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Abstract

In the last decade, 3D modeling techniques enjoyed a booming development
in both hardware and software. High-end hardware generates high fidelity
results, but the cost is prohibitive, whereas consumer-level devices generate
plausible results for entertainment purposes but are not appropriate for medical
uses. We present a cost-effective and easy-to-use 3D body reconstruction system
using consumer-grade depth sensors, which provides reconstructed body shapes
with a high degree of accuracy and reliability appropriate for medical appli-
cations. Our surface registration framework integrates the articulated motion
assumption, global loop closure constraint, and a general as-rigid-as-possible
deformation model. To enhance the reconstruction quality, we propose a novel
approach to accurately infer skeletal joints from anatomical data using multi-
modality registration. We further propose a supervised predictive model to infer
the skeletal joints for arbitrary subjects independent from anatomical data refer-
ence. A rigorous validation test has been conducted on real subjects to evaluate
the reconstruction accuracy and repeatability. Our system has the potential to
make accurate body surface scanning systems readily available for medical pro-
fessionals and the general public. The system can be used to obtain additional
health data derived from 3D body shapes, such as the percentage of body fat.
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1 INTRODUCTION

The recent explosion of scanning technologies has brought about a variety of 3D reconstruction applications. These appli-
cations can be as microscopic as the optiogenetic study,1 using specially designed high-speed structured light scanner to
capture the shape of beating mouse hearts, or as large as documenting the nearly 100-year-old and 23-mile-long London
Post Office Railway in 3D representation.2 The 3D human body modeling has become a hot topic in the past few years due
to the availability of consumer-level, low-cost Red Green Blue & Depth (RGB-D) sensors such as the Microsoft Kinect 360®,
before which body scanners were only affordable to a few enterprises such as select health clinics, research institutions,
fashion design industry, and film industry. Along with the availability of hardware, a variety of body scanning systems

Comput Anim Virtual Worlds. 2018;e1807. wileyonlinelibrary.com/journal/cav Copyright © 2018 John Wiley & Sons, Ltd. 1 of 21
https://doi.org/10.1002/cav.1807

https://doi.org/10.1002/cav.1807
http://orcid.org/0000-0001-7680-1531
http://orcid.org/0000-0003-1638-1533
https://orcid.org/0000-0001-6535-8175


2 of 21 LU ET AL.

have been proposed3–10 that use single to multiple sensors. However, most of these low-cost body reconstruction systems
are geared toward applications for 3D printing, rigging animation, game, virtual reality, and fashion design, rather than
clinical or health-related applications with rigorous requirements in reconstruction accuracy and reliability. The objective
of our study was to develop and validate an accurate 3D reconstruction system using commodity RGB-D scanners such
as the Microsoft Kinect v2®. We emphasize the articulated motion constraint during reconstruction because an accurate
skeletal estimation is critical for a high-quality nonrigid surface reconstruction. However, the Microsoft® skeleton track-
ing Application Programming Interface (API) suffers from low accuracy especially in hips and shoulders compared with
the anatomical joint locations. Additionally, the joints inference reliability is affected highly by camera angles. We pro-
pose an innovative skeletal joints inference method using multimodality registration to explicitly infer mesh skeletons
from anatomical data and thus guarantee joint positions accuracy. Moreover, we further propose a predictive model based
on supervised learning method to infer the skeletal joint positions for arbitrary subjects without the need for anatomical
data reference.

Our body reconstruction system aims at clinical and health-related applications such as estimating body fat percentage
(%BF). The dual-energy X-ray absorptiometry (DEXA) scanning, a clinical level instrument for %BF estimation, provides
one of the most accurate results but is expensive (∼$100 K), large in size, must be operated by trained professionals, and
exposes users to radiation.11 Another clinical level instrument, the volumetric air-displacement plethysmography (e.g.,
Bod Pod®), in which %BF is calculated by measuring body volume, also has a high cost (∼$40 K) and similar disadvantages.
The limitations of the current approaches inspired us to develop a cost- and space-effective system that is convenient to
use for %BF estimation. In addition to calculating body volume, we can automatically extract numerous anthropometric
measurements from 3D body shape and therefore improve %BF estimation accuracy. The predictive model used to infer
skeletal joint positions is also capable of accurately predicting body composition, that is, fat, muscle, and bone distribution.

Several high-end body scanners (e.g., TC2 NX-16® and Telmat SYMCAD®, structured white light body scanners) have
also been used for %BF estimation, but they also have the disadvantages in cost and space requirements. A large proportion
of the commodity sensor-based body scanners in the market for fitness purpose (e.g., FIT3D® and Skyku®) are based on the
KinectFusion algorithm.6 These types of systems treat the human body as an ideal rigid object and cannot work without
a turntable, an auxiliary equipment used to rotate the body during capture. The rigid body assumption potentially lowers
the reconstruction accuracy due to ignoring the body's involuntary movement during capture. Instead, our reconstruction
system is cost and space effective, convenient to use, and has a relatively high degree of accuracy and reliability. Hence, our
system is appropriate for wide usage in %BF estimation or in other health-related applications that require body surface
capture. We conducted rigorous validation tests on real subjects to evaluate the reconstruction accuracy and repeatability.

2 RELATED WORK

2.1 The 3D reconstruction system
KinectFusion6 realized real-time surface reconstructions of static objects through highly efficient camera pose tracking
and volumetric fusion. However, for human body reconstruction, subjects are required to hold a static pose for a relatively
long time (∼30 to 60 s).

