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Abstract 

Physically based modeling can produce extremely realistic motions. However, it requires 

heavy computations, complicated numerical solvers and complicated control algorithms. On the 

other hand, procedural methods produce realistic textures and geometries by relatively simple 

procedures. However, the procedural methods do not include physical quantities such as mass and 

force and the final results are hard to predict. We propose physically based procedural methods that 

have advantages of physically based modeling and procedural methods. 

Although physically based procedural method starts with all physical equations of the 

computational model, it subdivides and simplifies the equations according to their physical 

meanings. Finally the method utilizes the simplified equations to calculate motions of objects. 

Although it is not directly derived from Newtonian dynamics, our method provides an efficient and 

numerically stable way of generating visually plausible motions. The paradigm of the physically 

based procedural method can also be applied to sound generation. Sounds that are hard to simulate 

by vibration analysis were formulated by the physically procedural method. As an application 

example, a real time wind system was designed and implemented based on the physically based 

procedural method. In this virtual wind system, the user blows into the microphone, the system 

produces real time virtual wind according to the intensity of blowing, direction and distance of the 

virtual objects from the user. Physically based procedural method in Issac system was also proved 

that it is useful as a real time motion generation tool through simulating Alexander Calder’s mobile 

and Teri Elis’ clock. 
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Chapter 1 Introduction  

Since motions in real world obey physical principles, it is natural to apply physical 

principles to generating motions of objects. In computer graphics, physically based modeling 

(PBM) determines motions and shapes of objects by physical properties and laws. In the area of 

computer animation, we have many methods for generating realistic motions. Among them, 

physically based modeling is one of the most powerful methods to generate realistic motions.  

Physically based modeling has its own pros and cons. It is based on Newtonian physics, and 

thus has the power of producing physically correct motions. However, it uses complex equations, 

and usually results in heavy computations. Additionally, physical quantities of objects including 

forces and accelerations are often directly used to control motions of objects, even though it is not 

an intuitive way of control. Thus, currently, physically based modeling is not widely used even 

though it is one of the best methods to generate realistic motions in computer animation and Virtual 

Reality (VR) [Barz97]. 

To solve problems in physically based modeling, we propose the paradigm of procedural 

methods based on physics. Procedural methods have tried to mimic physical phenomena rather than 

exactly simulating physical laws [Four82][Weil86]. These approaches achieved visual plausibility 

and also provided easy control of complex phenomena. Although the procedural method succeeded 

in generating visually plausible motion of natural phenomena, the method has nothing to do with 

physical properties. Therefore, if physical quantities of object are changed, the motion from the 

procedural method is difficult to correspond with the new physical quantities.  

This dissertation presents procedural methods to solve the problems of physically based 
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modeling. We called it physically based procedural methods. Unlike previous procedural methods, 

physically based procedural methods formulate equations of motions mainly based on physical 

quantities and physical meanings. Therefore, the motions from the physically based procedural 

methods better correspond with physical properties. Additionally, it provides an easy way of 

controlling the motions and sounds. 

Generating sound is similar to generating motions. Generating motions means producing 

position and orientation of an object with time parameter. While generating sound means producing 

one-dimensional amplitude with time parameter. Although exact vibration analysis of an object 

produces realistic sound, analyzing vibration of a complicated object is difficult. Procedural 

methods can be applied to generate sounds easily like motion generation case. 

The physically based procedural method for motion and sound is included in our Isaac 

system. Isaac is a motion and sound generation system that includes constrained dynamics, impact 

dynamics, collision detection, physically based procedural method, sound generation and user 

interactions. User interaction includes virtual mouth blowing system. This is a unique and powerful 

interactive way of controlling articulated objects modeled by physically based modeling. Since 

Isaac combined dynamics and procedural methods, users can select dynamics or procedural method 

depending on computational loads. 

Section 1 presents motivation of this thesis. In Sections 2, we present our problem domain 

and research objectives. Section 3 explains proposed solutions of the problems. Section 4 describes 

original and significant contributions of this dissertation. Finally, Section 5 describes the 

organization of this dissertation. 
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1.1 Motivation 
Although physically based modeling is one of the best methods to generate realistic motions, 

it has the following drawbacks: 

(1) Physically based modeling requires heavy computations. Linear system solvers, ODE 

solvers and optimization methods are often required to solve equations from physically based 

modeling. Therefore, applying physically based modeling to real time applications is still 

difficult. 

(2) Physically based modeling is usually accompanied with numerical stability problems. 

Since physically based modeling requires complicated numerical solvers, it is prone to have 

stability problems. In computer animation applications, stableness is more important than 

exactness. And the parameters of the numerical solvers are difficult to control especially for 

non-mathematicians.  

(3) Motions from physically based modeling are difficult for animators to control, since 

objects in physically based modeling are moved by forces. For example, users find it difficult 

to place an object at a specific location by only controlling the forces applied on it.  

To solve the problems of heavy computations and stability, we can try to develop stable and 

fast numeric solvers. To solve the control problems, better optimization methods can be developed. 

However, these efforts are so hard to expect any dramatic improvement. 

In most of computer animations application, visually plausible motions are enough for the 

applications. Moreover, some applications require exaggeration motions. Therefore, we need 

motion generation methods which can provide better speed, stability and controllability than 

physically based modeling, even though it may sacrifice physical correctness of physically based 
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modeling. 

  

1.2 Problem Domain and Research Objectives  
The dissertation is concerned with generating motions and sounds. Motion control methods 

can be categorized into key frame method, physically based modeling, behavior method and motion 

capture method. Each method has its own pros and cons. Among these motion control methods, the 

thesis tried to solve the problems of physically based modeling. 

Key frame method generates motions through specifying key motions. Although key frame 

can control details of the motion, it requires long time experience to generate realistic motions of 

complicated objects. Behavior method analyzes motions of objects and sets up the rules based on 

the analysis. It is mostly used for motions of grouped animals. Recently, motion capture has become 

popular for animators. Motion capture samples real motions of living things. It can produce 

extremely realistic motions because the motions come from living things. However, editing and 

controlling of the captured motions is not easy.  

Physically based modeling is the problem domain of the thesis. Physically based modeling 

concerns the following motions: motions of rigid bodies, articulated objects, deformable objects, 

fracture, fluid and aerodynamics. The approach proposed by this thesis can be applied to all motions 

of physically based modeling. However, this dissertation focuses on the motions of articulated 

objects and motions by aerodynamics.  

Physical principles can be applied to generate sounds. Using physical analysis to generate 

sound has similar problems with motion generation. Exact analysis of complicated objects is very 

difficult. Manipulating sampling sounds requires large memory and complicated control methods.  
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The goal of this thesis is to design new motion generation methods that can be an alternative 

to physically based modeling. This new method would be faster, more stable and more controllable 

than physically based modeling.  

 

1.3 Proposed Solution of This Dissertation 
To solve the problems of physically based modeling, we applied the paradigms of 

procedural methods. In computer graphics, procedural methods have been used to mimic natural 

phenomena. For example, procedural methods can formulate equations of texture and geometry of 

mountains by analyzing shapes of the objects rather than its physical properties. 

Unlike previous procedural methods, we propose physically based procedural method. Our 

physically based procedural method formulates equations of motions by analyzing physical 

principles and physical quantities of objects. The method subdivides equations of dynamics and 

constraints and simplifies/amplifies the divided equations according to user intentions. The 

followings are the basic steps in formulating physically based procedural method. 

(1) Extract all equations from the computational model. For example, Newtonian second law 

and constraint equations are basic equations of constrained dynamics.  

(2) Simplify the equations according to their physical meanings. When its control is important 

for the given application, transform the equations into easier control fields. For example, if 

direct positional control of objects is required, then transform equations of motions from 

functions of accelerations to functions of positions. This transformation may introduce some 

computational errors. 

(3) Add missing parts of the equation. For example, when you transform functions of 
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accelerations to functions of positions, inertia term may disappear. You have to add the 

procedural equation of the inertia term. 

Although this is not an exact solution for the physical models, this method can produce 

visually plausible motions and sounds. 

 

1.4 Original and Significant Contribution 
This dissertation describes works believed to be original and contributory in the following 

areas related to physically based modeling and sound generation: 

 

● Applying procedural methods to the physically based modeling. To solve the problems of 

physically based modeling, we proposed procedural methods based on physics equations and 

physical quantities. The methods produce visually plausible motions that are faster and more 

stable than motions from physically based modeling methods. 

  

● Designing real time wind model based on physically based procedural method. By applying 

physically based procedural method, we designed a system in which the user’s breath can 

generate real time virtual wind. As the user blows on the microphone, the system produces 

virtual wind according to the current environment settings. The system was used to simulate 

Alexder Calder’s mobiles. 

 

● Applying procedural method to generate sounds. By applying the procedural method, we 

formulated equation of various sounds including the sounds due to collision, contact and winds. 
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The parameter of the equations can be mapped easily with equations of motions. Therefore, 

synchronizations with motions become easier. 

 

● Constraint combining and breaking with respect to the time parameter. We propose a 

constrained dynamics system. It allows users to design new constraints by combining existing 

constraints. And attaching time parameters to the constraints enables us to break and morph the 

constraints. 

 

● Implementing a motion sound generation system that combines constrained dynamics, 

procedural methods and sound generation into an integrated environment. In this system, user 

can choose procedural methods or dynamics based methods. Parameters of motions and sounds 

have close relations. Therefore, motion and sound synchronization is accomplished naturally. 

 

The work described in this dissertation has already resulted in three peer-reviewed 

publications: 

[Lee00] J.W. Lee, N. Baek, D. Kim, and J.K. Hahn. A procedural approach to solving 
constraints of articulated bodies, Eurographics 2000, (ISSN 1017-4656) pages 55-64 August 
2000. 

[Lee00] D.K. Lee, H.J. Bae, C.T.  Kim, D.C. Lee, D.H. J, N.K. Lee, N.H. Baek, J.W.Lee, 
K.W. Ryu, and J.K. Hahn. Reproducing works of Calder, J. of Visualization and Computer 
Animation, (to be appeared) 

[Hahn95] J.K. Hahn, J. Geigel, J.W. Lee, L. Gritz, T. Takala, and S. Mishra.  An Integrated 
Approach to Sound and Motion. Journal of Visualization and Computer Animation, Volume 6, 
Issues No. 2, pages 109-123, 1995.  

 

 



 

 

 

8

1.5 Document Organization 
Chapter 2 reviews other researches about physically based modeling, procedural methods 

and sound generation. Various related approaches are described, their limitations are outlined, and 

they are compared to our proposed approach. 

Chapter 3 explains the Issac system that is used to demonstrate the ideas presented in this 

dissertation. Basic features (constrained dynamics, impact dynamics and constrained combining and 

breaking) of the system are explained. The procedural method and sound generation features of the 

system are explained.  

Chapter 3 describes our physically based procedural methods. First, the way of formulating 

the procedural method is explained. Second, we explain in detail the algorithms of the physically 

based procedural method for motions of articulated objects. The procedural algorithms for sphere-

like objects and wind model are described.  

