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ABSTRACT 

 

Motion Editing using Combined Partial Motion Clips 

By Nadia Al-Ghreimil 

Directed by Professor James Kwangjune Hahn 

 

In this dissertation a method is presented for allowing a motion clip to be edited by 

blending or merging it with another one. Previous methods exist that allow clips to be merged, 

but they do not allow degrees of freedom that are not defined in both clips to be affected. The 

work presented here is different. The merged in clip does not necessarily define all degrees of 

freedom yet the method used for merging allows all degrees of freedom in the original motion 

clip to be affected. This is achieved through the inclusion of scripts that contain equations for the 

estimation of the undefined degrees of freedom from the defined ones. These scripts approximate 

the correlation that exists naturally between joint movements, they are the results of thorough 

analysis of sample motions. Such a clip is called a Combined Partial Motion Clip. 

 

The method is demonstrated by applying it to the example of throwing. A partial motion 

clip for throwing is obtained. It contains detailed information only for the degrees of freedom of 

the throwing arm and trunk. Yet it can be merged with another motion such as walking where 

even the degrees of freedom of the legs will be affected reasonably to produce a naturally 

looking final motion of a person throwing while walking. From a comparison of the resulting 

joint trajectories to originally captured ones, one can conclude that the method produced a 

realistic motion. 
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CHAPTER 1 

INTRODUCTION 

 

A new motion editing method is presented in this dissertation. The method depends on 

the creation of partial motion clips, i.e. they define only some degrees of freedom (DOFs), which 

contain some additional information about how this partial motion clip may affect other DOFs 

when it is blended with another motion. Such partial motion clips are extracted from several 

similar samples that are thoroughly analyzed. The clips are easy to use and are space efficient. 

The method presented allows for a more natural looking resulting motion. 

 

1.1 Motivation and Goals 

Animating articulated figures is a difficult task due to the large number of DOFs that 

have to be controlled. It gets even more difficult if the figure is a human, because one quickly 

detects unnatural movements. Motion capture is an effective way to obtain natural looking 

motions. A drawback of motion capture is that it is hard to maintain specific constraints and 

therefore often needs editing. Depending on the representation used for the captured motion, 

different motion editing methods may be applied. There is always a tradeoff between the number 

of parameters that have to be set or adjusted and the amount of control the animator has over the 

final animation. Whatever the case, reducing the number of DOFs that have to be dealt with will 

simplify the task of the animator. One way to do that would be to take advantage of the 

correlation that exists between joint movements. 

 

Assuming that a reaching motion of an actor while sitting is recorded that will later be 

incorporated into an animation, it is possible that in the resulting animation the animated 

character will not reach the desired position exactly or not at the correct instance in time, i.e. 

there is a difference in target reaching location or timing. This is a case that calls for editing. A 

simple displacement map or inverse kinematics could be used to solve the problem for the 

difference in location. Or a timewarp could be used to solve the problem for the difference in 

timing. But in cases where the differences is due to something else, like for example that the 

character is standing instead of sitting, the problem is harder to solve because the reaching 

motion that was recorded while sitting probably does not affect the motion of the legs at all, 

which might not be the case while standing. It is very likely that there will be some kind of 
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movement in the lower body as a result of the movement in the upper body. Therefore, if it is 

desired to use the same recorded ‘reaching while sitting’ motion and blend it with a standing 

motion to produce a ‘reaching while standing’ motion one has to have a way to induce some 

changes in the legs to make the resulting motion look natural. 

 

Another thing to notice is that ‘reaching’ is an action mainly involving the upper body. 

Hence, it would be advantageous to store only the trajectories of the joints that are most active in 

the action (e.g., the reaching arm and the trunk) because that will reduce the needed storage 

space. But in that case, when this partial motion clip is merged with sitting, standing, or some 

other base motion one has to ask how this clip can be merged in properly since it is not desired to 

simply mask out the DOFs of the arm and trunk and replacing them with the ones in the stored 

clip (e.g. [Per95], [Ros96]), but to merge it into the base clip and allow this change to affect 

other DOFs not in the merged clip for a more realistic look. 

 

For those reasons, relationships between body parts that hold for all subjects are being 

sought. The aim is not for physical correctness, but for a natural look. Additionally the necessary 

computations should be kept simple, and storage space requirements should be kept low. Hence a 

new kind of motion clip is introduced: Combined Partial Motion Clips or CPMCs, and a method 

for their generation and usage.  

 

1.2 Solution and Results 

A CPMC is a clip that is a combination of several partial motion data sets that have 

something in common: an action performed in various base poses. Partial motion means that 

only some joint trajectories are defined; the ones that are active in the common action. 

Furthermore, the CPMC contains equations to compute other joint trajectories from the ones 

included in the partial motion data set. This makes it possible for a CPMC to be used to add an 

action that primarily involves a specific part of the body to some existing base motion while 

allowing the uninvolved parts to be affected in a reasonable way and thereby producing a 

naturally looking motion. 

 

The creation and usage is demonstrated for the specific example of throwing. A partial 

throwing motion was extracted from throwing while walking, throwing while standing, and 
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throwing while sitting. The data was analyzed and a CPMC was created, which was then put to 

the test by using it to edit base motions of several other subjects with successful results.  

 

The measure for success was by judging the playback of the resulting motions and 

comparing them to originally captured motions of the subject whose base motion was edited as 

well as the subject whose data was used in the creation of the CPMC. Comparisons were also 

made between the plotted trajectories of such motions. MATLAB was used for the plotting, and 

a program written specially for this work in Microsoft Visual C++ was used for the playback of 

the motions. 

 

The bulk of the computations involves only vector subtraction and vector addition, hence 

the simplicity goal is met. In addition to averaging samples whenever possible, space efficiency 

is achieved by storing only partial motion clips and by combining several partial motion clips 

into one.  

 

1.3 Outline 

CHAPTER 2 reviews previous work done in the field of animation and motion editing in 

particular. CHAPTER 3 provides a taxonomy by which to categorize the available motion 

editing techniques. CHAPTER 4 defines some terms used in this work, and describes the file 

format used for the motion samples and how they were generated from the motion captured data. 

CHAPTER 5 explains how CPMCs are created and how they are used, and CHAPTER 6 

demonstrates the method explained in the previous chapter in an example by applying it to 

throwing. CHAPTER 7 discusses the results of using the CPMC for throwing in addition to the 

results of some smaller experiments. Finally, CHAPTER 8 concludes the work described and 

talks about some possible extensions and variations of the work. 

 

The appendices contain MATLAB scripts for the estimation of missing DOFs of the non-

throwing arm and the legs. A brief description of the Pose File Player can be found in 

APPENDIX C. 
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CHAPTER 2 

PREVIOUS WORK 

 

This chapter gives a review of related research, starting with the early methods for 

producing animations and ending with the latest methods for editing such animations. The use of 

blending in the computer game industry will be briefly talked about as well.  

 

2.1 Articulated Figure Animation: generating motion clips 

Articulated figure motion has been the focus of much research in computer animation for 

many years. Special attention has been paid to human locomotion: walking and running. 

“Synthesizing realistic human motion is a challenge: all viewers of an animation are also 

experienced observers of human locomotion.” [MUL99] It is easy to detect erroneous 

movements simply on the basis that it does not look right. At the same time, it is difficult to 

isolate the factors causing it to be wrong [AMA96] [BRU93]. 

 

There are techniques for generating animations that focus on the physical correctness of a 

motion, others that focus purely on the appearance, and still others that focus on computational 

speed while sacrificing physical correctness to some extent. Which technique is to be used 

depends on the application. When the animation is part of a sports simulation, or for 

biomechanical analysis, physical correctness and accuracy are a major concern. When the 

animation is part of a movie, then its appearance is important. But when the animation is part of 

a virtual reality (VR) system then computational speed is a major concern. The same is true for 

interactive games. The faster one can compute the basic walking motion of a character the more 

time is left for ‘cosmetics’ – making it look good.  

 

In the computer game industry an additional concern is to make the game appealing to 

the user. Game developers are constantly trying to make characters look and move more 

naturally. Some important factors are things that affect the appearance of the character, like the 

movement of their clothes or hair, and the facial expressions or emotions they are capable of 

showing. But even more basic body movements are still open for improvement. Motions often 

look jerky and transitions happen too suddenly creating visible discontinuities in the motion. 
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Therefore, sophisticated methods to blend motions and transition from one action to another are 

needed.  

 

Methods used to generate motions also vary according to the amount of control they give 

the animator. Keyframing systems give the animator the most control at very low levels, whereas 

goal-directed methods give the animator high-level control. Other methods for generating 

animations fall in between those extrema. 

 

2.1.1 Keyframing 

Classical animation is typically done by keyframing. Highly skilled animators sketch the 

main frames of a desired sequence, which are called keyframes. Other animators then “fill in the 

gaps” between any two keyframes by drawing the in-between frames. Keyframing techniques 

have been computerized and are available commercially. Keyframing systems require only 

keyframes to be input, and they will then automatically produce the in-between frames using an 

interpolation technique. The aim of such systems is to simplify the animator's task and to speed 

up the process of generating a complete animation. Nevertheless, such systems still require a lot 

of work and skill on the part of the animator. They do, however, give the animator full control 

over the characters he/she creates. 

 

2.1.2 Inverse Kinematics 

When inverse kinematics (IK) is used, the user only needs to position the end-effectors, 

e.g. hands and feet, and the system will solve for the needed angles in order to reach the desired 

position. The problem with this approach is that usually there is more than one solution, and 

there is no way to select a specific one. Some of the solutions may be undesired, because they 

give unnatural poses. To overcome this problem, additional constraints usually need to be 

defined, like limiting the joint angles, or minimizing the angular change from frame to frame, 

etc. Such optimizations are usually solved numerically often involving iterative methods, which 

tend to be slow and sometimes unstable. An example where inverse kinematics has been used to 

generate walking is the work of Chung and Hahn who made a walking model that could adjust 

its steps to be able to walk on uneven terrain [CHU99].  
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2.1.3 Dynamics 

In systems that employ dynamic constraint formulations, the main advantage is that they 

produce physically correct motions (assuming the given constraints are physically correct). But 

the drawback is that it is very difficult to specify the necessary constraints in order to achieve a 

specific motion, and computational complexity is high. Additionally, in animation, it is not 

always required nor desired to be physically correct.  

 

Hodgins et al develop dynamic controllers to animate athletes focusing on physical 

correctness [HOD95]. Another method proposed by Hodgins and Pollard [HOD97] adapts an 

existing controller to a different character. For example, a controller for a man running can be 

changed to a controller for a woman running. A combination of scaling and iterative searching is 

used to produce the new controller. Genetic programming has also been successfully used to 

automatically generate dynamic controllers for some articulated figures [GRI95]. 

 

2.1.4 Goal-Directed methods 

Goal-directed methods provide high-level control over a character. A goal can be 

something like throwing a ball into a basket or walking to the door. This method reduces the 

number of parameters the animator has to specify, but some flexibility and control over the 

details is lost.  

 

2.1.5 Motion Capture 

Another approach to animation, which is different from the previous approaches because 

it takes its input from real subjects, is motion capture. Actors wear markers or sensors that are 

tracked using special devices (optical, magnetic, etc.) and thus every movement the actor makes 

is captured. The data obtained by such a system is usually in the form of a sequence of positions, 

and sometimes orientations, of each marker in time that can be translated into positions of end-

effectors, or orientations of joints. This kind of approach produces realistic motions, but not 

every motion needed in an animation can be acted out, for example, a character jumping off a 

cliff. The task of the animator might be reduced through the use of motion capture, but now 

actors, special equipment, and space are needed. 
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A capturing session usually consists of two parts: calibration and data acquisition. It is 

necessary to calibrate the cameras before using them; the way this is done depends on the system 

used. Then the markers on the actor need to be calibrated to match the animated figure. This is 

usually done by capturing the actor while standing in a predefined pose called a zero-pose or 

rest-pose. The computed joint angles from that data have to match the animated figure in its rest 

or zero-pose. If they do not match, an offset can be added to the marker readings to achieve a 

match. That offset remains fixed for this particular capturing session – assuming the markers are 

not moved. In other words, calibration is done once per session. After that, the desired motions 

can be captured. The offsets are always added in order to obtain the correct motion on the screen. 

 

The calibration process can be very tedious. Often it requires exact external 

measurements of marker positions relative to the joints. This is specially the case in 

biomechanical applications where accuracy is very important. Other applications like games and 

movies do not require that degree of accuracy. More and more methods are emerging that try to 

simplify the calibration process while attaining acceptable accuracy. 

 

Bodenheimer et al describe the basic motion capturing process using a magnetic 

capturing system, including sensor attachment and derivation and inferences of rotational 

degrees of freedom in real-time. A virtual skeleton is also constructed in real-time, which can be 

used for immediate feedback. The next step is an offline process involving a robust statistical 

estimation of the size of the skeleton and an inverse kinematic optimization to produce the 

desired joint angle trajectories [BOD97]. On a similar note, Molet et al describe an approach that 

allows real-time conversion of magnetic sensor measurements into human anatomical rotations. 

They describe in details how the sensor calibration takes place and how the joint rotations are 

computed [MOL96]. 

 

More recently, O’Brien et al proposed a technique to determine the joint parameters of an 

articulated figure using magnetic motion capture data [OBR00]. During calibration, instead of 

recording a single reference pose, the subject is asked to move all joints and to try to exert all 

possible motions. They are then able to determine limb lengths and joint locations without the 

need for external measurements. The parameters are computed using a linear least squares fit of a 

rotary joint model to the input data.  
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A recurring problem with motion capture is that once a motion capturing session is over 

it might be discovered that the acquired motion is not exactly as was desired. For example, the 

actor may not have returned to the exact starting posture in order to create a cyclic motion. Or 

the requirements may have changed. Because it is not feasible to recapture every clip that varies 

from what is desired, the need for editing existing motion captured data arises.  

 

2.2 Motion Editing: reusing existing motion clips 

The notion of motion editing became widely spread with the increased popularity of 

motion capturing. If a reaching motion to location XYZ should be changed to a reaching motion 

to location ABC and keyframing was used for the first, then one could simply change the 

keyframes and use the same technique to achieve the change. If a procedural approach was used 

to create the original motion, then the same approach could be used for the change. However, if 

motion capturing was used, there is much more involved in redoing a motion capture than simply 

rerunning a program. Hire the actor again, get access to the motion capture studio, do the 

calibration, then repeat the motion exactly the same way as before except for the location to 

reach to. In the end, the actor might still not be reaching to the correct location or other aspects 

of the motion might be incorrect now.  

 

For these reasons, it would be better to edit the original motion to achieve the change. 

The question is then, how can a previously stored motion be changed? In our specific example, 

how can the reaching motion be changed so that the reach is to location ABC instead of XYZ? 

Here are a few possibilities: 

• Signal Processing: express the motion data in the frequency domain and apply 

signals processing techniques. Adjust the gains of different frequency bands [BRU95]. 

• Motion Warping: edit the keyframe and position the hand at location ABC, use 

this as a constraint, then solve to obtain a smooth deformation [WIT95]. 

• Spacetime constraints: add a constraint for the hand to be at location ABC at the 

desired time by dragging the hand to the desired position in the desired frame and solve over the 

whole motion [COH92] [GLE97] [GLE98b] [LIU94] [WIT88]. 

• Motion Spaces: record several reach motions to various locations. Interpolate the 

samples to generate a reach motion to location ABC [GUO96] [ROS98] [WIL97a] [WIL97b]. 
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Independent of the way in which motion data is obtained (i.e., keyframing, procedural 

techniques, motion capture, etc.) it can be represented in different formats. It could be a 

collection of curves depicting the change of the joint angles over time, or it could be a collection 

of poses, and so on. Different representations of the motion data lead to different techniques in 

editing and combining them. In general, researchers have tried to reduce the number of 

parameters that have to be handled while still allowing the user a reasonable amount of control 

over the resulting motion. 