Multicamera systems, containing a large number of cameras that are sufficient to cover the object of interest, can reduce
the acquisition time to subsecond by simultaneously capturing all surfaces. The distinguishing feature of the multicamera
systems is the way they create the surface from simultaneous partial views. The most intuitive approach is to globally align
all the partial point clouds with multiview registration.12 Due to the sensor noise, partial meshes do not stitch well in areas
close to the silhouette, and point clouds after registration can be highly noisy. Wang et al. used Poisson reconstruction13

to generate a smooth, noise-free surface.14 Collet et al. proposed to iteratively estimate the surface by first creating a
watertight surface from globally stitched point clouds with screened Poisson surface reconstruction15 under the silhouette
constraint and then by topologically denoising the surface and supersampling the mesh where perceptually important
details exist.16 Volumetric fusion17 was shown to be robust in dealing with sensor noise in the work of Newcombe et al.6
Dou et al. extended volumetric fusion to register the deformable object in their multicamera system.4 Template fitting
(i.e., deforming a high-resolution human body template to fit the captured meshes) has also been widely used in
multicamera systems to create personalized body surface from multiview observations.18–20 However, the reconstruction
quality of multiview systems relies highly on the accuracy of multiview calibration, which requires a great deal of extra
work. Moreover, for multi-Kinect systems, depth noise tends to increase dramatically due to interference between the
cameras.
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The single-camera system avoids the redundant calibration work and is more space and cost effective compared with
the multicamera system. One type of single-camera system reconstructs 3D human body from dynamic inputs (e.g., the
user rotates in front of the sensor continuously during capture).3,21,22 However, reconstruction from continuous deforming
inputs requires excessive nonrigid registration and data preprocessing such as temporal denoising.3 The overprocessing
potentially degrades reconstruction accuracy and tends to oversmooth the reconstructed surface.21 To avoid excessive
data processing, Li et al.,5 Wang et al.,8 and Zhang et al.,10 adopted semi-nonrigid pose assumption, in which four to
eight (could be more) static poses are captured at different angles to cover the full body, and partial scan meshes are then
generated. The surface is reconstructed by nonrigidly stitching all the partial scan meshes. Our work can be classified into
this type of system with semi-nonrigid pose assumption, a low number of sensors, and no extra calibration requirement.

2.2 Nonrigid registration
In rigid registration, the transformations of the meshes are parameterized with one orthogonal matrix having six degrees
of freedom (DoFs), whereas in nonrigid registration, higher DoF are allowed, and thus, various deformation models have
been proposed.

The most naïve deformation model assigns each vertex on the mesh with three DoFs.23 To prevent the deformation
folding, that is, adjacent deformation vectors crossing each other, Alassaf et al. proposed a Jacobian term to penalize the
negative Jacobian determinant of the deformation.24

The local affine deformation model assigns each vertex with 12 DoFs, described in a 3 × 4 transformation matrix.20

Allen et al. proposed enforcing the smoothness of deformation by minimizing the differences of the affine transformations
between each vertex and its connected neighbors. The local affine deformation model was extended into nonrigid itera-
tive closest point (ICP) framework by Amberg et al.,25 in which the correspondences are updated in each iteration, and
vertex transformations are solved by closed-form optimization. However, for dense surface registration, per-vertex affine
transformations are difficult to apply due to the computational workload. Moreover, the per-vertex affine transformations
do not preserve mesh topology and volume during deformation.

The as-rigid-as-possible deformation model proposed by Sumner et al.26 refined the local affine deformation model.
The deformation of the dense surface is controlled by the transformation parameters of its embedded graph. The number
of graph nodes can be far less than the number of corresponding mesh vertices, and therefore, the computational work-
load can be reduced. Moreover, Sumner et al. further constrained the optimized affine transformation matrix to be as
orthogonal as possible, which enforced the deformation of the embedded graph and its corresponding mesh to be as rigid
as possible. The as-rigid-as-possible deformation model was extended to nonrigid ICP framework for surface registration
in the works of Li et al.27,28 A number of 3D human body surface reconstruction systems have been developed based on
the as-rigid-as-possible deformation model.4,5,7,9,21

The deformation space can be further reduced for a surface with an underlying structure, such as a skeleton. In a
skeletal structure, the surface is segmented into areas defined by links connected by articulated joints. The links are
treated as moving rigidly during motion, and a joint constraint is imposed to preserve the connectivity of adjacent links.3,29

Our nonrigid registration framework integrates the articulated model with the as-rigid-as-possible deformation model.
Additionally, a segmentwise global loop closure constraint is imposed on the articulated motion estimation to prevent the
registration from being trapped in local minima.

Cui et al.3 and Chang et al.29 estimated joints and link segments from the input pose changes, where significant artic-
ulated motions were required to achieve a high degree of segmentation accuracy. Wang et al.8 heuristically assigned
the body segments, and Zhang et al.10 defined the skeletal structure by template fitting, both of which require extra
work, and the segmentation accuracy cannot be guaranteed. In contrast, our joints and link segments are inferred from
multimodality mapping, ensuring a high degree of anatomical accuracy.

3 SYSTEM OVERVIEW

Our system (Figure 1) consists of two parts: the front end and the back end. In the front end, our hardware system design
aims to maximize the depth map accuracy by analyzing the sensor noise pattern. This is done through system calibra-
tion, which includes an experiment to measure and model the sensor depth bias as a function of distance, and a standard
sensor intrinsic and extrinsic calibration. In the back end, we propose a nonrigid registration framework that is appropri-
ate for the semi-nonrigid pose assumption (i.e., various human body poses appear as a high degree of deformations around
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FIGURE 1 System overview. TSDF = truncated signed distance function; ICP = iterative closest point

skeletal joints, whereas modest deformations appear around link segments). Partial scan meshes are reconstructed dur-
ing mesh preprocessing. Then, skeletal joint positions are inferred through multimodality registration. With partial scan
meshes and skeletal data, the body surface is reconstructed through our nonrigid registration framework.

4 SYSTEM HARDWARE

4.1 Data acquisition
4.1.1 System setup
Our capture system consists of two Kinect v2 sensors, one 28" twin camera slide bar, and a tripod. The sensors are vertically
mounted on the two ends of the slide bar to reach an optimal accuracy and capture volume. Figure 2 shows our capture
system.

