

Procedural Methods Using Physically Based Modeling

by

Jong Won Lee

B.S. March 1986, Kyungpook National University
M.S. May 1991, Illinois Institute of Technology

A dissertation submitted to
The Faculty of

The Department of Computer Science
of The George Washington University in partial satisfaction

of the requirements for the degree of Doctor of Science

January 31, 2001

Dissertation directed by
James K. Hahn

Associate Professor of Engineering and Applied Science
Dissertation committee:
Professor John Sibert

Professor Shmuel Rotenstreich
Professor Simon Berkovich

Dr. James A. Ballas

 ii

Abstract

Physically based modeling can produce extremely realistic motions. However, it requires

heavy computations, complicated numerical solvers and complicated control algorithms. On the

other hand, procedural methods produce realistic textures and geometries by relatively simple

procedures. However, the procedural methods do not include physical quantities such as mass and

force and the final results are hard to predict. We propose physically based procedural methods that

have advantages of physically based modeling and procedural methods.

Although physically based procedural method starts with all physical equations of the

computational model, it subdivides and simplifies the equations according to their physical

meanings. Finally the method utilizes the simplified equations to calculate motions of objects.

Although it is not directly derived from Newtonian dynamics, our method provides an efficient and

numerically stable way of generating visually plausible motions. The paradigm of the physically

based procedural method can also be applied to sound generation. Sounds that are hard to simulate

by vibration analysis were formulated by the physically procedural method. As an application

example, a real time wind system was designed and implemented based on the physically based

procedural method. In this virtual wind system, the user blows into the microphone, the system

produces real time virtual wind according to the intensity of blowing, direction and distance of the

virtual objects from the user. Physically based procedural method in Issac system was also proved

that it is useful as a real time motion generation tool through simulating Alexander Calder’s mobile

and Teri Elis’ clock.

 iii

CONTENTS

Abstract ii

List of Contents iii

List of Figures vi

1. Introduction 1

1.1 Motivation ... 3

1.2 Problem Domain and Research Objective .. 4

1.3 Proposed Solution of This Dissertation .. 5

1.4 Original and Significant Contribution ... 6

1.5 Document Organization .. 8

2. Literature Review and Issues 9

2.1 Physically-based Modeling ... 9

2.1.1 Collision and contact .. 9

2.1.2. Articulated Objects .. 10

2.1.3 Deformable Objects .. 12

2.2 Procedural Methods .. 13

2.3 Sound Generation and Synchronization .. 14

 iv

2.3.1 Sound Modeling ... 14

2.3.2 Sound Synchronization with Motions .. 15

2.3.3 Sound Rendering .. 16

3. Isaac System 17

3.1 Overview of Isaac system ... 19

3.2 Constrained Dynamics .. 22

3.2.1. Lagrange Multiplier ... 23

3.2.2 Constraint Library ... 25

3.3 Constraint Combining and Breaking .. 31

3.4 Constrained Impact ... 35

3.5 Procedural Motions based on Physically based Modeling 41

3.5.1 Procedural Method to Solving Constraints of Articulated Bodies 42

3.5.2 Procedural Methods for Motions of Sphere-like Objects 61

3.6 Virtual Wind .. 64

3.7 Sound Generation .. 72

3.7.1 Homogeneous Material Sounds .. 72

3.7.2 Collision Sounds for Non-Homogeneous Sounds 74

3.7.3 Texture-based Sound Generation .. 77

3.7.4 Fractal-based Sound Generation ... 78

 v

4. Conclusion 80

4.1 Summary of Solution and Results ... 80

4.2 Original Contributions .. 81

4.3 Future Works ... 82

Reference 83

 vi

List of Figures

3.1 Block diagram of Isaac system. .. 19

3.2 A sample code of the system. .. 21

3.3 Point-to-point constraint. .. 25

3.4 Point-to-nail constraint. .. 27

3.5 Orientation constraint. .. 28

3.6 Point-on-plane constraint. ... 29

3.7 Gear-to-gear constraint. .. 30

3.8 Gear-to-weight constraint. .. 31

3.9 Constructing windmill-like constraint. ... 31

3.10 Teri Elis clock. .. 32

3.11 A sample code of constraint transition. ... 33

3.12 Impulse-based collision response. .. 36

3.13 Collision plane. ... 38

3.14 Collision motions of Steel Fish. .. 40

3.15 Interactive control of articulated body. ... 43

3.16 Overview of the procedural constraint solving method. 44

3.17 Compulsive translation and rotation. .. 47

3.18 Solving the constraint through moving the object. ... 48

 vii

3.19 The graph of rs
h

e
−

=φθ . .. 50

3.20 Constraint solving for a free-moving articulated body. 52

3.21 Constraint solving for tree-like articulated bodies. .. 53

3.22 Object grouping. ... 54

3.23 Example of dragging a chain: the uppermost object is dragged interactively. 59

3.24 Another Example of dragging a heavy chain. ... 59

3.25 Example of dragging a human-like shape. ... 60

3.26 A motion of sphere. ... 61

3.27 Sliding from rolling. ... 62

3.28 A real world mobile: Steel Fish by Alexander Calder. .. 65

3.29 Virtual wind model. .. 66

3.30 Force due to the virtual wind. ... 68

3.31 Sound synchronization with motion. .. 71

3.32 Blowing in the Wind. .. 73

3.33 Bell and wood sounds. .. 75

3.34 Wood texture and signal from scratch line. .. 77

1

Chapter 1 Introduction

Since motions in real world obey physical principles, it is natural to apply physical

principles to generating motions of objects. In computer graphics, physically based modeling

(PBM) determines motions and shapes of objects by physical properties and laws. In the area of

computer animation, we have many methods for generating realistic motions. Among them,

physically based modeling is one of the most powerful methods to generate realistic motions.

Physically based modeling has its own pros and cons. It is based on Newtonian physics, and

thus has the power of producing physically correct motions. However, it uses complex equations,

and usually results in heavy computations. Additionally, physical quantities of objects including

forces and accelerations are often directly used to control motions of objects, even though it is not

an intuitive way of control. Thus, currently, physically based modeling is not widely used even

though it is one of the best methods to generate realistic motions in computer animation and Virtual

Reality (VR) [Barz97].

To solve problems in physically based modeling, we propose the paradigm of procedural

methods based on physics. Procedural methods have tried to mimic physical phenomena rather than

exactly simulating physical laws [Four82][Weil86]. These approaches achieved visual plausibility

and also provided easy control of complex phenomena. Although the procedural method succeeded

in generating visually plausible motion of natural phenomena, the method has nothing to do with

physical properties. Therefore, if physical quantities of object are changed, the motion from the

procedural method is difficult to correspond with the new physical quantities.

This dissertation presents procedural methods to solve the problems of physically based

2

modeling. We called it physically based procedural methods. Unlike previous procedural methods,

physically based procedural methods formulate equations of motions mainly based on physical

quantities and physical meanings. Therefore, the motions from the physically based procedural

methods better correspond with physical properties. Additionally, it provides an easy way of

controlling the motions and sounds.

Generating sound is similar to generating motions. Generating motions means producing

position and orientation of an object with time parameter. While generating sound means producing

one-dimensional amplitude with time parameter. Although exact vibration analysis of an object

produces realistic sound, analyzing vibration of a complicated object is difficult. Procedural

methods can be applied to generate sounds easily like motion generation case.

The physically based procedural method for motion and sound is included in our Isaac

system. Isaac is a motion and sound generation system that includes constrained dynamics, impact

dynamics, collision detection, physically based procedural method, sound generation and user

interactions. User interaction includes virtual mouth blowing system. This is a unique and powerful

interactive way of controlling articulated objects modeled by physically based modeling. Since

Isaac combined dynamics and procedural methods, users can select dynamics or procedural method

depending on computational loads.

Section 1 presents motivation of this thesis. In Sections 2, we present our problem domain

and research objectives. Section 3 explains proposed solutions of the problems. Section 4 describes

original and significant contributions of this dissertation. Finally, Section 5 describes the

organization of this dissertation.

3

1.1 Motivation
Although physically based modeling is one of the best methods to generate realistic motions,

it has the following drawbacks:

(1) Physically based modeling requires heavy computations. Linear system solvers, ODE

solvers and optimization methods are often required to solve equations from physically based

modeling. Therefore, applying physically based modeling to real time applications is still

difficult.

(2) Physically based modeling is usually accompanied with numerical stability problems.

Since physically based modeling requires complicated numerical solvers, it is prone to have

stability problems. In computer animation applications, stableness is more important than

exactness. And the parameters of the numerical solvers are difficult to control especially for

non-mathematicians.

(3) Motions from physically based modeling are difficult for animators to control, since

objects in physically based modeling are moved by forces. For example, users find it difficult

to place an object at a specific location by only controlling the forces applied on it.

To solve the problems of heavy computations and stability, we can try to develop stable and

fast numeric solvers. To solve the control problems, better optimization methods can be developed.

However, these efforts are so hard to expect any dramatic improvement.

In most of computer animations application, visually plausible motions are enough for the

applications. Moreover, some applications require exaggeration motions. Therefore, we need

motion generation methods which can provide better speed, stability and controllability than

physically based modeling, even though it may sacrifice physical correctness of physically based

4

modeling.

1.2 Problem Domain and Research Objectives
The dissertation is concerned with generating motions and sounds. Motion control methods

can be categorized into key frame method, physically based modeling, behavior method and motion

capture method. Each method has its own pros and cons. Among these motion control methods, the

thesis tried to solve the problems of physically based modeling.

Key frame method generates motions through specifying key motions. Although key frame

can control details of the motion, it requires long time experience to generate realistic motions of

complicated objects. Behavior method analyzes motions of objects and sets up the rules based on

the analysis. It is mostly used for motions of grouped animals. Recently, motion capture has become

popular for animators. Motion capture samples real motions of living things. It can produce

extremely realistic motions because the motions come from living things. However, editing and

controlling of the captured motions is not easy.

Physically based modeling is the problem domain of the thesis. Physically based modeling

concerns the following motions: motions of rigid bodies, articulated objects, deformable objects,

fracture, fluid and aerodynamics. The approach proposed by this thesis can be applied to all motions

of physically based modeling. However, this dissertation focuses on the motions of articulated

objects and motions by aerodynamics.

Physical principles can be applied to generate sounds. Using physical analysis to generate

sound has similar problems with motion generation. Exact analysis of complicated objects is very

difficult. Manipulating sampling sounds requires large memory and complicated control methods.

5

The goal of this thesis is to design new motion generation methods that can be an alternative

to physically based modeling. This new method would be faster, more stable and more controllable

than physically based modeling.

1.3 Proposed Solution of This Dissertation
To solve the problems of physically based modeling, we applied the paradigms of

procedural methods. In computer graphics, procedural methods have been used to mimic natural

phenomena. For example, procedural methods can formulate equations of texture and geometry of

mountains by analyzing shapes of the objects rather than its physical properties.

Unlike previous procedural methods, we propose physically based procedural method. Our

physically based procedural method formulates equations of motions by analyzing physical

principles and physical quantities of objects. The method subdivides equations of dynamics and

constraints and simplifies/amplifies the divided equations according to user intentions. The

followings are the basic steps in formulating physically based procedural method.

(1) Extract all equations from the computational model. For example, Newtonian second law

and constraint equations are basic equations of constrained dynamics.

(2) Simplify the equations according to their physical meanings. When its control is important

for the given application, transform the equations into easier control fields. For example, if

direct positional control of objects is required, then transform equations of motions from

functions of accelerations to functions of positions. This transformation may introduce some

computational errors.

(3) Add missing parts of the equation. For example, when you transform functions of

6

accelerations to functions of positions, inertia term may disappear. You have to add the

procedural equation of the inertia term.

Although this is not an exact solution for the physical models, this method can produce

visually plausible motions and sounds.

1.4 Original and Significant Contribution
This dissertation describes works believed to be original and contributory in the following

areas related to physically based modeling and sound generation:

● Applying procedural methods to the physically based modeling. To solve the problems of

physically based modeling, we proposed procedural methods based on physics equations and

physical quantities. The methods produce visually plausible motions that are faster and more

stable than motions from physically based modeling methods.

● Designing real time wind model based on physically based procedural method. By applying

physically based procedural method, we designed a system in which the user’s breath can

generate real time virtual wind. As the user blows on the microphone, the system produces

virtual wind according to the current environment settings. The system was used to simulate

Alexder Calder’s mobiles.

● Applying procedural method to generate sounds. By applying the procedural method, we

formulated equation of various sounds including the sounds due to collision, contact and winds.

7

The parameter of the equations can be mapped easily with equations of motions. Therefore,

synchronizations with motions become easier.

