¼ 128 points, for each value
of the weight w, we traverse all 8128 (C2

128) sub-intervals to locate
the ROI following the procedures in Section 3.

We set the power p ¼ 0:8, significance level a ¼ 0:05, threshold
g ¼ 0:99 and threshold c ¼ 0:95, all of which are commonly used
statistical parameter settings in hypothesis testing and functional
data analysis [26].
Fig. 2. Functional features of the dataset. (a) Level circumference extraction from 3D bod
the functional mean (the bold line) for male and female datasets respectively.
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4.1. Mix weight

The heatmaps of the model accuracy and overfitting risk are
illustrated in Fig. 3. Unsurprisingly, their trends are reversed: a lar-
ger sub-interval corresponds to a more complex model and conse-
quently, the model training error decreases while the overfitting
risk increases. The heatmaps of the f function in Eq. (10) with dif-
ferent weights are shown in Fig. 4. We also highlight the top can-
didate ROIs with the lowest 500 f values and their ranks have been
color-coded.

As shown in Fig. 4, a large weight attaches more importance to
model accuracy and thus a wider ROI will be selected; however, a
larger sub-interval results in a higher risk of overfitting. This is the
reason why a weighted combination is desirable to achieve a bal-
ance. Nonetheless, there is no explicit reference on how to choose
the best weight, since it is highly dependent on the data and train-
ing model. For our dataset, in Fig. 5, we demonstrate the general-
ization error distribution of the models trained with functional
features corresponding to different ROIs selected by different
weight w. The generalization error is derived from the LOOCV.
The difference between the best and the worst median absolute
errors is over 30%. We find 0.5 is a reasonable weight. In general,
if the sample size is large enough and the risk of overfitting is
low, a larger weight works better and vice versa. Unless such
knowledge is available, we recommend the weight 0.5 to
practitioners.
4.2. Computational cost analysis

Our approach does not use the cross-validation process for ROI
selection. Here we want to compare the computing time of our
method with a cross-validation based method. In order to keep
the results consistent, we choose the original cross-validation
embedded in our functional linear regression model in Eq. (1).
Meantime, we choose the mix weight w ¼ 0:5 for our method.
The K = 5,6,7,8,9,10 folds cross-validation and LOOCV are com-
pared in this section.
y shape. (b) The original functional feature derived from the level circumference and



Fig. 3. Heatmaps of the model accuracy (a) and the overfitting risk (b).

Fig. 4. ROI selection with different weights. (Top row) The f function heatmaps with different weights. (Bottom row) The distribution of the top 500 candidate ROIs
corresponding to each heatmap.

Fig. 5. Boxplots for absolute errors of models with different weights. The red
horizontal bar in each boxplot refers to the median. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 1
The computation complexity analysis.

Case ROI (t) RMSE (in3) R2 Exec.Time

5-folds [0.102, 0.920] 1.530 0.720 129
6-folds [0.086, 0.920] 1.523 0.721 144
7-folds [0.141, 0.531] 1.449 0.749 161
8-folds [0.156, 0.516] 1.420 0.758 184
9-folds [0.165, 0.820] 1.559 0.709 203
10-folds [0.117, 0.508] 1.549 0.713 216
LOOCV [0.078, 0.508] 1.503 0.722 1168
Proposed [0.148, 0.281] 1.348 0.782 178

Table 2
The illustration of the relation between the overfitting risk and necessary sample size
to achieve a particular statistical power using the male VAT data.

ROI hj Training MSE Test MSE OR

0:148;0:281½ � 92 0.458 1.715 1.257
0;1½ � 233 0.412 2.381 1.969
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The results are shown in Table 1, which include the selected
ROI, Root Mean Squared Error (RMSE), R- Squared value and exe-
cution time of each method in comparison. Table 1 shows that the
execution time of the k-fold cross-validation is comparable with
239
that of our method, but the ROI selected by the K-fold
cross-validation is unstable for this small dataset as the partition
to multiple folds is random. Thus one usually adopts LOOCV
instead of K-folds cross validation for a small dataset. However,
the LOOCV is unsurprisingly computationally very intensive,
which as shown in Table 1 consumes the most execution time
among all methods, more than six times than our proposed



Fig. 6. The results of our approach applied to the VAT dataset, Canadian Weather (CW) dataset and Moisture (MO) dataset. (a) The overfitting risk heatmap. (b) The model
accuracy heatmap. (c) (e) The f function heatmap and the selected ROI (the magenta cross) with w ¼ 0:3;0:5;0:7. (f) The top 500 ranked candidate ROIs with w ¼ 0:5.