4.1.2 Capture
During the scan, the subject stands upright at approximately 125 cm from the sensors holding an “A pose” (Figure 2a), that
is, arms open roughly 45◦ and feet open roughly 45 cm. The data acquisition takes eight scans (each corresponding to a
pose) in total with the user rotating roughly 45◦ between each scan and holding the pose for approximately 1 s. Moreover,
30 frames of the depth image and 1 frame of the color image are collected for each scan.

4.2 System calibration
4.2.1 Depth correction
We designed an experiment to investigate the raw depth bias pattern of the Kinect using a 4.2 m × 3.2 m flat wall and
high-precision distance-measuring instrument. We mounted a laser measure in front of and perpendicular to the sensor's
front plate (Figure 2b, left). The wall was perpendicular to the ground and large enough to cover the entire capture view
at any sample distance. The x-z plane of Kinect Infrared (IR) sensor was calibrated to be parallel to the ground. We used
laser distance measurements as ground truth, and a constant bias coefficient was calculated as the offset of the IR camera
optical center to the Kinect's front plate. The bias coefficient was experimentally measured by optimally matching the real
and virtual corner-to-corner distance of corners randomly selected from a checkerboard. We took 50 uniform distance
samples from 0.8 to 1.8 m with 3 captures for each sample and 30 frames per capture. For each capture, the sensor z-axis
was adjusted to be perpendicular to the wall, and we repeated the capture process three times at each sample distance to
mitigate the experimental error.
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FIGURE 2 System setup. (a) The setup of the two Kinects relative to the subject. The lower camera (denoted K1) was mounted at a height
of 65 cm from the ground, and the upper camera (denoted K0) was mounted at a height of 130 cm from the ground. The distance from
camera center to the subject is approximately 125 cm, and the camera vertical Field of View (FOV) is 70.6◦. Using this configuration, the
maximum allowable user height is 219 cm. (b) Left: hardware setup for depth bias analysis using a laser range instrument (e.g., Bosch® laser
measure). Right: hardware setup for capture, showing the two Kinects and the mounting frame

We modeled the depth bias pattern using quadratic regression and used it to correct the depth from the Kinect. As shown
in Figure 3, we plotted the bias as a function of depth (Figure 3a) and compared three correction setups: global quadratic
(Figure 3b), large patch regional quadratic with patch size of 48 × 48 pixels (Figure 3c), and small patch regional quadratic
with patch size of 20 × 20 pixels (Figure 3d). Similar to the work of Dou et al.,30 for each patch, we used 16-pixel overlap to
increase the smoothness of correction. The majority bias (labeled in blue, covering more than 95% of the measure bias) was
used for quadratic data fitting to rule out the impact of outliers. Our conclusion is that using regional quadratic regression
to correct the depth bias works well at suppressing outliers, and the small patch correction outperforms the large one. In
our implementation, we employed the regional quadratic regression with 20 × 20 patches for depth correction.

4.2.2 Intrinsic and extrinsic calibration
We used an 8 × 7 standard checkerboard pattern to calibrate the intrinsic parameters of the Kinect IR and RGB cameras
and the extrinsic parameter from RGB to IR cameras. The multithread asynchronous data acquisition front end was
developed based on the Libfreenect2 library.31

5 THE 3D RECONSTRUCTION

Figure 4 shows an overview of our approach, which consists of the following steps: (a) Mesh preprocessing (Figure 4a)
generates eight high-resolution partial scan meshes from depth and color images captured in the front end. (b) Skeleton
inference (Figure 4b) infers skeletal joint positions by multimodality registration. (c) Registration (Figure 4c–f) recon-
structs the 3D body surface using nonrigid registration. Our nonrigid registration framework has the following substeps:
First, we initially align partial meshes with rigid ICP and divide each partial scan mesh into 15 segments according to the
joint positions (Figure 4c). Second, we regularize poses by deforming partial scan meshes under the articulated motion
constraint and the global loop closure constraint (Figure 4d). Third, we perform a global nonrigid registration to stitch
the meshes further and generate a watertight surface (Figure 4e). Fourth, we map high-frequency details and texture to
the watertight surface (Figure 4f).



6 of 21 LU ET AL.

FIGURE 3 Kinect bias pattern and depth correction. (a) Bias pattern as a function of depth. The majority bias distribution is in blue with
appearance rate more than 95%. The other colors represent the minority bias distribution with appearance rate less than 5% and red one
representing less than 0.02%. (b) Global quadratic correction. (c) Regional quadratic correction with 48 × 48 patch and an overlap of 16 pixels.
(d) Regional quadratic correction with 20 × 20 patch and an overlap of 16 pixels

FIGURE 4 Reconstruction pipeline. ICP = iterative closest point
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5.1 Mesh preprocessing
Eight partial scan meshes are generated in this step corresponding to the eight poses. To generate the partial scan meshes
efficiently and accurately, we first reconstruct low-resolution meshes from the two cameras to obtain an optimal extrinsic
transformation. Then, we generate a high-resolution partial mesh by fusing two cameras' depth images with the optimal
extrinsic transformation. An adaptive size truncated signed distance function (TSDF) volume (i.e., the size of volume fits
the bounding box of the scanned subject) is employed to optimize the memory and computational efficiency, as well as to
average out the random sensor noise. The partial meshes are extracted from the TSDF volume using marching cubes.32 To
clip the ground, one extra scan without a subject is taken to estimate the ground plane parameters during preprocessing.

5.2 Skeleton inference
Accurate skeletal joints inference is critical, as our reconstruction method relies heavily on the articulated motion
assumption. Unlike the methods of Wang et al.8 or Cui et al.,3 we infer skeletal joints from personalized body composi-
tion scans. In our study, we have access to the body composition image from DEXA for each tested subject (Figure 5b).
We propose a novel approach to accurately infer skeletal joint positions from DEXA images through multimodality reg-
istration. Furthermore, for scans without available DEXA references, we present a supervised learning model to predict
joint locations. To the best of our knowledge, this is the first attempt to utilize registered medical imaging as the reference
to infer skeletal joints in a 3D body reconstruction system. Using this approach, a high degree of accuracy for skeletal
joints inference and body segmentation can be achieved. This model is also capable of predicting body composition map
without the use of subject-specific DEXA scans, which is itself a useful tool.