● Constraint combining and breaking with respect to the time parameter. We propose a

constrained dynamics system. It allows users to design new constraints by combining existing

constraints. And attaching time parameters to the constraints enables us to break and morph the

constraints.

● Implementing a motion sound generation system that combines constrained dynamics,

procedural methods and sound generation into an integrated environment. In this system, user

can choose procedural methods or dynamics based methods. Parameters of motions and sounds

have close relations. Therefore, motion and sound synchronization is accomplished naturally.

The work described in this dissertation has already resulted in three peer-reviewed

publications:

[Lee00] J.W. Lee, N. Baek, D. Kim, and J.K. Hahn. A procedural approach to solving
constraints of articulated bodies, Eurographics 2000, (ISSN 1017-4656) pages 55-64 August
2000.

[Lee00] D.K. Lee, H.J. Bae, C.T. Kim, D.C. Lee, D.H. J, N.K. Lee, N.H. Baek, J.W.Lee,
K.W. Ryu, and J.K. Hahn. Reproducing works of Calder, J. of Visualization and Computer
Animation, (to be appeared)

[Hahn95] J.K. Hahn, J. Geigel, J.W. Lee, L. Gritz, T. Takala, and S. Mishra. An Integrated
Approach to Sound and Motion. Journal of Visualization and Computer Animation, Volume 6,
Issues No. 2, pages 109-123, 1995.

8

1.5 Document Organization
Chapter 2 reviews other researches about physically based modeling, procedural methods

and sound generation. Various related approaches are described, their limitations are outlined, and

they are compared to our proposed approach.

Chapter 3 explains the Issac system that is used to demonstrate the ideas presented in this

dissertation. Basic features (constrained dynamics, impact dynamics and constrained combining and

breaking) of the system are explained. The procedural method and sound generation features of the

system are explained.

Chapter 3 describes our physically based procedural methods. First, the way of formulating

the procedural method is explained. Second, we explain in detail the algorithms of the physically

based procedural method for motions of articulated objects. The procedural algorithms for sphere-

like objects and wind model are described.

Chapter 3 presents equations for sound generation. These equations were formulated by

physically based procedural method. It describes physics-based collision sound of homogeneous

objects and collision sounds for heterogeneous objects. Texture-based scraping sound and fractal

based wind sound are described.

Finally Chapter 4 concludes the dissertation with a review of results and issues, and future

work.

9

Chapter 2. Literature Review and Issues

This chapter describes related works of this thesis. The related works can be divided into

physically based modeling, procedural method and sound generation. These three parts are primary

features of Isaac system.

Section 2.1 describes works on physically based modeling including field of collision

handling, articulated objects, control methods and deformable objects. Section 2.2 states previous

works on texture generation, geometric modeling and motions. Section 2.3 describes previous

works on sound modeling, sound synchronization and sound rendering.

2.1 Physically Based Modeling
 Physically based modeling has been an important research topic since late 1980’s.

Physically based modeling has shown the possibility of automatic motion generations and realism

of motions in real world. Since all objects in this world follows laws of physics, applying physics to

motion generation is natural. Researches on physically based modeling started from motions of

rigid bodies. Later, it moved to motions of articulated bodies and deformable objects and other

computational models

2.1.1 Collision and Contact

Motions of collision and contact frequently occur in computer animation and VR. Motions

10

of collision and contact can occur between rigid bodies, articulated bodies and deformable objects.

Hahn and Moore introduced impact dynamics for collisions of rigid bodies [Hahn88][Moor88].

Before the introduction of impact dynamics to collision handling, the penalty method was

commonly used. Since the penalty method requires small time steps, it demands heavy

computations. In contrast, impact dynamics changes velocities of colliding objects immediately, and

thus, larger time steps are applicable.

Constrained equations should be considered for collisions of articulated bodies [Moor88].

These equations are similar to equations of constrained dynamics. Mirtich introduced a formulation

for articulated bodies based on reduced coordinate method [Mirt96]. This method is usually faster

and more stable than Moore’s simultaneous equations. However, the derivation of equations for the

reduced coordinate method is much harder.

Although the penalty method can handle contact constraint to some extent, it can not

calculate exact contact forces. Baraff introduced an analytic method for calculation of contact forces

by using quadratic programming and Danzig’s algorithm [Bara89][Bara93]. Mirtich used impulse

forces to handle contact constraints [Mirt96]. Milenkovic introduced a position-based method to

handle the contact situation of large number of objects. Although his method is stable, orientations

of objects can not be handled properly [Mile96]

2.1.2 Articulated Objects

Since articulated body animation is one of the major topics in computer animation, there has

been much research devoted to it. They can be classified into two categories: kinematics-based

methods and dynamics-based methods. Both have their advantages and disadvantages.

11

Kinematics-based methods are relatively easy to implement and good for interactively

controlling the motions. However, since they involve positions, orientations, and velocities, it is

difficult to apply physical laws involving accelerations. Inverse kinematics method is one of

kinematics-based method for articulated body animation. Girard and Maciejewski applied an

inverse kinematics technique for motions of running and walking humans [Gira85]. Badler et al.

developed an inverse kinematics-based algorithm for solving multiple constraints concurrently, and

applied it for articulated bodies [Badl87]. Currently, several inverse kinematics systems are

available and some of them achieved interactive speeds [Welm93]. Kinematics methods and inverse

kinematics methods can be used to generate realistic active motions of articulated bodies. However,

it is difficult to incorporate external and internal forces to generate realistic passive motions.

In the case of dynamics-based methods, the constrained dynamics method is widely used for

articulated body animation. The constrained dynamics method uses a system of equations, which

consists of equations of motions and constraint equations. The systems of equations are usually too

complex to be solved efficiently, and many works are focused on the effective way of solving these

systems of equations. Among them, Armstrong and Green presented a recursive formation for the

constrained dynamics method and introduced a linear time algorithm for constrained dynamics

equations of articulated bodies [Arms85]. Presently, the constrained dynamics methods are usually

solved through one of the two numerical techniques: coordinate reduction technique and Lagrange

multiplier technique. Currently a linear time solution for Lagrange multiplier technique is available

[Bara96].

Isaacs and Cohen introduced the inverse dynamics method as a way of controlling the

motions of articulated bodies [Isaa87]. In this method, inverse forces are calculated to satisfy user-

12

specified accelerations. Westenhofer and Hahn presented a motion control system that integrates

kinematics-based controls into a constrained dynamics system [West96]. Constrained dynamics

method and inverse dynamics method are sufficient to generate realistic and physically correct

motions of articulated bodies. However, solving the systems of constrained dynamics equations is

hard to perform interactively, even though there are theoretically linear-time solutions. Thus the

dynamics-based method is not widely used for real-time applications such as virtual reality

applications and computer games.

2.1.3 Deformable Objects

Generating motions of deformable objects is one of major topics in physically based

modeling. Power of physically based modeling is well exposed in animating motions of deformable

objects. Soft objects, cloth and water are examples of deformable objects.

One of major issues in deformable objects is calculating motions with volume preserving

constraint. Terzopoulos implemented motions of soft objects by employing elasticity theory

[Terz87]. Platt and Barr used augmented Lagrangian constraints to animate soft objects [Plat88].

Pentland introduced modal analysis for fast calculation of deformable objects [Pent89]. Recently,

Desbrun and Gascuel animated inelastic objects such as clay by using implicit surfaces [Desb95].

Motions of cloth are important in computer animation and computer games. Breen

employed particles to simulate motions of woven cloth [Bree94]. Baraff used implicit integration

method to have larger time step [Bara98].

The issue of water animation is how to simplify the calculation of Navier-Strokes equations.

Kass used shallow water assumption to get fast and stable motions of water [Kass90]. Witting

13

applied fluid dynamics to motions of traditional cell animation environment [Witt99].

2.2 Procedural Method
The Procedural method has been used to represent texture and geometries of objects and

motions. In computer science, the adjective procedural is used to distinguish entities that are

described by program codes rather than by data structures [Eber94]. Characteristics of objects or

motions from procedural method is that it is synthetically, generated from a program or a model.

Procedural techniques have been used for many years in computer graphics to produce realistic

textures (marble, wood, stone, wallpaper, bricks, etc.) and shapes of objects or motions (water,

smoke, steam, fire, etc.). They are a cost-effective alternative to physically-based simulation.

The Procedural method is easy to implement and can be easily parameterized. The main

disadvantage of procedural method is that the result is not predictable and it does not have concrete

theoretical background.

Perlin introduced a way of generating 3D textures by a procedural method [Perl85].

Fournier modeled geometries of mountains by a procedural method which uses stochastic functions.

Fournier and Peaches both successfully expressed ocean waves through combining simple

trigonometric equations rather than using fluid dynamics formulations [Peac86][Four86]. Weil also

succeeded in presenting complex shapes of cloth objects using simple catenary functions [Weil86].

Currently, these procedural methods are being re-visited due to their simplicity and their

visually plausible results. Milenkovic introduced a position-based formation for non-articulated

objects [Mile96]. Using this formulation, he demonstrated that small sphere particles contained in

an hour-glass shape can be animated in a way similar to traditional constrained dynamics

14

simulations. Gascuel introduced the displacement constraint to solve constraints of articulated

objects quickly. The idea of separating the constraint solving part from equation of motion is similar

to our procedural method [Gasc94]. However, their method is a kind of iterative method unlike our

method. Barzel introduced a fake dynamics technique, which can be classified as a kind of

procedural kinematic method [Barz96][Barz97]. This technique was successfully used to mimic the

dynamics behavior of ropes and springs in the animation film “Toy Story”. To our knowledge, there

has not been any procedural method for articulated bodies.

2.3 Sound Generation and Synchronization
 Although sound is not a major area in computer graphics, it is very important in VR,

multimedia and computer games. Sound has been researched independently in computer music,

acoustics and signal processing areas. The problem of generating effective sound in VR, multimedia

and computer games can be divided into three sub problems: sound modeling, sound

synchronization, and sound rendering.

2.3.1 Sound Modeling

Large body of work exists in various domains that relate to sound. The issues in sound

modeling have long been studied in the field of computer music. Functional composition of sounds

has been explored in a number of computer music systems, including Music V, Csound, cmusic and

Fugue [Math69][Verc86][Moor90][Dann91]. There have also been a number of approaches used for

modeling sounds, such as Fourier synthesis, signal multiplication, filtering (subtractive synthesis)

15

and frequency modulation. These approaches in computer music concentrated on representing and

manipulating sound signals. In computer music, they do not address the issue of representing

general sounds so that their parameters correspond to the phenomena that caused them. This is

essential in order to synchronize the sounds to the motion.

Researches in acoustics and physics have concentrated on vibration of object and sound

waves. Fletcher and Rossing formulated many sound equations of musical instruments [Flet91].

Although formulating vibration equations of homogenous material is possible, formulating the

equation of non-homogeneous material is very difficult.

Hahn et al. introduced timbre tree, a data structure for sound representation [Hahn95]. Since

it is expressed by flexible tree structure, adding new components of sound generation is easy like

shade tree [Cook84].

2.3.2 Sound Synchronization with Motions

The primary consideration of sounds related with motions is the effective parameterization

of sound models so that the parameters being generated from the motion can be mapped to them.

Effective sounds can mean realism or effective encoding of information, an area of interest to data

sonification. Parameterization and synchronization of sound has been investigated in relation to user

interface, data sonification, and computer animation [Scal91][Gave93] [Scal91] [Lewi90][Taka92].

To synchronize motion and sound, in addition to timing and intensity information, geometry

and contact parameters should match with sound parameters. Therefore, the sound equation should

have parameters that correspond with motions. Timbre tree is designed for easy mapping of sound

parameters and motion parameters [Hahn95].

16

2.3.3 Sound Rendering

Sound rendering refers to the progress of generating sound signals from their models within

a particular environment, very much like the process of generating images from their geometric

models [Tapi92]. Problems associate with sound rendering have been studied in the field of

acoustics. The primary concentration of sound rendering is realistic and fast calculation of

environmental effects.

Tapio and Hahn introduced a concept of sound rendering to computer graphics community

[Tapi92]. Tsingos calculated room acoustics based on radiosity methods [Tsin97].

17

Chapter 3. Isaac System

Although physically based modeling generates very realistic motions, it requires heavy

computations and its control is difficult. To solve these problems, we introduce the Isaac system

that includes procedural motion generation features.

Constrained dynamics, an example of physically based modeling, can be used to generate

realistic motions of articulated bodies. It is based on Newtonian physics, and thus has the power of

producing physically correct motions. However, it uses constraint equations along with the

equations of motions, and usually results in heavy computations.

In addition to constrained dynamics, elasticity model for deformable object and fluid

dynamics for water are common models of physically based modeling. And these models also

require heavy computations. Therefore, applying these computation models to real time applications

is difficult for current personal computers.