 

2.2.1 Frequency Domain 

Bruderlin and Williams considered the curves to be sampled signals [BRU95]. They then 

applied operations known from signal processing to them. After processing the signals, by 

creating low-pass and band-pass pyramids, the signals are decomposed depending on the 

frequencies they contain. The user is then provided with an interface that looks like an equalizer. 

Changing the sliders the user can change the gains of the different frequency bands resulting new 

motions and thereby editing the original motion. This technique is based on the realization that 

low frequencies contain the general motion pattern, whereas high frequencies contain the details 

and subtleties. The strength of this approach is that it is interactive. The user sees the results of 

the changes right away. But the drawback is that it is not intuitive, it depends on trial and error to 

achieve a desired change. 

 

Another approach that deals with the data in the frequency domain is the one proposed by 

Unuma et al [UNU95]. They captured periodic motions like walking or running. A Fourier series 

expansion of the joint angles was used as the functional model. Let Θm(t) be the rotational angles 

of each joint m over the time period t for some motion. The time parameter t is rescaled such that 

the period of Θm(t) is normalized to be 2π. The expression then looks like this:  

 (Equation-1) 

alignin

be rep

contro
 

 
Θm(t) = Am0 + Σ Amn sin(nt +φmn)  

     n≥1 

 

If several motions are represented in such a way, the normalization has the effect of 

g the motions in time. A drawback of their representation is that only cyclic motions can 

resented with it. On the other hand, their model provides intuitive parameters for 

lling kinematic aspects of human locomotion. The parameters include step length, speed, 
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gait (length of a cycle), and jump height. The user can change them via sliders. The parameters 

are easily incorporated into the model. For example, the step length corresponds to the value of 

Am in (Equation-1). Whereas the speed can be incorporated as the increment used for t in order 

to generate the animation, where t is the parameter in Θm(t). These parameters allow the user to 

easily generate variations of a basic periodic motion and thereby creating motions with different 

characteristics.  

 

2.2.2 Displacement Mapping and Warping 

Two other techniques proposed by Bruderlin and Williams are waveshaping and 

displacement mapping [BRU95]. In waveshaping the user can create a function using control 

points. That function is then used as a transformation on a selected signal. Typical examples are 

functions that limit the range of a joint's rotation. Again, this method is not intuitive.  

 

In displacement mapping, an interpolating spline is fitted through the displacement values 

a user made to a curve, the fitted spline is the displacement map. The parameters for the 

interpolating spline can be adjusted to make the displacement map more or less smooth (see 

Figure-1 c and d). The displacement map is then added to the original curve so that the result will 

reflect the desired changes while maintaining the continuity of the curve (see Figure-1 e and f). 

This technique allows fine tuning motions. It provides a way to apply local changes while 

preserving the global appearance of the motion.  

 

Witkin and Popovic hypothesize that high frequency details can survive small 

transformations [WIT95]. In their technique, the animator changes a few keyframes of the 

available motion. This is different from pure keyframing since in their technique those frames 

are used as constraints for a smooth deformation or warp that is to be applied to the motion. The 

idea is similar to displacement mapping. For example, a normal walking motion can be changed 

into one where the figure steps over an obstacle. In the same way, a reaching motion could be 

changed to reach to location ABC instead of XYZ.  
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a) b)

f)d)

e)c)

Figure-1 Displacement Mapping. 
a) User indicates desired changes 
b) Values of displacements 
c) Interpolating spline fitted through displacement values to produce a displacement map 
d) Changing spline parameters gives a different displacement map 
e) Applying map from c) to original curve in a) 
f) Applying map from d) to original curve in a) 

 

 

2.2.3 Spacetime 

A new formulation for constraint-based problems, called spacetime constraints, was 

introduced by Witkin and Kass [WIT88], extended by Cohen [COH92], and extended again by 

Liu et al [LIU94]. “By specifiying constraints on the motion such as ‘jump from here to here, 

clearing a hurdle in between’ and ‘don’t waste energy’ (quotes taken from Reference [WIT88]), 

the method uses physical laws to produce the motion from first principles. To find the optimal 

motions, constraints over the entire motion can affect the behavior of a character at the 

beginning.” [GLE98b] 
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Using a combination of displacement mapping and spacetime constraints, which 

minimize the change that is introduced to the motion, Gleicher allows editing a motion by 

dragging the figure to the desired position [GLE97]. In the example mentioned here, the hand 

could be dragged to location ABC to generate the correct reach. This kind of interface is very 

intuitive. Since spacetime constraints are used, this technique will make sure the constraints are 

not violated. This is a clear advantage over the previous methods where there is no guarantee that 

constraints will not be violated. On the other hand, applying spacetime constraints is usually 

slow. Nevertheless, Gleicher claims that his method is fast enough allowing the figure to be 

dragged interactively. 

 

2.2.4 Blending and Correspondence 

So far, the examples mentioned are only about editing a single motion. Another use of 

motion editing, one that involves more than one motion, is to transitions from one clip to another 

using blending. In addition to using blending for transitions it can be used to generate variations 

of a motion. Sometimes the blending will affect all DOFs and sometimes it is possible to blend 

motion data for some specific DOFs. The problem with techniques that support the second kind 

is that they tend to leave the other DOFs unchanged. In other words, they do not take into 

account what the affect is of the blended DOFs onto the remaining DOFs.  

 

Whenever more than one motion are involved in the editing process, two important 

aspects have to be taken into consideration: parameter correspondence and time correspondence. 

Parameter correspondence means that models should have compatible structures and the 

parameters of each model should have similar effects. Time correspondence means that the 

phases of the motions should be aligned, or landmarks should be matched. In a reaching motion, 

a landmark could be the time of maximum elbow extension, while in walking heel strikes are the 

usual landmarks. In general, time correspondence is a more difficult problem to solve than 

parameter correspondence. The latter can be dealt with by simply restricting input motions to be 

in the same format or provide conversions from one format to another. But establishing time 

correspondence is more complicated. Researchers have come up with different ways to solve the 

problem but they all involve some sort of scaling in time. Uniform and non-uniform timewarps 

have been used, as well as generalizing sequences of events. Warps should be small, because 
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extreme warps degenerate the quality of the motion captured data and cause it to lose its 

foremost characteristic: the natural look. 

 

Creating transitions usually involves blending the ending of the first clip and the starting 

of the second clip over a small time interval. Transitions can also be from one clip to itself 

thereby generating a cyclic motion. Rose et al were able to generate transitions between motions 

that minimize the torque needed for the transition while maintaining joint angle constraints. They 

also described how to make a walking or running motion cyclic, i.e. the first and last frame 

match exactly. In addition, they proposed a flexible functional expression language. Using this 

language the user can blend motions and concatenate them easily. It is also possible to single out 

some DOFs from one motion to be blended with another motion, e.g. salute and walk [ROS96]. 

However, this kind of blend will not affect the remaining DOFs. 

 

In their method, they used kinematics to control the position of the figure’s root. They 

applied spacetime constraints to non-supporting limbs, and inverse kinematics (IK) to supporting 

limbs. For motion cyclification, the user marks the approximate beginning and end of a cycle. 

The program then finds two points, within a small region near the marked locations, such that the 

difference between the position, velocity, and acceleration is minimized. An offset is then added 

to the entire time interval to make the endpoints match exactly. All resulting motions satisfy both 

kinematic and dynamic constraints. The problem with this technique is that it is not interactive.  

 

Similarly, Witkin and Popvic used their motion warping techniques to do transitions 

between two motions [WIT95]. The two motions are partially overlapped. The overlapped 

portions are warped to bring them into reasonable alignment according to one or more selected 

points of correspondence. If the durations of the portions that need to be overlapped are different, 

they must also be timewarped. Now they can be blended using a weighted sum with a slow-

in/slow-out weight function. It would be possible to blend in a partial motion since in their 

technique all the motion curves (for each joint) can be warped independently, but no specific 

example is given. Again, the blending would affect only the selected DOFs and not the rest of 

the body. 
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Bruderlin and Williams used a non-uniform timewarp to establish time correspondence 

[BRU95]. Then, every two corresponding parameters (in this case frequency bands) are blended. 

It is not necessary to blend all the signals making up the motion. For example, it is possible to 

blend a waving motion with a walking motion. In this case, the blending will be for the signals 

corresponding to the arm motion only, but the rest of the body remains unaffected. 

 

2.2.5 Motion Spaces 

There are several methods that create motion spaces from collections of similar motions 

and then interpolate between available samples to produce a target motion [GUO96] [WIL97b] 

[ROS98]. Alignment of the motions is critical in these approaches.  

 

Guo and Robergé solved the problem of time correspondence for human locomotion in a 

simple way. They proposed a general event sequence for walking and running [GUO96]. Each 

locomotion cycle consists of the following phases: 

• mid-transfer (heel strike in walking, toe-off in running) 

• double or non support 

• end-transfer (toe-off in walking, heel strike in running) 

• single support 

• mid-transfer (heel strike in walking, toe-off in running)  

 

Guo and Robergé’s method defines a range of movements as a delimited 2D or 3D space 

using a set of reference frames each called a frame space. The reference frames can be from 

motion captured data or from previously keyframed motions. Each frame space constitutes one 

complete cycle of locomotion. It has three dimensions: L) step length, varying from short to 

long, H) step height, varying from low (for walking) to high (for running), and C) cycle, varying 

over the phases of a complete locomotion cycle starting and ending at mid-transfer (see Figure-2 

a). Variations are then generated by interpolation. That is, to generate a whole sequence several 

frame spaces are put together and some points (at most one per space frame) are selected. Then 

an interpolating curve is fitted through these points defining the transitions that happen from one 

frame to the other (see Figure-2 b). Since all the stored motions have the generalized sequence, 

they can be interpolated directly. 

 

 14



LRH 
SRH 

SW: short-step walk with min. height  
LW: long-step walk with min. height  
SRH: short-step run with max. height 
LRH: long-step run with max. height 
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Figure-2 Parametric Frame Space Interpolation. 
a) A frame space for the human locomotion cycle 
b) A position curve defined in frame space 

 

 

Wiley and Hahn stored motions as a sequence of poses. They collected similar motions 

into small data sets [WIL97b]. For example, reaching motions to different points on a plane were 

stored. From the discrete samples obtained by motion capture a motion space is created. In other 

words, the sets were parameterized such that each motion corresponds to a particular point in a 

multidimensional motion space of possible motions. The motion space is then resampled such 

that the data points lie on a regular grid. This space is now continuous since it is possible to 

generate any motion corresponding to any target point in the space by interpolating the poses 

from the neighboring grid points. Limited extrapolation is also possible with this technique. 

 

Wiley and Hahn also used interpolation to generate variations of motions. In this sense, it 

is similar to Guo and Robergé's approach, but they dealt with time correspondence in a different 

way. They called it ‘time alignment’ which is just a uniform timewarp. When blending two 

motions with a different number of poses, the motion with the fewer poses is resampled so that it 

contains the same number of poses as the other motion. Now the two motions can be blended by 

interpolating each corresponding pose. The resulting blended motion sequence also needs to be 
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resampled. This is done such that the number of final poses is equal to the interpolation of the 

original number of poses of the two sequences. 

 

Rose et al also created multidimensional parameterized motion spaces. They called the 

spaces verbs parameterized by adverbs [ROS98]. A verb is constructed from a set of example 

motions that vary only slightly from each other. Each example motion is characterized by an 

adverb; this places the example motion somewhere in the adverb space. The number of adverbs 

gives the dimensionality of the motion space. In addition, a set of keytimes needs to be specified 

for each example motion. Keytimes correspond to instances when important events occur, such 

as heel strike. Having these keytimes, helps to establish time correspondence by using piecewise 

linear time scaling so that all example motions will have their time reparameterized to some 

generic time. The problem of parameter correspondence is solved by restricting the example 

motions to be similar in structure as well as in their use of joint angles. From this motion space 

(verb) various motions can be obtained by multivariable interpolation given the desired 

parameters (adverb). Transitions from one verb to another are achieved by fading one in while 

fading the other out and merging the two using linear interpolation. 

 

A main problem with motion space techniques is their sizes. To allow better and wider 

range of interpolation, more example motions have to be collected thereby increasing the amount 

of storage space needed. This problem is reduced in the method presented here by averaging 

common data whenever possible. 

 

2.2.6 Differencing and Emotion 

Other researchers have proposed differencing methods to edit motions. Given two motion 

sequences that are equal in terms of the action performed but different in terms of the emotion in 

which the action is performed, it is possible to extract the emotional content by finding the 

difference of the two motions. This resulting difference can then be applied to other neutral 

(emotionless) motions where a different action is performed and the result would be an 

emotional performance of this action. Here again the used motions need to be aligned.  

 

Aspects other than emotional content may be extracted. All that needs to be done is to 

take the difference of two motions that vary only in the aspect desired to be extracted. Several 
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methods have been described that allow to add emotional content to an animation or to give it 

specific characteristics. Whether it be by using a differencing method, adding noise, or changing 

some slider that controls different aspects of the motion. 

 

In the method described by Unuma et al, the control of the emotional part is done by the 

superposition of a Fourier characteristic function onto the original Fourier function [UNU95]. 

Where the Fourier characteristic function is no more than the difference between two similar 

motions that differ only in one specific aspect. Since the time parameter of the Fourier series 

expansion used to represent the motions is normalized to be 2π, the phases of the motions are 

automatically aligned. For example, if the function describing a brisk walk is subtracted from 

that describing a normal walk then the result is a characteristic function that describes briskness. 

This function could be added to a function describing a running motion to obtain a brisk run. 

Again, briskness is a parameter that can be changed to obtain different levels of briskness. 

Similarly a function for sadness can be extracted and then applied to existing functions. The 

difficulty mainly lies in finding appropriate and meaningful parameters.  

 

Similarly, Amaya et al computed emotional transforms using signal processing 

techniques [AMA96]. The emotional transform is obtained from the difference between a neutral 

and an emotional motion. They collected data using motion capture. After analyzing the data, 

they identified two components that vary noticeably over the various emotions: speed (timing) 

and spatial amplitude (range). The speed transform is implemented as a non-linear timewarp, and 

the spatial amplification transform is based on signal amplifying methods. These emotional 

transforms can then be applied to any motion to add to it that specific emotion that is encoded 

within that transform.  

 

Perlin generated a system in which a puppet responds in real-time to commands from the 

user. The commands are high-level commands such as “walk”, “dance”, “turn around”, etc. The 

interface for that is in the form of buttons. As the user pushes the buttons the puppet will move 

and transitions will occur smoothly. He programmed individual motions for each figure (or 

puppet) beforehand, these are called actions. Actions can then be assigned weights. And 

transitions are then obtained by increasing the weight of one action while at the same time 

decreasing the weight of another. Perlin also allowed overlaying of actions, where a shrugging 
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with the shoulders action can overlay a standing action, for example. However, no DOFs other 

than the shoulder are affected by such an overlay. To allow emotional variation, he added noise 

to the preprogrammed actions. A figure that is standing and not doing anything looks lifeless and 

stiff. However, if noise is added to the standing action the figure comes alive. If the amount of 

the noise is increased, the figure can be made to appear to be nervous [PER95]. 

 

The signal processing methods proposed by Bruderlin and Williams [BRU95] also allow 

adding emotion and creating personalized motions including cartoon-like exaggerations. For 

example, increasing the high frequency band makes the figure look nervous. 