5.2.1 Shape registration framework
To map the data from one modality to the other, the key is to establish correspondences between the shapes. Our registra-
tion framework consists of two steps: pose regularization and nonrigid registration. Without loss of generality, we define
the source and target shapes in the form of 2D triangle mesh as  and  , respectively, from which we sample ordered
boundary vertex sets b and b.

Pose regularization. First, we classify the vertices on source shape  into six body segments—torso, head, left arm,
right arm, left leg, and right leg—as color coded in Figure 5a. The rotation center of each segment is heuristically defined,
represented as gray points in Figure 5a. Next, we calculate an affine transformation matrix for each segment on source
shape  to roughly match the pose of target shape  . Finally, vertices on source shape  are transformed as a weighted
blend of the segment's affine transformations. ̃ denotes the source shape after pose regularization, and its boundary is
denoted by ̃b.

FIGURE 5 Multimodality registration for mapping skeletal joints. (a) Input shape with binary classified body segments and their rotation
center (gray points). (b) Target shape from DEXA scan. (c) Silhouette of the source shape after pose regularization (blue) and silhouette of the
target shape (red). (d) Free-form deformation-based shape registration. (e) Skeletal joints and body composition mapping from the target
shape to the original source shape
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Nonrigid registration. To further align source shape ̃ to the target, we adopt the method of Rouhani et al.,33 a
robust shape registration framework that exploits local curvature features. The deformation is parameterized by free-form
deformation (FFD), where P denotes the control lattice.

In shape registration, the goal is to minimize the distance between shape correspondences while deforming the source
shape as smoothly as possible (1). The smoothness term Esmooth encourages the integral of the second-order derivatives of
the linear functions to be small. The data term Edata (2) interpolates between two types of error metrics: point-to-point and
point-to-plane. The interpolation weight W (3) is proportional to the local curvature 𝜅. For target geometry with salient
curvatures, point-to-point error metric dominates the penalty term to encourage a localized correspondence search. For
target geometry with low curvature, point-to-plane error metric dominates the penalty term to allow the correspondence
search to “slide over” target b to avoid being trapped in local minima.34

P∗ = argmin
P

∑
Edata

(
ṽ ∈ 𝐹𝐹𝐷

(
̃b

)
, t ∈ b

)
+ 𝜆Esmooth (P) (1)

Edata
(

ṽ, t
)
= W ‖‖‖

(
ṽ − t

)
· Tt

‖‖‖
2

2
+ ‖‖‖

(
ṽ − t

)
· Nt

‖‖‖
2

2
(2)

W = 1 + 1
𝜅 ∗ signed_dis

(
ṽ, t

)
− 1

. (3)

The shape registration is performed in a nonrigid ICP fashion. For each step, the corresponding pairs
ṽ ∈ 𝐹𝐹𝐷

(
̃b

)
, t ∈ b are updated with the latest deformation parameter P. The stiffness 𝜆 is set to be high at the start

of iteration to enforce a global alignment and gradually relaxed to encourage local deformation. Rouhani et al.33 formu-
lated an elegant quadratic objective function with respect to the deformation parameter P, resulting in a closed-form
solution for each ICP iteration. Let Pconv denote the final deformation parameter and ̃

b denote the boundary shape at
convergence (Figures 5d and 7c). Shape ̃ is then deformed to ̃ with deformation parameter Pconv.

5.2.2 Skeletal joints inference via multimodality registration
We select the first and the fifth partial scan meshes for skeletal joints inference, corresponding to poses that face forward
and backward relative to the cameras. To simplify the notation, we take the first partial scan mesh as an example. The
process is analogous to the fifth. We define the source shape  to be the 2D orthogonal projection of the first mesh. The
DEXA image is converted into 2D mesh labeled with skeletal joints, corresponding to the target shape  . We first regu-
larize the pose of source shape  to match the pose of target shape  , yielding regularized shape ̃ and its corresponding
boundary ̃b (Figure 5c). In our experiment, in most cases, the source shape is capable of being registered to the target 
without pose regularization. However, with a prior knowledge of the shape's underlying structure, we initially regularize
the pose to avoid undesirable distortion and hence to increase the registration accuracy and stability. After pose regular-
ization, the source boundary ̃b is registered to the target boundary b by solving the objective function in Equation 1
iteratively (Figure 5d). Source shape ̃ is then deformed via FFD with the optimal deformation parameters, resulting in
the aligned shape ̃ . The skeletal joints labeled on target mesh  is then mapped to the aligned shape ̃ and thus to
the 2D orthogonal projection shape  (Figure 5e). Finally, the skeletal joints are inferred on the partial scan mesh.

We initially align all the partial scan meshes through global rigid ICP registration. Based on mapped joints, we seg-
ment the first and the fifth partial scan meshes into 15 segments as illustrated in Figure 8 and propagate the joints and
segmentations throughout the rest of partial scan meshes.

5.2.3 Skeletal joints inference via supervised learning
We further developed a novel predictive model through supervised learning to infer skeletal joints and body composition
for arbitrary subjects without the need for DEXA scans. Our approach consists of a training phase and a predicting phase
(Figure 6).

In the training phase, we take various body shapes and corresponding DEXA images as input. For each training shape,
we infer skeletal joints and body composition map from the DEXA image by multimodality registration (Figure 6, Mul-
timodality mapping). Textured training shapes are stored in mapping sample database (Figure 6, Mapping samples). A
uniform template is registered to each of the training shapes via shape registration (Figures 6, Shape processing, and 7a).
Then, we analyze the variation of registered templates using principal component analysis (PCA) and extract the top
three PCA components as the basis for the feature space. Shape features for each training shape are calculated as the
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FIGURE 6 Flowchart of skeletal joints and body composition inference via supervised learning showing training phase (top) and
predicting phase (bottom). PCA = principal component analysis

FIGURE 7 Skeletal joints and body composition inference via supervised learning. (a) Training shapes in dashed line, color coded with
body mass index (BMI). The average of training shapes outlined in black. (b) The shape to be predicted. (c) Shape processing: register the
template to the predicting shape. (d) Shape prediction: predict the best-matched shape (light blue) for the predicting shape (red). (e) Skeletal
joints and body composition mapping

projection of corresponding registered template on the PCA feature space (Figure 6, PCA feature extraction). Shape
features are stored in shape parameter database (Figure 6, Shape parameters).