Chapter 3 presents equations for sound generation. These equations were formulated by 

physically based procedural method. It describes physics-based collision sound of homogeneous 

objects and collision sounds for heterogeneous objects. Texture-based scraping sound and fractal 

based wind sound are described.  

Finally Chapter 4 concludes the dissertation with a review of results and issues, and future 

work.  
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Chapter 2. Literature Review and Issues 

 

This chapter describes related works of this thesis. The related works can be divided into 

physically based modeling, procedural method and sound generation. These three parts are primary 

features of Isaac system.  

Section 2.1 describes works on physically based modeling including field of collision 

handling, articulated objects, control methods and deformable objects. Section 2.2 states previous 

works on texture generation, geometric modeling and motions. Section 2.3 describes previous 

works on sound modeling, sound synchronization and sound rendering. 

2.1 Physically Based Modeling 
  Physically based modeling has been an important research topic since late 1980’s. 

Physically based modeling has shown the possibility of automatic motion generations and realism 

of motions in real world. Since all objects in this world follows laws of physics, applying physics to 

motion generation is natural. Researches on physically based modeling started from motions of 

rigid bodies. Later, it moved to motions of articulated bodies and deformable objects and other 

computational models 

 

2.1.1 Collision and Contact  

Motions of collision and contact frequently occur in computer animation and VR. Motions 
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of collision and contact can occur between rigid bodies, articulated bodies and deformable objects. 

Hahn and Moore introduced impact dynamics for collisions of rigid bodies [Hahn88][Moor88]. 

Before the introduction of impact dynamics to collision handling, the penalty method was 

commonly used. Since the penalty method requires small time steps, it demands heavy 

computations. In contrast, impact dynamics changes velocities of colliding objects immediately, and 

thus, larger time steps are applicable.  

Constrained equations should be considered for collisions of articulated bodies [Moor88]. 

These equations are similar to equations of constrained dynamics. Mirtich introduced a formulation 

for articulated bodies based on reduced coordinate method [Mirt96]. This method is usually faster 

and more stable than Moore’s simultaneous equations. However, the derivation of equations for the 

reduced coordinate method is much harder. 

Although the penalty method can handle contact constraint to some extent, it can not 

calculate exact contact forces. Baraff introduced an analytic method for calculation of contact forces 

by using quadratic programming and Danzig’s algorithm [Bara89][Bara93]. Mirtich used impulse 

forces to handle contact constraints [Mirt96]. Milenkovic introduced a position-based method to 

handle the contact situation of large number of objects. Although his method is stable, orientations 

of objects can not be handled properly [Mile96] 

 

2.1.2 Articulated Objects 

Since articulated body animation is one of the major topics in computer animation, there has 

been much research devoted to it. They can be classified into two categories: kinematics-based 

methods and dynamics-based methods. Both have their advantages and disadvantages. 
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Kinematics-based methods are relatively easy to implement and good for interactively 

controlling the motions. However, since they involve positions, orientations, and velocities, it is 

difficult to apply physical laws involving accelerations. Inverse kinematics method is one of 

kinematics-based method for articulated body animation. Girard and Maciejewski applied an 

inverse kinematics technique for motions of running and walking humans [Gira85]. Badler et al. 

developed an inverse kinematics-based algorithm for solving multiple constraints concurrently, and 

applied it for articulated bodies [Badl87]. Currently, several inverse kinematics systems are 

available and some of them achieved interactive speeds [Welm93]. Kinematics methods and inverse 

kinematics methods can be used to generate realistic active motions of articulated bodies. However, 

it is difficult to incorporate external and internal forces to generate realistic passive motions. 

In the case of dynamics-based methods, the constrained dynamics method is widely used for 

articulated body animation. The constrained dynamics method uses a system of equations, which 

consists of equations of motions and constraint equations. The systems of equations are usually too 

complex to be solved efficiently, and many works are focused on the effective way of solving these 

systems of equations. Among them, Armstrong and Green presented a recursive formation for the 

constrained dynamics method and introduced a linear time algorithm for constrained dynamics 

equations of articulated bodies [Arms85]. Presently, the constrained dynamics methods are usually 

solved through one of the two numerical techniques: coordinate reduction technique and Lagrange 

multiplier technique. Currently a linear time solution for Lagrange multiplier technique is available 

[Bara96]. 

Isaacs and Cohen introduced the inverse dynamics method as a way of controlling the 

motions of articulated bodies [Isaa87]. In this method, inverse forces are calculated to satisfy user-
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specified accelerations. Westenhofer and Hahn presented a motion control system that integrates 

kinematics-based controls into a constrained dynamics system [West96]. Constrained dynamics 

method and inverse dynamics method are sufficient to generate realistic and physically correct 

motions of articulated bodies. However, solving the systems of constrained dynamics equations is 

hard to perform interactively, even though there are theoretically linear-time solutions. Thus the 

dynamics-based method is not widely used for real-time applications such as virtual reality 

applications and computer games. 

 

2.1.3 Deformable Objects 

Generating motions of deformable objects is one of major topics in physically based 

modeling. Power of physically based modeling is well exposed in animating motions of deformable 

objects. Soft objects, cloth and water are examples of deformable objects. 

One of major issues in deformable objects is calculating motions with volume preserving 

constraint. Terzopoulos implemented motions of soft objects by employing elasticity theory 

[Terz87]. Platt and Barr used augmented Lagrangian constraints to animate soft objects [Plat88]. 

Pentland introduced modal analysis for fast calculation of deformable objects [Pent89]. Recently, 

Desbrun and Gascuel animated inelastic objects such as clay by using implicit surfaces [Desb95]. 

Motions of cloth are important in computer animation and computer games. Breen 

employed particles to simulate motions of woven cloth [Bree94]. Baraff used implicit integration 

method to have larger time step [Bara98]. 

The issue of water animation is how to simplify the calculation of Navier-Strokes equations. 

Kass used shallow water assumption to get fast and stable motions of water [Kass90]. Witting 
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applied fluid dynamics to motions of traditional cell animation environment [Witt99]. 

 

2.2 Procedural Method 
The Procedural method has been used to represent texture and geometries of objects and 

motions. In computer science, the adjective procedural is used to distinguish entities that are 

described by program codes rather than by data structures [Eber94]. Characteristics of objects or 

motions from procedural method is that it is synthetically, generated from a program or a model. 

Procedural techniques have been used for many years in computer graphics to produce realistic 

textures (marble, wood, stone, wallpaper, bricks, etc.) and shapes of objects or motions (water, 

smoke, steam, fire, etc.). They are a cost-effective alternative to physically-based simulation.  

The Procedural method is easy to implement and can be easily parameterized. The main 

disadvantage of procedural method is that the result is not predictable and it does not have concrete 

theoretical background. 

Perlin introduced a way of generating 3D textures by a procedural method [Perl85]. 

Fournier modeled geometries of mountains by a procedural method which uses stochastic functions. 

Fournier and Peaches both successfully expressed ocean waves through combining simple 

trigonometric equations rather than using fluid dynamics formulations [Peac86][Four86]. Weil also 

succeeded in presenting complex shapes of cloth objects using simple catenary functions [Weil86]. 

Currently, these procedural methods are being re-visited due to their simplicity and their 

visually plausible results. Milenkovic introduced a position-based formation for non-articulated 

objects [Mile96]. Using this formulation, he demonstrated that small sphere particles contained in 

an hour-glass shape can be animated in a way similar to traditional constrained dynamics 
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simulations. Gascuel introduced the displacement constraint to solve constraints of articulated 

objects quickly. The idea of separating the constraint solving part from equation of motion is similar 

to our procedural method [Gasc94]. However, their method is a kind of iterative method unlike our 

method. Barzel introduced a fake dynamics technique, which can be classified as a kind of 

procedural kinematic method [Barz96][Barz97]. This technique was successfully used to mimic the 

dynamics behavior of ropes and springs in the animation film “Toy Story”. To our knowledge, there 

has not been any procedural method for articulated bodies.  

 

2.3 Sound Generation and Synchronization 
 Although sound is not a major area in computer graphics, it is very important in VR, 

multimedia and computer games. Sound has been researched independently in computer music, 

acoustics and signal processing areas. The problem of generating effective sound in VR, multimedia 

and computer games can be divided into three sub problems: sound modeling, sound 

synchronization, and sound rendering. 

 

2.3.1 Sound Modeling 

Large body of work exists in various domains that relate to sound. The issues in sound 

modeling have long been studied in the field of computer music. Functional composition of sounds 

has been explored in a number of computer music systems, including Music V, Csound, cmusic and 

Fugue [Math69][Verc86][Moor90][Dann91]. There have also been a number of approaches used for 

modeling sounds, such as Fourier synthesis, signal multiplication, filtering (subtractive synthesis) 
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and frequency modulation. These approaches in computer music concentrated on representing and 

manipulating sound signals. In computer music, they do not address the issue of representing 

general sounds so that their parameters correspond to the phenomena that caused them. This is 

essential in order to synchronize the sounds to the motion. 

Researches in acoustics and physics have concentrated on vibration of object and sound 

waves. Fletcher and Rossing formulated many sound equations of musical instruments [Flet91]. 

Although formulating vibration equations of homogenous material is possible, formulating the 

equation of non-homogeneous material is very difficult. 

Hahn et al. introduced timbre tree, a data structure for sound representation [Hahn95]. Since 

it is expressed by flexible tree structure, adding new components of sound generation is easy like 

shade tree [Cook84]. 

 

2.3.2 Sound Synchronization with Motions 

The primary consideration of sounds related with motions is the effective parameterization 

of sound models so that the parameters being generated from the motion can be mapped to them. 

Effective sounds can mean realism or effective encoding of information, an area of interest to data 

sonification. Parameterization and synchronization of sound has been investigated in relation to user 

interface, data sonification, and computer animation [Scal91][Gave93] [Scal91] [Lewi90][Taka92]. 

To synchronize motion and sound, in addition to timing and intensity information, geometry 

and contact parameters should match with sound parameters. Therefore, the sound equation should 

have parameters that correspond with motions. Timbre tree is designed for easy mapping of sound 

parameters and motion parameters [Hahn95]. 
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2.3.3 Sound Rendering 

Sound rendering refers to the progress of generating sound signals from their models within 

a particular environment, very much like the process of generating images from their geometric 

models [Tapi92]. Problems associate with sound rendering have been studied in the field of 

acoustics. The primary concentration of sound rendering is realistic and fast calculation of 

environmental effects. 

Tapio and Hahn introduced a concept of sound rendering to computer graphics community 

[Tapi92]. Tsingos calculated room acoustics based on radiosity methods [Tsin97]. 
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Chapter 3. Isaac System 

Although physically based modeling generates very realistic motions, it requires heavy 

computations and its control is difficult. To solve these problems, we introduce the Isaac system 

that includes procedural motion generation features.  