Control is another problem of physically based modeling. Physical quantities of objects

including forces and accelerations are often directly used to control motions of articulated bodies,

even though it is not an intuitive way of control. For example, users find it difficult to place an

object at a specific location by controlling the forces applied on it. Because of above problems,

physically based modeling is not so widely used even though it is one of the best methods to

generate realistic motions.

Deciding levels of simulation is not a simple problem in physically based modeling. For

example, we can have different levels of simulation for motions of cars. The simplest level is that in

which a car is modeled by a rigid body. This level only requires rigid body dynamics. Second level

18

may be that in which a car consists of rigid chassis and wheels connected by springs. Finally, we

can assume that a deformable chassis and wheels are connected by constraint dynamics and damped

springs. Choosing a proper model in many different models for a specific purpose is not an obvious

problem.

Sounds in computer animation and VR should be integrated with motions. Isaac system

introduces sound generation methods that are closely related with motion parameters. Therefore,

sound synchronization in Isaac system is implemented naturally.

This dissertation proposes the Isaac system that can solve problems of physically based

modeling. The Isaac system basically consists of a dynamics part, procedural motion part and a

sound generation part. The dynamics part consists of constraint dynamics and impact dynamics.

Constrained dynamics is used for motions of articulated bodies and impact dynamics is used for

basic collision reaction. In the Isaac system, users can design new constraints by combining basic

constraints provided in Isaac system. It allows users to design constraints easier and more flexible.

The Isaac system has procedural methods for motions and sounds to speed up simulation

time and to allow easy control. Procedural method starts with equations from dynamics and try to

divide the equations according to meanings. We formulate new procedural equations by

simplifications and amplification of the divided parts of the equations.

19

The sound generation part generates sounds according to physics analysis and procedural

methods. Sound generation receives inputs from collision detection and reaction routines to

synchronize with motions. These sound generation methods are closely related with parameters of

motion generations. Therefore, sound synchronizations in the system occur easily

3.1 Overview of Isaac System
Isaac system consists of constrained dynamics solver, procedural motion generator, impulse

dynamics solver, collision detection and sound generator, as shown in Figure 3.1. The user defines

geometric configurations,
physical properties

user

3-D model
for a virtual mobile

data acquisition

current
status

constraint dynamics
solver

collision detection impulse dynamics
solver

display routines
(OpenGL)

real-time display
: data
: program unit

geometric configurations,
physical properties

user

3-D model
for a virtual mobile

data acquisition

current
status

constraint dynamics
solver

collision detection impulse dynamics
solver

display routines
(OpenGL)

real-time display

procedural motion
generator

: data
: program unit

external Force

sound generatorgeometric configurations,
physical properties

user

3-D model
for a virtual mobile

data acquisition

current
status

constraint dynamics
solver

collision detection impulse dynamics
solver

display routines
(OpenGL)

real-time display
: data
: program unit

geometric configurations,
physical properties

user

3-D model
for a virtual mobile

data acquisition

current
status

constraint dynamics
solver

collision detection impulse dynamics
solver

display routines
(OpenGL)

real-time display

procedural motion
generator

: data
: program unit

external Force

sound generator

Figure 3.1 Block diagram of Isaac system

20

rigid bodies with their parameters (mass, moment of inertia, and friction coefficient), constraints,

and external forces. With these inputs, this system generates motions based on dynamics and

procedural motion generator. The user provides some of these parameters directly, while some

parameters are calculated indirectly by the system. Possible external forces include wind, gravity

and user interaction.

The constraint dynamics solver takes user-specified constraint description including

dynamic constraint, velocity constraint and spring forces, and constructs a Jacobian matrix and uses

it for constraint force calculation. Procedural motion generator takes the user-specified constraint

description and solves the constraints and generates motions according to procedural methods. User

can choose either constraint solver or procedural motion generator.

Sound generation part has sound producing modules based on physics and procedural

method. It generates sounds according to the physical parameters and information from collision

detection and reaction.

21

Isaac system was written in an object-oriented environment. Rigid body objects are inherited

from kinematic objects by adding dynamics parameters. Therefore, every rigid body in this system

can also be controlled by kinematic controls such as key frame. Camera and lighting objects are

integrated into this system. Camera and lighting definition, rigid body definition, constraint

// Simulation starting time and finish time

Starttime = 0.0;

Finishtime = 10.0;

 // Gravity

setGravity (Vector3 (0, -9.8, 0));

// Camera and lighting definition

Camera cm (camera_pos, camera_interest, camera_up);

distantLight dl (Point(-1.0,-1.0,-1.0), Point(0,0,0), 0.7);

// Rigid body definition

// Geometry is defined at class definition

Cube cube(mass,MI,density, friction_coefficient, position,

orientation);

 // applying wind force to the cube object

cube.wind_force();

// joint constraint definition

Nail_Constraint nail (cb, Point(0,1,0), Point(0,1,0), 0.0,

Finishtime);

simulate();

Figure 3.2. A sample code of the system that produces pendulum simulation for 10 seconds.

22

description and external forces are basic user inputs of the system. The system produces Open

Inventor�R or DirectX�R output for real time interactions and RenderMan�R RIB file for high

quality rendering.

3.2 Constrained Dynamics

 Although dynamics requires heavy computations, dynamics has been a major tool for

generating realistic motions. Since the real world follows the law of dynamics, dynamics provides

great realism. Constrained dynamics is a branch of dynamics. It restricts the motion of objects under

dynamics environment. Constrained dynamics is widely used for articulated bodies and control of

objects. This section explains constrained dynamics that is an important part of Isaac system.

Since constrained dynamics allows us to construct constraints for objects under Newtonian

dynamics, it has been a useful tool for computer animation. The mechanics and Robotics

community have researched constrained dynamics for a long time and computer graphics has

employed their studies. Many realistic animations were done by constrained dynamics.

Constrained dynamics calculates constraint forces that act to satisfy user-defined constraints.

There are many different names for the constrained dynamics formulations but all fall into two

categories: coordinate reduction method and Lagrange multiplier method. The coordinate reduction

method parameterizes maximal coordinates with generalized coordinates. Lagrange multiplier

methods express the system by using simultaneous equations. Each method has its own pros and

cons [Bara96].

If maximal coordinates are much bigger than generalized coordinates, the coordinate

reduction method may be more efficient and tolerant of numerical drifting than the Lagrange

23

multiplier method. For human-like structure of articulated bodies, linear-time algorithms of

coordinate reduction methods are well known. However, formulation of general structure of

articulated bodies by coordinate reduction method is not always easy.

3.2.1 Lagrange Multiplier

The Lagrange multiplier methods express constraints of objects by using simultaneous

equations. Therefore, the Lagrange multiplier method bypasses the difficulty of parameterization of

constraints. The Lagrange multiplier method has more software modularity and ability to handle

velocity constraints. For globally deformable bodies, the Lagrange multiplier method has the

advantage over the coordinate reduction method, since parameterization of the constraints that is

required for the coordinate reduction method becomes very difficult for deformable bodies. Due to

this modularity, an arbitrary set of constraints can be combined without difficult parameterization.

Therefore, we employ the Lagrange Multiplier method for the basic constrained dynamics tool in

Isaac system.

Lagrange Multiplier method has numerical disadvantages over coordinate reduction method.

Since Lagrange multiplier method is prone to accumulate numerical errors, constraint stabilization

methods that inhibit accumulation of numerical drifting error are often used along with the

Lagrange multiplier method [Baum72].

The formulation of the Lagrange multiplier method starts with generalized Newton’s law,

,1 FMx −=�� (3.1)

where x is the generalized state vector of position, M-1 is the inverse of the mass matrix, and F is

force vector.

In order to satisfy a positional constraint under dynamics environment, we must create an

24

equation which express constraints. Let C(x) be a user-specified constraint, and C(x) = 0 mean that

the constraint is being satisfied. Since we are concerned with a dynamics environment, in addition

to C(x) being zero, its first derivative, (x)C� and its second derivative, (x)C�� should be zero. Therefore,

our goal is to find the constraint forces for which (x)C�� evaluates to zero.

First derivative of C(x) is

x
x

C(x)(x)C ��

∂
∂=

Second derivative of C(x) is xJ+xJ=(x)C ������
, where

x
C(x)J
∂

∂
= . The matrix J is called

Jacobian of C. Now we add unknown constraint force Fc , and substitute equation (3.1)

 0)F(FJMxJ(x)C c
1 =++= −

����

Rearranging terms,

FJMxJFJM 1
c

1 −− −−= ��

By applying the principal of virtual work [Gold80], we can replace cF with ��������J T
 where

���� is a vector, called Lagrange multiplier;

FJMxJ����JJM 1T1 −− −−= ��

Now, all values are known except λλλλ . T1JJM − is always a square matrix whose dimension

is the same as the dimension of C. Many linear system solvers can be used to solve this equation.

The conjugate gradient method has been popular because of it stability and speed. Baraff introduced

a linear-time solution for this equation by using sparse matrix technique [Bara96]. Currently, this

system uses Gaussian solver and Baraff's linear-time algorithm.

25

The numerical drifting problem is one disadvantage of the Lagrange multiplier method. To

solve this problem, we employ Baumgarte’s stabilization method [Baum72]. CkCkC ds
��� −−= is

used instead of ,0C =�� Where ks and kd are coefficients. By choosing ks and kd to specify a

critically damped system, the system can assembles parts of an articulated body automatically. The

final equation of the motion, including the stabilization is:

 (x)CkC(x)kFJMxJ����JJM ds
1T1 ��� −−−−= −−

3.2.2 Constraint Library

Isaac provides basic constraints as tools for designing and manipulating constraints.

Therefore, the user can choose and combine constraints without having to specify their formulation.

Due to the advantage of the Lagrange multiplier method, constraints can be combined without

parameterization. The basic constraints in Isaac system are point-to-point, point-to-nail, orientation,

XXXX 2222

QQQQ 2222

QQQQ 2222

XXXX 1111

XXXX 2222

QQQQ 2222

QQQQ 2222

XXXX 1111

Figure 3. 3 Point-to-point constraint

26

point-on-plane, gear-to-gear and gear-to-weight constraints.

The constrains can be divided into one dimension and the constraints have time parameter.

Therefore the user can also design his own constraints by combining these basic constraints.

Dynamic constraints are calculated by applying second derivates of positional constraints or first

derivates of velocity constraints.

Point-to-point constraint

Point-to-point constraint connects two bodies by the spherical joint. This is a common

joint constraint to construct articulated bodies. The equation of positional constraint is:

22211121 X-PRXPRQQ= C −+=− ,

where R is rotation matrix, P is point of constraint in body space and X is position of center of mass.

First derivative of C is:

.222111 vr����vr����C −×−+×=� ,

where v is linear velocity, ωωωω is angular velocity and r is vector from center of mass to constraint

point.

Second derivative of this equation is:

,)r(��������r����v)r(��������r����v = C 222222111111 ××−×−−××+×+ ������

Point-to-nail constraint

Point-to-nail is a spherical joint of rigid body to a fixed point in space. This constraint works

27

like a nail in the space. Point-on-path constraint that a rigid body follows by given path can be

represented by moving the nail position. The formulation of this constraint is:

,0PXRPPX= C o =−+=−

where R is rotation matrix, P0 point of constraint in body space, X is position of center of

mass and P is position of nail point in world space. The first derivative of the equation is:

vr����C +×=�

Second derivative of the constraint equation is:

 r)(��������r����v = C ××+×+ ����

where v is linear velocity, ωωωω is angular velocity and r is vector from center of mass to constraint

point.

X

PPPP 0

X

PPPP 0

Figure 3.4 Point-to-nail constraint

28

Orientation constraint

Orientation constraint restricts one degree of freedom of orientation. Orientation

constraints are widely used to restrict orientations of rigid bodies. The constraint equation of the

orientation is formulated by dot product of tangent vector of an object and constraint vector, as

shown in Figure 3.5. Constraint equation and its first derivative is:

,)�(

(t)

NTC
NTC

⋅×=

⋅=
�

where T and N are tangent vector and constraint vector , respectively.

The second derivative of this equation is

0NT))(����(����NT)����(C =⋅××+⋅×= ��� .

T:tangent vector

N:constraint vector

T:tangent vector

N:constraint vector

Figure 3.5 Orientation constraint

29

Point-on-plane constraint

Point-on-plane constraint ensures that a point of rigid body remains on a given plane.

Plugging the constraint point into the plane equation leads to the constraint equation. This constraint

can be used for a simple contact force and line constraint that objects follow by given line.

Combining two different point-on-plane constraints generate a line constraint. This shows design

power of Isaac system.