In the predicting phase, we adopt a nonparametric regression predictive model to predict skeletal joints and body com-
position map for new shapes (Figure 7b), including but not limited to shapes generated from partial scan meshes. First,
we register the template shape to the new shape via shape registration (Figures 6, Shape processing, and 7c). The PCA
features are extracted for the new shape by projecting the aligned template onto the PCA feature space (Figure 6, PCA
feature extraction). One best-matched shape is predicted by searching for the training shape whose PCA features have
the minimum Euclidean distance to the new shape's features (Figures 6, Shape prediction, and 7d). Finally, we register
the best-matched shape to the new shape to map the skeletal joints and body composition map (Figures 6, Skeletal joints
& body composition mapping, and 7e).
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FIGURE 8 Skeleton hierarchy. J stands for the joint, and S stands for the segment, followed by the name of each joint or segment. The
index after a name is the order of this joint or segment in the list

5.3 Surface reconstruction
To reconstruct the 3D human body, our solution integrates the articulation constraint and the global loop closure con-
straint into the as-rigid-as-possible nonrigid registration framework. The articulation constraint prevents connected
segments from drifting apart during registration. The segmentwise global loop closure constraint ensures that the registra-
tion error distributes evenly throughout the partial scans. This prevents alignments from falling into the local minima and
hence enhances the registration quality where occlusions exist. The as-rigid-as-possible deformation framework models
an effective way to simulate the skin deformation under articulated motion, preventing mesh near joints from unnatural
folding or stretching during registration.

In the rest of the paper, we represent the globally aligned partial scan mesh in pose i as Mi =
{

vk
i ∈ R3, k = 1, … ,n

}
, i =

1, … , 8, where n denotes the number of vertices in the mesh. We represent the embedded deformation graph of Mi as
𝐸𝐷i =

{
gk

i ∈ R3, k = 1, … ,m
}
, i = 1, … , 8, where m denotes the number of nodes in the graph. Vertices on each partial

mesh are classified into 15 segments, where Sk
i denotes the kth segment of partial mesh Mi. Segments of eight partial

meshes share one set of joints, whose positions are denoted by J = {Jk ∈ R3, k = 1,… ,15}. We assign to each segment
Sk

i a rigid transformation Trk
i =

{(
Rk

i tk
i

)
, | Rk

i ∈ SO (3) , tk
i ∈ R3}. Figure 8 lists the joints and segment indices and their

hierarchy.
The basic deformation model. Our nonrigid registration framework is based on the embedded deformation model

of Sumner et al.26 The deformation of the partial mesh Mi is abstracted to the deformation of the embedded graph EDi,
where the transformation of each graph node in EDi is constrained to be as rigid as possible. We propose to generate the
embedded graph through a multiresolution k-nearest neighbor (k-NN) method to establish fast and effective connections
between random sample points.

The transformation parameters of graph nodes are calculated by minimizing the energy function E described in
Equation 4, as follows:

E = wrErigid + wsEsmooth + wcEcorr. (4)

Two constraints are imposed to formulate the properties of deformation. The rigidity term Erigid =
∑m

i=1 𝑅𝑜𝑡 (Ri) enforces
rotation matrix R associated with each graph node to be as orthogonal as possible, where the Rot(R) reflects the orthog-
onality of matrix R. The smoothness term Esmooth =

∑m
i=1

∑
k∈ (i)||Ri · (gk − gi) + gi + ti − (gk + tk)||22 enforces the

transformation of each node to be consistent with its neighbors', where  (·) represents neighbor nodes that connect to
the graph node. The correspondence term Ecorr enforces the distance error of correspondences to be small, which will be
formulated differently in different registration phases.
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5.3.1 Pose regularization
In this phase, we aim to initially align eight partial meshes through the as-rigid-as-possible deformation framework under
the articulated motion constraint and the global loop closure constraint.

Joint constraint. A joint constraint prevents the common ends of two connected segments from drifting apart after
the transformation. We adopt the soft ball joint constraint method of Knoop et al.35 to proportionally add artificial
joint-to-joint correspondences into the segmentwise registration. The ratio of artificial to total correspondences is treated
as a weight of this joint constraint. Figure 9 shows a comparison of segmentwise global rigid registration with and without
the joint constraint. Segments tend to drift away (Figure 9a,b left) without a soft joint constraint.

Global loop closure constraint. During pose regularization, we treat segments of partial scans as moving rigidly and
the shape change as negligible. For each segment S, we globally align all eight partial segments Sk, k = 1, … , 8 under
the global loop closure constraint and the soft joint constraint. In practice, we cannot always guarantee a complete loop
(i.e., each node connects to its two adjacent nodes in the graph) due to occlusion, especially in areas such as inner sides
of upper arms or thighs. Therefore, for each of these types of segments, we perform the explicit loop closure constraint
(Figure 10b). For each of the rest, we perform the more flexible implicit loop closure constraint (Figure 10a). The explicit
constraint predefines which pair of meshes should be aligned. The implicit constraint determines whether to align the
mesh pair or not based on whether the overlapping area of the pair is larger than a certain threshold. After aligning each
selected pair of meshes, we then globally distribute the alignment error throughout the graph (Figure 10).