 

2.2.7 Retargetting 

Another variation that calls for motion editing is applying a motion to a different 

character. Gleicher proposed a technique called retargetting that also uses spacetime constraints 

[GLE98a]. The purpose of it is to apply a motion to a different sized character than the original 

one. This technique even allows changing a character's size continuously over time producing a 

morph. 

 

As mentioned in section 2.1, Hodgins and Pollard allowed a controller to be changed in 

order to accommodate a different character [HOD97]. This can be considered another way of 

retargetting but it is not motion editing, instead it is controller editing. 

 

Lee and Shin developed an approach that combines a hierarchical curve fitting technique 

with a hybrid inverse kinematics solver [LEE99]. Hybrid in the sense that it is partially 

numerical and partially analytical. Using this approach it is possible to generate smooth 

transitions between motions, to apply a motion to a differently sized character, and even to 

continuously morph a character while producing a smooth animation. Their method can be 

viewed as a variation of displacement mapping and spacetime constraints.  

 

Popovic and Witkin transform motions while taking dynamics into consideration 

[POP99]. Their method allows a motion to be applied to a drastically different character. 

Gleicher had taken out the dynamics part from the spacetime formulation in order to achieve 
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faster performance. Now Popovic and Witkin are keeping the dynamics in, but are reducing the 

complexity of the model.  

 

2.2.8 Synthesizing and Texturing using Collections of Motion Captured Data 

In the last couple of years, several methods emerged that deal with the generation of long, 

continuous motion sequences from a pool of pre-stored motions as well as adding style or texture 

to existing motions. The pre-stored motions may be short clips or long sequences that are 

organized in a special way such that transition from one clip to another are built in. Applications 

for such methods include controlling avatars in virtual environments and computer games, and 

assisting in animation generation by adding texture or style. 

 

Brand and Hertzmann introduced ‘Style Machines’, which is a statistical model that can 

generate new motions with different styles [BRA00]. They used a hidden Markov model (HMM) 

to which they added a multidimensional style variable resulting a stylistic HMM (SHMM). The 

SHMM is used to analyze motion captured clips thereby extracting a state-space model and 

separating style from content. The resulting state-space model assigns probabilities to the 

possible transitions from state to state. One possible way to drive such a style machine is to use 

video input. A novice person can dance in front of a video camera from which a HMM state 

sequence can be extracted. Then the style can be changed to that of a professional dancer. An 

advantage of their method is that it is fully automated, no data segmentation, annotation, or 

alignment is necessary. 

 

With a similar goal in mind, Pullen and Bregler presented a method for allowing a 

keyframed partial motion to be edited by adding detail or ‘texture’ to the DOFs included in the 

partial motion as well as synthesizing the undefined DOFs from motion captured data [PUL02]. 

The key to their method is frequency analysis. The motion captured data is decomposed into a 

Laplacian Pyramid, this allows the separation of details (contained in the higher frequency 

bands) from the basic motion (contained in the lower frequency bands). The data that identifies 

the basic motion is segmented so that it can be used to match it to the keyframed input motion 

that is to be edited. Once a match is found, texture can be added to the keyframed DOFs by using 

the data in the higher frequency bands, the DOFs that are not defined can be synthesized by 

simply copying the trajectories of those DOFs from the motion captured data that has been 
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matched. Which DOFs will be textured or synthesized is under the exclusive control of the user. 

The amount of change can also be controlled by selecting which frequency bands should be used. 

Note that there is no interaction between the changes applied to any of the DOFs, which is 

different from the method that is presented in this dissertation. 

 

Kovar et al presented ‘Motion Graphs’ which is a directed graph with edges 

corresponding to motion clips and nodes serving as choice points to transition from one clip to 

the next [KOV02a]. Such graphs are generated by analyzing motion captured data and 

identifying segments that are similar enough such that simple blending can produce a reasonable 

transition. From the analysis the graph is constructed, traversing the graph then allows the 

synthesis of new motion sequences. Constraints may be violated during transitions as a result of 

the blending, but the motions are annotated with such constraint positions so that they can be 

enforced during a post-processing step. 

 

Also using graphs, Lee et al allow avatars to be driven interactively by motion captured 

data [LEE02]. Their representation consists of two layers: the higher layer is a statistical model 

and the lower layer is a Markov process. They demonstrated their method by generating new 

motions using three types of inputs: a list of choices, sketching paths, and vision (i.e. video 

input). Again, constraints that are violated during transitions are fixed in post-processing using 

the hierarchical motion fitting algorithm by Lee and Shin [LEE99]. 

 

2.3 Games 

The market for computer games is very competitive. Therefore, it is essential to create 

content that grabs and holds the attention of game players. With the advances in 3D rendering 

technology and the availability of excellent 3D graphics acceleration hardware players find more 

games with richer graphics and richer environments. To further enhance the gaming experience 

game developers are trying to improve animation and interactivity [MOT]. For that, they need 

good authoring tools and good methods to edit motions, blend or merge them, and transition 

between them. 

 

Currently, a lot of the content of games is simply a playback of prestored linear 

sequences of animation. In many games the clips are stored in such a way that they start and end 
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in a specific configuration so that they can be played back one after the other without any need 

for blending. In others, smooth transitions are achieved by interpolating between the current joint 

orientations and the orientations in the first frame of the next animation clip. When quaternions 

are used as the internal representation of the joint orientations interpolation is easier since one 

does not have to worry about singularities as is the case when an Euler angle representation is 

used. It also allows interpolating between two poses that are very different yet producing good 

results. On the other hand, Euler angles are more intuitive to use and have only 3 parameters (as 

opposed to 4 in quaternions) which makes them more space efficient. For example, in the PC 

version of Indiana Jones and the Infernal Machine™ by Lucasarts Entertainment, Euler angles 

are used. Therefore, no interpolation between dissimilar motions happens, e.g. when 

transitioning from crawling to walking. The Nintendo-64 version of the same game uses 

quaternions, making it possible to interpolate between all actions. 
 

Motivate is a commercial authoring tool created by the Motion Factory™, Inc. Its main 

goal is to facilitate the creation of 3D content that allows rich interaction of characters and good 

story telling using intelligent digital actors. Koga et al describe The Intelligent Digital Actor™ 

architecture [KOG99]. It combines real-time motion synthesis and dynamic event-based 

behavior programming. The first part allows the characters motion to be generated on the fly in 

response to a dynamically changing environment. The second part provides the game’s logic 

through a hierarchical finite state machine that is specifically designed to model the behavior of a 

complex real-time system. 

 

Using the skill editor of Motivate the animator can describe the basic skills of each 

character. This is equivalent to creating a motion clip library. For example, to define a ‘pick up’ 

skill the animator defines two keyframes: (1) positioning the hand at the handle just before 

grabbing, and (2) the hand’s configuration after grasping the handle. This skill can be used with 

any object that has an appropriate handle. IK and collision detection are used to generate the 

final motion. If the object is not within reach the character can walk closer before attempting to 

grab the object; assuming that the ‘walk’ skill is already defined. Reversing the sequence of the 

keyframes allows the character to release an object. In Motivate, it is also possible to blend 

activities like walking and waving but without any interaction between the upper and lower 

body. 
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In the game SWAT™ 3: Close Quarters Battle by Sierra Studios, soldiers have two 

controllers: one for locomotion (lower body), and one for aiming (upper body). For example, a 

reload animation is strictly an upper body motion, allowing the characters to reload while 

walking. Again, there is no relationship between the two controllers, i.e. they do not affect each 

other. SWAT3 uses quaternions allowing smooth transitions through interpolation [SIE]. 

 

RAD Game Tools, Inc. released a product called Granny 3D Animation™ in December 

1999 [RAD], another commercial authoring tool. It is a complete system for adding 3D geometry 

and animations into a game quickly and easily. The main advantage of Granny is its character 

animation system, through which it is possible to playback and blend multiple animations. For 

example, one can make a character salute and run at the same time, transition from a walk to a 

run, etc. Blending is simply done by assigning weights to the animations. The weights can be 

time varying. The weights and their time varying properties are assigned by the user, they are not 

assigned automatically. Granny also has an inverse kinematics solver. It can also adapt 

animations on the fly for characters with different proportions so long as their hierarchy is 

similar. 

 

These are only a few examples form the game industry, still it is obvious that games use 

partial motion clips extensively, and there are no good methods to blend them properly. Mostly, 

the partial motion that is blended in just masks out the original motion of those DOFs and 

replaces it with the new motion. It will not affect the remaining DOFs. 

 

2.4 Summary 

In this chapter, a variety of approaches to accomplish motion reuse have been described. 

Interactivity, ease of use and control, realism, space requirements, and applicability are several 

measures for judging editing methods. 

 

Methods that employ dynamics, like the spacetime constraints system of Rose et al 

[ROS96], are not interactive and hard to control, but are able to produce physically correct 

motions. Gleicher reduced the spacetime formulation by taking out the dynamics part. The result 

was an interactive system. He justified this by the assumption that the editing process will create 

only minor changes to the original (correct) motion thereby maintaining a lot of the physical 
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characteristics. On the other hand, Popovic and Witkin kept the dynamics in, but simplified the 

model. 

 

Bruderlin and Williams’ signal processing method [BRU95] is interactive, but it is not 

easily seen what the effect will be from changing the sliders, control therefore depends on trial 

and error. On the other hand, the methods that provide the user with meaningful parameters are 

easier to control. This category includes Perlin’s system [PER95] and the system of Unuma et al 

[UNU95].  

 

Some methods have high space requirements, like the methods that use graphs and state-

machines [BRA00] [KOV02a] [LEE02]. Therefore, they depend on clustering or pruning of the 

graphs to keep the size of the graphs under control. They also vary in the methods used for 

searching the graphs for appropriate clips to make up the new motion as well as in the methods 

used for analysis of the data to identify transition points and assign probabilities and thereby 

creating the graph.  

 

Methods that create motion spaces from a collection of sample motions and then use 

interpolation to generate a specific motion also have high space requirements [GUO96] [ROS98] 

[WIL97b]. Motion spaces are good because interpolation is relatively easy to do and fast. The 

difficult part is to put the space together and to parameterize and annotate it correctly. This 

includes the problem of aligning the motions. An important factor in these methods is the 

number of samples obtained for the data sets. The more samples obtained the more accurate the 

interpolations can be, because the generated motion space will be dense. However, the drawback 

is the additional space requirement. To reduce it, one could combine similar motions by storing 

the common parts once and then try to compute the other parts procedurally. This is what is 

being done in the research represented in this dissertation. 

 

For example, if one had a motion space for throwing which included a parameter defining 

the starting posture e.g. sitting, standing, or walking, a lot of samples would be needed to be able 

to generate good interpolated motions. If one could assume that the motion of the throwing arm 

is always the same and the motion of the remaining joints can be induced in the neutral motion 

(i.e. without throwing) via a relationship to the throwing arm motion, then they would not have 
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to be stored separately. Just the arm motion needs to be stored once in addition to whatever 

information is needed to compute the other DOFs depending on posture: sitting, standing, and 

walking. For that to be possible, one would need to find a relationship between the upper and 

lower body during throwing. Research done in biomechanics, kinesiology, or other fields that 

deal with human body movements like sport and exercise sciences may be helpful in 

understanding the correlations between joint movements. 

 

In the biomechanics community there has been a lot of research devoted to the study of 

throwing, like pitching in baseball, passing in football, javelin, windmill pitching, and so forth 

[BAR98] [FLE96]. The focus in those studies is usually on what the kinematic and kinetic 

parameters are in order to achieve the furthest throw, or the most accurate throw, or the fastest 

throw, and how to avoid injuries. In addition, the timing and sequencing of actions is studied 

[ELL88]. There even have been studies that compare such parameters between groups of people 

with different levels of development [FLE99]. Apparently, there are no studies that specifically 

address the correlation of the upper and lower body during throwing while in different postures. 

This is probably because in the field of biomechanics it is not important to find such a 

relationship. Nevertheless, it could be useful in the field of computer animation, especially in 

games. 

 

Looking at the applications of the proposed methods, there are only a few methods that 

consider applying a motion to differently sized characters [GLE98a] [LEE99] [POP99]. Brand 

and Hertzmann, claim that their Style Machines can be used for retargetting by considering the 

size of the character as another style variable [BRA00]. Applying a motion to differently sized 

characters is an important problem to consider. Especially when trying to reuse motion captured 

data since it is very likely that there is only one actor or actress who will perform the desired 

motions that will later be applied to many different characters.  

 

Additionally, there are only a couple of methods that dealt with blending individual 

degrees of freedom of one motion with another and those were by Bruderlin and Williams 

[BRU95] and Rose et al [ROS96]. However, they did not take into consideration how the DOFs 

chosen for blending affect the rest of the DOFs. Blending separate DOFs is important in games 

that store small clips for each part of the body separately, like in martial arts games or sport 
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games, where each kind of kick or punch is stored by itself. Blending techniques can be 

improved to produce smoother final motions and to reduce jerkiness if more knowledge about 

the nature of the movement is incorporated or – as in the method presented here – the correlation 

between joint movements is taken into consideration. 
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CHAPTER 3 

A TAXONOMY FOR MOTION EDITING 

 

This chapter presents a taxonomy by which one can categorize the existing motion 

editing techniques described in the previous chapter. It will place the method presented in this 

dissertation in the correct position relative to the existing editing methods. 

 

A distinction is made between the words ‘action’ and ‘motion’ in this dissertation. An 

action is something that is performed, whereas a motion is a formal representation of an action. 

In other words, a motion defines a character’s configuration as it changes over time. It can be 

represented as a function, a sequence of keyframes, a collection of joint curves, or any other 

representation. This distinction is made because one may not think of ‘sitting’ as a motion since 

it does not necessarily involve any movement, yet it is something one does hence it is an action, 

and once it is converted into a format suitable for animating a character, for instance, it is called 

a motion.  

 

Furthermore, motions can be defined completely or partially. Completely, meaning that 

all joint curves are stored, or the keyframes describe the whole character’s configuration. 

Partially, meaning that only the prominent joint curves are stored or the keyframes only describe 

part of the character’s configuration. Similarly, actions may involve the whole body, like 

walking, standing, sitting, swimming, running, jumping, dancing, or they may involve part of the 

body, like waving, throwing, punching, scratching the head, pointing, reaching, etc. An 

important point to note is that a partial action is not necessarily stored as a partial motion; it can 

be stored as a complete motion.  

 

3.1 Main Classification 

Motion editing techniques can be categorized using the following taxonomy, which 

divides the techniques along two dimensions. The first dimension is the number of motion files 

used. This dimension can have two values: using a single file only, or using multiple files (the 

exact number is unimportant). The second dimension specifies the purpose. It can be roughly 

divided into: transitions, emotion, changing styles or locomotion characteristics, retargetting, 
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Table-1 Motion Editing Taxonomy – Part 1 
 

Mixing 
Motions 

Not applicable  See  0 below 

Changing 
end-
effector 
position 

Displacement mapping and 
waveshaping – [BRU95] 
e.g. knocking at a different height 
Warping – [WIT95] 
e.g. hitting a tennis ball at a 
different height 
Spacetime – [GLE97] 

Motion Space – [WIL97a] [WIL97b] 
e.g. reaching to different locations 
Motion Space – [ROS98] 
e.g. reaching to different heights 
 

Retarget-
ting 

Spacetime – [GLE98a] 
Hierarchical curve fitting and IK- 
[LEE99] 
Physically based transforms – 
[POP99] 

Motion spaces could be used although 
there is no explicit example 

Style or 
Loco-
motion 
Character-
istics 

Signal Processing – [BRU95] 
e.g. can exaggerate a walk 
Fourier Representation – [UNU95] 
e.g. change slider to control step 
length  
Physically based transforms –
[POP99] 
e.g. make a character limp 
 

Differencing – [UNU95] 
e.g. extract briskness of walk, add to run 
Motion Space – [GUO96] 
Motion Space – [WIL97a] [WIL97b] 
e.g. walking at different slopes 
Motion Space – [ROS98] 
e.g. walking and turning left or right 
Style Machines – [BRA00] 
e.g. change novice to professional dancing 
Texturing – [PUL02] 
e.g. make walk look more life-like. 