Constraint equation for point-on-plane equation is:

,0SNPNdPNC =⋅−⋅=+⋅=

where vector N and d construct given plane, and P is constraint point of the object, as shown in

Figure 3.6. Second derivative is

.0)SP(N)SP(N2S)(PNC =−+−+−= �����������

SSSS

P:constraint point

N :norm al to plane

SSSS

P:constraint point

N :norm al to plane

Figure 3.6 Point-on-plane constraint

30

Gear-to-gear constraint

Gear-to-gear constraint in Isaac system was implemented by velocity constraint. Easy

implementation and seamless combining of velocity constraint with dynamic constraints are

advantages of Isaac system. Gear-to-gear constraint by velocity constraint is much faster than

collision based constraint. Gear-to-gear constraints and gear-to-weight constraints are the basic

examples of velocity constraints in Isaac system.

The angular velocities of connected gears are constrained by their radii. Velocity constraint

and its derivative are

,0����r����rC

0����r����rC

2211

2211

=+=

=+=
����

�

where r and ωωωω are radius and angular velocity of the gear, respectively.

Gear-to-weight constraint

Gear-to-weight constraint, shown in Figure 3.8, can be formulated by matching angular

r1 r2

1gear oflocity angular ve:1 ω

2gear oflocity angular ve: 2ω

r1 r2

1gear oflocity angular ve:1 ω

2gear oflocity angular ve: 2ω

Figure 3.7 Gear-to-gear constraint

31

velocity of a gear and linear velocity of weight. The constraint represents connection between gear

and weight. The constraint equation and its derivative are:

 ,�

�

0vrC

0vrC

211

211

=−×=

=−×=
rrr

r

where r is radius of gear, v is angular velocity of the weight.

3.3 Constraint Combining and Breaking
To design new constraints, users should formulate positional or velocity constraints and

x

y

z
X

X x

y

z x

y

z
X

X

Figure 3.9 Constructing windmill-like constraint

r1r1

Figure 3.8 Gear-to-weight constraint

32

differentiate the equations to get dynamic constraints. Usually this process is not easy for the end

user. In Isaac system, basic constraints are implemented in the constraint library of the system.

Users construct other constraints by combining these basic constraints in constraint library. In

addition to basic constraints, Isaac system has element constraints that is one DOF constraint. The

element constraint restricts one DOF among 6DOF of rigid body. This system can add or subtract

the element constraint to the basic constraints. The element constraints are used to modify the basic

constraints. The basic constraint can also be combined with each other for new constraints. The

Figure 3.10 Terry Eli’s clock

33

followings show examples of constraint combining. Windmill-like joint constraint, shown in Figure

3.9, results from combining a point-to-point constraint with two orientation constraints. In

simulation of Terry Eli’s clock1, the retainer should be represented by line constraint. Because line

equation of 3D can only be represented by parametric equation, formulating positional constraint

equation of line constraint is not easy in Lagrange Multiplier method. In Isaac system, line

constraint can be designed by combining two point-on-plane constraints. Figure 3.10 shows part of

Terry Eli’s clock.

 Adding time parameters to the constraints contributes to an easy and flexible designing of

time varying constraints. Since this approach allows the constraint to be parameterized, attaching

the time parameters to each element constraint makes controllable time-varying effects. This time-

varying constraint can be a useful tool to design constraint breaking and smooth transition from one

constraint to another constraint.

1 Terry Eli's clock was designed early 19th and it was first clock that was produced by mass

production system in America.

34

Each constraint has time parameters which indicate starting and ending times. The

constraints are alive during the indicated time. The default parameter is the starting and ending time

of the simulation.

Constraint transition between two constraints like morphing can be achieved by controlling

time parameters and Isaac system’s self-assembling ability. Issac’s self assembling ability is

achieved by choosing critically damped spring in the stabilization routine. If users want to change

y-axis orientation constraint to x-axis orientation constraint, users has to set the starting time and

ending time of each constraint. Figure 3.11 shows sample codes for constraint transient.

Time-varying constraints are handled by managing the active constraint list which holds the

currently valid constraints. Declaring initial constraints generates all constraint lists that keep all

constraints regardless of the validity about current time. Checking the current time with the starting

and ending time parameters generates the active constraint list which is actually used for current

constraint-force calculation. More complicated time varying constraints can be generated by

assigning functions of time to the parameters.

//Transient to different axis rotation constraint

Pt-NailConstraint (wheel,Point(0,0,0),Point(0,0,0),0.0, 5.0);

OrinetationConstraint (wheel,Vector1(0,1,0) ,Vector2(0,0,1), 0.0, 2.5)

OrinetationConstraint (wheel,Vector1(1,0,0) ,Vector2(0,0,1) 0.0, 2.5)

OrinetationConstraint (wheel ,Vector1(1,0,0),Vector2(0,1,0), 2.5, 5.0)

OrinetationConstraint (wheel,Vector1(0,0,1),Vector2(0,1,0), 2.5, 5.0)

Figure 3.11 A sample code of constraint transition

35

3.4 Constraint Impact
 Modeling collision by force requires very small time step to avoid any penetration which is

not desirable for computer animation and VR. Instead of using force for collision, we employ

impact formulation for collision between rigid bodies. Since impact changes velocity

instantaneously, we can keep large time step without penetration. If a constrained object collides

with rigid bodies, the impulse violates dynamics constraints of the articulated object since impulse

changes velocities without considering the constraints. For articulated objects, we need impulse

calculations that consider the constraint condition. This system sends constraint information to get

the constraint impulse that does not violate the constraints.

When simulating the motion of articulated bodies with constraint dynamics, collisions

between its components will necessarily happen. Although there are a lot of general collision

detection methods [Hubb96][Mirt96], collision detections in Isaac system can be achieved more

efficiently through analyzing the characteristics of the articulated bodies. First, some pairs of the

components can not collide with each other in any case. A preprocessing step detects all such pairs

of components to finally be excluded from the collision detection process. Additionally, some

components are simple geometric shapes such as cylinders and spheres. Thus, we can use cylinder-

to-cylinder, cylinder-to-sphere and sphere-to-sphere collision detection methods, which are much

faster than usual polyhedron-to-polyhedron collision detection methods.

After detecting collisions, we use the impulse-based collision response method

[Hahn88][Moor88]. Since this method can calculate the new velocities instantaneously, it is suitable

36

for real-time applications. The penalty method [Moor88], which is also widely used in the collision

response, requires small time steps for accurate simulation, and thus it may cause to slow down a

real-time application.

In the case of articulated bodies, the collision response method should cooperate with the

constraint dynamics model. Thus, the constraints at the joints and frictions at the collision points

should also be handled during the collision response. Moore formulated the impulse equations for

articulated figures, and his equation can be used for joint constraints [Moor88].

Letting the components of an articulated body be Oi, 1 ≤ i ≤ n, the mass and inertia tensor of

Oi is denoted as mi and Ii, respectively. Due to the collision, the linear and angular velocity of Oi

may be changed. Let vi and ωωωωi be the linear and angular velocity of Oi with respect to the center of

mass of Oi, before the collision. The impulse-based collision response method aims to calculate the

center of mass

Ci

center of mass

lji

lij

li

joint

collision point

Ck

center of mass

lk

Cj

impulse P

motion

center of mass

Ci

center of mass

lji

lij

li

joint

collision point

Ck

center of mass

lk

Cj

impulse P

motion

Figure 3.12 Impulse-based collision response

37

linear velocity iv and the angular velocity i���� of Oi after the collision.

The impulse-based collision response method starts from the law of momentum preservation.

Since the change of momentum before and after the collision equals to the sum of impulses at the

time of collision, the impulse equations for Oi can be expressed as follows:

 +=−
j

ijiiim PP)vv(

and

 ×+×=−
j

ijijiiii PlPl��������I)(,

 where P is the impulse applied to Oi and Pij is the attachment impulse on Oi due to Oj,

which is connected to Oi using a joint constraint. When Oi and Oj are not directly connected to each

other, Pij is a null vector. Notice that P can be zero for non-colliding components. The vectors li and

lij are the distance vectors from the center of mass of Oi to the collision point and to the joint

connecting Oi and Oj, respectively, as shown in Figure 3.12.

Joint constraints also give additional equations. When a spherical joint connects Oi and Oj,

their relative velocity at the contact point should equal each other:

jijjijii l����vl����v ×+=×+ .

In the case of nail joints, a point of the component Ok has a fixed position. Thus, the linear

velocity of the nailed point is zero:

0=×+ kkkk l����v ,

where lkk is the vector from the center of mass of Ok to the nailed point.

In this way, we can applied Moore’s impulse-based collision response formulation to

38

articulated bodies. Additionally, we improve his formulation to handle the frictions during collisions.

Although Moore also extended his formulation to the friction cases, it requires solving the whole

systems of linear equations repeatedly to determine the friction status of each collision point. We

improve this weak point of Moore’s formulation through combining with Mirtich’s conditional

equation for friction [Mirt96].

When a point of Oi is colliding with a face of Oj, the plane containing that face is defined as

the collision plane, as shown in Figure 3.13. With respect to the normal vector N of the collision

plane, the impulse P for Oi can be divided into two components: the normal component PN and the

tangential component PT = P – PN. The state of friction can be classified into two cases: sticking

case and sliding case. From the viewpoint of impulse, the sticking case means there is no slip at the

collision point, which satisfies the condition of |PT| ≤ µ |PN| with the friction coefficient µ. When

P

PN

PT

Ci
Cj

collision plane

N

collision point

motion

P

PN

PT

Ci
Cj

collision plane

N

collision point

motion

Figure 3.13 Collision plane

39

|PT| > µ |PN|, the collision point will slip along the collision plane and it is called the sliding case.

Since the sliding and sticking cases result in different equations, it is important to identify

whether a collision point is sticking or sliding. For sticking cases, the collision point does not move

along the collision plane. In contrast, the friction force will act on the sliding collision points.

In Moore’s formulation, it is impossible to decide whether a collision point is sliding or

sticking without calculating the impulse. Mirtich introduces the decision equation to identify a

collision state before calculating impulses [Mirt96]. We use the decision equation to speed up the

impulse calculation. The friction at a collision point is sliding when it satisfies the following

condition:

2

33

2
2

23

2

13

111 �
��
�

�
>��

�
��
�

�
+��

�
��
�

�

kkk
µ ,

where the 3-by-3 matrix K = [kij] equals to)()/1/1(11
jjjiiiji llllmm ××+××−+ −− IIE with the

3-by-3 identity matrix E.

40

Figure 3.14 Collision motions of Steel Fish.

41

3.5. Procedural Motions based on Physically based

Modeling

Physically-based modeling methods have their own pros and cons. For example, constrained

dynamics method can be used to generate realistic motions of articulated bodies. It is based on

Newtonian physics, and thus has the power of producing physically correct motions. However, it

uses constraint equations along with the equations of motions, and usually results in heavy

computations. Additionally, physical quantities of objects including forces and accelerations are

often directly used to control motions of articulated bodies, even though it is not an intuitive way of

control. For example, users find it difficult to place an object at a specific location by controlling

the forces applied on it. Thus, currently, the constrained dynamics method is not so widely used

even though it is one of the best methods for realistic articulated body animation [Barz97].

An alternative to physically-based modeling is the paradigm of procedural methods

[Watt92]. In 1980’s, some research have focused on mimicking physical phenomena rather than

strictly simulating physical laws [Four82][Peac86][Weil86]. Although these approaches were

motivated basically by the lack of sufficient computing power, they achieved visual plausibility and

also provided easy control of complex phenomena. Even today, we still do not have sufficient

computing power to simulate physically-based models of complicated phenmena in real time. In

virtual reality environments and computer games, for example, it is a requirement to display the

motion of objects in real time, even at the expense of displaying physically incorrect motions. This

chapter introduces procedural methods for constrained dynamics, non-holonomic dynamics and

constrained impact. These calculations require heavy computations in physically-based modeling.

42

3.5.1 Procedural Method to Solving Constraints of Articulated Bodies

We present a method to solve constraints procedurally to interactively calculate motions of

articulated bodies. Our objective is not necessarily to generate physically correct motions but

visually plausible motions. Although it is not directly derived from Newtonian dynamics, our

method provides an efficient and numerically stable way of generating visually plausible motions.

Its calculation procedure is based on the positions and orientations of the objects rather than

dynamics properties such as forces and accelerations. Hence it additionally provides an easy way of

controlling the motions via specifying the desired positions and orientations. Figure 3.15 shows an

example of interactive control of an articulated figure. It is especially suitable for presenting

dragging effects, which often occur when the user moves a selected portion of the articulated body.

In next sections, we present a detailed description of our procedural method and how to

apply it to articulated bodies and various joint constraints. Some examples of image sequences

generated by this procedural method are also explained.