The correspondence term. Eight partial scan meshes are deformed, guided by the outputs of the segmentwise articu-
lated global registration under the above two constraints. We specify the correspondence term for pose regularization in

FIGURE 9 The joint constraints comparison. (a) Left: without the knee joint constraint. Right: with the knee joint constraint. (b) Left:
without the shoulder joint constraint. Right: with the shoulder joint constraint

FIGURE 10 Examples of implicit graph (a) and explicit graph (b). The red dots represent mesh nodes, and the gray lines denote all
candidate edges. Mesh nodes connected by lines can be registered. In the implicit graph, the green highlight edges represent the predefined
baseline edges for the loop and, the blue highlight edges are selected from the rest of the edges (gray lines) based on an implicit threshold.
The implicit threshold is set as the minimum overlap area of the mesh pair on baseline edges. In the explicit graph, the brown highlight edges
represent the explicitly predefined edges, which are mandatorily computed during registration. The node covered by the gray square
represents missing mesh due to occlusion
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Equation 5, where T( gi, Tr) transforms embedded graph node gi with the transformation matrix Tr of the segment that
gi belongs to.

Ecorr =
m∑

i=1

‖‖‖gi − T
(
gi,Tr

[
segmet_id (gi)

])‖‖‖
2

2
. (5)

Implementation. First, we perform a segmentwise articulated global registration to align all segments. We take seg-
ments of partial scans Sk

i , i = 1, … , 8, k = 1, … , 15 and the joint positions Jk, k = 1,… ,15 as inputs. We initially set the
transformation matrix Tr for each segment of partial scans to identity. The segmentwise registration is performed in a
top-down fashion from level 1 to 3 (Figure 8). Segments belonging to level l (l = 1, 2, 3) are aligned under the constraints.
The transformation matrices and joint positions are updated accordingly and then propagated to their descendants. The
outputs are the rigid transformation matrix Tr for each segment and updated joint positions. Second, eight partial meshes
are deformed nonrigidly, guided by previous outputs. The correspondence is defined for each graph node according to the
transformation of the segment this node belongs to. During the optimization, we minimize Equation 4 with a correspon-
dence term specified in Equation 5 to get the deformation parameter for each graph node. The partial scan meshes Mi,
i = 1,… ,8 are then deformed by their corresponding embedded deformation graphs. We represent the pose regularized
partial scan meshes as RMi, i = 1,… ,8.

5.3.2 Global nonrigid registration
After pose regularization, the eight meshes RMi, i = 1,… ,8, are close enough to be further registered. We adopt the global
nonrigid registration framework of Li et al.5 First, each mesh is pairwisely registered to define global correspondences.
Then, with the correspondences, eight meshes are stitched through global nonrigid registration.

Pairwise nonrigid registration. To pairwisely align partial scan meshes, the point-to-point and point-to-plane error
metrics are adopted for the correspondence constraint (6). Our pairwise alignment suffers less from local minima due to
the pose regularization.

Ecorr =
∑

(ṽ,t̃)∈∁pairwise

‖‖ṽ − t̃‖‖2
2 +

‖‖‖
(

ṽ − t̃
)
· N t̃

‖‖‖
2

2
. (6)

Global nonrigid registration. The global alignment aims to stitch the eight meshes simultaneously. We predefine
global correspondences using pairwise nonrigid registration and then solve for deformation parameters of the eight
embedded graphs in one optimization. The correspondence constraint for global nonrigid registration (7) enforces the
point-to-point distances of global correspondence pairs

(
ṽ, t̃

)
∈ ∁global to be small.

Ecorr =
∑

(ṽ,t̃)∈∁global

‖‖ṽ − t̃‖‖2
2 . (7)

Implementation. The first step is to define global correspondences by pairwisely deforming RMi to its next neighbor
RMi + 1 (the last mesh deforming to RM1). For each pair after registration, we uniformly sample the source mesh, and for
each sample point, we search for its correspondence on the target based on the Euclidean distance and normal compati-
bility. Indexes of sample points and their correspondences are stored in the global correspondence table GCi(i = 1,… ,8).
The second step is to globally register the eight regularized partial meshes RMi (i = 1,… ,8) based on the global correspon-
dences defined in the previous step. The global correspondence tables for the eight meshes are merged into one table GC
so that samples on RMi have bidirectional correspondence on both RMi − 1 and RMi + 1. After optimization, the outputs
are the eight globally aligned partial meshes GRMi(i = 1,… ,8). In the third step, we merge these eight globally aligned
partial meshes to generate a watertight surface  through Poisson reconstruction.13

5.3.3 Detail Mapping and Texture Refinement
Detail mapping. The Poisson reconstruction13 tends to oversmooth the high-frequency details of the original meshes
GRMi(i = 1,… ,8). We propose to map high-frequency details from the globally aligned partial meshes to surface . We
nonrigidly deform the aligned partial meshes toward the watertight surface  and optimize per-vertex correspondence of
 to each mesh. After convergence, we warp the vertices on surface  toward the latest correspondences with a Laplacian
smoothness constraint. With the correspondences, we also preliminarily map the texture onto the watertight surface .

Texture refinement. Because our goal is to develop a consumer system for high-quality 3D human body model-
ing, we do not have strict illumination requirements. However, texture artifacts occur due to color inconsistencies. We
employed a diffusion method to mitigate texture artifacts caused by illumination variance, that is, nonuniform lighting.
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The diffusivity is determined by the color similarity of a given vertex and its k-NN vertices to preserve edge details but,
at the same time, smooth out color inconsistency artifacts. Additionally, the facial detail is enhanced by a geometry and
texture supersampling.

6 EXPERIMENT

6.1 Data collection
We have conducted a threefold experiment to collect DEXA scan images, to test the robustness of our body scan system,
and to verify reconstruction accuracy and reliability.

The experiment has a sample size of 28 subjects (14 males and 14 females). This is considerably larger than the sample
size reported in similar studies.36,37 We consider the sample size to be sufficient if the width of the 95% confidence interval
is at most 1.5% of the value to be estimated. We demonstrate this in the results section. This experiment is the first phase
accuracy study of a larger experiment consisting of 160 subjects that we are conducting to calculate the percentage of
body fat using surface scans. The data collection involving human subjects was approved by the Institutional Review
Board (IRB).