Emotion Add noise – [PER95] 
e.g. to simulate nervousness 
Signal Processing – [BRU95] 
e.g. increase high frequency bands 
to simulate nervousness 

Differencing – [AMA96] 
e.g. extract angriness from a drinking 
action and applying it to a kicking action 

Transition Overlap ends, find correspondence 
point with min. difference in 
position, velocity, and acceleration, 
distribute error over interval, 
Fit a least squares cyclic B-spline 
approximation – [ROS96] 
e.g. cyclification of walk 
 

Spacetime – [ROS96] 
e.g. to concatenate several motions 
Motion Space – [GUO96] 
e.g. transition from walk to run 
Fourier Representation – [UNU95] 
e.g. interpolate to transition from walk to 
run 
Warping – [WIT95] 
Style Machines – [BRA00] 
Motion Graphs – [KOV02a]  
Avatar Control – [LEE02] 

 Single file Multiple files 
 

 

 27



Table-2 Motion Editing Taxonomy – Part 2: details of mixing motions 
 

Partial with 
complete 

Signal Processing –[BRU95] 
e.g. blend walk with drumming 
Spacetime and masking – [ROS96] 
e.g. blend a walk with a salute 
Layering and masking – [PER95] 
e.g. shrugging the shoulders and standing 

 

Complete with 
complete 

Not applicable, since complete motions 
define all joints 

Signal Processing – [BRU95] 
e.g. blend two walks 

 Affect only some DOFs Affect all DOFs  
 

 

 

changing end-effector position without changing the original action, and mixing motions: two or 

more complete motions, or complete and partial motions. Where retargetting is as defined by 

Gleicher, i.e. applying a motion to a differently sized character [GLE98a]. And mixing motions 

can be via blending or merging, overlaying, adding, etc. Table-1 shows where the existing 

motion editing techniques fit in. It gives the name or category of the technique, its reference, and 

a published example if possible. 

 

3.2 Classification of ‘Mixing Motions’ 

‘Mixing motions’ can be further divided depending on what kind of motions are being 

mixed together, and when partial motions are involved whether the combination has an affect on 

the whole configuration of the character or only on the included part, see Table-2. It is apparent 

from Table-2 that there are no methods that mix partial motions with complete motions while 

taking into account the effect this combination may have on the remaining DOFs. This is where 

the motion editing method presented in this dissertation fits in. 

 

When mixing motions, one motion has to act as the base to which the other motions are 

added. Usually the complete motion is the base and the partial motion is the addition. Mixing a 

partial motion with another partial motion is not in the table because this case can be reduced to 

any of the other cases as follows: 
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1. If both partial motions define the same parts it is reduced to the complete with 

complete case. All DOFs in these partial motions will be affected and there are no 

other DOFs that could be affected.  

2. If one partial motion defines a subset of DOFs of the other. It is reduced to the partial 

with complete case, where the partial motion with the larger number of DOFs defined 

will be considered the complete one and the one with less DOFs may affect some/all 

DOFs of the other. 

3. If the DOFs defined are not subsets of each other, one still has to be chosen as the 

base and the other one may affect other DOFs not defined in it but defined in the 

base.  DOFs defined in the addition but not in the base are simply ignored. Thus this 

case is also reduced to the partial with complete case. 

 

In the work of Pullen and Bregler a partial motion can be ‘textured’ from a complete 

motion [PUL02]. Also undefined DOFs may be synthesized. As described in section 2.2.8 the 

first step in their method is to find a match between the partial and the complete motion. The 

partial motion may be the motion of the legs while walking resulting from keyframing. The 

complete motion may be a result of motion capturing a person walking. A Laplacian pyramid is 

created dividing the motion into frequency bands. Lower frequency bands can be used to find a 

match between two motions using selected DOFs of the partial motion. The higher bands are 

then used to ‘texture’ the DOFs of the partial motion because they contain the details of the 

motion. Additionally, DOFs not included in the partial motion, e.g. the arms, may be synthesized 

by using all frequency bands of those DOFs from the complete motion. This is different from the 

work presented here, in that the DOFs that will be affected are selected by the user. And the 

extent to which they are affected is also controlled by the user.  

 

One may still argue that the work of Pullen and Bregler fits into the category of mixing 

partial with complete motions while affecting all DOFs. But looking closely at their work one 

realizes that it does not fall into that category. That is because in the work of Pullen and Bregler 

there is no interaction between the DOFs that are edited. Furthermore, DOFs that are affected in 

the base existed in the addition, similarly DOFs that are synthesized in the base existed in the 

addition, but what will be done here is that DOFs that are affected in the base do not exist in the 
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addition. And that is what is intended in the category of mixing partial with complete motions 

while affecting all DOFs, that is, affecting DOFs in the base but not in the addition. 

 

From this presentation, it is safe to say that there are no existing methods for editing 

motions that allow mixing of some DOFs while affecting other DOFs automatically. And that is 

precisely what will be demonstrated in the next chapters via the creation and usage of Combined 

Partial Motion Clips. 
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CHAPTER 4 

DATA FORMAT AND TERMINOLOGY 

 

The motion samples used in this research are all results of motion capture. Optical motion 

capture equipment was used to acquire the motions. The spatial 3D data of the markers was 

converted to joint orientations and positions of the root so that it could be used to drive an 

animated character. Therefore, before getting to the heart of the work presented here, a few 

definitions have to be stated and the conversion routine has to be explained. 

 

4.1 Terminology 

The raw data resulting from motion capture is converted into root position and joint 

orientations. Joint orientations are expressed as XYZ-Euler angles and stored as vectors,  

vi = [x y z]T  for i = 1 .. NumberOfJoints. Therefore, all joints are stored as if they had 3 DOFs 

even though some have less. The knee joint for example, has only one degree of freedom, a 

rotation about the x-axis, hence the y and z components of its vector are always zero. This 

representation was chosen so that all joints could be handled uniformly including the root’s 

position, which is also stored as a vector, v0 = [x y z]T. The position of the root is expressed as a 

relative displacement in the root’s local coordinate system. Furthermore, no joint limits are 

imposed on the joints. 

 

4.1.1 Articulated Figure 

An articulated figure is a hierarchical representation that defines a figure as a sequence of 

joints and segments (see Figure-3). Segments can be of variable length, but here fixed length is 

assumed. The DOFs of the figure depend on the number of joints. In general, the root has 6 

DOFs 3 for the position and 3 for the orientation, and all the other joints have up to 3 DOFs for 

their orientation.  

 

The articulated figure shown in Figure-3 is in its zero-pose, where all joint rotations are 

zero. A right-handed system is used as the local coordinate system of each joint. The y-axis 

usually runs along the segment except for the collar bones. When the figure is in its zero pose, 

the x-axis points to the left, the y-axis points upward, and the z-axis points to the front. This is 

true for all joints.  
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In this research, the neck, head, collars, and toes were not used. Therefore, the total 

number of joints used was NumberOfJoints =14. Since the root possesses 6 DOFs (represented 

by v0 and v1) , the back, shoulders, and hips possess 3 DOFs, all other joints only 1 DOF, the 

total number of DOFs was 1*6+5*3+8*1= 29. 

 

4.1.2 Pose 

A pose defines the values of all DOFs of the articulated figure at an instance in time: 

P = [v0 …. vk]T , where k = NumberOfJoints. 

 

4.1.3 Partial Pose 

A partial pose defines the values of some DOFs of the articulated figure at an instance in 

time, e.g. the pose of the trunk and arm during a waving motion: 

PP = [{vi : i∈{0,1,…, NumberOfJoints}}]T , if v0 (position) is included then v1 (root) has to be 

included too. 

 

 

 
Figure-3 The joints of an articulated figure and its hierarchy. 
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4.1.4 Trajectory 

A trajectory qi(t) is a function that defines the values of vi as it changes over time. The 

maximum number of trajectories used in this research is NumberOfJoints +1 = 15, that is, the 

trajectory for position, plus the trajectories of all joints. 

 

4.1.5 Motion 

A motion is a collection of poses taken at contiguous instances in time: 

M=[P1,P2,…Pn], where n = NumberOfFrames. 

Or the concatenation of all trajectories: 

m(t) = {qi(t): i = 0,1,…, NumberOfJoints }, where t = 0.. NumberOfFrames-1.  

For a specific t, m(t) corresponds to a pose. 

 

4.1.6 Partial Motion 

A partial motion is a collection of partial poses taken at contiguous instances in time: 

PM=[PP1,PP2,…PPn], where n = NumberOfFrames. 

Or the concatenation of some joint trajectories: 

pm(t) = {qi(t): i ∈{0,1,…, NumberOfJoints }}, where t = 0.. NumberOfFrames -1.  

For a specific t, pm(t) corresponds to a partial pose. 

 

4.1.7 Base Motion 

A base motion is a motion, partial or complete, to which another partial motion is added. 

 

4.2 Data Format 

The motion captured data is stored after conversion in ASCII files, called Pose Files. 

Pose files have the following format: 

 

Number of frames on the first line: NumberOfFrames 

Rest and calibration angles of all joints on the second line: r1 c1 r2 c2 …. rk ck 

For each frame, one frame per line, starting at the third line:  frameNumber v0 … vk 

 

Where calibration (ci) and rest (ri) angles are also vectors, all vectors are displayed in this 

format: (x,y,z), and k = NumberOfJoints. Converting the data to binary format can help reduce 
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the space requirements. But since the aim was to be able to retrieve the data easily as well as to 

be able to read the data using a regular text editor, the ASCII format was chosen. 

 

4.3 Data Conversion 

The motion samples used in this research were collected at the biomechanics laboratory 

at the Warren Grant Magnuson Clinical Center at the National Institutes of Health (NIH). An 

optical motion capture system by Vicon was used. It outputs data in C3D format which is a 

binary file consisting of a header section, followed by a parameter section, and finally a data 

section. The data section contains the 3D point coordinate data written frame-sequentially, that 

is, the 3D positions of all markers are written frame after frame. No orientations are provided. 

Code for reading C3D files was graciously provided by NIH.  

 

 

 
Figure-4 Adjusting Figure’s segment lengths and rest angles. 
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The positional data had to be converted to joint orientations and root position to make it 

suitable for driving the animation of an articulated figure such as the one shown in Figure-3 

above. A program for that purpose was written using Microsoft Visual C++, the Pose File 

Generator. The program starts by asking the user to adjust the figures segment lengths, and rest 

angles to match the subject. See Figure-4 where the articulated figure’s rest angles are still at 

zero. When rest angles are adjusted the articulated figure should look similar to the one in 

Figure-5. 

 

To obtain an orientation for a 3 DOFs joint one has to have at least 3 markers at the 

corresponding segment in order to be able to create a local coordinate system and then derive the 

orientation. This was the case for the root, which provides the overall orientation of the figure, 

where 2 markers were placed on the hips and one marker at the lower back, approximately at 

waist height. For the shoulder 3 markers were placed on the upper arm. And for the hip joints a 

little compromise was made, since there is not much y-rotation, and only 2 markers were placed 

on the upper leg. During computation of orientations the z-axis for the hips would be 

approximated by the help of the x-axis of the root. The back joint was handled in a similar 

manner. For other joints, two markers would be used at a time, which mostly would be placed on 

the corresponding segment and thereby define the y-axis of the local coordinate system. 

 

Consequently, the next step in the program is for the user to identify which markers will 

be used for the computation of which joint. It allows 3 markers to be assigned for the root, the 

shoulders, and the hips. All other joints are only allowed 2 markers. Figure-5 shows the location 

of the markers relative to the body, as they were used in the samples collected for this 

dissertation. And Table-3 shows which markers were assigned to which joint, some joint 

orientations were not computed (i.e., not used) because they were either irrelevant, or they were 

ignored to keep the problem at hand at a manageable complexity.  

 

Once the markers are assigned, the orientations can be computed, starting with the root 

then moving down the hierarchy. Each joint’s local coordinate system is computed using the 

markers assigned to it, in cases where only 2 markers are chosen the missing axes are 

approximated by those of the parent’s joint. Then each joint’s orientation is computed as the 
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Table-3 Marker to Joint Assignments 
 

 JOINT MARKERS USED

1 Root BACK, RP, LP Yes 

2 Back BACK, NECK Yes 

3 Neck not available No 

4 Head not available No 

5 Right Collar NECK, RS No 

6 Right 

Shoulder 

RUA, RHU, 

RUE 

Yes 

7 Right Elbow RLE, RW Yes 

8 Right Wrist RW, RH Yes 

9 Right Hip RP, RUK Yes 

10 Right Knee RLK, RA Yes 

11 Right Ankle RA, RF Yes 

12 Right Toe not available No 

13 Left Collar NECK, LS No 

14 Left 

Shoulder 

LUA, LHU, 

LUE 

Yes 

15 Left Elbow LLE, LW Yes 

16 Left Wrist LW, LH Yes 

17 Left Hip LP, LUK Yes 

18 Left Knee LLK, LA Yes 

19 Left Ankle LA, LF Yes 

20 Left Toe not available No 

   

 
 

Figure-5 Marker positions relative to 
articulated figure. 
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Figure-6 Effect of calibration and rest angles after assigning markers for joint orientation 
computation. Left: not calibrated and rest angles are set to zero. Middle: calibrated, but rest 
angles are set to zero. Right: calibrated and rest angles are set to match subject. 
 

 

frame transformation between the local coordinate system of the joint and that of its parent. The 

root’s parent is considered to be the world coordinate system.  For 1 DOF joints, the computed 

transformation is applied to the world’s y-axis, and then the pure x-rotation is computed using a 

trigonometric function call to ‘atan2’ with the y and z components of the transformed y-axis as 

the parameters. 

 

One thing that has to be taken into consideration is the calibration of the markers. When 

the subject is recorded at zero-pose the readings of all joint angles should be zero. But since 

marker placement is not always accurate and the markers are often not aligned with the 

segments, the values of the computed joints orientations may not be all zero. Therefore, a 

calibration angle for each joint has to be added which is equal to the inverse of the angle 

measured at zero-pose (as in the left image of Figure-6). These calibration angles will remain the 

same as long as the markers are not moved. This means that they only need to be computed once 
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Figure-7 Walking using a calibrated figure with rest angles. 

 

 

for each subject. Subsequent motions will use the computed calibration angles to compute the 

actual orientations of the joints that compose the recorded action, see Figure-7. 

 

The program then allows writing out the computed orientations as a Pose file, which is 

given the extension .pos. Its format is described in section 4.2. A Pose file can be played back 

using another program: the Pose File Player, which has limited IK capabilities, see APPENDIX 

C. Data for the figure can also be written to a file given the extension .fig. It will include the 

segment lengths, rest angles, and calibration angles. The program allows other operations such as 

taking snapshots of the display area, or even recording a sequence of frames. Such images are 

written in TGA format. It allows writing out selected joint locations in world space for selected 

frames, which can be helpful in data verification. And segments may be turned on or off for 

better display. 
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This chapter presented some key definitions. It then went on to explain the conversion of 

the raw data resulting from motion capture to a format suitable for use to drive an articulated 

figure. The conversion started with segment and rest angle specification, then marker 

assignment, calibration, and finally writing out pose files. 
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CHAPTER 5 

COMBINED PARTIAL MOTION CLIPS 

 

The solution to the problem of mixing partial motions will be described here. The 

objective is to be able to edit a base motion to generate a variation of it by mixing it with a 

partial motion. It should be possible to use the same partial motion clip to generate the same kind 

of variation in a multitude of base motions. For that, the partial motion clip has to be equipped 

with some ‘knowledge’ about the different base motions and how other DOFs will be affected in 

each case. The partial clip should be as compact as possible, yet allow as large a number of 

DOFs to be affected as necessary to make the resulting motion look natural.  