43

3.5.1.1 Overview

Generation of an articulated body motion means deciding the position and orientation of

each object in the articulated body for each time instant. From the dynamics point of view, the

current geometric configurations (positions, orientations, etc.) and physical parameters (velocities,

accelerations, etc.) are calculated from the configurations of the previous time instant. This

calculation process has two requirements:

(1) The motion of each object should be generated according to the equations of motions, in

which external forces are involved.

(2) The final geometric configurations of objects should satisfy constraints due to the joints of

Figure 3.15 Interactive control of articulated body.

44

the articulated body.

The constrained dynamics method starts from a system of equations, which explicitly

express the above requirements. Equations of motions and constraint equations are usually

integrated into a system of equations, which is usually solved by a relatively complex numerical

method.

In contrast, the basic idea of our procedural method is separating the whole process into two

stages each of which concentrates on one of the two above requirements. In the update stage,

positions and orientations of objects making up the articulated body are updated by solving the

equations of motions. The animator can specify the position and orientation of an object explicitly,

if desired. Notice that any constraint equation is not considered at this time, as shown in

Figure 3.16.(b).

In the adjustment stage, we adjust the positions and orientations of each object to satisfy the

motion of O1

motion of O3

motion of O2

motion of O1

motion of O3

motion of O2

object

object O2

object O3

object

object O2

object O3

(a) original configuration (b) update stage (c) adjustment sta

Figure 3.16 Overview of the procedural constraint solving method.

45

constraints, as shown in Figure 3.16.(c). During this adjustment process, a procedural calculation of

required transform for each object is used rather than the original constraint equations. Notice that

our goal is the visual plausibility rather than physically correct motion, and thus the constraint

equations are not solved explicitly.

In comparison with traditional constrained dynamics methods, our procedural method has

two advantages:

(1) It is faster than any constrained dynamics methods since our adjustment equations make it

possible to satisfy the constraints without considering complex physical properties such as

accelerations and velocities.

(2) It can be integrated into a direct manipulation system in which an object is selected to

change its position and orientation interactively, since our method solves the constraints based

on position and orientation. In constrained dynamics, inverse dynamics is required to control

position or orientation.

The update stage is straightforward. We can use any dynamics methods to update positions

and orientations of objects, since the constraint equations are excluded during this update step. In

our implementation, we use Euler’s integration method for this purpose, mainly due to its simplicity.

The strictly physically-based modeling often includes friction forces and drag equation from

the fluid dynamics. In our implementation, we add a damping term to approximate them. Letting xi,

vi and ai be the position, velocity and acceleration of an object at the i-th time step, Euler integration

of Newton’s law is expressed as follows:

 xi+1 = xi + vi (∆t) (3.2)

and

 vi+1 = vi + ai (∆t), (3.3)

46

where ∆t is the time interval between animation frames.

Combining Equations (3.2) and (3.3), the position can be evaluated with the following

single equation:

 xi+1 = xi + (xi – xi-1) + ai (∆t)2.

Since (xi – xi-1) corresponds to the velocity, we multiply a damping constant to it. Thus, the

final equation for xi+1 is:

 xi+1 = xi + k (xi – xi-1) + ai (∆t)2,

where k ∈ [0, 1] is the damping constant. By controlling the value of k, we can control the visual

illusions of frictions and/or motions in fluid such as water. Details of the adjustment process will be

explained in the following sections.

3.5.1.2 Fixed position solution for two-object articulated bodies

In the adjustment stage, positions and orientations of objects are adjusted to satisfy the joint

constraints. We formulated this adjustment process to reflect the characteristics of constraint forces.

In the case of constrained dynamics, constraint forces should satisfy the following two

characteristics:

(1) The constraint forces applied to the objects connected by a joint have same magnitudes

but opposite directions.

(2) Constraint forces should be workless.

Our adjustment process aims to mimic the constraint forces as much as possible. Especially,

we hope to represent the motions of an articulated body when the user drags a point on the body.

47

In our approach, constraints are solved by translating and rotating the objects to satisfy the

constraints. In the update stage, objects are moved due to the external forces and/or user inputs

without considering any constraints. Thus the movements usually break the joint constraints of

articulated bodies. The major role of the constraint solving is to decide the translational and

rotational motions that satisfy the given constraints. We call these translations and rotations due to

the constraints compulsive translations and compulsive rotations, respectively. Compulsive motion

will be used to refer to both compulsive translation and compulsive rotation.

To formulate the equations of compulsive translation and rotation, we will start from the

simplest case. Suppose that an articulated body has only two objects and the position and

orientation of an object O1 is fixed after the update stage. This situation often occurs when the user

drags O1 to a specific location. Then another object O2 should move closer to the dragged object, as

object O1

object O2

object O1

object O2

O1

O2

O1

O2

compulsive translation

compulsive rotation

compulsive translation

compulsive rotation

(a) original
configuration

(b) O1 moves to
a fixed position

(c) constraint solving

Figure 3.17. Compulsive translation and rotation.

48

shown in Figure 3.17

Let c1 and c2 be the position of the constraint point on O1 and O2, respectively. Our objective

is moving c1 to c2 by applying compulsive translation and compulsive rotation onto O2, as shown in

Figure 3.18. The arm vector r for c1 is calculated as:

 r = c2 – xupdate,

where xupdate is the position of O2 after the update stage. Now the compulsive translation vector T

and compulsive rotation matrix R should satisfy the following equality condition:

 r + s = R r + T, (3.4)

where the vector s equals to c1 – c2.

Notice that the constraint force should be workless. In other words, we should move O2

along the shortest path to minimize the compulsive motion of O2. In the case of rotation, R can be

updatex

adjustx

R

r

1c

2c

φ

T

s

updatex

adjustx

R

r

1c

2c

φ

T

s

o1

o2

updatex

adjustx

R

r

1c

2c

φ

T

s

updatex

adjustx

R

r

1c

2c

φ

T

s

o1

o2

 Figure 3.18 Solving the constraint through moving the object

49

specified with the rotation axis A and the rotation angle θ. We can intuitively calculate the rotation

axis A from the cross product of r and s:

sr
srA ×=

Calculation of the rotation angle θ is indirectly derived from rotational dynamics. For the

rotating object O2, torque ττττ with initial configuration can be calculated as follows:

 ττττ = r × f,

where f is the linear force applied at c2. This imaginary force f will move c2 to c1. Assuming f

generates constant acceleration a, it is possible to approximate f as follows:

 saf 2
2

2)�(
2

t
mm == ,

where m2 is the mass of O2 and ∆t is the time interval between animation frames. Now, the

magnitude of torque ττττ can be expressed as:

 φτ sin
)�(

2
2

2 rs
t

m= , (3.5)

where s is the length of s and φ is the initial angle between r and s. Letting α be the angular

acceleration, τ also can be expressed as:

 τ = I2 α, (3.6)

where I2 is the moment of inertia for O2. From Equations (3.4) and (3.5), the angular acceleration α

can be approximated as follows:

 φα sin
)(

2
2

2

2 rs
tI

m
∆

= . (3.7)

Theoretically, the rotation angle θ can also be approximated from the above angular

acceleration. However, Equation (3.7) is available only for the initial configuration since the angle φ

varies along with the rotation of O2 due to the angular acceleration α. Thus we only use the

50

characteristic physical parameters to build up our rotation angle calculation formula.

Figure 3.19. The graph of rs
h

e
−

=φθ

Our starting point for approximating θ is the simple observation that θ is a value between 0

and φ. Additionally, the angle θ is influenced by parameters r and s. Thus it is natural to use

exponential function as follows:

 rs
h

e
−

=φθ , (3.8)

where the constant h is equivalent to 2
2

2

)�(
2

tI
m . As shown in Figure 3.19, this formulation shows

that the rotation angle θ is nonlinearly proportional to r and s, while its value is bounded in [0, φ].

When r and/or s are increased, the rotation angle θ approaches to φ, while θ goes to near 0 with

small r or s values. When r or s is 0, it means no rotation at all and thus the angle θ is trivially 0.

The constant h is a user-controllable parameter, which decides the ratio of θ and φ for given r and s.

Now we have the formulations for the rotation axis and the rotation angle. Thus the rotation

matrix R in Equation (3.4) can be calculated. The compulsive translation vector T is easy calculated

from Equation (3.4) as follows:

θ

rs

φ

51

 T = (I – R) r + s,

where I is the 3-by-3 identity matrix.

In this way, we showed that the compulsive translation vector and the compulsive rotation

matrix can be calculated from the given geometric configuration. The object is then moved in order

to satisfy the constraint. It is the final step of the adjust stage. In the next subsection, we will show

another case in which neither of the objects has fixed location.

3.5.1.3 Moving objects solution for two-object articulated bodies

Suppose that an articulated body with two objects is moving freely. After the update stage,

each object has its own position, and often does not satisfy the constraint. In the previous subsection,

we presented a simpler example in which an object is fixed at a specific location. In contrast, this

subsection focuses on the case in which the articulated body moves freely. Only the joint constraint

restricts its motion.

The central idea in this case is calculating the position of the constraint point. Then we solve

two simple cases of fixed constraint point. In other words, the original problem of moving two-

object articulated body is transformed to two separate problems of fixed object cases, as shown in

Figure 3.20.

After the update stage, we have two positions of constraint points for each object. Our

objective is calculating the position of the new coincident constraint point from these positions.

Notice that the constraint force should be workless. Thus, it is natural to select the new coincident

constraint point c to be located along the line segment connecting the two given positions c1 and c2.

Another characteristic of the constraint force is that it is applied to the objects with the same

52

magnitude but opposite direction. When forces with the same magnitude are applied to objects, the

linear movement of each object is inversely proportional to its mass. Letting the masses of O1 and

O2 be m1 and m2, it is intuitive that

 m1 (c1– c) = m2 (c – c2).

Since the new coincident constraint point is located on the line segment 21cc , we can easily

derive that

21

2211
mm
mm

+
+= ccc .

Now the two objects of the articulated body move to this coincident constraint point, as

presented in the previous subsection.

object O1

object O2

moving

moving

object O1

object O2

moving

moving

c1

c2

O2

O1

mass m2

mass m1

c

c1

c2

O2

O1

mass m2

mass m1

c

O2

O1

c

O2

O1

c

(a) original configuration (b) calculating c (c) applying fixed-point
constraint solving

Figure 3.20. Constraint solving for a free-moving articulated body.

53

3.5.1.4 Tree-like articulated bodies

Since an object of an articulated body is connected to its adjacent objects, propagation of

forces from its neighbors affects itself. This propagation process makes the motions of articulated

bodies realistic. Constraint dynamics methods usually achieve the propagation process by solving

equations of all constraints simultaneously. Even though we have some linear time solutions for

(a) dragging a single object (b)dragging multiple objects (c) free movement

Figure 3.21. Constraint solving for tree-like articulated bodies

54

articulated bodies, formulations of such equations are complicated and their solutions usually

require sophisticated numerical computations [Mirt96][Bara96].

In this subsection, we extend our position-based method to general tree-like articulated

bodies, which consist of multiple objects. Constraint solving for tree-like articulated bodies can be

classified into three categories, as shown in Figure 3.21. For the first case, the position of only a

single object is fixed. This case is basically similar to the fixed single object case in Section 3.5.1.2,

while the number of objects in the articulated body is more than two. The next case is multiple

objects being dragged, where the positions of more than one object are specified. Finally, we also

have free-moving case in which there are no external constraints. Each of these cases is presented in

this subsection.

The basic idea of extending the position-based method to tree-like articulated bodies is

(a) Oi and Oj (a) Oi and gj

O i

O j

O i

gj

(a) Oi and Oj (a) Oi and gj

O i

O j

O i

gj

 Figure 3.22. Object grouping

55

grouping adjacent objects in order to regard them as a single object, as shown in Figure 3.22.

Suppose that an articulated body has n objects, O1, O2, …, On. As an example, suppose that the

position of Oi is fixed, and Oi is connected to Oj with a joint constraint. When the objects Oj, Oj+1,

…, Ok are all connected together, we group these objects into Gj. Then we simplify this situation as

a two-object articulated body whose objects are Oi and Gj. For efficient calculation, we simply

assume that the geometric shape of Gj is identical to Oj, but the mass of Gj is the total mass of Oj,

Oj+1, …, Ok. Then, we can calculate the compulsive motion required for Oj, and we apply the same

idea for the next object Oj+1 through grouping Oj+1, Oj+2, …, Ok.

When there are multiple objects whose positions are fixed, we cannot simply apply the same

idea. A possible solution can be a relaxation process, which is similar to Weil’s idea for the cloth

modeling [Weil96]. For each fixed object, we apply the above grouping method to the entire

articulated body while ignoring other fixed objects. Although objects may move from one place to

another at each step, they will reach a stable state after a number of iterations. Of course, we should

check impossible cases, which results in infinite loops.