Constrained dynamics, an example of physically based modeling, can be used to generate 

realistic motions of articulated bodies. It is based on Newtonian physics, and thus has the power of 

producing physically correct motions. However, it uses constraint equations along with the 

equations of motions, and usually results in heavy computations. 

In addition to constrained dynamics, elasticity model for deformable object and fluid 

dynamics for water are common models of physically based modeling. And these models also 

require heavy computations. Therefore, applying these computation models to real time applications 

is difficult for current personal computers. 

Control is another problem of physically based modeling. Physical quantities of objects 

including forces and accelerations are often directly used to control motions of articulated bodies, 

even though it is not an intuitive way of control. For example, users find it difficult to place an 

object at a specific location by controlling the forces applied on it. Because of above problems, 

physically based modeling is not so widely used even though it is one of the best methods to 

generate realistic motions. 

Deciding levels of simulation is not a simple problem in physically based modeling. For 

example, we can have different levels of simulation for motions of cars. The simplest level is that in 

which a car is modeled by a rigid body. This level only requires rigid body dynamics. Second level 
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may be that in which a car consists of rigid chassis and wheels connected by springs. Finally, we 

can assume that a deformable chassis and wheels are connected by constraint dynamics and damped 

springs. Choosing a proper model in many different models for a specific purpose is not an obvious 

problem.  

Sounds in computer animation and VR should be integrated with motions. Isaac system 

introduces sound generation methods that are closely related with motion parameters. Therefore, 

sound synchronization in Isaac system is implemented naturally. 

This dissertation proposes the Isaac system that can solve problems of physically based 

modeling. The Isaac system basically consists of a dynamics part, procedural motion part and a 

sound generation part. The dynamics part consists of constraint dynamics and impact dynamics. 

Constrained dynamics is used for motions of articulated bodies and impact dynamics is used for 

basic collision reaction. In the Isaac system, users can design new constraints by combining basic 

constraints provided in Isaac system. It allows users to design constraints easier and more flexible. 

The Isaac system has procedural methods for motions and sounds to speed up simulation 

time and to allow easy control. Procedural method starts with equations from dynamics and try to 

divide the equations according to meanings. We formulate new procedural equations by 

simplifications and amplification of the divided parts of the equations.  
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The sound generation part generates sounds according to physics analysis and procedural 

methods. Sound generation receives inputs from collision detection and reaction routines to 

synchronize with motions. These sound generation methods are closely related with parameters of 

motion generations. Therefore, sound synchronizations in the system occur easily 

 

3.1 Overview of Isaac System 
Isaac system consists of constrained dynamics solver, procedural motion generator, impulse 

dynamics solver, collision detection and sound generator, as shown in Figure 3.1. The user defines 
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Figure 3.1 Block diagram of Isaac system 
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rigid bodies with their parameters (mass, moment of inertia, and friction coefficient), constraints, 

and external forces. With these inputs, this system generates motions based on dynamics and 

procedural motion generator. The user provides some of these parameters directly, while some 

parameters are calculated indirectly by the system. Possible external forces include wind, gravity 

and user interaction.  

The constraint dynamics solver takes user-specified constraint description including 

dynamic constraint, velocity constraint and spring forces, and constructs a Jacobian matrix and uses 

it for constraint force calculation. Procedural motion generator takes the user-specified constraint 

description and solves the constraints and generates motions according to procedural methods. User 

can choose either constraint solver or procedural motion generator.  

Sound generation part has sound producing modules based on physics and procedural 

method. It generates sounds according to the physical parameters and information from collision 

detection and reaction.  
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Isaac system was written in an object-oriented environment. Rigid body objects are inherited 

from kinematic objects by adding dynamics parameters. Therefore, every rigid body in this system 

can also be controlled by kinematic controls such as key frame. Camera and lighting objects are 

integrated into this system. Camera and lighting definition, rigid body definition, constraint 

// Simulation starting time and finish time

Starttime = 0.0;

Finishtime = 10.0;

  // Gravity

setGravity (Vector3 (0, -9.8, 0));

// Camera and lighting definition

Camera cm (camera_pos, camera_interest, camera_up);

distantLight dl (Point(-1.0,-1.0,-1.0), Point(0,0,0), 0.7);

// Rigid body definition

// Geometry is defined at class definition

Cube cube(mass,MI,density, friction_coefficient, position,

orientation);

    // applying wind force to the cube object

cube.wind_force();

// joint constraint definition

Nail_Constraint nail (cb, Point(0,1,0), Point(0,1,0), 0.0,

Finishtime);

simulate();

Figure 3.2. A sample code of the system that produces pendulum simulation for 10 seconds.
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description and external forces are basic user inputs of the system. The system produces Open 

Inventor�R  or DirectX�R  output for real time interactions and RenderMan�R  RIB file for high 

quality rendering.  

 

3.2 Constrained Dynamics 

 Although dynamics requires heavy computations, dynamics has been a major tool for 

generating realistic motions. Since the real world follows the law of dynamics, dynamics provides 

great realism. Constrained dynamics is a branch of dynamics. It restricts the motion of objects under 

dynamics environment. Constrained dynamics is widely used for articulated bodies and control of 

objects. This section explains constrained dynamics that is an important part of Isaac system.  

Since constrained dynamics allows us to construct constraints for objects under Newtonian 

dynamics, it has been a useful tool for computer animation. The mechanics and Robotics 

community have researched constrained dynamics for a long time and computer graphics has 

employed their studies. Many realistic animations were done by constrained dynamics. 

Constrained dynamics calculates constraint forces that act to satisfy user-defined constraints. 

There are many different names for the constrained dynamics formulations but all fall into two 

categories: coordinate reduction method and Lagrange multiplier method. The coordinate reduction 

method parameterizes maximal coordinates with generalized coordinates. Lagrange multiplier 

methods express the system by using simultaneous equations. Each method has its own pros and 

cons [Bara96]. 

If maximal coordinates are much bigger than generalized coordinates, the coordinate 

reduction method may be more efficient and tolerant of numerical drifting than the Lagrange 
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multiplier method. For human-like structure of articulated bodies, linear-time algorithms of 

coordinate reduction methods are well known. However, formulation of general structure of 

articulated bodies by coordinate reduction method is not always easy. 

3.2.1 Lagrange Multiplier 

The Lagrange multiplier methods express constraints of objects by using simultaneous 

equations. Therefore, the Lagrange multiplier method bypasses the difficulty of parameterization of 

constraints. The Lagrange multiplier method has more software modularity and ability to handle 

velocity constraints. For globally deformable bodies, the Lagrange multiplier method has the 

advantage over the coordinate reduction method, since parameterization of the constraints that is 

required for the coordinate reduction method becomes very difficult for deformable bodies. Due to 

this modularity, an arbitrary set of constraints can be combined without difficult parameterization. 

Therefore, we employ the Lagrange Multiplier method for the basic constrained dynamics tool in 

Isaac system. 

Lagrange Multiplier method has numerical disadvantages over coordinate reduction method. 

Since Lagrange multiplier method is prone to accumulate numerical errors, constraint stabilization 

methods that inhibit accumulation of numerical drifting error are often used along with the 

Lagrange multiplier method [Baum72]. 

The formulation of the Lagrange multiplier method starts with generalized Newton’s law,  

,1 FMx −=��                          (3.1) 

where x is the generalized state vector of position, M-1 is the inverse of the mass matrix, and F is 

force vector. 

In order to satisfy a positional constraint under dynamics environment, we must create an 
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equation which express constraints. Let C(x) be a user-specified constraint, and C(x) = 0 mean that 

the constraint is being satisfied. Since we are concerned with a dynamics environment, in addition 

to C(x) being zero, its first derivative, (x)C� and its second derivative, (x)C�� should be zero. Therefore, 

our goal is to find the constraint forces for which (x)C�� evaluates to zero. 

First derivative of C(x)  is 

x
x

C(x)(x)C ��

∂
∂=  

   

Second derivative of C(x)  is xJ+xJ=(x)C ������
, where 

x
C(x)J
∂

∂
= . The matrix J is called 

Jacobian of C. Now we add unknown constraint force Fc , and substitute equation (3.1) 

                  0)F(FJMxJ(x)C c
1 =++= −

����  

Rearranging terms,         

FJMxJFJM 1
c

1 −− −−= ��  

By applying the principal of virtual work [Gold80], we can replace cF with ��������J T
 where 

����  is a vector, called Lagrange multiplier; 

FJMxJ����JJM 1T1 −− −−= ��  

Now, all values are known except λλλλ . T1JJM − is always a square matrix whose dimension 

is the same as the dimension of C. Many linear system solvers can be used to solve this equation. 

The conjugate gradient method has been popular because of it stability and speed. Baraff introduced 

a linear-time solution for this equation by using sparse matrix technique [Bara96]. Currently, this 

system uses Gaussian solver and Baraff's linear-time algorithm. 
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The numerical drifting problem is one disadvantage of the Lagrange multiplier method. To 

solve this problem, we employ Baumgarte’s stabilization method [Baum72]. CkCkC ds
��� −−=  is 

used instead of ,0C =��  Where ks and kd are coefficients. By choosing ks and kd to specify a 

critically damped system, the system can assembles parts of an articulated body automatically. The 

final equation of the motion, including the stabilization is: 

    (x)CkC(x)kFJMxJ����JJM ds
1T1 ��� −−−−= −−

 

3.2.2 Constraint Library 

Isaac provides basic constraints as tools for designing and manipulating constraints. 

Therefore, the user can choose and combine constraints without having to specify their formulation. 

Due to the advantage of the Lagrange multiplier method, constraints can be combined without 

parameterization. The basic constraints in Isaac system are point-to-point, point-to-nail, orientation, 
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Figure 3. 3 Point-to-point constraint 
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point-on-plane, gear-to-gear and gear-to-weight constraints.  

The constrains can be divided into one dimension and the constraints have time parameter. 

Therefore the user can also design his own constraints by combining these basic constraints. 

Dynamic constraints are calculated by applying second derivates of positional constraints or first 

derivates of velocity constraints.  

 

Point-to-point constraint 

Point-to-point constraint connects two bodies by the spherical joint. This is a common  

joint constraint to construct articulated bodies. The equation of positional constraint is:  

22211121 X-PRXPRQQ= C −+=− , 

where R is rotation matrix, P is point of constraint in body space and X is position of center of mass. 

First derivative of C is: 

.222111 vr����vr����C −×−+×=� , 

where v is linear velocity, ωωωω is angular velocity and r is vector from center of mass to constraint 

point. 