 

For one kind of action, multiple samples of that action performed during different base 

motions are analyzed to find the effect the partial motion has on the rest of the body. The 

samples are then combined into one clip called a Combined Partial Motion Clip (CPMC). What 

is contained in a CPMC, how it is created, and how it is used is described next. 

 

5.1 Definition 

A Combined Partial Motion Clip is a combination of several similar partial motion clips. 

Combined, in that the included samples are not all stored individually, but are averaged 

whenever possible. Partial, in that the included samples define only some DOFs of the articulated 

figure. Similar, in that they describe a specific action.  

 

The difference between the samples is that they are performed during different base 

actions. Furthermore, a CPMC contains scripts that allow the computation of other DOFs. The 

scripts contain equations that represent an approximation to the correlation between joint 

movements. This makes it possible to use a CPMC to edit a base motion by generating a 

variation of it while affecting all DOFs in a reasonable way. The same CPMC can be used for as 

many different base motions as were included in the samples, each time generating the same kind 

of variation.  
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5.2 Generating a Combined Partial Motion Clip 

To create a CPMC two main tasks need to be accomplished: 1) extract the partial 

common action, 2) find the effect of the DOFs in the partial action on other DOFs. Therefore, 

several steps are taken in order to produce a CPMC (see Figure-8 below). First, motion samples 

are collected. Then, the samples are preprocessed to ready them for partial action extraction. 

Then, the partial action is extracted and analyzed. Finally, the samples are combined into a 

CPMC. 

 

 
Figure-8 Creating a CPMC 
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5.2.1 Data Collection 

Motion data for the desired action (i.e., the one that causes the variation) needs to be 

collected. The data should include multiple samples where the action is performed during 

different base actions, e.g., reach while walking, reach while jumping, and reach while squatting. 

The base actions without the desired action also need to be collected, e.g. walking only, jumping 

only, and squatting only. Samples should be taken from several subjects to account for the 

variations in personal style for a more complete analysis. 

 

5.2.2 Data Manipulation 

Since multiple samples are being dealt with simultaneously, this method bears similarity 

to motion space techniques where parameter and time correspondence is of major concern.  But 

not all samples will be stored, that is where this method differs from motion spaces, and that is 

why no interpolation will be needed. 

 

The collected motions need to undergo some preprocessing to make them ready for 

partial action extraction and to establish time correspondence. The main task is to align the 

motions based on some landmarks, e.g. heel-strikes, maximum arm extension, etc., in order to 

achieve time correspondence. Shifting, resampling, and trimming usually accomplish the task. 

There is no need to worry about parameter correspondence because all samples are from the 

same source so they are in a uniform format. 

 

5.2.3 Partial Action Extraction 

Initially, in order to extract the desired action a transformation was computed that would 

transform the plain base motion into the base motion with the desired action at each frame. Since 

joint orientations are stored as Euler angles and the position as a relative displacement, 

computing the transformations for them is done in different ways. To compute a transformation 

from one orientation to another the Euler angles must be converted to rotation matrices first 

which involves trigonometric function calls, multiplications, additions and subtractions. Then the 

dot product of each corresponding unit row vector of the two rotation matrices has to be taken to 

compute the transformation as another rotation matrix. Finally, the resulting rotation matrix has 

to be converted back to Euler angles which involves square roots, more trigonometric function 

calls, and divisions. To compute a transformation of one positional vector to another, only their 
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vector difference has to be taken. A clip extracted this way, could then be used by applying the 

transformations contained in it to another base motion. Again, this involves the costly conversion 

of the Euler angles to rotation matrices, multiplying the matrices – another costly operation, and 

then converting them back to Euler angles. It is evident that this whole process is 

computationally expensive. 

 

But experimenting with the data at hand, led to the conclusion that one could merely use 

a vector difference of the Euler angles to extract the change, and later use a vector addition to 

generate the new motion with equally good results thus simplifying the process dramatically. 

This also meant that the joint vectors vi could be handled the same way the positional vector v0 

was handled. See Figure-9 and Figure-10 below for a comparison. Note there is a small 

difference in the trajectories produced by addition and the ones produced by transformation in 

the right image of Figure-10, but looking at the actual playback of such a motion the difference is 

negligible (see Figure-11). Furthermore, such differences only occur in joints with more than 1 

DOF because the x, y, and z components in the Euler angle representation are not independent of 

each other. For 1 DOF joints computing the transformation or taking a difference produced 

identical results. The advantage of using differencing and addition outweighs the disadvantage. 

Hence, differencing was chosen as the means for extracting the partial action in this work, and 

addition is then used for editing a base motion with a CPMC. 

 

Taking the difference of two motions is not a new idea. The purpose for which it is used 

in the work presented here is what is new. For example, in the work of Amaya et al, the purpose 

was the extraction of emotion, a difference was taken between a motion performed showing 

some emotion (e.g., sad or angry) and the same motion performed in a neutral state [AMA96]. 

Therefore, the extracted difference was a measure of emotion that could be used to transform 

other neutral motions to emotional motions. Unuma et al extracted characteristics of a walk, e.g., 

briskness, by computing the difference between a brisk walk and a neutral walk [UNU95]. This 

characteristic could then be added to a running motion for example. Or it could be used to 

transition from a slow walk to a brisk walk using interpolation.  

 

An analogy to image based rendering (IBR) methods can be made. Blending partial 

motions is like inserting synthetic objects (equivalent to a partial motion) into real scenes 
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(equivalent to a base motion). The insertion if done simply by copying the synthetic object into 

the scene will not look realistic since there is no interaction with the scene. The inserted object 

should be able to cast shadows and reflect other objects if it is shiny and be itself reflected by 

other objects already in the scene and so on. In other words lighting effects have to be considered 

(equivalent to affecting other DOFs). Debevec computed the color difference between two 

synthetic images, one without any objects (just a plane lit by the lighting model of the real 

scene), and one with the objects that will be placed into the real scene. The extracted difference 

was then added to the real image, thereby allowing shadows to be cast and light to be refracted 

[DEB98]. 

 

Liu et al computed ratio images, instead of differences, between images of faces with and 

without expression. The ratio image would therefore encrypt the changes in lighting due to the 

changes in expression which would include wrinkles. Together with geometric warping, a ratio 

image could then be used to change other person’s neutral faces and make expressions more 

expressive [LIU01].  

 

Similarly, Noh and Neumann were able to clone expressions by computing a vector 

difference between the vertices of two meshes of a facial model with two different expressions. 

The obtained difference (motion vectors) could then be applied to other facial models after 

establishing correspondences between this model and the one used in the differencing. The 

correspondence points helped in warping the model and adjusting the direction and magnitude of 

the motion vectors [NOH01].  

 

In the work presented here, the computed difference is an additional movement of part of 

the body that is the result of a simple vector difference of each corresponding trajectory at each 

frame between the motion with the desired action and the plain base motion. 

 

Let mb1(t) define a base motion, and md1(t) define a motion of the same subject 

performing the desired action during the same base motion. The desired motion m1(t) is 

extracted by taking their difference. The same is repeated for all samples of the desired action 

and their corresponding base motions:  

   (Equation-2) 

 

mi(t) = mdi(t) –  mbi(t) for i=1..NumberOfBases
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Figure-9 Difference vs. Transformation. Trajectories of the xyz-rotational components of the 
right shoulder and right hip. Vertical axis denotes degrees, and horizontal axis denotes frame 
numbers. Left: a walking motion – the base (solid) and the same subject’s ‘walk&throw’ motion 
– the base with a variation (dotted). Right: the extracted partial action – the throwing motion – 
computed as a difference (solid) and as a transformation (dotted). 

 

 

This will result in a collection of extracted desired actions, one for each base at least. The 

process is repeated for all subjects leading to more collections, one for each subject. At this stage 

all actions are still stored as complete motions. 
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Figure-10 Addition vs. Transformation. Trajectories of the x, y, and z rotational components of the right shoulder and right hip. Vertical 
axis denotes degrees, and horizontal axis denotes frame numbers. Left: two walking motions – two bases, one of the same subject whose 
motions were used in the extraction of the partial action (solid), and another subject’s walking motion (dotted). Middle: resulting motion 
of combining walk base and extracted throw of original subject using addition (solid) and using transformation (dotted), note the 
trajectories are identical and the original ‘walk&throw’ motion has been recovered. Right: resulting motion of combining another 
subject’s walk base and extracted throw of original subject using addition (solid) and using transformation (dotted). 
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Figure-11 Addition vs. Transformation Frame Sequence. Two superimposed frame sequences of 

two generated ‘walk&throw’ motions, one by addition, and one by translation. 
 

 

5.2.4 Data Analysis 

It is desired to store a minimal amount of data without losing the details of the motion 

that characterize it, i.e. to store the extracted action as a partial motion. For that, the extracted 

difference motions (mi) are carefully analyzed in order to find out which trajectories need to be 

stored as they are, which can be averaged (across the bases and/or subjects) and which can be 

recovered through a relationship with the stored ones. In other words, it is desired to store the 

difference motion as a partial motion pm which includes detailed trajectories of the joints that 

are the most active ones in the extracted action. For the remaining joints not included in pm, a 

function has to be computed that relates the changes that occur there to the changes in other 

joints. That is, each joint i not included in pm should have a function fi(pm(t)) defined through 

which the joint curve qi(t) can be estimated. In some cases, the functions may differ for the same 

joint depending on the base motion, in other cases they may be the same for all bases, which is 

preferred. 
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The question asked is: What are the similarities and differences  

1. between all mis of one subject? 

2. between subjects for a specific mi, i.e. the ones extracted from a specific base 

motion? 

 

To answer those questions one has to compare the joint trajectories and their derivatives. 

Trajectories that are nearly identical in all mis of one subject are usually the ones that are the 

main constituents of the desired action being extracted, like for example, the trajectories of the 

arm joints in a reaching motion. These are the main candidates for inclusion in the partial motion 

clip. 

 

When analyzing the original motion data it is often hard to see how similar the affects of 

a particular DOF are on another for the different base motions. Since the main interest is not in 

the correlation between the joints in the base motion itself, but in the correlation between the 

DOFs involved in the partial motion and other DOFs independent of the base, the changes are 

analyzed. That is, the difference trajectories taken between the detailed motion and the bases are 

analyzed, because this takes out the effect of the base motion and enables one to find more 

accurate relationships between the DOFs of the partial motion and the DOFs of the base motion. 

These relationships can then be used to approximate the trajectories that will not be stored in the 

partial motion clip. 

 

Furthermore, depending on the action on hand, one may turn to the research done in the 

field of biomechanics or kinesiology for help in analyzing the data and obtaining relationships 

between the movements of the joints. Or one may look at the data in an abstract form and use 

statistical methods for analysis, e.g. as a multivariate time series. This may require some 

cooperation with someone specialized in those fields. 

 

5.2.5 Clip Combination 

In light of the fact that several motions are used at the same time this technique bears 

similarity to motion space techniques. Wiley and Hahn [WIL97b], Rose et al [ROS98], and Guo 

and Robergé [GUO96] collected similar motions and parameterized them. New motions are then 

computed by interpolation. Wiley gives examples of reaching to different locations, or walking 
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on different slopes. He uses (bi)linear interpolation. Guo and Robergé focus on walking and 

running parameterized by step length and jump height. They also use linear interpolation. Rose et 

al use radial basis functions and multivariable interpolation. Samples in the motion space (verbs) 

are assigned parameter values (adverbs) by hand. A collection of walks can have an adverb 

specifying how sad or happy the walk is, another adverb is speed, another one could be step 

length. In all these methods, each sample motion is stored in the space. This leads to high space 

requirements. But in the method presented here, instead of storing all motions in the space they 

are combined into one motion clip that is suitable for different initial base actions thereby 

eliminating the need for interpolation and reducing the storage space requirements. 

 

The results of the analysis step above dictate the way the difference motions are 

combined. Trajectories that are nearly identical across the bases can be averaged and stored. 

Whether one uses the data from one subject or all subjects depends on how much variation there 

is between them. For trajectories that can be estimated from their relationship with stored 

trajectories, the scripts for their computation are stored. The remaining trajectories making up the 

partial motion need to be stored individually for each base. This combination leads to a reduction 

in storage space requirements.  

 

Let the number of bases be b, the number of trajectories that constitute the extracted 

partial action be n, where n<(NumberOfJoints+1), the number of averaged trajectories be a 

(i.e., the number of trajectories stored separately for each base = n-a), and the estimated ones be 

e. With the currently available editing methods, one would have to store the trajectories of all 

DOFs for all bases to be able to add the desired motion to another one and affect all DOFs, that 

is (NumberOfJoints+1)*b trajectories. If only a partial motion is stored then only n*b 

trajectories need to be stored. Since some trajectories are averaged, a further reduction is 

possible, because the averaged trajectories are stored only once for all bases collectively. 

Therefore, the total number of trajectories stored is reduced to:  
     (Equation-3) 

Consequent

 

a+(n-a)*b
(Equation-4) 

ly, the total reduction is equal to: 
    
e*b + a*(b-1)
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Current methods would only affect n*b trajectories (equal to the number of trajectories stored); 

the method presented here allows the editing to affect (n+e)*b trajectories (equal to the number 

of trajectories stored plus the estimated ones). 

 

 
 

Figure-12 Using a CPMC 
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All the trajectories selected for storage and the scripts need to be preceded by an 

appropriate header. The header should contain information about constraint positions if 

necessary, like heel strike locations, or time of maximum arm extension, etc. It also should state 

which bases this CPMC applies to, and contain an index of the trajectories and scripts, and 

pointers to them or some other means for accessing and retrieving individual scripts and 

trajectories. 

 

5.3 Using a Combined Partial Motion Clip 

A CPMC can then be used by extracting the necessary trajectories and scripts from it 

according to the type of the base motion, computing additional trajectories, and adding them to 

the base motion. See Figure-12 above. 

 

The main information needed for a successful addition of a base motion and a CPMC is 

the type of the base motion. Some base motions may need additional information, e.g., the cycle 

length and the time of the first right heel strike in a running base motion. Which data is needed 

exactly is identifiable from the header information of the CPMC and the scripts for that 

particular base. 

 

Once the type of base motion is known, the appropriate trajectories qi and scripts fj can 

be selected from the CPMC with the help of the indexes and pointers contained in the header. 