The last case can occur when there is no fixed object of the tree-like articulated body after

the update stage. The central idea in this case is fixing a pre-selected object. For example, we can

select the torso of a human-like articulated body as its pre-selected one. At the adjustment stage, we

first calculate the position of this pre-selected object. Suppose that the pre-selected object Oi has its

neighbors Oj, Oj+1, …, Oj+k. We apply the two object articulated body solutions for each pair of Oi

and its neighbor. Now we have k locations for each pair, and the final location of Oi is calculated as

the weighted sum of these locations. After fixing the pre-selected object Oi, it is straightforward to

calculate the locations of other objects.

56

3.5.1.5 Other Kinds of Constraints

In constraint dynamics, handling various kinds of joints is an important issue [Bara93]. Our

position-based constraint method works well with various joint constraints, since the constraints can

be explicitly expressed procedurally. To demonstrate the power of our method, we present

approaches to handle joint-angle limit constraints, multiple positional constraints and contact

constraints.

The joint-angle limit constraint is widely used in articulated body motions. It is a kind of an

inequality constraint, and defines the acceptable range of angles between connected objects. In

constrained dynamics, the inequality equations are usually solved by linear complementary method

or quadratic programming, which require heavy computations [Bara93].

 These difficulties are due to the fact that the constrained dynamics methods have to

calculate accelerations even to limit an angle in a pre-defined range. In contrast, our procedural

method does not calculate any acceleration, and we can express this kind of constraint in an explicit

procedural form. For an articulated body, a pair of objects will be processed using two-object case

solutions. After fixing the two objects, we check whether the angle between them violates the pre-

specified joint-angle constraint. When it violates the constraint, we simply limit the angle to an

extreme value of the given constraint. That is all that is required to satisfy the joint-angle limit

constraint.

Multiple positional constraints provide useful tools for interactive control of articulated

figures. For example, user may want to drag one hand of a human-like figure while its feet are fixed

on the floor. In this case, we have three positional constraints: one for the hand and one for each

foot. In inverse kinematics, an optimization method was already proposed [Bald87][Welm93].

57

However, using our position-based method, it is possible to speed up its calculation without

using any optimization method. Notice that the multiple positional constraints are equivalent to the

multiple fixed object case of tree-like articulated bodies. As explained in Section 4.1, we can satisfy

the multiple positional constraints by a relaxation process.

In dynamics-based simulations, contact constraints are one of the hard-to-solve problems.

They usually require complicate computations involving quadratic programming (QP) or Danzig’s

algorithm to solve the contact problem [Bara93]. Contact points are calculated using collision

detection techniques and checking relative velocities of the objects. Since most implementations use

discrete time steps, the objects are usually penetrating each other when the collision is detected.

Thus, solving contact constraint is equivalent to removing the penetration, in most cases.

In Hahn’s method, the penetration is eliminated by backing up the penetrating object with its

relative velocity but along the opposite direction [Hahn88]. Our idea is similar to this backing up

method. However, we directly move the position of the object while Hahn uses relative velocity for

the same purpose.

Suppose that an object (a bouncing ball, for example) penetrates a stationary object (the

floor). After detecting the intersection, we first search for a vertex that has penetrated the deepest

among the vertices of the penetrating object. Then the penetrating object is compulsively translated

along the surface normal direction of the penetrated object so that the two objects are just touching.

When several objects are colliding simultaneously, the above translation is applied to each pair of

objects.

58

3.5.1.6 Examples

We present examples of articulated figure motions to demonstrate the power of our

procedural method.

Figure.3.23 demonstrate the interactive position control of articulated bodies. User selects

the uppermost object of the chain-shape body and drags it to the desired location. Figure 3.24 is

another example of the same chain-shape body, whose mass and damping terms are changed. It is

easy to find the differences in motions due to the change of physical parameters.

Figure 3.25 shows the motion of a human-like articulated body. User can select an object

and move the object, and then other objects follow the selected object. User can generate motions

similar to that of marionette whose hand is dragged.

59

 Figure 3.23 Example of dragging a chain:
the uppermost object is dragged interactively.

Figure 3.24 Another Example of dragging a heavy chain.

60

 Figure 3.25. Example of dragging a human-like
shape

61

3.5.2 Procedural Methods for Motions of Sphere-like Objects

In the field of computer animations and VR environment, motions of sphere-shaped objects

are frequently used. Motions of billiard balls or bowling balls are good examples. To generate

realistic animations, we need a physical model to process motions and collisions of these sphere-

like objects. The motion of a sphere-like object can be decomposed into rolling and sliding.

Additionally, the transient motions between rolling and sliding are also needed. For example, a

billiard ball usually slides on the table with its own spin, and its spin will contribute to its linear

velocity and vice versa.

Collisions can be easily modeled by impact dynamics techniques. In the case of rolling

motions, it is needed to solve non-holonomic constraints [Deyo88]. Since the exact solutions for

Figure 3.26 A motion of sphere

62

non-holonomic constraints require complicated computation [Deyo88], we present a procedural

method that can be used as an alternative way of solving non-holonomic constraints for rolling

motion. Although our procedural method may produce physically-incorrect motions, its final result

is visually plausible. Additionally, our method is easier to implement and faster than the traditional

way of non-holonomic constraint solving.

A constraint is called holonomic when it can be represented as followings:

,0),...,(=tf 321 x,x,x

where xi’s are positions of objects and t is the parameter for time. Point-to-point and point-

to-nail constraints are examples of the holononic constraint. In contrast, non-holonomic constraints

cannot be represented as a function of object coordinates, xi’s. A rolling ball without sliding is an

example of this non-holonomic constraint.

To produce realistic motions of sphere-shaped objects, we should properly model its sliding,

rolling, and transient motions between sliding and rolling. Instead of integrating these three cases

into a single equation, we develop separated procedural equations. The system determines above

three cases by comparing angular velocity and linear velocity. For the transient from sliding and

rolling case, the decision equation is:

1 S
roll without Sliding

=
roll Start to 0 S

slip without Rolling
=1 S

roll without Sliding
=

roll Start to 0 S
slip without Rolling

=

Figure 3.27 Sliding from rolling

63

v
rv

s
ω−

= ,

where v and ω are linear and angular velocity, respectively. r is the radius of the sphere.

If s = 1, the sphere is slipping without rolling. If s = 0, the sphere rolls without slipping. Figure 3.27

shows motions from sliding without rolling to rolling without slipping. For rolling without slipping

case (s = 0), only rolling resistance is applied to the rolling motions and velocity matching (v = rω)

is applied. Instead of finding exact force and torque to satisfy the non-holonomic constraint, the

system decides the angular velocity according to the linear velocity without considering angular

acceleration. This is a kind of velocity-based physics mentioned by Milenkovic [Mile96]. Rolling

resistance depends on surface roughness and decreases velocity of the sphere. For sliding without

rolling case (s = 1), when someone hit middle of a ball hardly, only slipping without rolling occurs

for a while. Friction force without rolling resistance should be applied for this case. For transient

case, smooth transient should be modeled to get realistic motions. Friction force decreases when the

spheres start to roll. When the sphere rolls without slipping, friction forces are zero. Smooth

transient from initial sliding to rolling can be modeled by interpolating the friction force according

to angular velocity. The equation of interpolated force, Fi is,

frictionF
v
r

F
�

�
�

�

�
+−= 1

�

i

 We introduced procedural method for motions of sphere-like objects. This is easy to

implement and fast. In addition to motions of balls, above equations can be applied to motions of

tires in cars. Exact formulation of tire is very complicate.

64

3.6 Virtual Wind

Wind is an important external force and is widely used in computer animation and Virtual

Reality applications. Modeling physically-correct wind is very difficult because it includes aero

dynamics and turbulence problems. Isaac system has real time wind generation model. We will

explain our virtual wind model with its direct application of virtual mobile system, which is also

provided by Isaac system.

Recently, real world objects are successfully reproduced in the computer systems, using

computer graphics and virtual reality techniques. A good application example is digital museums,

which display reproductions of real world fine arts on the computer screens [McWh88]. For

drawings, digital scanners and/or digital cameras can be used to generate the digital reproductions.

In the case of sculptures, three-dimensional geometric and/or volume data can reproduce virtual

sculptures on the screens[McGu93]. Image-based rendering techniques including MCOP(multiple

center of projection)[Rade98] can also be used for this purpose.

Mobiles, which are also known as moving sculptures, however, can not be represented

successfully using these techniques. As an example, a real world mobile, “Steel Fish” by A. Calder

is shown in Figure 3.28. Typical mobiles are dynamic systems: their components are usually

dangling from the stems and swing due to external forces such as winds. At least in the area of

computer graphics, we have not seen any reproductions of mobiles.

65

Isaac system can be used to generate virtual mobile system. To simulate a real world mobile,

we start from constructing its geometric shape. Then, some physical properties such as masses and

inertia tensors are calculated. The mobile is simulated by a constraint dynamics system, based on

these geometric data and physical properties. To invoke the motions of mobiles, users can generate

virtual winds, and our constraint dynamics solver presents the motions and collisions of

components. An impulse dynamics system is also used to response collisions among the

components of the mobile. Using a simplified aerodynamics model for the virtual wind and other

recent acceleration techniques, our system accomplished real time display of an example virtual

mobile on Pentium chip-based personal computers.

While the natural wind causes the motions of real world mobiles, we need virtual wind to

simulate the motions of our virtual mobile. To control the virtual wind, we may use traditional input

Figure 3.28. A real world mobile: Steel Fish by Alexander Calder.

66

devices such as keyboards and mice. Additionally, our system uses a microphone interface. The user

blows at the microphone, and the speed of the virtual wind is proportional to the amplitude of the

input sound. The direction of the wind is specified with the mouse.

Our microphone interface has some benefits. First, it is more intuitive for the user to

generate the wind through the blowing action. Second, the microphone is more convenient to

simulate the temporal variations of the wind speed. Another benefit is that the microphone is

inexpensive and easily available even for personal computers.

Since it is generated from the human breath, the virtual wind is assumed to propagate in an

infinite cone shape, as shown in Figure 3.29. A circular cross section S0 with its radius r0 plays the

role of the source of wind. The vertex of the cone is located at the distance l0 from the center of S0.

User can provide r0 and l0 to control the shape of the cone, and the wind propagates from S0 in the

direction opposite to the vertex. Using the microphone interface, user controls the wind speed v0(t)

at S0.

For simulating the wind, we need to calculate the speed of the wind at a distance l1 > l0 from

the vertex. Although there are several results [Reev83][Wejc91][Shin92] for simulating

aerodynamics in computer graphics applications, we use a simplified form to achieve real time

l0

l1

cross section S0

cross section S1

r0

r1
v0(t)

v1(t)

virtual
wind

l0

l1

cross section S0

cross section S1

r0

r1
v0(t)

v1(t)

virtual
wind

Figure 3.29 Virtual wind model.

67

display. We start from assuming that the fluid (in this case, air) is inviscid and incompressible, and

no fluid can cross the boundary of the cone shape. This is a reasonable model for air at normal

speed [Wejc91]. Then, the Equation of Continuity in fluid dynamics gives

A0 v0 = A1 v1, (3.9)

where A and v represent the area of the cross-section and the fluid speed, respectively[Patt89]. The

subscript 0 and 1 corresponds to the distance l0 and l1, respectively.

From Figure (3.29) and the geometric configurations of the cone, it is easily found that

l
l

l
l

r
r

A
A

v
v

2
0

2
0

2
1

2
0

2
1

2
0

1

0

0

1 ====
π
π

π
π

. (3.10)

Using the Stoke drag equation [Feyn65][Patt89], the force acting on a face with its area A located

on the cross section S1 can be calculated as follows:

 ,)(2

1stoke nnnF aavvA ⋅= ρ (3.11)

where vn and an are the unit directional vector of the wind and the face normal vector,

respectively, as shown in Figure 3.30. The constant ρ is the density of fluid. Equations (3.10) and

(3.11) give

,)(4

1

2

0
stoke nnnF aavl

vA ⋅= α

where α is a constant. For reflecting the turbulent behavior of wind, we add a random noise term

and the final force can be expressed as

 ,randomstokewind FFF += (3.12)

where the direction of randomF is randomly selected, and |||| stokerandom FF β< for a user-

68

specifiable constant β.

Before applying the force calculated in Equation (3.12) to the face, we should check

whether the wind is directly delivered to the face or not. When a face is occluded by another face in

the air flow, we simply assume that the occluded face is not influenced by the wind. Without this

assumption, it is hard to achieve the real-time display of the mobile. In this simplified wind model,

the air flow can reach to the faces which are directly visible from the vertex of the cone and belong

to the interior of the cone.