Second derivative of this equation is: 

,)r(��������r����v )r(��������r����v = C 222222111111 ××−×−−××+×+ ������

    

 

 

Point-to-nail constraint 

Point-to-nail is a spherical joint of rigid body to a fixed point in space. This constraint works 
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like a nail in the space. Point-on-path constraint that a rigid body follows by given path can be 

represented by moving the nail position. The formulation of this constraint is:                             

,0PXRPPX= C o =−+=−  

where R is rotation matrix, P0 point of constraint in body space, X is position of center of  

mass and P is position of nail point in world space. The first derivative of the equation is: 

vr����C +×=�

 

Second derivative of the constraint equation is: 

        r)(��������r����v = C ××+×+ ����

 

where v is linear velocity, ωωωω is angular velocity and r is vector from center of mass to constraint 

point. 
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Figure 3.4 Point-to-nail constraint 
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Orientation constraint 

Orientation constraint restricts one degree of  freedom of orientation. Orientation 

constraints are widely used to restrict orientations of rigid bodies. The constraint equation of the 

orientation is formulated by dot product of tangent vector of an object and constraint vector, as 

shown in Figure 3.5. Constraint equation and its first derivative is:                                     

,)�(

(t)

NTC
NTC

⋅×=

⋅=
�

 

where T and N are tangent vector and constraint vector , respectively. 

The second derivative of this equation is 

0NT))(����(����NT)����(C =⋅××+⋅×= ��� . 

 

T:tangent vector

N:constraint vector

T:tangent vector
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Figure 3.5 Orientation constraint
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Point-on-plane constraint 

Point-on-plane constraint ensures that a point of rigid body remains on a given plane. 

Plugging the constraint point into the plane equation leads to the constraint equation. This constraint 

can be used for a simple contact force and line constraint that objects follow by given line. 

Combining two different point-on-plane constraints generate a line constraint.  This shows design 

power of Isaac system.                                                                        

Constraint equation for point-on-plane equation is: 

,0SNPNdPNC =⋅−⋅=+⋅=  

where vector N and d construct given plane, and P is constraint point of the object, as shown in 

Figure 3.6. Second derivative is 

.0)SP(N)SP(N2S)(PNC =−+−+−= �����������  
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Figure 3.6 Point-on-plane constraint 
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Gear-to-gear constraint 

Gear-to-gear constraint in Isaac system was implemented by velocity constraint. Easy 

implementation and seamless combining of velocity constraint with dynamic constraints are 

advantages of Isaac system. Gear-to-gear constraint by velocity constraint is much faster than 

collision based constraint. Gear-to-gear constraints and gear-to-weight constraints are the basic 

examples of velocity constraints in Isaac system.                                                   

The angular velocities of connected gears are constrained by their radii. Velocity constraint 

and its derivative are  

,0����r����rC

0����r����rC

2211

2211

=+=

=+=
����

�

 

where r and ωωωω are radius and angular velocity of the gear, respectively. 

 

Gear-to-weight constraint 

Gear-to-weight constraint, shown in Figure 3.8, can be formulated by matching angular 
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Figure 3.7 Gear-to-gear constraint 
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velocity of a gear and linear velocity of weight. The constraint represents connection between gear 

and weight. The constraint equation and its derivative are:                                            

                 ,�

�

0vrC

0vrC

211

211

=−×=

=−×=
rrr

r

 

where r is radius of gear, v is angular velocity of the weight. 

 

3.3 Constraint Combining and Breaking  
To design new constraints, users should formulate positional or velocity constraints and 

x

y

z
X

X x

y

z x

y

z
X

X

 

Figure 3.9 Constructing windmill-like constraint
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Figure 3.8 Gear-to-weight constraint
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differentiate the equations to get dynamic constraints. Usually this process is not easy for the end 

user. In Isaac system, basic constraints are implemented in the constraint library of the system. 

Users construct other constraints by combining these basic constraints in constraint library. In 

addition to basic constraints, Isaac system has element constraints that is one DOF constraint. The 

element constraint restricts one DOF among 6DOF of rigid body. This system can add or subtract 

the element constraint to the basic constraints. The element constraints are used to modify the basic 

constraints. The basic constraint can also be combined with each other for new constraints. The 

Figure 3.10 Terry Eli’s clock 



 

 

 

33

followings show examples of constraint combining. Windmill-like joint constraint, shown in Figure 

3.9, results from combining a point-to-point constraint with two orientation constraints. In 

simulation of Terry Eli’s clock1, the retainer should be represented by line constraint. Because line 

equation of 3D can only be represented by parametric equation, formulating positional constraint 

equation of line constraint is not easy in Lagrange Multiplier method. In Isaac system, line 

constraint can be designed by combining two point-on-plane constraints. Figure 3.10 shows part of 

Terry Eli’s clock. 

  Adding time parameters to the constraints contributes to an easy and flexible designing of 

time varying constraints. Since this approach allows the constraint to be parameterized, attaching 

the time parameters to each element constraint makes controllable time-varying effects. This time-

varying constraint can be a useful tool to design constraint breaking and smooth transition from one 

constraint to another constraint.  

                                                      
1 Terry Eli's clock was designed early 19th and it was first clock that was produced by mass 

production system in America. 
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Each constraint has time parameters which indicate starting and ending times. The 

constraints are alive during the indicated time. The default parameter is the starting and ending time 

of the simulation.  

Constraint transition between two constraints like morphing can be achieved by controlling 

time parameters and Isaac system’s self-assembling ability. Issac’s self assembling ability is 

achieved by choosing critically damped spring in the stabilization routine. If users want to change 

y-axis orientation constraint to x-axis orientation constraint, users has to set the starting time and 

ending time of each constraint. Figure 3.11 shows sample codes for constraint transient. 

Time-varying constraints are handled by managing the active constraint list which holds the 

currently valid constraints. Declaring initial constraints generates all constraint lists that keep all 

constraints regardless of the validity about current time. Checking the current time with the starting 

and ending time parameters generates the active constraint list which is actually used for current 

constraint-force calculation. More complicated time varying constraints can be generated by 

assigning functions of time to the parameters. 

//Transient to different axis rotation constraint

Pt-NailConstraint (wheel,Point(0,0,0),Point(0,0,0),0.0, 5.0);

OrinetationConstraint (wheel,Vector1(0,1,0) ,Vector2( 0,0,1), 0.0, 2.5)

OrinetationConstraint (wheel,Vector1(1,0,0) ,Vector2(0,0,1) 0.0, 2.5)

OrinetationConstraint (wheel ,Vector1( 1,0,0),Vector2( 0,1,0), 2.5, 5.0)

OrinetationConstraint (wheel,Vector1( 0,0,1),Vector2(0,1,0), 2.5, 5.0) 

Figure 3.11 A sample code of constraint transition 
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3.4 Constraint Impact  
 Modeling collision by force requires very small time step to avoid any penetration which is 

not desirable for computer animation and VR. Instead of using force for collision, we employ 

impact formulation for collision between rigid bodies. Since impact changes velocity 

instantaneously, we can keep large time step without penetration. If a constrained object collides 

with rigid bodies, the impulse violates dynamics constraints of the articulated object since impulse 

changes velocities without considering the constraints. For articulated objects, we need impulse 

calculations that consider the constraint condition. This system sends constraint information to get 

the constraint impulse that does not violate the constraints. 

When simulating the motion of articulated bodies with constraint dynamics, collisions 

between its components will necessarily happen. Although there are a lot of general collision 

detection methods [Hubb96][Mirt96], collision detections in Isaac system can be achieved more 

efficiently through analyzing the characteristics of the articulated bodies. First, some pairs of the 

components can not collide with each other in any case. A preprocessing step detects all such pairs 

of components to finally be excluded from the collision detection process. Additionally, some 

components are simple geometric shapes such as cylinders and spheres. Thus, we can use cylinder-

to-cylinder, cylinder-to-sphere and sphere-to-sphere collision detection methods, which are much 

faster than usual polyhedron-to-polyhedron collision detection methods. 

After detecting collisions, we use the impulse-based collision response method 

[Hahn88][Moor88]. Since this method can calculate the new velocities instantaneously, it is suitable 
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for real-time applications. The penalty method [Moor88], which is also widely used in the collision 

response, requires small time steps for accurate simulation, and thus it may cause to slow down a 

real-time application. 

In the case of articulated bodies, the collision response method should cooperate with the 

constraint dynamics model. Thus, the constraints at the joints and frictions at the collision points 

should also be handled during the collision response. Moore formulated the impulse equations for 

articulated figures, and his equation can be used for joint constraints [Moor88]. 

Letting the components of an articulated body be Oi, 1 ≤ i ≤ n, the mass and inertia tensor of 

Oi is denoted as mi and Ii, respectively. Due to the collision, the linear and angular velocity of Oi 

may be changed. Let vi and ωωωωi be the linear and angular velocity of Oi with respect to the center of 

mass of Oi, before the collision. The impulse-based collision response method aims to calculate the 
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Figure 3.12 Impulse-based collision response 
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linear velocity iv  and the angular velocity i����  of Oi after the collision. 

The impulse-based collision response method starts from the law of momentum preservation. 

Since the change of momentum before and after the collision equals to the sum of impulses at the 

time of collision, the impulse equations for Oi can be expressed as follows: 

                   +=−
j

ijiiim PP)vv(  

and 

                ×+×=−
j

ijijiiii PlPl��������I )( , 

 where P is the impulse applied to Oi and Pij is the attachment impulse on Oi due to Oj, 

which is connected to Oi using a joint constraint. When Oi and Oj are not directly connected to each 

other, Pij is a null vector. Notice that P can be zero for non-colliding components. The vectors li and 

lij are the distance vectors from the center of mass of Oi to the collision point and to the joint 

connecting Oi and Oj, respectively, as shown in Figure 3.12. 

Joint constraints also give additional equations. When a spherical joint connects Oi and Oj, 

their relative velocity at the contact point should equal each other: 

jijjijii l����vl����v ×+=×+ . 

In the case of nail joints, a point of the component Ok has a fixed position. Thus, the linear 

velocity of the nailed point is zero: 

0=×+ kkkk l����v , 

where lkk is the vector from the center of mass of Ok to the nailed point. 

In this way, we can applied Moore’s impulse-based collision response formulation to 
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articulated bodies. Additionally, we improve his formulation to handle the frictions during collisions. 

Although Moore also extended his formulation to the friction cases, it requires solving the whole 

systems of linear equations repeatedly to determine the friction status of each collision point. We 

improve this weak point of Moore’s formulation through combining with Mirtich’s conditional 

equation for friction [Mirt96]. 

When a point of Oi is colliding with a face of Oj, the plane containing that face is defined as 

the collision plane, as shown in Figure 3.13. With respect to the normal vector N of the collision 

plane, the impulse P for Oi can be divided into two components: the normal component PN and the 

tangential component PT = P – PN. The state of friction can be classified into two cases: sticking 

case and sliding case. From the viewpoint of impulse, the sticking case means there is no slip at the 

collision point, which satisfies the condition of |PT| ≤ µ |PN| with the friction coefficient µ. When 
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Figure 3.13 Collision plane
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|PT| > µ |PN|, the collision point will slip along the collision plane and it is called the sliding case. 

Since the sliding and sticking cases result in different equations, it is important to identify 

whether a collision point is sticking or sliding. For sticking cases, the collision point does not move 

along the collision plane. In contrast, the friction force will act on the sliding collision points. 