Some base motions may require some preprocessing, for example resampling. Also, the selected 

trajectories need to be matched to the base motion since the CPMC is created for base motions 

with specific parameters, in the case of running it may be step length, jump height, and cycle 

length. After that, additional trajectories can be computed according to the scripts. Since a 

CPMC is a result of a difference, the last step is to add all the computed and selected trajectories 

to their corresponding trajectories in the base motion using a simple vector addition at each 

frame to get the final result. An algorithm is given in Figure-13 below. 
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Get type of base b 
Get header information from CPMC 

Get all qi from CPMC for base b, where i∈{0,1,…, NumberOfJoints} 
Get all fj from CPMC for base b, where j∈{0,1,…, NumberOfJoints} and j≠i 
Get all qbk from base b, where k ={0,1,…, NumberOfJoints} 
If necessary according to header information  

Get additional information about base b  
Resample the qbk (or manipulate otherwise)  

If necessary to match some aspect of base b  
Resample the qi (or manipulate otherwise)  

Compute qi=fj(pm)  where i=j, and pm = {selected and manipulated qi(t)} 
Compute new trajectories qnewk = qbk + qi , where k=i 

 

Figure-13 Algorithm for CPMC usage 
 

 

After this presentation it is clear that the creation of the CPMC depends on the simple 

peration of differencing for extraction of the partial action. After that the role of analysis comes 

nto play. It is needed to find relationships between joint data in the difference trajectories so that 

hey can be put into scripts and stored in the CPMC. Analysis is also needed to identify which 

rajectories can be averaged and which can not. Once the CPMC is created, addition is the main 

peration needed when using a CPMC to edit a base motion. Since differencing and addition are 

he main operations needed, the goal of simplicity has been met. And since trajectories are 

ombined and averaged if possible, the goal of reducing space requirements has also been met. 

he next chapter will give a demonstration. 
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CHAPTER 6 

EXPERIMENT 

 

The method described in CHAPTER 5 was put to the test using a specific example. A 

throwing motion was extracted from several clips that involved throwing while walking, 

throwing while standing, and throwing while sitting. A CPMC was created and used to edit base 

motions from several other subjects. The resulting motions were believable and looked natural. 

Their quality was assessed by comparing them to original motions (in CHAPTER 7).  

 

6.1 Generating a CPMC for ‘throwing’ 

The steps explained in the previous chapter in section 5.2 and depicted in Figure-8 for 

generating a CPMC will be discussed next with regard to the specific example of throwing. 

 

6.1.1 Data Collection 

The overhand throwing motion of six subjects (three males and three females, with 

different heights) was obtained via optical motion capture at the biomechanics laboratory at the 

Warren Grant Magnuson Clinical Center at the National Institutes of Health (NIH). A Vicon 

system was used with seven cameras that operated at 60Hz. The subjects had 26 light reflecting 

markers attached to their body: five on each leg, six on each arm, one on top of each shoulder, 

one on the neck, and one on the back. See Figure-5 in section 4.3.  

 

The subjects were simply asked to throw a ball to another person standing approximately 

10 feet away. The action was performed using a lightweight sponge ball during walking (md1), 

during standing (md2), and during sitting (md3). For the walking case, the subjects were asked to 

walk a few steps, throw the ball, and continue to walk. For the standing case, the subjects were 

asked to remain standing and not to take a step for the throw. For both standing and sitting, the 

subjects were asked to return their hands after the throw to the positions they started from, that 

would be straight down the sides while standing, and on their laps while sitting. The subjects also 

performed just walking (mb1), just standing (mb2), and just sitting (mb3). Each action was 

captured several times until at least 5 acceptable recordings were obtained.  

 

 53



Some problems were encountered in the throwing while walking case due to the limited 

space available for motion capture. As mentioned above, the lab used was the biomechanics 

laboratory at NIH, which is a gait lab where usually just the leg motions are captured over a 

range of 2 or 3 steps. Therefore, capturing the whole body was a challenge. And capturing it 

while walking and throwing was an even bigger challenge especially since it was desired to 

capture at least 7 steps. 

 

The data was cleaned up, which is a very time consuming and tedious task. Clean up 

mainly involved filling in missing or mixed up marker data by hand whenever possible, 

otherwise the motion had to be discarded. Marker data may have been missing due to occlusions 

during the capturing process or because a marker had fallen off. Marker data may have been 

mixed up when two markers were place too close together. Their captured trajectories may have 

been misidentified by the user and assigned to the wrong markers. Additionally, the data was 

smoothed by computing a weighted moving average to reduce the effects of noise contained in it. 

Finally, the data was converted to pose files as explained in 4.3. 

 

6.1.2 Data Manipulation 

Some of the converted data still needed further refinement in part as a result of the 

problem encountered while capturing as explained above. The refinement mainly consisted of 

extending the throwing while walking motions with a few steps at the beginning and end. This 

was done by finding a closest match in a walking motion of the same subject for the beginning of 

the ‘walk&throw’ motion and its ending. Since there are several ‘walk’ motions for each subject, 

the one with a cycle length equal to that at the beginning and end of the ‘walk&throw’ was 

considered for the extension.  

 

The closest match is identified as the frame with the minimum value for the distance 

between two corresponding partial poses in the two motions. Where the distance between two 

partial poses is denoted by: ||PP2-PP1|| and is computed as the summation of the norms of the 

difference between each corresponding joint vector included in the partial pose and between 

position vectors if included: 

    (Equation-5) 

 

 

||PP2-PP1|| = ∑ ||vi1-vi2|| 
                   vi∈PP1 
54



Partial poses were used because some joints were unused and should not be included in 

the distance measure, and because some have less significance than others, e.g. differences in 

ankle orientation are less important than differences in hip orientations. Another possibility 

would have been to use a weighted sum of the norms. When a match was found in the ‘walk’ 

motion the frames for one or two walk cycles were copied and attached to the front of the 

‘walk&throw’ motion. Similarly, a match at the ending of the ‘walk&throw’ was found in the 

‘walk’ motion and one or two cycles were copied and appended to the ‘walk&throw’ motion. 

 

Since matching just one frame can lead to visible discontinuities the actual process was to 

find a sequence of matching frames (approximately 9-15 frames) in the ‘walk’ motion which 

were overlapped with the corresponding sequence of frames in the ‘walk&throw’ motion and 

blended linearly. For concatenations at the beginning of the ‘walk&throw’ motion, the ‘walk’ 

motion would be faded out while fading in the ‘walk&throw’ motion over the duration of the 

overlapped sequence. The opposite was done for concatenations at the end of the ‘walk&throw’ 

motion. 

 

Another reason for refinement was to make the walking motions cyclic. The same 

matching procedure was used only that the two parts matched would both be in the same motion. 

For this to work properly a small offset after which to start searching for a match had to be 

specified otherwise each frame would have been matched with itself. The offset chosen was 10 

frames. Only the hip, knee, and ankle joints were included in the partial poses that were 

considered for their distance. The frames between the two matched parts made up one cycle plus 

an overlap region. This sequence was then used to create a walk with any number of cycles by 

overlapping its ends and linearly interpolating several times. 

 

After that, the motions of each subject were prepared for differencing. ‘Walk’ mb1(t)  and 

‘walk&throw’ md1(t) motions had to be aligned properly. The cyclic walking motions and the 

refined ‘walk&throw’ motions were used now. There was no need to match step lengths because 

the change in step length will be computed implicitly in view of the fact that v0 was included in 

the differencing process. Neither does one need to match the motions’ translational component 

explicitly because the position of the articulated figure is expressed as a displacement in the local 

coordinate system of the root. Only initial orientations of the roots have to be aligned. This 
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applies to all bases. For the motion samples used here, subjects were always facing the same 

direction at the time of motion capture, thus the initial root orientations were equal and no further 

manipulation in that regard was needed. 

 

 

   
Figure-14 Data Manipulation and Differencing. X-rotation of the right shoulder, elbow, hip, and 
knee, and the left hip and knee. Vertical axis denotes degrees, and horizontal axis denotes frame 
numbers. Vertical lines indicate the throw-period beginning and end. Solid line indicates a 
‘walk’, dotted line a ’walk&throw’ of the same subject, and dashed line their difference after 
alignment. Left: original walk is only shifted to match left heel strike at the beginning of throw-
period. Right: original walk is shifted and resampled to match heel strikes at the beginning and 
end of the throw-period. 
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Since during walking it is usually the case that one slows down in preparation for the 

throw, part of the walking motion mb1(t) was resampled. To be more specific, part of the walking 

motion starting at a heel strike that matched the one just before the initiation of throwing in 

md1(t) and ending at a heel strike just after the throw when normal walking was resumed (the 

throw-period) was resampled so that its duration would be matched with that in md1(t). The 

throw-period may extend over 3 to 7 heel strikes, differing from one person to another depending 

on their personal throwing style. In a right-handed throw the throw-period may start as early as a 

left heel strike before the right arm starts the wind-up phase. It ends a few steps later at a right or 

left heel strike, after the arm is back to its normal position, i.e. after the follow-through phase, 

when normal walking can be resumed. The period is marked with two vertical lines in Figure-14 

above.  

 

Which heel strike is to be used is initially approximately identified from the playback of 

the motion. To find the exact time, i.e. exact frame number the knee joint data is examined. Heel 

strikes are taken to be at the time when the knee joint is at its maximum extension, i.e. the x-

rotation is very close to zero. Based on that, the heel strikes marking the throw-period can be 

identified.  

 

Let the starting heel strike be at time t1 in md1(t) and at time t2 in mb1(t). And let the 

ending heel strike be at time t3 in md1(t) and at time t4 in mb1(t). The amount by which mb1(t) is 

shifted to align the beginning of the throw-period is equal to t2-t1, see the left image of Figure-14. 

The rate at which mb1(t) is resampled to align the end of the throw-period is equal to (t3-t1)/(t4-

t2), see the right image of Figure-14. This rate is applied to all joints and to the position. But for 

the position, additional treatment is required; it has to be scaled by the inverse of the resampling 

rate, because the position is stored as a relative displacement. This process was done for each 

pair of walks and walk&throws for each subject. 

 

6.1.3 Partial Motion Extraction 

After alignment differences were taken by applying (Equation-2) from section 5.2.3. 

Since there are three base motions several samples of m1(t), m2(t), and m3(t) for each subject 

resulted from the differencing process. These samples were then analyzed comprehensively. The 

difference of one sample is shown in the right image of Figure-14 and in Figure-15. 
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Figure-15 ‘Walk’ (top), ‘walk&throw’ (middle), and their difference (bottom) depicted as 
multiple frame exposures with every 4th frame shown. Left: left arm and leg. Right: right arm 
and leg. 

 

 

6.1.4 Data Analysis 

In the field of biomechanics, a lot of research is devoted to throwing. The various kinds 

of throwing are explored, e.g. baseball pitching, football passing, javelin, etc. The main purpose 

of the research though is to explain the mechanics of throwing and prevention of injuries 

[FLE96]. Some research compared throwing mechanisms in persons with different levels of 

professionalism [FLE99], other research compared free-throws of athletes in wheelchairs with 

those of non-disabled players [DOW97]. Yet some other research, looked into the changes in 

throwing patterns as a result of change in ball size [BUR92]. And others studied timing 

relationships in throwing [ELL88]. This shows the diversity of research concerning throwing and 

finding relationships between some variables. But apparently there is no research specific to the 

coordination of the upper body and the lower body during throwing, which is what is being 

sought in this example. 
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Putting the collected motion data and their differences into a format suitable for statistical 

analysis as a multi-variate time series, which seemed to be appropriate for the objective at hand, 

was unfeasible at the time this research was conducted. Therefore, simpler analysis methods 

were reverted to. That is, comparing the plots of the trajectories and their derivatives.  

 

From such comparison, it was noticeable that the throwing-arm motion was almost 

identical in m1, m2, and m3 for a specific subject, but would differ across subjects because of 

their distinct throwing style (see Figure-20). Nevertheless, the changes induced in the non-

throwing arm by the change of the motion of the throwing arm for example would be similar 

across subjects and even across bases, and could therefore be computed using the same 

equations. (For clarification examples are shown in section 6.1.6.) More specifically, the y-

rotation of the trunk affected the swinging of the non-throwing arm, e.g. the x-rotation of the 

shoulder. The non-throwing arm was also affected by the motion of the shoulder of the throwing 

arm. And the changes in the elbow and wrist of the non-throwing arm could be approximated as 

scaled versions of the changes in the shoulder (see Figure-16). A MATLAB script for the 

computation of the non-throwing arm is given in APPENDIX A. 

 

As for the legs, the changes only needed to be computed for the case of walking. For 

sitting and standing, one could simply apply inverse kinematics to keep the feet steady on the 

ground since the root position and orientation and therefore the hip positions were known. From 

the comparison of the leg joint trajectories in the original motions mb1(t) and md1(t) – as  

opposed to the differences – it became apparent that there was only a slight increase/decrease in 

the hip rotation at the peaks/valleys, which coincide with right and left heel strikes (refer to 

Figure-14, in section 6.1.2).  The changes in the hips can be explained as a way to compensate 

for the changes in the body’s heading direction. Hence, the amount of change was related to the 

change in the position of the root and a simple displacement map could be constructed. The 

change in the x-direction (sideways) affected the z-rotation of the hips and vice versa, i.e. the 

change in the z-direction (forwards and backwards) affected the x-rotation of the hips. 

APPENDIX B gives a script for computing such a displacement map. Changes in knees and 

ankles were similar (see Figure-16). 

 

 59



   
Figure-16 Comparison of original difference trajectories (solid) with computed ones (dotted) of 
the left arm and left leg for the walking case. Vertical axis denotes degrees, horizontal axis 
denotes frames. 

 

 

6.1.5 Clip Combination 

From this analysis it was concluded that in addition to cycle length and the equations or 

scripts for computing the non-throwing arm and the legs, only the trajectories of the trunk (root, 

and back), the position, and the throwing arm (shoulder, elbow, and wrist) needed to be stored, 

i.e., n=6.  
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Figure-17 Averaging Trajectories. Difference trajectories of one subject are shown for all three 
bases. Some trajectories can be averaged across bases (thick line) when they are similar enough, 
the ones shown here are right shoulder (xyz), right elbow (x), and right wrist (x). Others may be 
too different, the ones shown here are position (x), root (z), and back (y). Vertical axis denotes 
degrees, horizontal axis denotes frames. The two vertical lines mark the beginning and ending of 
the throw-period. 

 

 

 
Figure-18 Similarities within a base. Difference Trajectories of position (x), root (z), and back 
(y) for one subject are shown. Left: for standing base. Right: for sitting base. 
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Since the changes of the trajectories of the throwing arm were very similar during all 

three base motions (b=3) only their average was stored (a=3) (this is true for the data of one 

subject, different subjects have different styles and their data can not be averaged, see the next 

section). On the other hand, the trajectories of the root, back, and position were too different and 

needed to be stored individually for walking, standing, and sitting (see Figure-17). Note that for 

each base on its own the trajectories are similar as shown in Figure-18. It would be possible to 

average each base’s samples separately for inclusion in the CPMC, but it was chosen to select 

one sample from each base as a representative for it and include only that sample in the CPMC. 

 

If a complete motion had been used then 15*3=45 trajectories would have been needed to 

be stored. But using the CPMC the total number of trajectories stored was only 3+(6-3)*3=12 

according to (Equation-3) in section 5.2.5, leading to a total reduction of 33 trajectories 

according to (Equation-4) also in section 5.2.5. Furthermore, only 6 trajectories were used at a 

time, but the total number of trajectories that were affected in the resulting motion was 15, since 

9 trajectories were estimated: the non-throwing arm, and both legs (e=9).  In terms of DOFs, the 

number of DOFs used at a time was 14, the number of estimated DOFs was 15, and hence the 

number of affected DOFs was 29. 

 

6.1.6 A Three Subject Comparison 

Figure-20 depicts some difference trajectories while walking and while standing of the 

right arm (throwing arm) of three subjects. From there, it is visible that the difference trajectories 

are similar across bases for the same subject but different between subjects. That is most 

apparent in the right image of the figure, where it is very clear that the trajectories drawn with 

the same line style are similar, which indicates similarity within a subject. This is due to the fact 

that every person has their distinct throwing style, which is even more apparent in the samples 

used in this work since the only instructions specific to the throw where that it had to be an 

overhand throw. For more specific throwing motions like pitching a baseball, the differences 

between subjects are probably less obvious because to pitch a baseball correctly one has to 

follow very precise movement sequences otherwise it is not going to be a correct pitch. Due to 

the variation between subjects, only the data of one subject was used in the final CPMC, that of 

subject 1. If a different style of throwing is desired, another CPMC can be created by using the 

motion data from another subject with that specific style. For CPMCs for professional throwing 
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styles it probably would be possible to average all persons’ data or the data may be so similar 

that one single sample could be used as a representative for the whole collection. 