Due to this assumption, the influenced faces can be identified by a visible surface detection

method [Fole90]. We use the depth-buffer method for more speed-up. To simulate the partially

occluded cases, faces are first partitioned into small area on which a sampling point is assigned.

Then, the graphics pipeline is used to capture the image containing the cross section S0 using the

synthetic camera located at the vertex of cone. Each sampling point has its own identification

number, and it is also stored in the alpha buffer through the graphics pipeline. Scanning the alpha

buffer, we can easily detect whether each sampling point is visible from the vertex of the cone or

vn

 windvirtual

an
stokeF

A area

vn

 windvirtual

an
stokeF

A area

Figure 3.30. Force due to the virtual wind.

69

not. Since S0 corresponds to a circle on the image plane, it is also easy to check the point belongs to

the interior of the cone. When a sampling point is visible and also belongs to the interior of the cone,

the force calculated in Equation (3.12) is applied to its corresponding area. In the next section, we

will represent how the constraint dynamics techniques are used to apply these external forces due to

the wind.

70

3.7 Sound Generation and Synchronization with Motion

Sound is a key factor in computer animation and virtual reality(VR) since hearing is as

important as seeing to humans. Sound in the real world provides important information that cannot

be acquired just through images. Therefore, realistic sounds along with realistic images are

necessary for computer animation and VR applications. Since most sounds are generated due to

object motions, the matching of generated sound with motion is very important. Accordingly,

synchronization includes matching sound characteristics with the motion and material of an object

as well as timing. To achieve a natural matching of sound and motion along with timing, the

material properties and geometry of an object also need to be considered for realistic sound

generation. For example, when the middle part of a drum is hit, a lower sound will be produced

compared with the sound of hitting the edge part.

Most current sound systems for VR and computer animation merely consider timing and

amplitude from motion, while the real world produces an array of distinct sound characteristics

according to variety of collision and contact conditions. Sampling many sounds is one possible

method of reproducing various conditions. However, sound sampling is not easy and requires a

large memory. Therefore, an algorithmic sound generation method that considers the contact,

collision, and material properties of object is an attractive one.

This thesis introduces a series of sound equations that produces various sounds from

different motions. Through evaluating these equations, it is confirmed that they are fast enough for

real time applications. Some of the equations are derived from the principles of physics whereas

others are based on heuristic methods. Sounds of homogenous objects can be generated by physics

71

equations. However, sounds generated by heterogeneous objects are very difficult to model by

physical analysis. Therefore, heuristic based procedural methods are used to generate these kinds of

sounds.

The parameters of the sound equations are connected with motion parameters (collision

force, scratching velocity, etc.) and geometry information (collision/contact location, size etc). As a

result, various sounds can be automatically produced according to the particular motion, which is

infeasible using sampling-based methods.

There are many methods for representing and controlling sound signals. Among them,

Additive synthesis and Frequency modulation (FM) are the primary methods in sound generation.

Additive synthesis adds sound signals in the amplitude domain to get the desired sound, whereas

Geometry Data Physical Object Data

Physics Analysis

Sound Equation
Motion Equation

Collision &
Contact Information

Sound Motion

Geometry Data Physical Object Data

Physics Analysis

Sound Equation
Motion Equation

Collision &
Contact Information

Sound Motion

Figure 3.31 Sound synchronization with motion

72

FM changes the signal frequencies in the frequency domain.

The following sections describe the details of sound generating methods. In section 3.7.1,

we explain methods of generating and controlling sounds of homogenous material based on

physical laws. Section 3.7.2 explains how heterogeneous material sounds are generated by

procedural method. Section 3.7.3 present a method to generating scraping sound from textures.

Finally, Section 3.7.4 explains a method of generating wind sound based on fractal.

3.7.1 Homogeneous Material Sound

In computer animation, physical laws are used to generate realistic motion. Likewise,

realistic sounds can also be generated using the laws of physics. Sounds of homogenous material

can be produced by the law of physics. Vibration analysis provides the basis for sound generation

[Flet91]. A vibrating object generates sound through vibrating the air. Thus the sound equation is

closely related to the object vibration equation. Material properties and geometry of an object are

also key factors for these vibrations. Although vibration equations of simple objects such as spring

and string are quite straightforward, the formulating vibration equations of complicated shapes or

heterogeneous material objects is very difficult. Once a correct vibration equation is established, a

variety of sounds can be produced using proper values of sound and motion parameters.

Since a vibration equation is often represented by frequencies, the sound of an object can be

represented by adding up all the frequencies. This method is also known as Fourier synthesis. One

of the simplest vibrating systems (the simplest vibration modes) is a mass-spring system. Its

frequency can be represented as follows:

73

m
Kf

π2
1= ,

where K is the spring constant and m is the mass.

Vibrating string can be considered as a spring-mass system that has many springs and

masses. There are many modes of vibration and the modes are represented by multiples of the

fundamental frequency (the lowest frequency). Longitudinal vibration frequencies can be

represented as :

L
vnf L

n 2
= ,

where n is natural number, Lv is speed of sound in the string, and L is the length of the string. The

advantage of this formulation is that the equation represents sound as the motion of the string.

Therefore, sound and motion can be combined seamlessly.

Chime sounds can also be represented by vibration analysis. Although the vibration analysis

Figure 3.32 Blowing in the Wind

74

of a chime is similar to that of a string, the frequency dependence on tension is more complicated. A

modal analysis of the frequency components of a chime is as follows:[Flet91]

[]2222
2)12(,...,7,5,011.3

8
+

�
��
�

�
= nE

L
Kfn ρ

π
,

where L is the length of the chime, E the elasticity, ρ the density of material, and K the radius of

gyration, which is the square of the chime’s outer diameter over it’s inner diameter. This equation

can be used to generate wind chime sounds. The geometric modeling and material properties of a

chime can then be mapped using L, E, K, ρ. The collision forces are mapped to the amplitude of the

sound, whereas the collision timing can be found by the collision detection routines. As a result, the

synchronization of motion and sound can be achieved naturally. Figure 32. shows an image from

“Blowing in the Wind”, the chime sounds were generated by above equations. Although the modal

analysis of a complicated object is not easy, it is easy to map the physical attributes to the sound

parameters, after establishing the vibration equations.

3.7.2 Collision Sounds for Non-Homogeneous Material

The creation of sound equations for simple shaped and homogeneous material objects is

quite straightforward, however, equations for non-homogeneous objects are very complicated.

Therefore, procedural equations without a complicated analysis are very useful in establishing

sound equations for complicated objects. In computer graphics, similar methods are used to

generate complicated images and motions. The modeling of gas motion, mountain geometry, and

wood texture is very difficult using exact physical laws. Thus, instead of applying complicated

physical laws, mathematical equations can be employed to generate these images and motions

75

based on the analysis of their outward appearance. Users then control the parameters in the

equations to gain the desired images and motions. Although the parameters are not directly related

to the physical properties of the objects, visually plausible images and motions can still be

generated by controlling the parameters. Similar methods can also be used to generate complicated

sounds. Therefore, mathematical equations and the control of their parameters can generate aurally

plausible sounds of complicated objects.

The proposed procedural sound generation method is based on the additive method. An

advantage of Additive synthesis is the intuitive control of a sound examining its amplitude, timbre,

and decay. The timbre of a sound is controlled through the number of added signals and decay

parameters. For example, a bell sound has a small number of signals, whereas a plastic or wood

sound has a large number of signals. The following equation represents a general collision sound,

Figure 3.33 Bell and wood sounds

76

Signal(t) =)sin(
1

te i

n

i

c t

ωα ω

=

− ,

where iω corresponds to a set of random frequencies, c is the damping constant, and α represents

the amplitude.

There is a relationship between the physical and geometric parameters and the sound waves.

The collision/contact between objects has close relation with the amplitude, spectrum and

bandwidth of the sound waves. The material parameters, including the density, damping, and

homogeneity all have an effect on the signal frequency. The shape, size, and resonating cavities

have effects on the frequency, spectral pattern, and bandwidth. All these parameters and their

relationships must be considered when determining the sound equation parameters.

Many signals and small value of damping parameters generate wood-like sounds. Random

number generators are then used to decide the frequencies and amplitudes of the adding signals. A

small and limited frequency signal makes a bell sound. By controlling the main frequency of the

signal, the frequency of the bell can also be controlled. Figure 3.33 shows different bell and wood

sounds. The frequency number of the wood is 600, the drum number is 250, the bell number is 10,

and the metal number is 25.

77

3.7.3 Texture-based Sound

Mapping between a user gesture and the sounds resulting from that gesture are very

important in VR and real time animation. Many motions are involved in an interaction between the

Tim e/D istance

I
n
t
e
n
s
i
t

Figure 3.34 Wood texture and signal from scratch line

78

user and an object. Among these interactions, rubbing and scratching make sounds based on a

combination of interaction and surface properties. When someone scratches a surface with his/her

nail or pen, the sound should reflect the roughness of the surface. In computer graphics, the

roughness of a surface is represented by bump mapping or a 3D texture, rather than by geometric

modeling. In this thesis, it is assumed that the roughness of a surface is represented by texture

information. Therefore, the synchronization of a scratching gesture and its sound can be generated

using texture mapping. Perlin introduced 3D texture generation methods[Perl85]. Using his noise

function, Perlin generated wood and marble textures where the patterns were neither random nor

regular. Figure 3.34 shows the wood texture using a noise function and the resulting signal from the

scratch line. The signal is generated from the intensity values of the texture. In fact, the roughness

of a surface and intensity of the texture color has a close relationship in a real wood surface.

Various sounds can be generated by applying different filters to this signal. For example,

sounds of soft or hollow objects can be generated by applying low-pass filters. The speed of the

scraping object is then mapped to the scaling factor of the signal (on the time axis) to synchronize

the motion and sound. The overall amplitude of the sound is scaled using the normal force with

which the surface is scrapped to arrive at the final sound. The sounds generated should be a

function of the texture, the scraping object, the speed, and the force with which the surface is

scraped.

3.7.4 Fractal-based sound

There are so many factors in the real-world, therefore, specifying them in a deterministic

way is impossible in some cases. Consequently, complicated natural phenomena, such as clouds and

79

mountains, can be represented by the fractal geometry [Four82]. Fractals are specified by iterative

procedures such as))(()(1−= ii xffxf . In computer graphics, random fractals are used to model

natural shapes and motions. The fractal method can generate very complicated geometries with

small codes and simple parameters by amplifying basic data.

A wind sound is also an example of a natural phenomenon. Therefore, it is reasonable to

apply simplified fractal method to generate a wind sound is reasonable. The “Blowing in the

Wind”(see Figure 3.32) animation demonstrates that a realistic wind sound can be generated using a

simplified fractal function and the wind sound and wind force can be naturally mapped for

synchronization.

Unlike a general fractal function, we employed Multifractal function [Eber94] that

replaced the addition of frequency in the inner loop by multiplication. Multifractal represents

heterogeneous (not same everywhere) signal than a general fractal. Since wind in nature has not

same amplitude, Multifractal shows better wind effect. The Prelin noise-function is used as the

basic function [Perl85]. As a result, the wind sound of the “Blowing in the Wind” animation is

()
=

− �
�

�
�
� −⋅⋅⋅⋅5

1
1 2.0)5.0(

2
)50(

i
i tnoiseitnoise

We introduced algorithmic sound generation methods based on physical laws and procedural

methods. Unlike sampling methods, our method has parameters that correspond with object’s

motion parameters. Therefore, timbre of sounds is naturally synchronized with motions and object’s

properties. Sound synchronization, one of most important problems in VR and animation, is

naturally solved in Isaac system.

80

4. Conclusions and Future Works

 This dissertation concludes by describing summary of solution, results, original

contributions and future works.

4.1 Summary of Solution and Results.
We presented procedural methods for motions of articulated bodies, sphere-like objects, and

real time wind generation. Our aim was to generate visually plausible animation sequences rather

than physically correct motions. Since our method does not solve complicated dynamic equations,

the method can achieve interactive control of the motions with numerical stability. This physically

based procedural method can be an alternative to dynamics simulation, especially for real-time

applications such as virtual reality environment and computer games. The physically based

procedural methods are formulated by physical analysis, to finally use physical quantities as their

input parameters.

We reproduced a real-world mobile on a computer system by Isaac system. The virtual

mobile system interactively simulates motions of the mobiles according to user’s blowing action.

Virtual wind model, constraint dynamics solver, and the impulse dynamics solver were combined

seamlessly for the realistic simulation of the mobile.

As a real time virtual wind model, we suggested a simplified wind model, which is simple

but sufficient to simulate directional winds. Additionally, the microphone interface is developed for

81

easy control of the virtual wind. Since this wind model can generate directional winds, it is suitable

for simulating artificial winds generated by electric fans, air-conditioners, etc.

Constraint combining was proved to be a useful tool for designing complicated constraints.