The subjects were recruited from the Washington, DC, metro area, with age of 25.7 ± 5.1and BMI of 23.3 ± 3.1. We
drew 34 landmarks on each subject corresponding to anatomic definitions of chest, waist, abdomen, hip, thigh, calf,
shoulder, elbow, wrist, patella, and ankle. Two landmarks (for measurements on arms and legs) and four landmarks (for
measurements on torso) were placed in each location as a reference for the caliper and tape measurements. The test took
1 h for each subject, including the DEXA scan, the scan using our system, and the caliper and tape measurements.

Scan with the system. Subjects were asked to change into a tight-fitting uniform including sleeveless compression tops
(for males), sports bras (for females), swimming shorts, and swimming caps. The landmarks were drawn before the scan.
Each subject was scanned three times. The textured 3D body shapes were reconstructed afterward with all landmarks
visible on the virtual models. Euclidean distance between markers on 3D virtual models was calculated and recorded.

Manual measurements. We measured the point-to-point linear distance between landmarks with a caliper and the
length of arms and legs with a tape measure. Two measurements were taken to mitigate measurement error. During
the measurement, subjects held approximately the same pose as they did during the scan. Our accuracy comparison is
in between the manual caliper/tape measure on real subjects and the vertex-to-vertex Euclidean distance measure on
reconstructed virtual 3D models.

6.2 Surface reconstruction
During mesh preprocessing, we reconstructed multiresolution partial scan meshes from depth and color images using
the TSDF fusion17 and the marching cubes32 algorithms. The coarse mesh was reconstructed at a resolution of
192 voxels/m, and the fine mesh was reconstructed at a resolution of 384 voxels/m. The implementations were based on
the Kangaroo Library.38

In shape nonrigid registration, we set the FFD control lattice to be 30 × 30, covering a unit deformation space, that is,
[0, 1]2. Shapes were rescaled uniformly to fit into the unit square before registration. We initialized the stiffness 𝜆 to 105,
and for each iteration, we reduced 𝜆 by 25% until convergence.

We implemented the segmentwise articulated global rigid registration based on the VCG Library.39 We experimentally
set the weight for articulation constraint to 0.1 and the overlapping area threshold for the implicit graph to 0.2.

Our surface reconstruction framework is based on the as-rigid-as-possible deformation model. The deformation graph
node was connected by its k-NN. We set k to 10 for all embedded deformation graphs during registration. The optimization
function consists of three energy terms: the rigid term, the smoothness term, and the correspondence term. The corre-
sponding weights are denoted by wr, ws, and wc. For pose regularization, we experimentally set wr to 100, ws to 10, and
wc to 5. For pairwise nonrigid registration and detail mapping, we experimentally set wr to 10, ws to 5, and wc to 1. For
each iteration, we reduced wr by half. For global nonrigid registration, we experimentally set wr to 50, ws to 2.5, and wc to
1. For each iteration, we solved the nonlinear objective function using the Gauss–Newton method, where the Cholesky
decomposition was solved with the CUDA conjugate gradient solver.40

Our reconstruction system is able to run on average commodity hardware. In our experiment, we used Intel® Core
i7–4790 CPU with 32GB RAM and an NVIDIA® GeForce GTX 750 GPU with 2GB DRAM to process the data. The
processing times for each step are illustrated in Table 1.
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TABLE 1 Processing time for one instance of reconstruction

Meshing Skeleton Pose Pairwise Global Poisson Texture
mapping regularization nonrigid nonrigid reconstruction

Time (s) 391.47 108.37 384.71 210.36 170.22 49.15 224.47

FIGURE 11 Holdout validation for skeletal joints inference via supervised learning. (Row 1) Body shape prediction. The best-matched
shape (light blue) is predicted for each test shape (red). (Row 2) Radar plots of six PCA features (i.e., PCA1_X, PCA2_X, PCA3_X, PCA1_Y,
PCA2_Y, and PCA3_Y) for the five test shapes (red) and their corresponding predicted best-matched shapes (light blue). (Row 3) Predicted
skeletal joints and body composition. (Row 4) Test ground truth. Skeletal joints are represented as blue squares. For body composition, white
denotes bones, red denotes muscles, and yellow denotes fat. Shape boundary is colored in green
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7 RESULTS

7.1 Skeleton inference
We conducted a holdout validation test to evaluate the accuracy of our predictive model for skeletal joints and body
composition inference. The model was trained using body shapes with various body sizes (Figure 7a). The validation
test consists of new shapes and their DEXA images. Five inference results generated via our predictive model are illus-
trated in Figure 11, row 3. In the predictive model, we extracted PCA features of the input shape and predicted the
best-matched shape from the training shape dataset. Five test shapes and their best-matched shapes are illustrated in
Figure 11, row 1. Corresponding PCA features are visualized in radar plots in Figure 11, row 2. The test ground truth was
generated by directly mapping the DEXA image to the test shape through multimodality registration (Figure 11, row 4).
Based on a training sample size of 12, the mean error of skeletal joints prediction is 1.63 cm and the mean accuracy of
body composition prediction is 82.87% (Table 2).

7.2 Surface reconstruction
Figure 12 shows our reconstruction results. Our system is also capable of capturing complex surfaces for general-purpose
3D scan and reconstruction such as the case in which the subjects wear loose clothes. The surface details were recon-
structed by mapping high-frequency geometry details from the deformed partial meshes to the oversmoothed watertight
surface generated by Poisson reconstruction.13 In Figure 13, details of the T-shirt and pants, wrinkles, face, hair, and ears
are shown.

7.3 Accuracy evaluation
We obtained 24 measurements on each of the 28 subjects and summarized them as a mean-difference plot in Figure 14.
The vertical axis is the difference between the value obtained from the 3D reconstruction and that obtained by tape
measure or caliper. The horizontal axis is the average of the virtual and real (caliper or tape) measure. A 95% confidence
band (−0.4 cm to 0.4 cm) is superimposed on the plot for reference. Most (97.4%) measurements are within 5 mm of
each other, with the largest discrepancies being 0.85 cm and −0.80 cm. Note that the caliper and tape measurements also
involve some error.