 

An important thing to notice though is that the same equations for the computation of 

other DOFs can be used since the data of all subjects was used during analysis. Initially 

relationships were found by focusing on the data of one subject and then they were checked to 

make sure they hold for other subjects as well. This way the equations were generalized to all 

bases and to all subjects.  

 

Figure-21, and Figure-22, compare original difference trajectories to computed ones of 

the non-throwing arm for the three subjects for standing and walking respectively. All are 

computed using the same script, see APPENDIX A. And Figure-23 compares original difference 

trajectories to computed ones of the legs for the three subjects while walking. All are computed 

using the same script, see APPENDIX B. Even though, some trajectories look somewhat 

different the resulting motions when using the computed trajectories and adding them to other 

persons’ bases look believable. The explanation for this occurrence is that each component of the 

orientation is displayed separately therefore, one can not know the difference in the actual 

rotation when all three components are combined into an Euler angle. And therefore, the 

differences in the plots are often not visible in the playback, or not identified as unnatural 

movements. This has been tested by extracting throws as partial motions – without creating a 

CPMC – from all subjects and editing other subjects’ base motions. The same procedures for 

editing as if a CPMC had been used were used. See Figure-19 for one example. 

 

 

 
Figure-19 A generated ‘walk&throw’ for subject 1 using the partial throwing motion extracted 
from subject 2 and estimating the left arm and legs using the scripts. 
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Figure-20 Difference Trajectories of 3 subjects. Vertical axis denotes degrees, horizontal axis denotes frames. Solid line represents the 
data of subject 1, dotted line data of subject 2, and dashed line data of subject 3. Left: Differences while walking. Middle: Differences 
while standing. Right: Both differences.  
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Figure-21 Original vs. computed difference trajectories of the non-throwing arm while standing for 3 subjects. Originals are in solid lines 
and computed ones are in dotted lines. Vertical axis denotes degrees, horizontal axis denotes frames. Left: first subject. Middle: second 
subject. Right: third subject. 
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Figure-22 Original vs. computed difference trajectories of the non-throwing arm while walking for 3 subjects. Originals are in solid lines 
and computed ones are in dotted lines. Vertical axis denotes degrees, horizontal axis denotes frames. Left: first subject. Middle: second 
subject. Right: third subject. 
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Figure-23 Original vs. computed difference trajectories of the left leg while walking for 3 subjects. Originals are in solid lines and 
computed ones are in dotted lines. Vertical axis denotes degrees, horizontal axis denotes frames. Left: first subject. Middle: second 
subject. Right: third subject. 
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6.2 Using a CPMC for ‘throwing’ 

The CPMC for ‘throwing’ that was created as explained in the previous section was then 

used to incorporate a throwing action to other subject’s walking, standing, and sitting base 

motions. The base walking motions differed in their cycle length and style. To do the editing the 

algorithm shown in Figure-13 given in section 5.3 was used as follows.  

 

When the base motion represented a sitting action, only the averaged throwing arm 

trajectories and the root, back, and position trajectories specific to sitting were retrieved from the 

CPMC. No manipulations were necessary, nor were there any additional trajectories to be 

computed. Therefore, the retrieved trajectories were added as they were, using vector addition, to 

their corresponding trajectories in the sitting base motion. The non-throwing arm and the legs 

were fixed in place using inverse kinematics at absolute locations in world space. In reality, the 

non-throwing arm may actually be fixed in world space as if holding on to the chair’s arm, or it 

may be fixed to a position relative to the hip joint in the case where the hand rests on the thigh. 

In the latter case the absolute position of the hand will change when the thighs move, which may 

be the case with extreme forward trunk motion, when the subject may lift from his/her chair. The 

results for two generated ‘sit&throw’ motions of two subjects are shown in Figure-24. The 

results of applying IK to fix the feet are very clear and good. The non-throwing arm though, still 

seems to be floating around a little bit in the lower right image but is fixed in the upper right 

image. 

 

When the base motion represented a standing action the non-throwing arm would be 

computed using the equations that resulted from the analysis and that were stored within the 

CPMC. Hence, the appropriate script was retrieved as well as the averaged throwing arm 

trajectories and the root, back, and position trajectories specific to standing. No extra 

manipulation was necessary. Then the script could be applied to estimate the non-throwing arm 

trajectories. The resulting trajectories and the retrieved trajectories were added to their 

corresponding trajectories in the standing base motion. The legs, like in sitting, could be fixed 

with inverse kinematics. The results for two subjects are shown in Figure-25.  
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Figure-24 Generated ‘sit&throw’ motion for two subjects. Multiple exposures with every 4th 
frame shown. Left: result without applying IK to fix feet and non-throwing arm. Right: result 
after applying IK. 
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Figure-25 Generated ‘stand&throw’ motions for two subjects. Multiple exposures with every 4th 
frame shown. Left: result without applying IK to fix feet. Right: result after applying IK, which 
did not work as expected. 
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The inverse kinematics routine used was IKAN: Inverse Kinematics using ANalytical 

methods. It was developed at the Center for Human Modeling and Simulation at the University 

of Pennsylvania [TOL00]. It did not work as expected for the standing case. The main cause for 

this is probably that in the case of standing, the leg is almost straight, and the routine depends on 

the reference triangle formed by the hip, knee, and ankle joints. A better understanding of the 

IKAN routines may be needed for improved results. Another cause is that in the work presented 

here, no joint limits were imposed. Therefore, the knee may bend a bit backward because of 

inaccuracies in the calibration of the markers and inaccuracies in matching the articulated 

figure’s rest angles to the actual subject. But this problem can be overcome by using other IK 

routines. It would also be more advantageous to use a routine where one can fix the ball of the 

foot instead of the heel. 

 

The third and last possibility was that the base motion represented a walking action. The 

first step was to read the header and find out what was needed. In this case, the cycle length of 

the base (CycleLengthBase) and the location of a left heel strike in the base were needed. The 

header should contain information about the length of the throw-period in terms of number of 

heel strikes (NumHeelStrikes) and with which heel strike it starts (left or right) as well as the 

cycle length that it applies to (CycleLengthCPMC). Then the scripts for estimating the non-

throwing arm as well as for the legs were retrieved. Also the averaged throwing arm trajectories 

and the root, back, and position trajectories specific to walking were retrieved. 

 

Using the information extracted from the header, a throw-period with the appropriate 

number of heel strikes and starting with the correct one was identified in the base. This period 

was resampled to slow it down to about 80-90% of the original speed. Heel strike locations were 

taken to be at the point where the knee is extended the most, which corresponds to a minimum in 

the x-rotation of the knee joint. Assuming that an appropriate heel strike occured at frame fb, this 

would mark the beginning of the throw-period. The ending of the throw period would be fe, 

which would simply be taken as the closest heel strike to frame fb + [ (NumHeelStrikes-1) * 

CycleLengthBase / 2 ]. Hence, the sequence of frames from fb to fe is the throw-period which was 

resampled.  
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Figure-26 Generated ‘walk&throw’ motions for two subjects. Multiple exposures of the right 

arm and leg with every 4th frame shown. 
 

 

Furthermore, the amount of slow-down was related to the peak velocity of the elbow 

under the assumption that it is related to how vigorous the throw is. This is the only time when a 

derivative had to be computed. As mentioned earlier, the derivatives of the difference trajectories 

were taken into consideration during analysis, but they ended up not being used in any of the 

extracted relationships. This is good, in the sense that it eliminated the need for computing 

derivatives. 
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After resampling the throw-period in the base, the averaged throwing-arm data and the 

root, back, and position data specific to walking was resampled to match the length of the 



slowed-down throw-period in the base if necessary. Matching CycleLengthCPMC to 

CycleLengthBase is another way of describing it. Then, the trajectories for the non-throwing arm 

were computed as well as for the legs. Finally, all the resampled trajectories and the computed 

ones were added to the corresponding trajectories in the base motion.  

 

The resulting ‘walk&throw’ motions for two subjects are shown in Figure-26. The 

subject in the top row had a walking cycle of 64 frames hence only the throw-period in the base 

motion had to be resampled, but the CPMC data did not have to be resampled, it was already 

matching. On the other hand, the subject in the bottom row had a walking cycle of only 59 

frames and hence the CPMC data had to be resampled as well as the throw-period in the base. In 

reality, one may speed up during the throw-period, as was the case for one of the subjects 

(subject 2). It turned out that the relation to peak velocity of the elbow as used in the scripts 

included in the CPMC worked for that case as well, it can be seen in Figure-19. 

 

The creation and usage of a CPMC has been demonstrated in detail for the special case of 

overhand throwing. The relationships found during analysis applied to all bases and all subjects. 

Furthermore, the resulting motions looked very natural and were often mistaken for originally 

captured motions as will be shown in the following chapter.  
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CHAPTER 7 

RESULTS 

 

In this chapter, the motions obtained from editing base motions using the CPMC for 

throwing as explained in the previous chapter will be examined. Also the results of applying the 

method to a different kind of throwing – tossing – will be shown. Other approaches that have 

been tried to find relationships between the upper and lower body motion will also be stated.  

 

7.1 Verification of Results 

The motions resulting from the editing method described in CHAPTER 5, as tested in the 

experiment in CHAPTER 6, are very encouraging. It is to be noted that no limits were put on the 

joints; which may have improved the results further.  

 

To assess the quality of the generated motions they were compared to originally captured 

motions in two formats: plots of trajectories, and playback of motions. A dilemma that is faced is 

that since the throw is in a specific style, the style of the person it is captured from, comparing an 

edited motion of another person in terms of its trajectories to an originally captured motion of 

that person may not be the best measure, because the changes induced in other parts of the body 

depend exclusively on the motion stored in the CPMC. But still they could be used to see if the 

trajectories were reasonably smooth, did not have any jumps, and that they adhered to the overall 

shape of the original curves. To get a better picture, comparisons were also made between the 

resulting edited motions and the equivalent motions of the subject whose data was used in the 

creation of the CPMC (subject 1).  Furthermore, since the motions that involve walking differed 

in their cycle length, during comparison the original motions were uniformly resampled to match 

the cycle length of the generated motion. Figure-27 shows such a comparison for a generated 

‘walk&throw’ motion for subject 3. The trajectories of the right arm and leg are compared to 

original but resampled trajectories of subject 3, as well as original but resampled trajectories of 

subject 1 whose data was used in the creation of the CPMC. 
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Figure-27 Comparison of selected generated ‘walk&throw’ trajectories for subject 3 (solid) 
Left: to an original ‘walk&throw’ of subject 3 (dotted). Right: to an original ‘walk&throw’ of 
subject 1 (dotted). 

 

 

As mentioned previously, sometimes the trajectories may look very different, but since 

each component of the orientation is displayed separately it is difficult to estimate the difference 

in the actual rotation when all three components are combined into an Euler angle. Also, often 

the differences in the plots are not visible in the playback, or are not identified as unnatural 

movements. Therefore, the motions were also compared by observing their playback using the 

Pose File Player.  
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Figure-28 Comparison of generated ‘walk&throw’ for subject 3 to two original motions. 
Multiple exposures of the right arm and leg with every 4th frame shown over a range of 250 
frames. Top: An original ‘walk&throw’ of subject 3. Middle: Generated ‘walk&throw’ for 
subject 3. Bottom: An original ‘walk&throw’ of subject 1. 

 

 

A problem here is that judging the naturalness of a motion by looking at the playback 

may be subjective. To overcome this problem, original and edited motions were played 

simultaneously. Several observers were asked to pinpoint the original motion from the edited 

ones and they could not. No formal user study was conducted. Figure-28 shows how such a 
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comparison for subject 3 would look like if every 4th frame were displayed. It depicts the same 

motions as in Figure-27, except that the original motions are unchanged, i.e. not resampled. 

 

A problem that was encountered during editing was the slipping of the feet, but this is a 

minor problem that all motion editing methods suffer from with the exception of methods that 

explicitly put constraints on the foot locations. The problem is usually corrected during post-

processing. One could use such a method as that of Kovar et al [Kov02b] for the walking case. In 

the work presented here, only during standing and sitting were inverse kinematics methods used. 

In particular, IKAN was used to fix the feet on the floor as show previously in section 6.2, in 

Figure-24 and Figure-25. 

 

Actually, the top portion of Figure-25 represents the generated ‘stand&throw’ motion of 

subject 2. This data is compared to an original ‘stand&throw’ of subject 2 and to an original 

‘stand&throw’ of subject 1 in Figure-29 and Figure-30. It is very clear that the personal style of 

subject 2 is different from that of subject 1. The throwing action extended over a shorter period 

of time. Also there was not much rotation of the trunk; therefore, the left arm did not swing as 

much as in the throwing style of subject 1 (from the CPMC). The left two columns of Figure-29 

show a frame sequence which illustrates the generated ‘stand&throw’ of subject 2 without 

applying IK to fix the feet on the floor. That is visible in the last few frames where the trunk 

bends forward and the legs slide to the back since without IK no orientations for the legs are 

computed. As mentioned earlier, the IK routine used did not work as expected. For some reason 

only the x- and z-components of the hips’ rotation are accurately computed, but the y-component 

is not. This is visible in Figure-30 where the trajectories shown are after applying IK.  

 

In Figure-31 and Figure-32 the generated ‘sit&throw’ motion of subject 4 is compared to 

original motions. The same motion has been depicted in the lower portion of Figure-24. As 

mentioned previously the non-throwing arm seems to be floating a bit. Looking now at some of 

the trajectories in Figure-32 one can see visible spikes in the shoulder and elbow trajectories 

drawn in solid line style as a result of the inverse kinematics routine used. It seems to be a 

gimbal lock problem. 
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     .    

 
Figure-30 Comparison of selected 
generated ‘stand&throw’ trajectories for 
subject 2 after applying IK (solid) to an 
original ‘stand&throw’ of subject 2 (dotted) 
and to an original ‘stand&throw’ of subject 
1 (dashed). The trajectories shown are: the 
x-components of the right shoulder and 
elbow, the x-components of the left shoulder 
and elbow, and the xyz-components of the 
left hip. 

Figure-29  Comparison of a generated (left 
2 columns) and original (right 2 columns) 
‘stand&throw’ for subject 2. Without IK. 
Every 10th frame is shown. 
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Figure-32 Comparison of selected 
generated ‘sit&throw’ trajectories for 
subject 4 after applying IK (solid) to an 
original ‘sit&throw’ of subject 4 (dotted) 
and to an original ‘sit&throw’ of subject 1 
(dashed). The trajectories shown are: the x-
components of the right shoulder and elbow, 
the x-components of the left shoulder and 
elbow, and the xyz-components of the left 
hip. 

Figure-31 Comparison of a generated (left 2 
columns) and original (right 2 columns) 
‘stit&throw’ for subject 4. With IK. Every 
10th frame is shown. 
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Having said that, overall the motions played back smoothly, except for the left arm in 

some ‘sit&throw’ motions cause by spikes like the ones just mentioned. But these spikes are due 

to the IK routine, not due to the CPMC editing method, and can probably be eliminated by using 

a different IK routine, or by investigating IKAN more and fine tuning the code. Similar jumps 

were visible in the legs during standing for the same reason. 

 

7.2 Applying the Method to ‘Tossing’ 

The same 6 subjects were asked to toss the ball as if they were tossing and empty soda 

can into a trash can. They were asked to perform the tossing while walking, while standing, and 

while sitting. The captured data was cleaned up, converted to root location and joint orientations, 

and manipulated the same way the throwing data was handled. Then the tossing motion was 

extracted by differencing. Instead of analyzing the data to obtain new relationships, the same 

equations as for throwing were put to the test. This decision was made based on the fact that 

tossing is another form of throwing. This decision was also made with the hope that the 

relationships can be generalized even more so that it works for all kinds of throws. 