Fig. 7. ROIs selected by the reference methods: (a) DCS, (b) RReliefF, (c) SLS, (d) B-spline LASSO, (e) Elastic-Net and (f) Step-wise, according to the coefficient function b tð Þ. The
blue region corresponds to high coefficient values; the red region corresponds to the low coefficient values; the gray curve corresponds to the coefficient function.

Q. Wang, Y. Lu, X. Zhang et al. Neurocomputing 422 (2021) 235–244
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method. Without using cross-validation, our method is not sensi-
tive to random partition as is the case for the K-fold cross-
validation and does not suffer from intensive computation as is
the case for the LOOCV.

4.3. Overfitting risk, ROI and hj

To verify the relation between the overfitting risk and necessary
sample size to achieve a particular statistical power as in Sec-
tion 3.2, we use the male VAT data for illustration. We randomly
partition the data into a training set (80%) and a test set (20%).
We consider two ROIs, 0:148;0:281½ �, the optimal ROI selected by
our method, and the entire domain 0;1½ �. Intuitively the second
ROI 0;1½ � is expected to overfit the data since it includes an addi-
tional but redundant domain compared to the first ROI. For each
ROI, we fit a functional linear regression, calculate the training
mean squared error (MSE) and test MSE, together with the overfit-
ting risk (OR) OR ¼ test MSE� training MSE. We also obtain the
corresponding hj following Eq. (8) using the training set, the neces-
sary sample size to achieve power 0.8 with the level of significance
0.05. The results are given in Table 2.

Table 2 shows that as expected the ROI 0;1½ � leads to a larger
overfitting risk since its correspondingOR value is larger, with a cor-
respondingly larger hj. This confirms the relation between the over-
fitting risk and necessary sample size to achieve a statistical power,
that is, a small necessary sample size indicates a low risk of overfit-
ting, whereas a large necessary sample size indicates a high risk.
Table 3
The comparison of prediction performance. Note: The Canadian Weather Datasets is cycli

Dataset Methods

DCS [0.1
RReliefF [0.1
SLS [0.4

Medical LASSO [0.1
Elastic-Net [0.1
Step-wise [0.1
Proposed(w ¼ 0:3) [0.2
Proposed(w ¼ 0:5) [0.2
Proposed(w ¼ 0:7) [0.1

DCS [0.8
RReliefF [0.8

Canadian SLS [0.3
Weather LASSO [0.6

Elastic-Net [0.8
Step-wise [0.8
Proposed(w ¼ 0:3) [0.5
Proposed(w ¼ 0:5) [0.5
Proposed(w ¼ 0:7) [0.4

DCS [0.0
RReliefF [0.4
SLS [0.2

Moisture LASSO [0.5
Elastic-Net [0.5
Step-wise [0.5
Proposed(w ¼ 0:3) [0.0
Proposed(w ¼ 0:5) [0.0
Proposed(w ¼ 0:7) [0.0

DCS [0.3
RReliefF [0.9
SLS [0.8

DTI LASSO [0.3
Elastic-Net [0.3
Step-wise [0.3
Proposed(w ¼ 0:3) [0.1
Proposed(w ¼ 0:5) [0.0
Proposed(w ¼ 0:7) [0.1
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5. Experiment

We compare our approach with other state-of-the-art FS
methods. We choose six reference methods: Distance Correlation
Selection (DCS) [16], RReliefF [17], Supervised Laplacian Score
(SLS) [18], B-spline LASSO [14], Elastic-Net [31] and Step-wise fea-
ture selection [19]. The DCS, RReliefF and SLS are filter methods, the
Step-wise feature selection is a wrapper method. The B-spline
LASSO and Elastic-Net are both embedded methods. Among these
six methods, only the B-spline Lasso is originally designed for func-
tional ROI selection. The other methods are adapted to functional
ROI selection, as discussed in Section 2. For each method, we will
obtain the selected ROI and assess its prediction performance.