Constraints of Terry Elis’s clock were formulated by combining constraints in Isaac system.

Constraint breaking and time varying parameters give more freedom to designing complicated

constraints such as time varying constraints.

Procedural method was also proved to be a useful tool for generating sounds. Various

realistic collision sounds including that of wind chimes, bell and wood were formulated by the

procedural method. Texture-based scraping sound and fractal based wind sounds are also

implemented. All sounds are naturally mapped with motion parameters such as collision and contact

parameters.

4.2 Original Contributions
This thesis proposed physically based procedural methods. This was designed to solve the

problems of physically based modeling. This is a new method to have advantages of procedural

method and physically based modeling. The methods produce visually plausible motions of

articulated bodies, sphere-objects and wind that are faster and more stable than motions from

physically based modeling method.

We formulated sound generation equations by the physically based procedural method. By

combining the procedural method and physically based modeling, we formulated equations of

various sounds including collision, contact and wind. The parameters of the equations can be

mapped easily with parameters of motion equations.

82

Real time wind system was designed and implemented based on the physically based

procedural method. When user blows to the microphone, this system produces real time virtual

wind according to the intensity of blowing, direction and distance between the user and the virtual

objects.

We designed and implemented a motion generation system that combined with constrained

dynamics, procedural method and sound. Constraints in the system can be combined and subtracted

with time paramters for new constraints.

4.3 Future Works
We applied the physically based procedural method to articulated bodies, sphere-like objects

and collision sounds. The concept can be applied to other heavy computational models such as soft

objects and cloth. Since the structure of articulated bodies and deformable objects are similar,

applying to the deformable objects may be possible. Previous procedural method can also be

combined with the physically based procedural method. For example, noise functions can be added

to the procedural method to express voluntary motions.

Automatic degradation would be an interesting future work. According to its computing

power, a computer system may automatically choose the dynamics model or the procedural model.

Control algorithm can be added in our procedural method. Currently, our procedural method

is controlled by user’s interaction. Walking or running algorithm can immediately use our

procedural model. Developing collision model by procedural method may be another future work.

Mathematical error measurement of our method can also be explored in the future. Currently,

our visual perception is only the measurement of our algorithm like other procedural methods.

83

However, mathematical error measurement will provide more theoretical background of our work.

References

[Arms85]W. Armstrong and M. Green. The dynamics of articulated rigid bodies for purposes
of animation. Visual Computer, Springer-Verlag, pages 231-240, 1985.

[Badl87]N. Badler, K. Manoocherhri, and G. Walters. Articulated figure positioning by
multiple constraints. IEEE Computer Graphics and Applications, pages 28-38, June 1987.

[Bara89]D. Baraff, Analytic methods for dynamic simulation of non-penetrating rigid bodies.
SIGGRAPH’89, pages 223-232

[Bara93]D. Baraff, Fast contact force computation for non-penetrating rigid bodies.
SIGGRAPH’93, pages 23-34, 1993.

[Bara96]D. Baraff, Linear-time dynamics using Lagrange multipliers. SIGGRAPH’96, pages
43-54, 1996.

[Bara98]D. Baraff and A. Witkin. Large time steps in cloth simulation. SIGGRAPH’98,
pages43-54, 1998.

[Barz88]R. Barzel and A.H. Barr. A modeling system based on dynamic constraint.
SIGGRAPH’88, pages 179-188, 1988.

[Barz96]R. Barzel, John F. Hughes, and Daniel N.Wood. Plausible motion simulation for
computer graphics. in Computer Animation and Simulation '96 (Proceedings of the
Eurographics Workshop), Springer Wien, New York, pages. 183-197, 1996.

[Barz97]R. Barzel. Faking dynamics of ropes and springs. IEEE Computer Graphics and
Applications, 17(3), pages. 31-39, May-June 1997.

[Berc86]B. Bercoe. Csound: A manual for the Audio Processing System and Supporting
programs, MIT Media Lab, MIT, MA, 1986.

[Bree94]D.E. Breen, D.H. House, and M.J. Wozny. Predicting the drape of woven cloth using
interacting particles. SIGGRAPH’94, pages 365-372, 1994.

[Cook84]R. Cook. Shade Tree. SIGGRAPH’84, pages 195-206, 1984.

[Dann91]R. Dannenberg, C. Fraley and P. Veliknoj. Fugue: a functional language for sound
synthesis, IEEE Computer, 24 (7), pages 36-42, 1991.

[Desb95]M. Desbrun, M. Gascuel. Animating soft substances with implicit surfaces.
SIGGRAPH’95, pages 287-290, 1995.

[Deyo88] R. Deyo, J.A. Biggs and P. Doenges. Getting graphics in gear: graphics and

84

dynamics in driving simulation, SIGGRAPH’88, pages 317-326, 1988.

[Eber94]D.S. Ebert, F.K. Musgrave, D. Peachy, K. Perlin and S. Woley. Texturing and
Modeling. Academic Press, 1994

[Feyn65]R. Feynmann R. Leighton and M. Sands. The Feynman Lectures on Physics.
Addison-Wesley, 1965.

[Fole90]J. Foley, A. van Dam, S. Feiner and J. Hughes. Computer Graphics, Principles and
Practice. 2nd Ed., Addison-Wesley, 1990.

[Four82]A. Fournier, D. Fussell, and L. Carpenter. Computer rendering of stochastic models.
CACM, 25(6), pages 371-384, June 1982.

[Four86]Alain Fournier and William T Reeves. A simple model of ocean waves.
SIGGRAPH’86, pages 75 - 84, 1986.

[Flet91]N. Fletcher and T. Rossing. The Physics of Musical Instruments. Springer-Velag, 1991.

[Gasc94]J. D. Gascuel and M.P. Gascuel. Displacement constraints for interactive modeling
and animation of articulated structures, Visual Computer, pages 191-204, 1994.

[Gave93]W. Gaver. Synthesizing auditory icons, Proceedings of INTERCHI, 1993.

[Gira85]M. Girard and A. A. Maciejewski. Computational modeling for the computer
animation of legged figures, SIGGRAPH’85, pages 263-270, 1985.

[Glei94]M. Gleicher. A differential approach to graphical manipulation. PhD thesis, Carnegie
Mellon University, 1994.

[Gold80]H. Goldstein, Classical Mechanics. 2nd Ed., Addison-Wesley, 1980.

[Grit95]L. Gritz and J. Hahn. Genetic programming for articulated figure motion. Journal of
Visualization and Computer Animation, pages 129-142, July 1995.

[Hahn88]J. K. Hahn. Realistic animation of rigid bodies. SIGGRAPH’88, pages 299-308, 1988.

[Hahn95]J.K. Hahn, J. Geigel, J.W. Lee, L. Gritz, T. Takala, and S. Mishra. An Integrated
Approach to Sound and Motion. Journal of Visualization and Computer Animation, Volume 6,
Issues No. 2, pages 109-123, 1995.

[Hara95]M. Harada, A. Witkin and D. Baraff. Interactive physically - based manipulation of
discrete/continuous models. SIGGRAPH’95, pages 199-208, 1995.

[Hodg95]J. K. Hodgins, W. L. Wooten, D.C. Brogan and J.F. O’Brien. Animating human
athletics. SIGGRAPH’95, pages 71-78, 1995.

[Isaa84]P. M. Isaacs and M. F. Cohen, Controlling dynamics simulation with kinematic
constraints, behavior functions, and inverse dynamics. SIGGRAPH’87, pages 215-224, 1987.

[Lee00]J.W. Lee, N. Baek, D. Kim, and J.K. Hahn. A procedural approach to solving

85

constraints of articulated bodies, Eurographics 2000, (ISSN 1017-4656) pages 55-64 August
2000.

[Lee00]D.K. Lee, H.J. Bae, C.T. Kim, D.C. Lee, D.H. J, N.K. Lee, N.H. Baek, J.W.Lee, K.W.
Ryu, and J.K. Hahn. Reproducing works of calder, The Journal. of Visualization and Computer
Animation, (submitted on Dec 13 1999)

[Lewi90]J. Lewis. Automated Lip-Synch: background and techniques, The Journal of
Visualization and Computer Animation, Vol 2, No.4, pages 118-122, 1990.

[Math69]M. Mathews. The technology of computer music, MIT Press, MA, 1969.

[McKe90]M. McKenna, and D. Zeltzer. Dynamics simulation of autonomous legger
locomotion. SIGGRAPH’90, pages 29-38, 1990.

[Mile96]V. J. Milenkovic. Position-based physics: simulating the motion of many highly
interacting spheres and polyhedra. SIGGRAPH’96, pages 129-136, 1996.

[Mirt95]B. Mirtich. Impulse-based simulation of rigid bodies. 1995 Symposium on Interactive
3D Graphics, pages 181-188, 1995.

[Mirt96]B. Mirtich, Impulse-based dynamic simulations of rigid body systems, Ph.D. thesis,
University of California, Berkeley, 1996.

[Moor88]M. Moore and J. Wilhelms. Collision detection and response for computer animation,
SIGGRAPH’88, pages 289-298, 1988.

[Moor90]F. Moore, Element of Computer Music, Prentice Hall, Englewood Cliffs, NJ, 1990.

[Ngo93]J. Ngo and J. Marks. Spacetime constraint revisited. SIGGRAPH’93, pages 343-
350,1993.

[Patt89]A. Patterson. A First Course in Fluid Dynamics, Cambridge University Press, 1989.

[Peac86]D.R. Peachy. Modeling waves and surf. SIGGRAPH’86, pages 65-74, 1986.

[Pent89]A. Pentland and J. Williams. Good vibrations: model dynamics for graphics and
animation. SIGGRAPH’89, Pages 207 – 214, 1989.

[Perl85]K. Perlin. Image synthesizer. SIGGRAPH’85, pages 287-296, 1985.

[Rade98]P. Rademacher and G. Bishop. Multiple-Center-of-Projection Images. SIGGRAPH’98,
pages 199-206, 1998.

[Raib91]M. Raibert and J. Hodgins. Animation of dynamic legged locomotion. SIGGRAPH’91,
pages 349-358, 1991.

[Reev83]W. Reeves, Particle systems – A technique for modeling a class of fuzzy objects,
ACM Trans. on Graphics, 2(2):91-108, 1983.

[Reyn87]C. W. Reynolds, Flocks, herds and schools: A distributed behavior model,
SIGGRAPH’87, pages 25-34, 1987.

86

[Rose96]C. Rose, B. Guenter, B. Bodenheimer and M. F. Cohen. Efficient generation of
motion transitions using spacetime constraints. SIGGRAPH’96, pages 147-154, 1996.

[Scal91]C, Scaletti, The Kyma/Platypus computer music workstation in the well-tempered
object: musical applications of object oriented software technology, Stephen Travis Pope, ed.
MIT Press, 1991.

[Scho90]P. Schoroder and D.Zeltzer. The virtual erector set: Dynamic simulation with linear
recursive constraint propagation. In Proceedings 1990 Symposium on Interactive 3D Graphics,
volume 24, pages 23-31, March 1990.

[Shin92]M. Shinya and A. Fournier, Stochastic motion – motion under the influence of wind,
EUROGRAPHICS’92, 11(3):119-128, 1992.

[Surl92]M. Surles, An algorithm with linear complexity for interactive, physically-based
modeling of large proteins, SIGGRAPH’92, pages 221-230, 1992.

[Taka92]T. Takala and J. Hahn, Sound Rendering, SIGGRPAH’92, pages 211-220, 1992

[Tsin97]Nicolas Tsingos and Jean-Dominique Gascuel. A general model for the simulation of
room acoustics based on hierarchical radiosity. The art and interdisciplinary programs of
SIGGRAPH '97, page 149, 1997.

[Weil86]Jerry Weil. The synthesis of cloth objects, SIGGRAPH’86, pages 49-54, 1986.

[Wejc91]J. Wejchert and D. Haumann, Animation aerodynamics, SIGGRAPH’91, pages 19-22,
1991.

[Welm93]C. Welman. Inverse kinematics and geometric constraints for articulated figure
manipulation. Master’s thesis, Simon Fraser University, September 1993.

[West96]B. Westenhofer and J. K. Hahn. Using kinematics clones to control the dynamic
simulation of articulated figures. Proceeding of Pacific Graphics, 1996.

[Witk90]A. Witkin, M. Gleicher and W. Welch. Interactive dynamics. In proceedings 1990
Symposium on Interactive 3D Graphics, volume 24, pages 11-21, March 1990.

[Witk96]A. Witkin and M. Kass. Spacetime constraints. SIGGRAPH’96, pages 159-168, 1996.

[Witt99]P. Witting, Computational fluid dynamics in a traditional animation environment.
SIGGRAPH’99, pages 129-136, 1999.