 

 
Figure-33 Comparing a generated tossing while walking motion for subject 4 (top) to an 

original tossing while walking for subject 1 (bottom) 
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Figure-34 Figure-35 Figure-36 Generated ‘walk&toss’ for 

subject 4 (solid) compared to and 
original ‘walk&toss’ of subject 1 
(dotted). 

Original toss difference 
trajectories (solid) and computed 
(dotted) ones using the same scripts as 
for throwing. 

Tossing while walking 
(solid), walking (dotted), and their 
difference (dashed) of subject 1. 

 

 81



 82

From the result, depicted in Figure-33 through Figure-36, it is seen that the scripts did 

indeed work for the tossing motions. This indicates that for similar partial motions the 

relationship to other body parts is similar. But it is surmised that for radically different actions, 

e.g., for boxing, the relationships are probably different. Still, since human motion is highly 

correlated one may be able to find very general relationships between the different DOFs of the 

articulated figure. This is especially true since one can think of the changes that occur in other 

DOFs merely as reactions to changes in some specific DOFs. It may not be important to know 

what action is being performed when some joint changes from one orientation to another in order 

to be able to estimate what will happen in other joints that are not directly involved in the action 

being performed. It may be more important to know how fast such a change occurred instead. 

 

7.3 Exaggeration 

It is believed that increasing the amount of trunk rotation would make the throwing 

motion look more energetic. To test this, the y-component of the difference trajectory of the back 

joint was scaled. It was increased 25%. Then the non-throwing arm and the leg trajectories were 

computed and added to the base. The result looked somewhat believable (see Figure-37), except 

that the left arm did bend backwards. This could be prevented if proper joint limits were 

enforced. Increasing the rotation more than 25% led to an abrupt spinning of the left arm about 

the shoulder joint. 

 

 

 
Figure-37 Exaggeration in the form of increased trunk rotation. 

 



 
Figure-38 Exaggeration in the form of varying the resampling rate. 

 

Another variable that can be changed to allow a wider variety of generated throws is the 

resampling factor for the throw-period. Figure-38 shows the result of speeding up the throw 

period instead of slowing it down for subject 3. 

 

7.4 Other Experiments 

It was attempted to compare the joint trajectories in the spatial domain. That is, by 

computing the joint locations in world space as they change over time. This conversion, though 

simple, since only the figure’s hierarchy has to be traversed and the corresponding translations 

and rotations have to be applied, is computationally expensive due to the many needed matrix 

multiplications. Furthermore, any relationships that would be discovered in the spatial domain 

would be transferable to the rotational domain, i.e. can be found in the rotational domain. The 

spatial data was studied briefly but nothing noteworthy stood out. Consequently, this conversion 

was deemed not worth the overhead. 

 

Another attempt was made to extract relationships between the shoulder line (the line 

connecting the right and left shoulder joints) and the hip line (the line connecting the right and 

left hip joints). It was thought that an examination of the relative rotations of those lines about 

the y-axis and the z-axis as well as with reference to the world coordinate system would be 

fruitful, but it was not. More importantly, it was not clear how to convert a relationship, if found, 

to the rotational domain of the joints. If such a conversion was not possible or too complicated it 
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would affect the whole editing process by making it more complicated in turn, defying the goal 

of simplicity.  

 

Finally, different representations for the joint orientations were considered. Mainly due to 

the fact that Euler angles suffer from the well known gimbal lock problem. Quaternions were 

disregarded because of their storage overhead, even though differencing and addition can be 

done with quaternions almost as easily as with vectors. Additionally, it was not tested if taking 

the difference of two quaternions is somewhat equivalent to computing a transformation from 

one to the other. If it were not, a method other than differencing would have been needed to 

extract the partial action. 

 

Spherical coordinates were considered, but since there are no standard conversions to and 

from rotation matrices which are needed for animating the articulated figure on the computer, 

this option was disregarded as well. Though it was considered to use spherical coordinates 

during analysis only, but then the same problem as with shoulder and hip line comparison would 

be faced, i.e. how to convert relationships to the rotational domain expressed in Euler angles. 

 

In summary, the resulting motions looked natural. When compared in trajectory form, it 

was very clear that the generated motions would lie within an acceptable motion range of the 

subject. Furthermore, examples for tossing and exaggeration have been presented through which 

it has been shown that the same scripts that are used for throwing can be used for tossing. Other 

attempts have been briefly discussed. 

 

 84



CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 

This chapter will conclude this work, by summarizing the main contribution of this 

research and by touching on some possible extensions. 

 

8.1 Contribution 

A new kind of motion clip is introduced which is space efficient and easy to use. It 

facilitates the editing of different base motions by adding a partial motion clip to them while 

allowing more DOFs than the ones stored in the partial motion clip to be affected, resulting in 

better looking final motions. This kind of motion clip is called Combined Partial Motion Clip or 

CPMC for short. Previous editing methods that allow mixing of partial motions with other 

motions do not take into consideration the affects such a mixing may have on other DOFs not 

included in the partial motion used for editing. 

 

The advantage of CPMCs is that they are space efficient. Data for editing several base 

motions are combined into one clip. Only the main contributing joints are included in the 

detailed part of the CPMC which are averaged across the bases whenever possible. Other DOFs 

can be estimated by using the scripts that are stored in the CPMC. Another advantage of CPMCs 

is their ease of use. The main operation needed is a simple vector addition. Similarly, during the 

creation of CPMC the simple operation of differencing is used to extract the partial action. These 

advantages have been discussed in CHAPTER 5 and in CHAPTER 6. 

 

The processes performed when editing a base motion with a CPMC can be run in parallel. 

That is, when resampling of the base is needed it can be started along with the resampling of the 

retrtieved trajectories (which need to be matched to the resampled base trajectories). Since 

resampling is frame-sequential, as soon as the first resampled frames are available the process of 

generating additional trajectories using the embedded scripts can be started. This is also a frame-

sequential process, and as soon as the first output of this process is available it can be added to 

the corresponding trajectories in the base. 
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CPMCs may be useful in the gaming industry which largely depends on motion clip 

libraries. CPMCs would provide better blending techniques due to the fact that they take into 

account the effects that some DOFs have on others. They enhance the way characters move. 

Therefore, they would go hand in hand with methods that enhance the appearance of characters 

to make more realistic looking characters for a better gaming experience. 

 

8.2 Limitations 

The success of CPMCs is dependent on finding equations that govern the relationship 

between joint movements. The quality and amount of motion samples available for analysis are 

major factors in providing a better basis for a more comprehensive analysis. Domain knowledge 

and expert advice can become handy in analyzing the data. The better the analysis the more 

likely correct relationships are extracted and better approximations can be achieved. Therefore, 

one can truly say that a CPMC is only as good as the scripts contained in it. 

 

The method was mainly tested on overhand throwing, which is an upper body movement. 

The motions generated using the method look believable, and – as shown in section 7.1 – fall 

within the normal motion range of the subject. The method will work just as well for other upper 

body motions, like other kinds of throwing, boxing, reaching, waving, pointing, etc. For the 

method to be extended to lower body motions, such as kicking, it is expected to be more difficult 

to find relationships since keeping balance will become a major factor.  

 

8.3 Future Work 

As said above, good scripts are the key ingredient in making a good CPMC. The ideal 

solution would be to separate the scripts from the CPMC and have the editing method take care 

of them. This means that more general relationships have to be found that are independent of the 

action being performed. If that were possible, such a relationship would have to be true in all 

cases, then it could be coded in the editing method, and the CPMC would only need to contain 

the detailed partial motion since its effects on other DOFs would be taken care of in the editing 

procedure.  

 

It is hard to imagine that such a universal relationship could be obtained. If it could be 

obtained, it probably would be very complicated and would need to be broken down into smaller 
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parts, each applying to specific cases or specific groups of DOFs thereby complicating the 

editing method. But what is imaginable, what is indeed possible, is to group similar types of 

motions for which the same relationships hold, just as has been shown for overhand throwing 

and tossing. For that, more partial motions have to be analyzed. Better analysis methods would 

be helpful. Also collaboration with experts in fields that deal with human body movement would 

be advantageous. 

 

The incorporation of simple dynamics could help in estimating the motion of ‘inactive’ 

limbs. For example, in the throwing while standing case, the major cause for the swinging of the 

non-throwing arm is a reaction to the rotation of the trunk. Since, one of the goals was simplicity, 

and physical correctness was not mandatory, but the aim was for a natural looking motion, 

approximations to dynamic equations could be used. Dynamics may have the advantage that one 

may be able to take balance into account. Also with dynamics, the generated arm motion when 

exaggerating by increasing the trunk rotation would be modeled better.  

 

A natural extension to the work presented here, would be to make clips that not only 

work for different bases but have other variables as well. Something one may call a 

multidimensional CPMC or MCPMC. For example, the throwing CPMC which applies to three 

base motions could be extended to apply to different masses of objects being thrown. Another 

dimension could be the distance thrown. For that, one would need to collect samples along each 

dimension. Then for each dimension eliminate the effect of the variable by subtracting it from a 

reference motion, for example the one with the smallest mass and shortest distance. 

 

There is room for improvements in several other aspects: 

1. In the marker data conversion to root position and joint orientations. 

2. A better inverse kinematics routine used to fix the legs could be used.  

3. Alignment of motions may be automated. 

4. The quality of the results could be verified by conducting a formal user study. 

5. Joint limits could be enforced.  

6. Frequency analysis and hierarchical decompositions of the trajectories could be 

used to enhance analysis. 
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In conclusion, the new method presented in this dissertation of using Combined Partial 

Motion Clips has been discussed in detail and tested thoroughly. Based on the resulting 

generated motions and their comparison to original motions the method has been proven 

successful. CPMCs are simple to use and are space efficient. They could be incorporated into 

games to provide better motion blending for better character movement, which in turn enhances 

the gaming experience. A lot of analysis will be needed since there are many kinds of partial 

motions that may come up in a game. 
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APPENDIX A  
A SCRIPT FOR THE ESTIMATION OF THE NON-THROWING ARM 

 

For a base of standing or walking, the changes in the trajectories of the non-throwing arm 

can be computed as given in the following MATLAB script: 

 

function [s,e,w]=computeNonThrowingArm(root,back,ts) 
% [s,e,w]=computeNonThrowingArm(root,back,ts) 
% given the changes in the orientation of the root,  
% back and throwing-arm shoulder (ts) this function  
% will compute the changes in the orientation of  
% the shoulder (s), elbow (e), and wrist (w) of  
% the non-throwing arm 
 
x=1; y=2; z=3; 
torso=root+back; 
 
temp1=torso(y,:)+torso(z,:)-torso(x,:); 
f1=10-(abs(min(ts(3,:)+ts(2,:)+ts(1,:)))/20); 
temp2=temp1+ts(x,:)/f1; 
f2=10; 
g=1.25; 
n=-temp2/f2;  
 
s(x,:)=temp2+f3*2.^n; 
s(z,:)=-ts(y,:)/4; 
s(y,:)=-s(z,:); 
 
e=zeros(size(s));   
e(x,:)=s(x,:); 
 
w=zeros(size(s));   
w(x,:)=-abs(s(x,:)); 
 
%end computeNonThrowingArm 

 

Note that for a base of sitting, the non-throwing arm’s orientation is computed by using 

IK to fix the position of the wrist in space or relative to the thigh if the hand was resting on it. 
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APPENDIX B  
A SCRIPT FOR THE ESTIMATION OF THE LEG DATA 

 

For a base of walking, the change induced in the legs can be computed as given in the 

following MATLAB script: 

 

function [nh,nk,na,th,tk,ta] = 
   computeWalkingLegsNew(pos,lhs,cycle) 
% [nh,nk,na,th,tk,ta]=computeWalkingLegs(pos,lhs,cycle) 
% given the change in postition this function will  
% compute the changes in the orientation of the hip, knee  
% and ankle of the non-throwing side (nh,nk,na) 
% as well as the throwing side (th,tk,ta) 
% for the diffrerence of throwing while walking 
 
x=1; y=2; z=3; 
 
% set all to zeros 
nh=zeros(size(pos)); nk=nh; na=nh; 
th=nh;    tk=nh; ta=nh; 
 
n=ceil(cycle/6); % a window for linear interpolation 
numFrames=length(nh); 
rhs=lhs-ceil(cycle/2); 
 
for j=1:4 % for four cycles 
 

if rhs>=1 & rhs<=numFrames 
xval_at_rhs = - pos(x,rhs)/1.5; 
zval_at_rhs =   pos(z,rhs); 
nh(z,rhs)=xval_at_rhs; 
nh(x,rhs)=zval_at_rhs; 
th(x,rhs)=-zval_at_rhs; 
th(z,rhs)=-xval_at_rhs; 
for i=1:n 

xval = xval_at_rhs * (n-i)/n; 
zval = zval_at_rhs * (n-i)/n; 
if rhs+i <= numFrames 

nh(z,rhs+i)=xval; 
nh(x,rhs+i)=zval; 
th(x,rhs+i)=-zval; 
th(z,rhs+i)=-xval; 

end 
if rhs-i >= 1 

nh(z,rhs-i)=xval; 
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nh(x,rhs-i)=zval; 
th(x,rhs-i)=-zval; 
th(z,rhs-i)=-xval; 

end 
end 

end 
 

if lhs>=1 & lhs<=numFrames 
xval_at_lhs = pos(x,lhs)/1.5; 
zval_at_lhs = pos(z,lhs); 
nh(z,lhs)=xval_at_lhs; 
nh(x,lhs)=-zval_at_lhs; 
th(x,lhs)= zval_at_lhs;  
th(z,lhs)=-xval_at_lhs;  
 
for i=1:n 

xval = xval_at_lhs * (n-i)/n; 
zval = zval_at_lhs * (n-i)/n; 
if lhs+i <= numFrames 

nh(z,lhs+i)=xval; 
nh(x,lhs+i)=-zval; 
th(x,lhs+i)=zval; 
th(z,lhs+i)=-xval; 

end 
if lhs-i >= 1 

nh(z,lhs-i)=xval; 
nh(x,lhs-i)=-zval; 
th(x,lhs-i)=zval; 
th(z,lhs-i)=-xval; 

end 
end 

end 
rhs=rhs+cycle; 
lhs=lhs+cycle; 

end % for 
 
nh(y,:)=nh(z,:)*.5;   th(y,:)=th(z,:)*.5; 
nk(x,:)=-abs(nh(x,:)*2);  tk(x,:)=-abs(th(x,:)*2); 
na(x,:)=nh(x,:)*1.5;  ta(x,:)=th(x,:)*1.5; 
 
%end computeWalkingLegs 

 

Note that for a base of sitting, or standing the legs’ orientation is computed by using IK to 

fix the position of the feet on the floor. 
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APPENDIX C  
THE POSE FILE PLAYER 

 

The Pose File Player is a program written in Visual C++. It reads a pose file (.pos) and 

plays it back. Multiple files can be opened simultaneously which is good for making 

comparisons. Inverse kinematics can be applied to the legs and/or arms then new motion can be 

written as a new .pos file. 

 

Similar to the POSE GENERATOR, figure segments and rest angles can be adjusted, or 

read in from .fig files. And snapshots may be taken or a sequence may be recorded. Images are 

written in TGA format. Segments may be turned on or off for display, also multiple exposures 

may be displayed. The frame spacing is adjustable by the user, default is 10. 

 

 
Figure-39 Pose File Player 
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