In addition to the female VAT data in our medical dataset in Sec-
tion 3, we also compare the performance of these methods when
applied to the following three classical functional datasets.

Canadian Weather. The dataset includes daily temperature and
precipitation at 35 different locations in Canada averaged over
1960 to 1994 [8]. The daily temperature (annually 365 days) is
continuously recorded and can be taken as the functional feature.
The corresponding annual rainfall is the response. The tempera-
tures in different days play different roles in regard to the annual
rainfall. Therefore, we want to obtain the most predictive duration
in a year (ROI of time) for the annual rainfall.

Moisture. This data set consists of near-infrared reflectance
spectra of 100 wheat samples, measured in 2 nm intervals from
1100 nm to 2500 nm and associated response variables, the
c recorded, thus it allow the boundary larger than 1.

ROI RMSE R-Squared

72, 0.336] 1.356 0.667
56, 0.383] 1.367 0.662
06, 0.578] 1.419 0.635
80, 0.328] 1.356 0.665
88, 0.328] 1.359 0.656
41, 0.352] 1.384 0.653
23, 0.305] 1.006 0.770
89, 0.469] 1.105 0.746
17, 0.516] 1.326 0.677

35, 1.016] 4.314 0.729
53, 1.022] 4.402 0.718
59, 0.444] 5.272 0.596
74, 0.805] 5.081 0.625
33, 1.041] 4.633 0.688
82, 0.978] 4.709 0.678
33, 0.854] 4.474 0.710
74, 0.859] 4.415 0.709
23, 0.849] 4.736 0.679

00, 0.024] 0.921 0.554
17, 0.549] 0.821 0.646
91, 1.000] 0.823 0.645
28, 0.629] 0.852 0.619
31, 0.618] 0.853 0.618
14, 0.606] 0.845 0.625
71, 0.109] 0.789 0.673
23, 0.086] 0.733 0.717
32, 0.124] 0.877 0.610

98, 0.505] 6.014 0.732
57, 1.000] 7.004 0.637
60, 0.925] 6.561 0.681
33, 0.516] 6.412 0.695
23, 0.538] 6.428 0.694
76, 0.505] 6.328 0.7.0
40, 0.452] 5.647 0.764
33, 0.482] 5.906 0.742
08, 0.796] 6.804 0.657
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samples’ moisture content [32]. The spectrum is very wide and var-
ies continuously, which is considered as functional feature as well.
We aim to find themost predictive spectrum band for the moisture.

DTI The diffusion tensor imaging data [33] consists of 100 sub-
jects of Fractional anisotropy (FA) tract profiles for the corpus cal-
losum (cca) and a score of the Paced Auditory Serial Addition Test
(pasat). The dataset consists of 93 contiguous locations and we
want to find the best area to associate the pasat score.
5.1. ROI selection

For simplicity, the domain of the functional feature of each
dataset above is transformed to [0, 1]. Without loss of generality,
for our approach, we adopt the same statistical parameter settings
as in Section 4 and let the mix weight w ¼ 0:3;0:5;0:7 for compar-
ison. We apply our method to the four datasets above and obtain
the heatmaps of model accuracy, overfitting risk and f function,
as shown in Fig. 6. The ROI selected by our method with different
weighted values (w ¼ 0:3;0:5;0:7) for these four datasets and cor-
responding p-values are also included in Fig. 6. Thus all functional
features defined on their corresponding ROIs in the four datasets
have significant predictabilities at the significance level 0.05.