In Moore’s formulation, it is impossible to decide whether a collision point is sliding or 

sticking without calculating the impulse. Mirtich introduces the decision equation to identify a 

collision state before calculating impulses [Mirt96]. We use the decision equation to speed up the 

impulse calculation. The friction at a collision point is sliding when it satisfies the following 

condition:  

2

33
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kkk
µ , 

where the 3-by-3 matrix K = [ kij ] equals to )()/1/1( 11
jjjiiiji llllmm ××+××−+ −− IIE  with the 

3-by-3 identity matrix E. 
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Figure 3.14 Collision motions of Steel Fish. 
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3.5. Procedural Motions based on Physically based 

Modeling 
 

Physically-based modeling methods have their own pros and cons. For example, constrained 

dynamics method can be used to generate realistic motions of articulated bodies. It is based on 

Newtonian physics, and thus has the power of producing physically correct motions. However, it 

uses constraint equations along with the equations of motions, and usually results in heavy 

computations. Additionally, physical quantities of objects including forces and accelerations are 

often directly used to control motions of articulated bodies, even though it is not an intuitive way of 

control. For example, users find it difficult to place an object at a specific location by controlling 

the forces applied on it. Thus, currently, the constrained dynamics method is not so widely used 

even though it is one of the best methods for realistic articulated body animation [Barz97]. 

An alternative to physically-based modeling is the paradigm of procedural methods 

[Watt92]. In 1980’s, some research have focused on mimicking physical phenomena rather than 

strictly simulating physical laws [Four82][Peac86][Weil86]. Although these approaches were 

motivated basically by the lack of sufficient computing power, they achieved visual plausibility and 

also provided easy control of complex phenomena. Even today, we still do not have sufficient 

computing power to simulate physically-based models of complicated phenmena in real time. In 

virtual reality environments and computer games, for example, it is a requirement to display the 

motion of objects in real time, even at the expense of displaying physically incorrect motions. This 

chapter introduces procedural methods for constrained dynamics, non-holonomic dynamics and 

constrained impact. These calculations require heavy computations in physically-based modeling.  
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3.5.1 Procedural Method to Solving Constraints of Articulated Bodies 

We present a method to solve constraints procedurally to interactively calculate motions of 

articulated bodies. Our objective is not necessarily to generate physically correct motions but 

visually plausible motions. Although it is not directly derived from Newtonian dynamics, our 

method provides an efficient and numerically stable way of generating visually plausible motions. 

Its calculation procedure is based on the positions and orientations of the objects rather than 

dynamics properties such as forces and accelerations. Hence it additionally provides an easy way of 

controlling the motions via specifying the desired positions and orientations. Figure 3.15 shows an 

example of interactive control of an articulated figure. It is especially suitable for presenting 

dragging effects, which often occur when the user moves a selected portion of the articulated body. 

In next sections, we present a detailed description of our procedural method and how to 

apply it to articulated bodies and various joint constraints. Some examples of image sequences 

generated by this procedural method are also explained. 
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3.5.1.1 Overview 

Generation of an articulated body motion means deciding the position and orientation of 

each object in the articulated body for each time instant. From the dynamics point of view, the 

current geometric configurations (positions, orientations, etc.) and physical parameters (velocities, 

accelerations, etc.) are calculated from the configurations of the previous time instant. This 

calculation process has two requirements: 

(1) The motion of each object should be generated according to the equations of motions, in 

which external forces are involved. 

(2) The final geometric configurations of objects should satisfy constraints due to the joints of 

 

 

Figure 3.15 Interactive control of articulated body. 
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the articulated body. 

The constrained dynamics method starts from a system of equations, which explicitly 

express the above requirements. Equations of motions and constraint equations are usually 

integrated into a system of equations, which is usually solved by a relatively complex numerical 

method. 

In contrast, the basic idea of our procedural method is separating the whole process into two 

stages each of which concentrates on one of the two above requirements. In the update stage, 

positions and orientations of objects making up the articulated body are updated by solving the 

equations of motions. The animator can specify the position and orientation of an object explicitly, 

if desired. Notice that any constraint equation is not considered at this time, as shown in  

Figure 3.16.(b). 

In the adjustment stage, we adjust the positions and orientations of each object to satisfy the 
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Figure 3.16 Overview of the procedural constraint solving method. 
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constraints, as shown in Figure 3.16.(c). During this adjustment process, a procedural calculation of 

required transform for each object is used rather than the original constraint equations. Notice that 

our goal is the visual plausibility rather than physically correct motion, and thus the constraint 

equations are not solved explicitly.  

In comparison with traditional constrained dynamics methods, our procedural method has 

two advantages: 

(1) It is faster than any constrained dynamics methods since our adjustment equations make it 

possible to satisfy the constraints without considering complex physical properties such as 

accelerations and velocities. 

(2) It can be integrated into a direct manipulation system in which an object is selected to 

change its position and orientation interactively, since our method solves the constraints based 

on position and orientation. In constrained dynamics, inverse dynamics is required to control 

position or orientation.  

The update stage is straightforward. We can use any dynamics methods to update positions 

and orientations of objects, since the constraint equations are excluded during this update step. In 

our implementation, we use Euler’s integration method for this purpose, mainly due to its simplicity. 

The strictly physically-based modeling often includes friction forces and drag equation from 

the fluid dynamics. In our implementation, we add a damping term to approximate them. Letting xi, 

vi and ai be the position, velocity and acceleration of an object at the i-th time step, Euler integration 

of Newton’s law is expressed as follows: 

 xi+1 = xi + vi (∆t) (3.2) 

and 

 vi+1 = vi + ai (∆t), (3.3) 
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where ∆t is the time interval between animation frames. 

Combining Equations (3.2) and (3.3), the position can be evaluated with the following 

single equation: 

                    xi+1 = xi + (xi – xi-1) + ai (∆t)2. 

Since (xi – xi-1) corresponds to the velocity, we multiply a damping constant to it. Thus, the 

final equation for xi+1 is: 

                   xi+1 = xi + k (xi – xi-1) + ai (∆t)2, 

where k ∈  [0, 1] is the damping constant. By controlling the value of k, we can control the visual 

illusions of frictions and/or motions in fluid such as water. Details of the adjustment process will be 

explained in the following sections. 

 

3.5.1.2 Fixed position solution for two-object articulated bodies 

In the adjustment stage, positions and orientations of objects are adjusted to satisfy the joint 

constraints. We formulated this adjustment process to reflect the characteristics of constraint forces. 

In the case of constrained dynamics, constraint forces should satisfy the following two 

characteristics: 

(1) The constraint forces applied to the objects connected by a joint have same magnitudes 

but opposite directions. 

(2) Constraint forces should be workless. 

Our adjustment process aims to mimic the constraint forces as much as possible. Especially, 

we hope to represent the motions of an articulated body when the user drags a point on the body. 
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In our approach, constraints are solved by translating and rotating the objects to satisfy the  

constraints. In the update stage, objects are moved due to the external forces and/or user inputs 

without considering any constraints. Thus the movements usually break the joint constraints of 

articulated bodies. The major role of the constraint solving is to decide the translational and 

rotational motions that satisfy the given constraints. We call these translations and rotations due to 

the constraints compulsive translations and compulsive rotations, respectively. Compulsive motion 

will be used to refer to both compulsive translation and compulsive rotation. 

To formulate the equations of compulsive translation and rotation, we will start from the 

simplest case. Suppose that an articulated body has only two objects and the position and 

orientation of an object O1 is fixed after the update stage. This situation often occurs when the user 

drags O1 to a specific location. Then another object O2 should move closer to the dragged object, as 

object O1

object O2

object O1

object O2

 

 

 

O1

O2

O1

O2

compulsive translation

compulsive rotation

compulsive translation

compulsive rotation
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configuration 

(b) O1 moves to 
a fixed position 

(c) constraint solving

 

Figure 3.17. Compulsive translation and rotation. 
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shown in Figure 3.17 

Let c1 and c2 be the position of the constraint point on O1 and O2, respectively. Our objective 

is moving c1 to c2 by applying compulsive translation and compulsive rotation onto O2, as shown in  

Figure 3.18. The arm vector r for c1 is calculated as: 

 r = c2 – xupdate, 

where xupdate is the position of O2 after the update stage. Now the compulsive translation vector T 

and compulsive rotation matrix R should satisfy the following equality condition: 

 r + s = R r + T, (3.4) 

where the vector s equals to c1 – c2. 

Notice that the constraint force should be workless. In other words, we should move O2 

along the shortest path to minimize the compulsive motion of O2. In the case of rotation, R can be 
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                   Figure 3.18 Solving the constraint through moving the object 
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specified with the rotation axis A and the rotation angle θ. We can intuitively calculate the rotation 

axis A from the cross product of r and s: 

 
sr
srA ×=  

Calculation of the rotation angle θ is indirectly derived from rotational dynamics. For the 

rotating object O2, torque ττττ with initial configuration can be calculated as follows: 

 ττττ = r × f, 

where f is the linear force applied at c2. This imaginary force f will move c2 to c1. Assuming f 

generates constant acceleration a, it is possible to approximate f as follows: 

 saf 2
2

2 )�(
2

t
mm == , 

where m2 is the mass of O2 and ∆t is the time interval between animation frames. Now, the 

magnitude of torque ττττ can be expressed as: 

       φτ sin
)�(

2
2

2 rs
t

m= , (3.5) 

where s is the length of s and φ is the initial angle between r and s. Letting α be the angular 

acceleration, τ also can be expressed as: 

 τ = I2 α, (3.6) 

where I2 is the moment of inertia for O2. From Equations (3.4) and (3.5), the angular acceleration α 

can be approximated as follows: 

 φα sin
)(

2
2

2

2 rs
tI

m
∆

= . (3.7) 

Theoretically, the rotation angle θ can also be approximated from the above angular 

acceleration. However, Equation (3.7) is available only for the initial configuration since the angle φ 

varies along with the rotation of O2 due to the angular acceleration α. Thus we only use the 
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characteristic physical parameters to build up our rotation angle calculation formula. 

 

 

 

 

 

 

 

 

Figure 3.19. The graph of rs
h

e
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Our starting point for approximating θ is the simple observation that θ is a value between 0 

and φ. Additionally, the angle θ is influenced by parameters r and s. Thus it is natural to use 

exponential function as follows: 

 rs
h

e
−

=φθ , (3.8) 

where the constant h is equivalent to 2
2

2

)�(
2

tI
m . As shown in Figure 3.19, this formulation shows 

that the rotation angle θ is nonlinearly proportional to r and s, while its value is bounded in [0, φ]. 

When r and/or s are increased, the rotation angle θ approaches to φ, while θ goes to near 0 with 

small r or s values. When r or s is 0, it means no rotation at all and thus the angle θ is trivially 0. 

The constant h is a user-controllable parameter, which decides the ratio of θ and φ for given r and s. 