Figure 15 breaks down the discrepancies by location and displays boxplots of the differences between 3D reconstructed
and manually measured values. As noted above, the reconstructed and measured values are, for the most part, within
5 mm of each other. Most discrepancies are in the abdomen, calf, and thigh measurements and appear to be due in part to
difficulties in performing the manual measurements and in part to the registration and sensor intrinsic errors. The 95%
confidence accuracy interval for each of the 24 measurements was calculated. With the sample size of 28, the worst-case
interval width was 0.27 cm, and the worst-case relative error was 1.5%.

Finally, as a test of the repeatability of the reconstruction, all 24 measurements for the first subject were repeated 3 times.
The intraclass correlation between measurements was 0.99990, with a 95% confidence interval of (0.99981, 0.99996). The
worst error at each location was calculated as the largest of the three values minus the smallest. These worst errors are
shown in Figure 16. We hypothesize that the errors are mainly due to a combination of pose change, shifting clothing,
and breathing between data taking.

In Table 3, we compare our body reconstruction geometry accuracy and whole-body volume accuracy with
state-of-the-art body reconstruction systems that are widely used in academic research and commercial applications. Rig-
orous scientific validations have been conducted for 3dMDface® by Aldridge et al.36 with 15 subjects and for Crisalix 3D®
by de Heras Ciechomski et al.37 with 11 subjects. Li et al.5 validated their algorithm using one rigid mannequin and
compared their reconstruction result with the ground truth from the laser scanner. Zhang et al.10 validated their method
with one articulated rigid mannequin, also taking laser scan as the ground truth. We do not have the details of the

TABLE 2 Skeletal joints prediction error and body composition prediction accuracy

Test 1 Test 2 Test 3 Test 4 Test 5 Mean

Skeletal joints error (cm) 1.49 1.41 1.23 2.57 1.45 1.63
Body composition accuracy 82.01% 82.79% 82.69% 84.31% 82.53% 82.87%
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FIGURE 12 Reconstruction results

FIGURE 13 Comparison of detail mapping. Top: the watertight surface generated by Poisson reconstruction. Bottom: the detail
refined mesh
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FIGURE 14 Mean-different plot of the overall discrepancies

FIGURE 15 Discrepancies by location

accuracy claims of the other systems. The result shows that our reconstruction system geometry accuracy is superior to
Crisalix 3D® and Styku® for torso region and to methods of Li et al. and Zhang et al. for the whole-body areas. The volume
accuracy outperforms high-end body scanner Telmat SYMCAD®.
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FIGURE 16 Maximum difference of repeated reconstructions

TABLE 3 Comparison of geometry and volume accuracy with state-of-the-art body reconstruction systems

System for body Techniques Cost Source Experiment Experiment Region Geometry Volume
reconstruction data source details error (mm) error

3dMDface® Stereo- $$$$$$ 36 Experiment with N = 15, L = 20, Face 1.263
photogrammetry real subjects M = 14

3dMDbody® Stereo- $$$$$$ 41 No detail Body 0.2–1
photogrammetry

TC2 NX-16® Structured $$$$$ 42 Factory tech specs Body <1
white light

Telmat SYMCAD® Structured $$$$$ 43 No detail Body <1 −8%
white light

Crisalix 3D ® Image-based $$$$ 37 Experiment with N = 11, L = 14 Torso 2–5
reconstruction real subjects

Styku® KinectFusion $$$ 44 Factory tech specs Torso 2.5–5
Li et al. Kinect nonrigid $$$ 5 Rigid mannequin N = 1 Body 3
Zhang et al. Kinect nonrigid $$$ 10 Articulated rigid N = 1 Body 2.45

mannequin
Ours Kinect nonrigid $$$ Experiment with N = 28, L = 34, Body 2.048 3.63%

real subjects M = 24 Torso 1.717

Note. N denotes the sample size of validation experiment, L denotes the number of landmarks, and M denotes the number of measurements collected per
trial. The geometry error is compared in root mean square, except for the works of Li et al. and Zhang et al. (mean error). The volume error is compared in
mean absolute difference.

8 CONCLUSION

In this paper, we present a high-quality and highly accurate 3D human body reconstruction system using commodity
RGB-D cameras. Our registration framework integrates articulated motion assumption and global loop closure con-
straint to the as-rigid-as-possible deformation model to initially regularize partial scan meshes. By regularizing the pose,
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we achieve a relatively good initial condition for global nonrigid registration. Additionally, we investigated the depth sen-
sor noise pattern with a rigorous experiment. We analyzed the noise pattern to correct the depth bias and to guide our
hardware system design.

We designed and conducted a rigorous accuracy validation test for the proposed nonrigid human body reconstruction
system. Our results show excellent agreement between the measurements obtained from the 3D reconstruction and those
obtained manually, with a root mean square difference of 2.048 mm.

The multimodality skeleton mapping maximizes the segmentation accuracy. To the best of our knowledge, this is the
first work that attempts to improve the skeletal joints inference accuracy for body scanner using multimodality regis-
tration. Moreover, the innovative supervised predictive model for skeletal joints inference makes it possible to extend
the high-accuracy segmentation to arbitrary subjects independent from anatomical data, such as the DEXA image. Last
but not the least, our predictive model is capable of predicting body composition map, that is, fat, muscle, and bone
distribution, for various body shapes with a promising accuracy of 82.87% using a rather small training sample size of 12.

In the future, we are planning to develop the body composition predictive model to incorporate features such as weight,
height, BMI, ethnicity, and geometric shape descriptors. We will develop a more comprehensive training sample set to
cover a large variety of body shapes and demographic data. We foresee that the sophisticated predictive model will result in
an enhancement of inference accuracy. The current multimodality registration and skeletal joints inference via supervised
learning predict projected 2D body composition maps from 3D surface scans much like the results of DEXA scans. We
are working to extend this algorithm to predict 3D body composition maps from 3D surface scans, which would have
far-reaching implications for treating obesity.
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