Meanwhile, we also apply the six reference methods to these
datasets. Fig. 7 illustrates the ROIs selected by the six reference
methods according to the coefficient function b tð Þ. We draw the
weights of the b tð Þ and color encodes the significance of the whole
domain. Obviously these selected ROIs in each dataset are very dif-
ferent. For the VAT dataset experiment, only our method and SLS
Fig. 8. The absolute errors based on LOOCV of all methods in comparison. The a
(w ¼ 0:3; w ¼ 0:5; w ¼ 0:7).
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are able to pick up the sub-interval 0:406;0:469½ �, which is abdo-
men to hip, a critical region for the VAT prediction [34]. For the
Canadian Weather dataset, according to Ramsay and Silverman
[8], the temperature between October to November 0:8;0:9½ �ð Þ is
the most significant factor in influencing the annual precipitation.
Our method selects the period between late summer and fall. The
spectrum analysis often focuses on a narrow band and our method
is able to extract the ROI 0:023;0:086½ �ð Þ in the Moisture data,
which is a relatively narrow region. For the DTI dataset, it seems
the region 0:2; 0:4½ �ð Þ is more effective [35], and the reference
methods usually include region 0:5;1½ �ð Þ. It is worth mentioning
that for these four datasets, the reference methods cannot guaran-
tee localization of the estimated coefficient function b tð Þ to zero-
out irrelevant regions effectively, whereas our method overcomes
this limitation.
5.2. Prediction

For each dataset, it is very difficult to identify the ground truth
ROI without any prior knowledge. Therefore, we evaluate the per-
formance of the selected ROIs in terms of predicting the response
using the functional linear model in Eq. (1). For example, for the
ROI selected by each method, we set I ¼ Iselect in Eq. (1). We then
calculate the R-Squared and Root Mean Squared Error (RMSE) of
prediction based on LOOCV. The extracted ROIs of all datasets
above by different approaches and evaluated reults are shown in
Table 3. The prediction absolute errors are illustrated in Fig. 8.
We can conclude that our proposed method is almost always supe-
- i are DCS, RReliefF, SLS, LASSO, Elastic-Net, Step-wise and Proposed method
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rior compared with the reference methods. The performance of our
method with different weight values w ¼ 0:3;0:5;0:7, is slightly
different. In comparison, w ¼ 0:7 works the worst in all datasets,
w ¼ 0:5 performs best in Moisture dataset and w ¼ 0:3 is the best
in the other three datasets. For the Canadian Weather data, in
terms of RMSE and R Squared, our proposed method is only slightly
worse than DCS and RReliefF, but better than the others. With
respect to the Medical, Moisture and DTI datasets, our method is
better than all other methods, with both the smallest RMSE and
largest R-Squared values. The four experiments show that our
approach can effectively locate the ROI of a the functional feature
in the context of functional linear regression.
6. Conclusion

This paper proposes an effective ROI selection method for func-
tional features. Our proposed method provides a novel metric to
balance model accuracy and overfitting risk. Under the framework
of functional linear regression, the model accuracy is measured by
the residual variance, while the overfitting risk is quantified
through the necessary sample size to achieve a certain statistical
power. We have evaluated the performance of our proposed
method on four representative moderate sized datasets and com-
pared it with six state-of-the-art reference methods. The proposed
method almost always outperforms other reference methods.

The proposed framework may be generalized to other scenarios.
First, it may be extended to ROI selection for multi-dimensional
functional features, although in this paper we only illustrate its
application to one-dimensional functional data. Similar to Theo-
rem 2 of [26], the relationship between the sample size and statis-
tical power for multi-dimensional functional linear regression may
be attainable, which makes our method generalizable. One caveat
is that it is impractical to exhaust all possible sub-intervals to
select the optimal ROI for multi-dimensional functional features.
Thus a more efficient search algorithm is needed, which is an inter-
esting future research direction. Moreover, our proposed method
can be adapted to nonlinear functional regression models as long
as corresponding valid sample size estimation methods can be
developed. Such extension requires substantial theoretical analy-
ses, which are beyond the scope of this paper.

Our framework assumes independently and identically dis-
tributed (i.i.d.) data. This assumption is valid most of the time if
the data are collected from a random sample from a population,
so our proposed method is generally applicable to such data. When
feature selection tasks arise from non i.i.d. data, such as time series,
our proposed method may not be applicable or perform poorly.
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