Now we have the formulations for the rotation axis and the rotation angle. Thus the rotation 

matrix R in Equation (3.4) can be calculated. The compulsive translation vector T is easy calculated 

from Equation (3.4) as follows: 

θ

rs

φ
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 T = (I – R) r + s, 

where I is the 3-by-3 identity matrix. 

In this way, we showed that the compulsive translation vector and the compulsive rotation 

matrix can be calculated from the given geometric configuration. The object is then moved in order 

to satisfy the constraint. It is the final step of the adjust stage. In the next subsection, we will show 

another case in which neither of the objects has fixed location. 

 

3.5.1.3 Moving objects solution for two-object articulated bodies 

Suppose that an articulated body with two objects is moving freely. After the update stage, 

each object has its own position, and often does not satisfy the constraint. In the previous subsection, 

we presented a simpler example in which an object is fixed at a specific location. In contrast, this 

subsection focuses on the case in which the articulated body moves freely. Only the joint constraint 

restricts its motion. 

The central idea in this case is calculating the position of the constraint point. Then we solve 

two simple cases of fixed constraint point. In other words, the original problem of moving two-

object articulated body is transformed to two separate problems of fixed object cases, as shown in 

Figure 3.20. 

After the update stage, we have two positions of constraint points for each object. Our 

objective is calculating the position of the new coincident constraint point from these positions. 

Notice that the constraint force should be workless. Thus, it is natural to select the new coincident 

constraint point c to be located along the line segment connecting the two given positions c1 and c2. 

Another characteristic of the constraint force is that it is applied to the objects with the same 
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magnitude but opposite direction. When forces with the same magnitude are applied to objects, the 

linear movement of each object is inversely proportional to its mass. Letting the masses of O1 and 

O2 be m1 and m2, it is intuitive that 

 m1 (c1– c) = m2 (c – c2). 

Since the new coincident constraint point is located on the line segment 21cc , we can easily 

derive that 

 
21

2211
mm
mm

+
+= ccc . 

 

Now the two objects of the articulated body move to this coincident constraint point, as 

presented in the previous subsection. 
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Figure 3.20. Constraint solving for a free-moving articulated body. 
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3.5.1.4 Tree-like articulated bodies 

Since an object of an articulated body is connected to its adjacent objects, propagation of 

forces from its neighbors affects itself. This propagation process makes the motions of articulated 

bodies realistic. Constraint dynamics methods usually achieve the propagation process by solving 

equations of all constraints simultaneously. Even though we have some linear time solutions for  

   

   

(a) dragging a single object (b)dragging multiple objects (c) free movement 

Figure 3.21. Constraint solving for tree-like articulated bodies 
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articulated bodies, formulations of such equations are complicated and their solutions usually 

require sophisticated numerical computations [Mirt96][Bara96]. 

In this subsection, we extend our position-based method to general tree-like articulated 

bodies, which consist of multiple objects. Constraint solving for tree-like articulated bodies can be 

classified into three categories, as shown in Figure 3.21. For the first case, the position of only a 

single object is fixed. This case is basically similar to the fixed single object case in Section 3.5.1.2, 

while the number of objects in the articulated body is more than two. The next case is multiple 

objects being dragged, where the positions of more than one object are specified. Finally, we also 

have free-moving case in which there are no external constraints. Each of these cases is presented in 

this subsection. 

The basic idea of extending the position-based method to tree-like articulated bodies is 

(a) Oi and Oj (a) Oi and gj

O i

O j

O i

gj

(a) Oi and Oj (a) Oi and gj

O i

O j

O i

gj

 

                          Figure 3.22. Object grouping 



 

 

 

55

grouping adjacent objects in order to regard them as a single object, as shown in Figure 3.22. 

Suppose that an articulated body has n objects, O1, O2, …, On. As an example, suppose that the 

position of Oi is fixed, and Oi is connected to Oj with a joint constraint. When the objects Oj, Oj+1, 

…, Ok are all connected together, we group these objects into Gj. Then we simplify this situation as 

a two-object articulated body whose objects are Oi and Gj. For efficient calculation, we simply 

assume that the geometric shape of Gj is identical to Oj, but the mass of Gj is the total mass of Oj, 

Oj+1, …, Ok. Then, we can calculate the compulsive motion required for Oj, and we apply the same 

idea for the next object Oj+1 through grouping Oj+1, Oj+2, …, Ok. 

When there are multiple objects whose positions are fixed, we cannot simply apply the same 

idea. A possible solution can be a relaxation process, which is similar to Weil’s idea for the cloth 

modeling [Weil96]. For each fixed object, we apply the above grouping method to the entire 

articulated body while ignoring other fixed objects. Although objects may move from one place to 

another at each step, they will reach a stable state after a number of iterations. Of course, we should 

check impossible cases, which results in infinite loops. 

The last case can occur when there is no fixed object of the tree-like articulated body after 

the update stage. The central idea in this case is fixing a pre-selected object. For example, we can 

select the torso of a human-like articulated body as its pre-selected one. At the adjustment stage, we 

first calculate the position of this pre-selected object. Suppose that the pre-selected object Oi has its 

neighbors Oj, Oj+1, …, Oj+k. We apply the two object articulated body solutions for each pair of Oi 

and its neighbor. Now we have k locations for each pair, and the final location of Oi is calculated as 

the weighted sum of these locations. After fixing the pre-selected object Oi, it is straightforward to 

calculate the locations of other objects. 
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3.5.1.5 Other Kinds of Constraints 

In constraint dynamics, handling various kinds of joints is an important issue [Bara93]. Our 

position-based constraint method works well with various joint constraints, since the constraints can 

be explicitly expressed procedurally. To demonstrate the power of our method, we present 

approaches to handle joint-angle limit constraints, multiple positional constraints and contact 

constraints. 

The joint-angle limit constraint is widely used in articulated body motions. It is a kind of an 

inequality constraint, and defines the acceptable range of angles between connected objects.  In 

constrained dynamics, the inequality equations are usually solved by linear complementary method 

or quadratic programming, which require heavy computations [Bara93]. 

 These difficulties are due to the fact that the constrained dynamics methods have to 

calculate accelerations even to limit an angle in a pre-defined range. In contrast, our procedural 

method does not calculate any acceleration, and we can express this kind of constraint in an explicit 

procedural form. For an articulated body, a pair of objects will be processed using two-object case 

solutions. After fixing the two objects, we check whether the angle between them violates the pre-

specified joint-angle constraint. When it violates the constraint, we simply limit the angle to an 

extreme value of the given constraint. That is all that is required to satisfy the joint-angle limit 

constraint. 

Multiple positional constraints provide useful tools for interactive control of articulated 

figures. For example, user may want to drag one hand of a human-like figure while its feet are fixed 

on the floor. In this case, we have three positional constraints: one for the hand and one for each 

foot. In inverse kinematics, an optimization method was already proposed [Bald87][Welm93]. 
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However, using our position-based method, it is possible to speed up its calculation without 

using any optimization method. Notice that the multiple positional constraints are equivalent to the 

multiple fixed object case of tree-like articulated bodies. As explained in Section 4.1, we can satisfy 

the multiple positional constraints by a relaxation process. 

In dynamics-based simulations, contact constraints are one of the hard-to-solve problems. 

They usually require complicate computations involving quadratic programming (QP) or Danzig’s 

algorithm to solve the contact problem [Bara93]. Contact points are calculated using collision 

detection techniques and checking relative velocities of the objects. Since most implementations use 

discrete time steps, the objects are usually penetrating each other when the collision is detected. 

Thus, solving contact constraint is equivalent to removing the penetration, in most cases. 

In Hahn’s method, the penetration is eliminated by backing up the penetrating object with its 

relative velocity but along the opposite direction [Hahn88]. Our idea is similar to this backing up 

method. However, we directly move the position of the object while Hahn uses relative velocity for 

the same purpose. 

Suppose that an object (a bouncing ball, for example) penetrates a stationary object (the 

floor). After detecting the intersection, we first search for a vertex that has penetrated the deepest 

among the vertices of the penetrating object. Then the penetrating object is compulsively translated 

along the surface normal direction of the penetrated object so that the two objects are just touching. 

When several objects are colliding simultaneously, the above translation is applied to each pair of 

objects. 
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3.5.1.6 Examples 

We present examples of articulated figure motions to demonstrate the power of our 

procedural method.  

Figure.3.23 demonstrate the interactive position control of articulated bodies. User selects 

the uppermost object of the chain-shape body and drags it to the desired location. Figure 3.24 is 

another example of the same chain-shape body, whose mass and damping terms are changed. It is 

easy to find the differences in motions due to the change of physical parameters. 

Figure 3.25 shows the motion of a human-like articulated body. User can select an object 

and move the object, and then other objects follow the selected object. User can generate motions 

similar to that of marionette whose hand is dragged. 
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  Figure 3.23 Example of dragging a chain:
the uppermost object is dragged interactively.

 
Figure 3.24 Another Example of dragging a heavy chain. 
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 Figure 3.25. Example of dragging a human-like 
shape 
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3.5.2 Procedural Methods for Motions of Sphere-like Objects 

In the field of computer animations and VR environment, motions of sphere-shaped objects 

are frequently used. Motions of billiard balls or bowling balls are good examples. To generate 

realistic animations, we need a physical model to process motions and collisions of these sphere-

like objects. The motion of a sphere-like object can be decomposed into rolling and sliding. 

Additionally, the transient motions between rolling and sliding are also needed. For example, a 

billiard ball usually slides on the table with its own spin, and its spin will contribute to its linear 

velocity and vice versa. 

Collisions can be easily modeled by impact dynamics techniques. In the case of rolling 

motions, it is needed to solve non-holonomic constraints [Deyo88]. Since the exact solutions for  

 

 

Figure 3.26 A motion of sphere 
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non-holonomic constraints require complicated computation [Deyo88], we present a procedural 

method that can be used as an alternative way of solving non-holonomic constraints for rolling 

motion. Although our procedural method may produce physically-incorrect motions, its final result 

is visually plausible. Additionally, our method is easier to implement and faster than the traditional 

way of non-holonomic constraint solving. 

A constraint is called holonomic when it can be represented as followings: 

,0),...,( =tf 321 x,x,x  

where xi’s are positions of objects and t is the parameter for time. Point-to-point and point-

to-nail constraints are examples of the holononic constraint. In contrast, non-holonomic constraints 

cannot be represented as a function of object coordinates, xi’s. A rolling ball without sliding is an 

example of this non-holonomic constraint. 

To produce realistic motions of sphere-shaped objects, we should properly model its sliding, 

rolling, and transient motions between sliding and rolling. Instead of integrating these three cases 

into a single equation, we develop separated procedural equations. The system determines above 

three cases by comparing angular velocity and linear velocity. For the transient from sliding and 

rolling case, the decision equation is: 

1  S
roll without Sliding

=
roll Start to 0  S

slip without Rolling
=1  S

roll without Sliding
=

roll Start to 0  S
slip without Rolling

=

Figure 3.27 Sliding from rolling 
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where v and ω  are linear and angular velocity, respectively. r is the radius of the sphere. 

If s = 1, the sphere is slipping without rolling. If s = 0, the sphere rolls without slipping. Figure 3.27 

shows motions from sliding without rolling to rolling without slipping. For rolling without slipping 

case (s = 0), only rolling resistance is applied to the rolling motions and velocity matching (v = rω ) 

is applied. Instead of finding exact force and torque to satisfy the non-holonomic constraint, the 

system decides the angular velocity according to the linear velocity without considering angular 

acceleration. This is a kind of velocity-based physics mentioned by Milenkovic [Mile96]. Rolling 

resistance depends on surface roughness and decreases velocity of the sphere. For sliding without 

rolling case (s = 1), when someone hit middle of a ball hardly, only slipping without rolling occurs 

for a while. Friction force without rolling resistance should be applied for this case. For transient 

case, smooth transient should be modeled to get realistic motions. Friction force decreases when the 

spheres start to roll. When the sphere rolls without slipping, friction forces are zero. Smooth 

transient from initial sliding to rolling can be modeled by interpolating the friction force according 

to angular velocity. The equation of interpolated force, Fi is, 

frictionF
v
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F
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 We introduced procedural method for motions of sphere-like objects. This is easy to 

implement and fast. In addition to motions of balls, above equations can be applied to motions of 

tires in cars. Exact formulation of tire is very complicate. 
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3.6 Virtual Wind 

Wind is an important external force and is widely used in computer animation and Virtual 

Reality applications. Modeling physically-correct wind is very difficult because it includes aero 

dynamics and turbulence problems. Isaac system has real time wind generation model. We will 

explain our virtual wind model with its direct application of virtual mobile system, which is also 

provided by Isaac system. 

Recently, real world objects are successfully reproduced in the computer systems, using 

computer graphics and virtual reality techniques. A good application example is digital museums, 

which display reproductions of real world fine arts on the computer screens [McWh88]. For 

drawings, digital scanners and/or digital cameras can be used to generate the digital reproductions. 

In the case of sculptures, three-dimensional geometric and/or volume data can reproduce virtual 

sculptures on the screens[McGu93]. Image-based rendering techniques including MCOP(multiple 

center of projection)[Rade98] can also be used for this purpose. 

Mobiles, which are also known as moving sculptures, however, can not be represented 

successfully using these techniques. As an example, a real world mobile, “Steel Fish” by A. Calder 

is shown in Figure 3.28. Typical mobiles are dynamic systems: their components are usually 

dangling from the stems and swing due to external forces such as winds. At least in the area of 

computer graphics, we have not seen any reproductions of mobiles. 
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Isaac system can be used to generate virtual mobile system. To simulate a real world mobile, 

we start from constructing its geometric shape. Then, some physical properties such as masses and 

inertia tensors are calculated. The mobile is simulated by a constraint dynamics system, based on 

these geometric data and physical properties. To invoke the motions of mobiles, users can generate 

virtual winds, and our constraint dynamics solver presents the motions and collisions of 

components. An impulse dynamics system is also used to response collisions among the 

components of the mobile. Using a simplified aerodynamics model for the virtual wind and other 

recent acceleration techniques, our system accomplished real time display of an example virtual 

mobile on Pentium chip-based personal computers. 

While the natural wind causes the motions of real world mobiles, we need virtual wind to 

simulate the motions of our virtual mobile. To control the virtual wind, we may use traditional input 

 

Figure 3.28. A real world mobile: Steel Fish by Alexander Calder. 
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devices such as keyboards and mice. Additionally, our system uses a microphone interface. The user 

blows at the microphone, and the speed of the virtual wind is proportional to the amplitude of the 

input sound. The direction of the wind is specified with the mouse. 

Our microphone interface has some benefits. First, it is more intuitive for the user to 

generate the wind through the blowing action. Second, the microphone is more convenient to 

simulate the temporal variations of the wind speed. Another benefit is that the microphone is 

inexpensive and easily available even for personal computers. 

Since it is generated from the human breath, the virtual wind is assumed to propagate in an 

infinite cone shape, as shown in Figure 3.29. A circular cross section S0 with its radius r0 plays the 

role of the source of wind. The vertex of the cone is located at the distance l0 from the center of S0. 

User can provide r0 and l0 to control the shape of the cone, and the wind propagates from S0 in the 

direction opposite to the vertex. Using the microphone interface, user controls the wind speed v0(t) 

at S0. 

For simulating the wind, we need to calculate the speed of the wind at a distance l1 > l0 from 

the vertex. Although there are several results [Reev83][Wejc91][Shin92] for simulating 

aerodynamics in computer graphics applications, we use a simplified form to achieve real time 
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Figure 3.29 Virtual wind model. 
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display. We start from assuming that the fluid (in this case, air) is inviscid and incompressible, and 

no fluid can cross the boundary of the cone shape. This is a reasonable model for air at normal 

speed [Wejc91]. Then, the Equation of Continuity in fluid dynamics gives 

A0 v0 = A1 v1,                           (3.9) 

where A and v represent the area of the cross-section and the fluid speed, respectively[Patt89]. The 

subscript 0 and 1 corresponds to the distance l0 and l1, respectively. 

From Figure (3.29) and the geometric configurations of the cone, it is easily found that 
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Using the Stoke drag equation [Feyn65][Patt89], the force acting on a face with its area A located 

on the cross section S1 can be calculated as follows: 

 ,)(2

1stoke nnnF aavvA ⋅= ρ                          (3.11) 

where vn  and an  are the unit directional vector of the wind and the face normal vector, 

respectively, as shown in Figure 3.30. The constant ρ is the density of fluid. Equations (3.10) and 

(3.11) give 

,)(4

1

2

0
stoke nnnF aavl

vA ⋅= α  

where α is a constant. For reflecting the turbulent behavior of wind, we add a random noise term 

and the final force can be expressed as 

 ,randomstokewind FFF +=                        (3.12) 

where the direction of randomF  is randomly selected, and |||| stokerandom FF β<  for a user-
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specifiable constant β. 

Before applying the force calculated in Equation (3.12) to the face, we should check 

whether the wind is directly delivered to the face or not. When a face is occluded by another face in 

the air flow, we simply assume that the occluded face is not influenced by the wind. Without this 

assumption, it is hard to achieve the real-time display of the mobile. In this simplified wind model, 

the air flow can reach to the faces which are directly visible from the vertex of the cone and belong 

to the interior of the cone. 

Due to this assumption, the influenced faces can be identified by a visible surface detection 

method [Fole90]. We use the depth-buffer method for more speed-up. To simulate the partially 

occluded cases, faces are first partitioned into small area on which a sampling point is assigned. 

Then, the graphics pipeline is used to capture the image containing the cross section S0 using the 

synthetic camera located at the vertex of cone. Each sampling point has its own identification 

number, and it is also stored in the alpha buffer through the graphics pipeline. Scanning the alpha 

buffer, we can easily detect whether each sampling point is visible from the vertex of the cone or 

vn

 windvirtual

an
stokeF

A area

vn

 windvirtual

an
stokeF
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Figure 3.30. Force due to the virtual wind. 
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not. Since S0 corresponds to a circle on the image plane, it is also easy to check the point belongs to 

the interior of the cone. When a sampling point is visible and also belongs to the interior of the cone, 

the force calculated in Equation (3.12) is applied to its corresponding area. In the next section, we 

will represent how the constraint dynamics techniques are used to apply these external forces due to 

the wind. 
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3.7 Sound Generation and Synchronization with Motion 

 

Sound is a key factor in computer animation and virtual reality(VR) since hearing is as 

important as seeing to humans. Sound in the real world provides important information that cannot 

be acquired just through images. Therefore, realistic sounds along with realistic images are 

necessary for computer animation and VR applications. Since most sounds are generated due to 

object motions, the matching of generated sound with motion is very important. Accordingly, 

synchronization includes matching sound characteristics with the motion and material of an object 

as well as timing. To achieve a natural matching of sound and motion along with timing, the 

material properties and geometry of an object also need to be considered for realistic sound 

generation. For example, when the middle part of a drum is hit, a lower sound will be produced 

compared with the sound of hitting the edge part. 

Most current sound systems for VR and computer animation merely consider timing and 

amplitude from motion, while the real world produces an array of distinct sound characteristics 

according to variety of collision and contact conditions. Sampling many sounds is one possible 

method of reproducing various conditions. However, sound sampling is not easy and requires a 

large memory. Therefore, an algorithmic sound generation method that considers the contact, 

collision, and material properties of object is an attractive one. 

This thesis introduces a series of sound equations that produces various sounds from 

different motions. Through evaluating these equations, it is confirmed that they are fast enough for 

real time applications. Some of the equations are derived from the principles of physics whereas 

others are based on heuristic methods. Sounds of homogenous objects can be generated by physics 
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equations. However, sounds generated by heterogeneous objects are very difficult to model by 

physical analysis. Therefore, heuristic based procedural methods are used to generate these kinds of 

sounds. 

The parameters of the sound equations are connected with motion parameters (collision 

force, scratching velocity, etc.) and geometry information (collision/contact location, size etc). As a 

result, various sounds can be automatically produced according to the particular motion, which is 

infeasible using sampling-based methods. 

There are many methods for representing and controlling sound signals. Among them, 

Additive synthesis and Frequency modulation (FM) are the primary methods in sound generation. 

Additive synthesis adds sound signals in the amplitude domain to get the desired sound, whereas 

Geometry Data Physical Object Data

Physics Analysis

Sound Equation
Motion Equation

Collision & 
Contact Information

Sound Motion

Geometry Data Physical Object Data

Physics Analysis

Sound Equation
Motion Equation

Collision & 
Contact Information

Sound Motion
 

 

Figure 3.31 Sound synchronization with motion 
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FM changes the signal frequencies in the frequency domain. 

The following sections describe the details of sound generating methods. In section 3.7.1, 

we explain methods of generating and controlling sounds of homogenous material based on 

physical laws. Section 3.7.2 explains how heterogeneous material sounds are generated by 

procedural method. Section 3.7.3 present a method to generating scraping sound from textures. 

Finally, Section 3.7.4 explains a method of generating wind sound based on fractal. 

 

3.7.1 Homogeneous Material Sound  

In computer animation, physical laws are used to generate realistic motion. Likewise, 

realistic sounds can also be generated using the laws of physics. Sounds of homogenous material 

can be produced by the law of physics. Vibration analysis provides the basis for sound generation 

[Flet91]. A vibrating object generates sound through vibrating the air. Thus the sound equation is 

closely related to the object vibration equation. Material properties and geometry of an object are 

also key factors for these vibrations. Although vibration equations of simple objects such as spring 

and string are quite straightforward, the formulating vibration equations of complicated shapes or 

heterogeneous material objects is very difficult. Once a correct vibration equation is established, a 

variety of sounds can be produced using proper values of sound and motion parameters.  

Since a vibration equation is often represented by frequencies, the sound of an object can be 

represented by adding up all the frequencies. This method is also known as Fourier synthesis. One 

of the simplest vibrating systems (the simplest vibration modes) is a mass-spring system. Its 

frequency can be represented as follows: 
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m
Kf

π2
1= , 

where K is the spring constant and m is the mass. 

 

Vibrating string can be considered as a spring-mass system that has many springs and 

masses. There are many modes of vibration and the modes are represented by multiples of the 

fundamental frequency (the lowest frequency). Longitudinal vibration frequencies can be 

represented as : 

L
vnf L

n 2
= , 

where n is natural number, Lv is speed of sound in the string, and L is the length of the string. The 

advantage of this formulation is that the equation represents sound as the motion of the string. 

Therefore, sound and motion can be combined seamlessly.  

Chime sounds can also be represented by vibration analysis. Although the vibration analysis 

 

Figure 3.32 Blowing in the Wind 
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of a chime is similar to that of a string, the frequency dependence on tension is more complicated. A 

modal analysis of the frequency components of a chime is as follows:[Flet91] 

[ ]2222
2 )12(,...,7,5,011.3

8
+

�
��
�

�
= nE

L
Kfn ρ

π
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where L is the length of the chime, E the elasticity, ρ the density of material, and K the radius of 

gyration, which is the square of the chime’s outer diameter over it’s inner diameter. This equation 

can be used to generate wind chime sounds. The geometric modeling and material properties of a 

chime can then be mapped using L, E, K, ρ. The collision forces are mapped to the amplitude of the 

sound, whereas the collision timing can be found by the collision detection routines. As a result, the 

synchronization of motion and sound can be achieved naturally. Figure 32. shows an image from 

“Blowing in the Wind”, the chime sounds were generated by above equations. Although the modal 

analysis of a complicated object is not easy,  it is easy to map the physical attributes to the sound 

parameters, after establishing the vibration equations. 

 

3.7.2 Collision Sounds for Non-Homogeneous Material 

The creation of sound equations for simple shaped and homogeneous material objects is 

quite straightforward, however, equations for non-homogeneous objects are very complicated. 

Therefore, procedural equations without a complicated analysis are very useful in establishing 

sound equations for complicated objects. In computer graphics, similar methods are used to 

generate complicated images and motions. The modeling of gas motion, mountain geometry, and 

wood texture is very difficult using exact physical laws. Thus, instead of applying complicated 

physical laws, mathematical equations can be employed to generate these images and motions 
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based on the analysis of their outward appearance. Users then control the parameters in the 

equations to gain the desired images and motions. Although the parameters are not directly related 

to the physical properties of the objects, visually plausible images and motions can still be 

generated by controlling the parameters. Similar methods can also be used to generate complicated 

sounds. Therefore, mathematical equations and the control of their parameters can generate aurally 

plausible sounds of complicated objects. 

The proposed procedural sound generation method is based on the additive method.  An 

advantage of Additive synthesis is the intuitive control of a sound examining its amplitude, timbre, 

and decay. The timbre of a sound is controlled through the number of added signals and decay 

parameters. For example, a bell sound has a small number of signals, whereas a plastic or wood 

sound has a large number of signals. The following equation represents a general collision sound, 

 

Figure 3.33 Bell and wood sounds 
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Signal(t) = )sin(
1
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where iω  corresponds to a set of random frequencies, c is the damping constant, and α represents 

the amplitude. 

There is a relationship between the physical and geometric parameters and the sound waves. 

The collision/contact between objects has close relation with the amplitude, spectrum and 

bandwidth of the sound waves. The material parameters, including the density, damping, and 

homogeneity all have an effect on the signal frequency. The shape, size, and resonating cavities 

have effects on the frequency, spectral pattern, and bandwidth. All these parameters and their 

relationships must be considered when determining the sound equation parameters. 

Many signals and small value of damping parameters generate wood-like sounds. Random 

number generators are then used to decide the frequencies and amplitudes of the adding signals. A 

small and limited frequency signal makes a bell sound. By controlling the main frequency of the 

signal, the frequency of the bell can also be controlled. Figure 3.33 shows different bell and wood 

sounds. The frequency number of the wood is 600, the drum number is 250, the bell number is 10, 

and the metal number is 25. 
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3.7.3 Texture-based Sound 

Mapping between a user gesture and the sounds resulting from that gesture are very 

important in VR and real time animation. Many motions are involved in an interaction between the 
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Figure 3.34 Wood texture and signal from scratch line 
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user and an object. Among these interactions, rubbing and scratching make sounds based on a 

combination of interaction and surface properties. When someone scratches a surface with his/her 

nail or pen, the sound should reflect the roughness of the surface. In computer graphics, the 

roughness of a surface is represented by bump mapping or a 3D texture, rather than by geometric 

modeling. In this thesis, it is assumed that the roughness of a surface is represented by texture 

information. Therefore, the synchronization of a scratching gesture and its sound can be generated 

using texture mapping. Perlin introduced 3D texture generation methods[Perl85]. Using his noise 

function, Perlin generated wood and marble textures where the patterns were neither random nor 

regular. Figure 3.34 shows the wood texture using a noise function and the resulting signal from the 

scratch line. The signal is generated from the intensity values of the texture. In fact, the roughness 

of a surface and intensity of the texture color has a close relationship in a real wood surface.  

Various sounds can be generated by applying different filters to this signal. For example, 

sounds of soft or hollow objects can be generated by applying low-pass filters. The speed of the 

scraping object is then mapped to the scaling factor of the signal (on the time axis) to synchronize 

the motion and sound. The overall amplitude of the sound is scaled using the normal force with 

which the surface is scrapped to arrive at the final sound. The sounds generated should be a 

function of the texture, the scraping object, the speed, and the force with which the surface is 

scraped. 

 

3.7.4 Fractal-based sound 

There are so many factors in the real-world, therefore, specifying them in a deterministic 

way is impossible in some cases. Consequently, complicated natural phenomena, such as clouds and 
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mountains, can be represented by the fractal geometry [Four82]. Fractals are specified by iterative 

procedures such as ))(()( 1−= ii xffxf . In computer graphics, random fractals are used to model 

natural shapes and motions. The fractal method can generate very complicated geometries with 

small codes and simple parameters by amplifying basic data. 

A wind sound is also an example of a natural phenomenon. Therefore, it is reasonable to 

apply simplified fractal method to generate a wind sound is reasonable. The “Blowing in the 

Wind”(see Figure 3.32) animation demonstrates that a realistic wind sound can be generated using a 

simplified fractal function and the wind sound and wind force can be naturally mapped for 

synchronization.  

Unlike a general fractal function, we employed Multifractal function [Eber94] that  

replaced the addition of frequency in the inner loop by multiplication. Multifractal represents 

heterogeneous (not same everywhere) signal than a general fractal. Since wind in nature has not 

same amplitude, Multifractal shows better wind effect. The Prelin noise-function is used as the 

basic function [Perl85]. As a result, the wind sound of the “Blowing in the Wind” animation is 
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We introduced algorithmic sound generation methods based on physical laws and procedural 

methods. Unlike sampling methods, our method has parameters that correspond with object’s 

motion parameters. Therefore, timbre of sounds is naturally synchronized with motions and object’s 

properties. Sound synchronization, one of most important problems in VR and animation, is 

naturally solved in Isaac system. 
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4. Conclusions and Future Works 

 This dissertation concludes by describing summary of solution, results, original 

contributions and future works. 

 

4.1 Summary of Solution and Results. 
We presented procedural methods for motions of articulated bodies, sphere-like objects, and 

real time wind generation. Our aim was to generate visually plausible animation sequences rather 

than physically correct motions. Since our method does not solve complicated dynamic equations, 

the method can achieve interactive control of the motions with numerical stability. This physically 

based procedural method can be an alternative to dynamics simulation, especially for real-time 

applications such as virtual reality environment and computer games. The physically based 

procedural methods are formulated by physical analysis, to finally use physical quantities as their 

input parameters. 

We reproduced a real-world mobile on a computer system by Isaac system. The virtual 

mobile system interactively simulates motions of the mobiles according to user’s blowing action. 

Virtual wind model, constraint dynamics solver, and the impulse dynamics solver were combined 

seamlessly for the realistic simulation of the mobile. 

As a real time virtual wind model, we suggested a simplified wind model, which is simple 

but sufficient to simulate directional winds. Additionally, the microphone interface is developed for 
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easy control of the virtual wind. Since this wind model can generate directional winds, it is suitable 

for simulating artificial winds generated by electric fans, air-conditioners, etc.  

Constraint combining was proved to be a useful tool for designing complicated constraints. 

Constraints of Terry Elis’s clock were formulated by combining constraints in Isaac system. 

Constraint breaking and time varying parameters give more freedom to designing complicated 

constraints such as time varying constraints. 

Procedural method was also proved to be a useful tool for generating sounds. Various 

realistic collision sounds including that of wind chimes, bell and wood were formulated by the 

procedural method. Texture-based scraping sound and fractal based wind sounds are also 

implemented. All sounds are naturally mapped with motion parameters such as collision and contact 

parameters. 

 

4.2 Original Contributions 
This thesis proposed physically based procedural methods. This was designed to solve the 

problems of physically based modeling. This is a new method to have advantages of procedural 

method and physically based modeling. The methods produce visually plausible motions of 

articulated bodies, sphere-objects and wind that are faster and more stable than motions from 

physically based modeling method. 

We formulated sound generation equations by the physically based procedural method. By 

combining the procedural method and physically based modeling, we formulated equations of 

various sounds including collision, contact and wind. The parameters of the equations can be 

mapped easily with parameters of motion equations.  
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Real time wind system was designed and implemented based on the physically based 

procedural method. When user blows to the microphone, this system produces real time virtual 

wind according to the intensity of blowing, direction and distance between the user and the virtual 

objects. 

We designed and implemented a motion generation system that combined with constrained 

dynamics, procedural method and sound. Constraints in the system can be combined and subtracted 

with time paramters for new constraints. 

 

4.3 Future Works 
We applied the physically based procedural method to articulated bodies, sphere-like objects 

and collision sounds. The concept can be applied to other heavy computational models such as soft 

objects and cloth. Since the structure of articulated bodies and deformable objects are similar, 

applying to the deformable objects may be possible. Previous procedural method can also be 

combined with the physically based procedural method. For example, noise functions can be added 

to the procedural method to express voluntary motions. 

Automatic degradation would be an interesting future work. According to its computing 

power, a computer system may automatically choose the dynamics model or the procedural model. 

Control algorithm can be added in our procedural method. Currently, our procedural method 

is controlled by user’s interaction. Walking or running algorithm can immediately use our 

procedural model. Developing collision model by procedural method may be another future work. 

Mathematical error measurement of our method can also be explored in the future. Currently, 

our visual perception is only the measurement of our algorithm like other procedural methods. 
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However, mathematical error measurement will provide more theoretical background of our work. 
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